直流斩波与IGBT驱动保护电路测试
实验二 IGBT管的驱动、保护电路的测试及直流斩波降压电路的研究
实验二 IGBT管的驱动、保护电路的测试及直流斩波降压电路的研究一、实验目的1.掌握IGBT驱动与保护电路的基本要求,熟悉驱动模块EXB841电路的驱动与保护环节的测试;2.掌握脉宽调制信号发生原理,能对脉宽调制电路的调试及负载电压波形进行分析;3.熟悉直流斩波降压电路的工作原理。
二、预习要求1.了解IGBT驱动的隔离和功率放大的要求;2.了解脉宽调制信号的发生原理;3.了解直流斩波电路的基本原理。
三、实验设备1.IGBT直流斩波电路实验装置单元2.示波器3.万用表四、实验原理及说明该实验由三个部分组成:直流斩波电路,IGBT的驱动和保护电路以及脉宽调制信号发生电路。
下面分别予以介绍。
1.直流斩波电路如图2-1所示,220V单相交流电经整流变压器TR,降为50V交流电,再经整流滤波后变为直流电,其幅值在45V~70V之间,视负载电流大小而定。
直流电路的负载为220V、15W白炽灯,用绝缘栅双极晶体管(IGBT)作为开关管,来控制直流电路的通断,以调节负载上平均电压的大小。
图2-1 IGBT 直流斩波电路2.IGBT管的驱动和保护电路(1)IGBT管IGBT管是一个复合元件,它的前半部分类似绝缘栅场效应管(是电压控制型,具有输入阻抗高的优点),后半部分类似双极管晶体管(具有输出阻抗小、导通压降小、承受电流大的优点)。
它兼有场效应管和双极晶体管的优点,因而获得日益广泛的应用。
(2)IGBT的驱动电路IGBT具有显著的优点,已日益广泛应用于通用变频调速器,位置控制和不间断电源领域。
目前有多种IGBT驱动模块。
现以EXB841为例,来介绍IGBT驱动电路的工作原理。
EBX841型模块,可驱动300A/1200V IGBT元件,驱动延迟时间小于1μs,最高工作频率可达40~50kHz。
它只需要外部提供一个+20V的单电源(它内部自生反偏电压)。
模块采用高速光电耦合(隔离)输入,信号电压经电压放大和推挽(射极跟随)功率放大输出,并有过电流保护环节。
电力电子技术实验报告--直流斩波电路的仿真
实验报告(理工类)
通过本实验,加深对直流斩波电路工作原理的理解,并学习采用仿真软件来研究电力电子技术及相关控制方法。
二、实验原理
V L/R
¥GVD u 。
图2.1直流降压电路原理图
直流降压变流器用于降低直流电源的电压,使负载侧电压低于电源电压,其原理电路如图2.1所示。
U 。
=
&E=『E=aE (2-1) 4>n+^off /
式(2-1)中,T 为V 开关周期,%为导通时间,为占空比。
在本实验中,采用保持开关周期T 不变,调节开关导通时间&I 的脉冲宽度调制方式来实验对输出电压的控制。
仿真的模型线路如下图所示。
开课学院及实验室:
实验时间:年月日 一、实验目的
图2.2降压斩波电路仿真模型
在模型中采用了IGBT,IGBT的驱动信号由脉冲发生器产生,设定脉冲发生器的脉冲周期和脉冲宽度可以调节脉冲占空比。
模型中连接多个示波器,用于观察线路中各部分电压和电流波形,并通过傅立叶分析来检测输出电压的直流分量和谐波。
三、实验设备、仪器及材料
PC机一台、MATLAB软件
四、实验步骤(按照实际操作过程)
1.打开MATLAB,点击上方的SimUlink图标,进入SimUIinkLibraryBroWSer模式O
2.新建model文件,从SimulinkLibraryBrowser选择元器件,分别从sinks和SimPowerSystems 中选择,powergui单元直接搜索选取
3.根据电路电路模型正确连线
五、实验过程记录(数据、图表、计算等)
六、实验结果分析及问题讨论。
直流斩波电路Buck、Buck-Boost 开关电路实验
直流斩波电路Buck、Buck-Boost 开关电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(3)了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。
脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。
主要分I组桥和Ⅱ组桥分别指示。
晶闸管电路装有12只晶闸管、6只整流二极管。
12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。
所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。
电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。
续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。
(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。
面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。
三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。
直流斩波电路实验三
实验四 直流斩波电路的性能研究(六种典型线路)一、实验目的(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM 控制与驱动电路的原理及其专用PWM 控制芯片SG3525。
二、预习内容(1)什么是斩波电路?其应用范围有哪些?(2)了解IGBT 的特性。
(3)了解直流斩波电路的工作原理。
三、实验设备及挂件 1)设备列表四、实验电路原理示意图及流程图1)实验线路原理示意图图X-1图X-1实验线路原理示意图2) 实验电路流程框图X-2图X-2 实验电路流程图五、实验内容1、控制与驱动电路测试2、六种典型电路测试1)降压斩波电路(Buck Chopper) ;2)升压斩波电路(Boost Chopper);3)升降压斩波电路(Boost-Buck Chopper);4)Cuk斩波电路;5)Sepic斩波电路;6) Zeta斩波电路;六、注意事项1)示波器测量时的共地问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,各探头接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
(建议测量主电路各点信号及U GE 时用一个探头)2)每当做完一个电路时,必须关掉所有电源,方可拆掉线路和接新的实验电路。
3)注意电解电容的正负极性。
4)整流输出电压<45伏。
七、实验步骤与方法1、控制与驱动电路的测试1)不接主电路,把万用表放在电压档。
用正极插在Ur 孔,负极插在地,示波器的地线和万用表的地线夹在一起。
2)将DJKO1电源的钥匙打在开(不按启动开关),开启DJK20 控制电路电源开关。
3)调节PWM 脉宽调节电位器改变Ur ,用双踪示波器分别观测SG3525 的第11 脚与第14脚的波形,观测输出PWM 信号的变化情况,记录占空比并填入表1中。
PWM 与11 脚、14脚不共地。
4)用示波器分别观测A 、B 和PWM 信号的波形,记录其波形、频率和幅值,并填入。
IGBT驱动保护电路的详细的设计与如何测试
IGBT驱动保护电路的详细的设计与如何测试过流保护:1.过流检测器设计:使用电流传感器来检测IGBT的电流,常见的传感器有霍尔效应传感器和电阻式传感器。
根据检测到的电流信号,设计一个比较器电路,比较检测到的电流值与预设的过流阈值。
当电流超过阈值时,比较器输出高电平,触发保护电路。
2.过流保护电路设计:采用一级或多级的电流保护电路,例如使用可控整流器电路、继电器电路或熔断器电路来切断IGBT的电源。
过温保护:1.过温检测器设计:通过温度传感器监测IGBT的温度。
可选用NTC 热敏电阻或热电偶等传感器。
根据检测到的温度信号,设计一个比较器电路,将检测到的温度值与预设的过温阈值进行比较。
当温度超过阈值时,比较器输出高电平,触发保护电路。
2.过温保护电路设计:使用温度控制器(例如PID控制器)来降低IGBT的温度。
可以通过减小机箱内部温度、增加散热和降低IGBT占空比等方式来实现。
过压保护:1.过压检测器设计:使用电压传感器来检测IGBT的输入电压。
可以选用正弦波电流互感器等传感器。
设计一个比较器电路,将检测到的电压值与预设的过压阈值进行比较。
当电压超过阈值时,比较器输出高电平,触发保护电路。
2.过压保护电路设计:可以采用电压降压器或直流开关等方法来控制IGBT的输入电压,将其降低到安全范围内。
1.过电流测试:在设计过程中,设置合理的过电流阈值。
通过电流源提供过电流信号,触发保护电路,验证保护电路的响应时间和准确性。
2.过温测试:在设计过程中,设置合理的过温阈值。
通过加热IGBT 器件,提高其温度,触发保护电路,验证保护电路的响应时间和准确性。
3.过压测试:在设计过程中,设置合理的过压阈值。
通过提供超过预设阈值的电压信号,触发保护电路,验证保护电路的响应时间和准确性。
4.短路测试:将IGBT的输出端短接,触发保护电路,验证保护电路的响应时间和准确性。
5.整体测试:在实际应用中,应全面测试保护电路的性能。
直流斩波电路试验
实验四直流斩波电路实验一.实验目的1.加深理解斩波器电路的工作原理2.掌握斩波器的主电路,触发电路的调试步骤和方法。
3.熟悉斩波器各点的波形。
二.实验内容1.触发电路调试2.斩波器接电阻性负载。
3.斩波器接电阻—电感性负载。
三.实验线路与原理本实验采用脉宽可调逆阻型斩波器。
其中VT1为主晶闸管,当它导通后,电源电压就加在负载上。
VT2为辅助晶闸管,由它控制输出电压的脉宽。
C和L1为振荡电路,它们与VT2、VD1、L2组成VT1的换流关断电路。
斩波器主电路如图4-14所示。
接通电源时,C经VD1,负载充电至+Udo,VT1导通,电源加到负载上,过一段时间后VT2导通,C和L1产生振荡,C上电压由+Vdo变为-Vdo,C经VD1和VT1反向放电,使VT1、VT2关断。
从以上斩波器工作过程可知,控制VT2脉冲出现的时刻即可调节输出电压的脉宽,从而达到调压的目的,VT1、VT2的脉冲间隔由触发电路决定。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。
4.MCL—06组件或MCL—375.MEL—03三相可调电阻器(或自配滑线变阻器450 ,1A)6.双踪示波器7.万用表五.注意事项1.斩波电路的直流电源由三相不控整流桥提供,整流桥的极性为下正上负,接至斩波电路时,极性不可接错。
2.实验时,每次合上主电源前,须把调压器退至零位,再缓慢提高电压。
3.实验时,若负载电流过大,容易造成逆变失败,所以调节负载电阻,电感时,需注意电流不可超过0.5A。
4.若逆变失败,需关断主电源,把调压器退至零位,再合上主电源。
5.实验时,先把MCL-18的给定调到0V,再根据需要调节。
六.实验方法1.触发电路调试打开MCL—06面板右下角的电源开关(或接人MCL—37低压电源)。
调节电位器RP,观察“2”端的锯齿波波形,锯齿波频率为100Hz左右。
直流斩波电路原理实验报告新颖完整
直流斩波电路原理实验报告新颖完整实验报告:直流斩波电路原理及实验一、实验目的掌握直流斩波电路的基本原理,了解其在工程中的应用,进一步加深对电路的理解。
二、实验器材1.直流电源2.电阻、电容、二极管、晶体管等元器件3.示波器、万用表等测试仪器三、实验原理四、实验步骤1.搭建直流斩波电路按照实验原理搭建直流斩波电路,将直流电源连接到斩波器的输入端,然后将输出端连接到滤波电路。
2.测量电路参数使用万用表等测试仪器,依次测量电阻、电容、二极管等元器件的电阻值、电容值、正向电压降等参数。
3.进行示波器测量将示波器的探头分别连接到斩波器的输入端和输出端,观察输入信号和输出信号的波形,并记录下相关数据。
4.更换元器件在保持电路基本结构不变的情况下,更换其中一元器件,并观察输出信号的变化,记录下相关数据。
五、实验数据记录及分析1.电路参数记录测得的电阻、电容、二极管等元器件的电参数。
2.示波器测量数据记录输入信号和输出信号的波形,并分析其频率、幅值等特征。
3.元器件更换实验数据记录更换元器件后输出信号的波形,并分析其变化原因。
六、实验结果讨论通过实验数据的记录和分析,得出直流斩波电路的输入信号和输出信号的关系,进一步认识到电路中各元器件的作用与影响。
七、实验心得通过本次实验,我深入理解了直流斩波电路的原理和应用,并通过实际操作了解了不同元器件对输出信号的影响,加深了对电路的认识。
这次实验让我更加熟悉了直流斩波电路的特点,培养了动手实验的能力,提高了解决问题的能力。
希望今后能在工程中更好地应用直流斩波电路的知识。
直流斩波电路实验报告
直流斩波电路实验报告实验目的,通过实验,掌握直流斩波电路的工作原理和特性,了解斩波电路在电力电子中的应用。
实验器材,示波器、直流电源、电阻、电容、开关管等。
实验原理,直流斩波电路是一种将直流电压转换为脉冲或方波电压的电路。
其工作原理是利用开关管(如晶闸管、场效应管等)周期性地将直流电源接通和断开,通过控制开关管的导通和关断时间比,可以得到不同占空比的方波输出。
直流斩波电路的输出波形可以通过控制开关管的导通和关断来实现调制,从而实现对电压的调节和控制。
实验步骤:1. 搭建直流斩波电路。
将直流电源、开关管、电阻和电容按照电路图连接起来,并接上示波器。
2. 调节开关管的导通和关断时间比。
通过改变开关管的导通和关断时间比,观察输出波形的变化。
3. 测量电压和电流。
利用示波器和万用表测量输出波形的电压和电流值。
4. 分析实验结果。
根据实验数据和波形图,分析直流斩波电路的工作特性和输出波形的变化规律。
实验结果与分析:通过实验,我们得到了不同占空比的方波输出波形,并测量了相应的电压和电流值。
实验结果表明,随着开关管导通时间比的增加,输出波形的占空比也相应增加,电压值随之变化。
当导通时间比为50%时,输出波形的占空比为50%,电压值为直流电源的一半。
当导通时间比为100%时,输出波形为直流电压。
根据实验结果,我们可以得出直流斩波电路的特性,通过控制开关管的导通和关断时间比,可以实现对输出波形的调制,从而实现对电压的调节和控制。
直流斩波电路在电力电子中有着广泛的应用,如变频调速、逆变器等领域。
实验总结:通过本次实验,我们深入了解了直流斩波电路的工作原理和特性,掌握了斩波电路的搭建和调节方法。
实验结果表明,直流斩波电路可以实现对电压的调节和控制,具有广泛的应用前景。
在今后的学习和工作中,我们将进一步深入研究电力电子领域,不断提高自己的专业能力。
以上就是本次实验的全部内容,希望对大家有所帮助。
感谢大家的阅读!。
PWM直流斩波电路分析及测试
实验四PWM直流斩波电路分析及测试一.实验目的1.掌握Buck—Boost变换器的工作原理、特点与电路组成。
2.熟悉Buck—Boost变换器连续与不连续工作模式的工作波形图。
3.掌握Buck—Boost变换器的调试方法。
二.实验容1.连接实验线路,构成一个实用的Buck—Boost变换器。
2.调节占空比,测出电感电流i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
3.将电感L增大一倍,测出i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
4.测出连续与不连续工作状态时的V be、V ce、V D、V L、i L、i C、i D等波形。
5.测出直流电压增益M=V O/V S与占空比D的函数关系。
6.测试输入、输出滤波环节分别对输入电流i S与输出电流i O影响。
三.实验线路四.实验设备和仪器1.MCL-08直流斩波及开关电源实验挂箱2.万用表3.双踪示波器五.实验方法1.检查PWM信号发生器与驱动电路工作是否正常连接有关线路,观察信号发生器输出与驱动电路的输出波形是否正常,如有异常现象,则先设法排除故障。
2.电感L=1.48mH,电感电流i L处于连续与不连续临界状态时的占空比D测试将“16”与“18”、“21”与“4”、“22”与“5”、“19”与“6”、“1”与“4”、“9”与“12”相连,16 18 21422519614912合上开关S1与S2、S3、S4,用示波器观察“7”与“13”(即i L)之间波形,然后调节RP1使i L处于连续与不连续的临界状态,记录这时候的占空比D与工作周期T。
3.L=1.48mH,测出处于连续与不连续临界工作状态时的V be (“5”~“6”)、V ce(“4”~“6”)、V D(“9”~“8”)、i L(“7”~“13”)、i C(“6”~“7”)、i D(“8”~“7”)等波形调节RP1,使i L处于连续与不连续临界工作状态,用示波器测出GTR基-射极电压V be与集-射极电压V ce;二极管VD阴极与阳极之间电压V D;电感L3两端电压V L;电感电流i L;三极管集电极电流i C以及二极管电流i D等波形。
IGBT驱动,保护电路,检测
实用IGBT驱动及保护电路下图1为IXDN404组成的IGBT实用驱动与保护电路,该电路可驱动1200V/100A的IGBT,驱动电路信号延迟时间不超过150ns,所以开关频率可以高达100kHz。
可应用于DSP控制的高频开关电源、逆变器、变频器等功率电路中。
根据IXYS公司的使用手册,IXDN404仅能提供0~+Vcc的驱动脉冲。
我们在此基础上,增加5.1V稳压二极管Z3以实现-5V偏置电压;由稳压管电压为光耦6N137和反相器CD4069供电,节省了一路驱动电源;增加降栅压及慢关断保护电路,实现IGBT的保护功能;降栅压及慢关断电路是通过控制IXDN404供电电压Vcc来实现的,明显不同于其它保护电路的前级降压控制方式。
图1 由IXDN404组成的IGBT保护与驱动电路用万用表判断IGBT管的好坏IGBT管的好坏可用指针万用表的Rxlk挡来检测,或用数字万用表的“二极管”挡来测量PN结正向压降进行判断。
检测前先将IGBT管三只引脚短路放电,避免影响检测的准确度;然后用指针万用表的两枝表笔正反测G、e两极及G、c两极的电阻,对于正常的IGBT管(正常G、C两极与G、c两极间的正反向电阻均为无穷大;内含阻尼二极管的IGBT管正常时,e、C极间均有4kΩ正向电阻),上述所测值均为无穷大;最后用指针万用表的红笔接c极,黑笔接e极,若所测值在3.5kΩl左右,则所测管为含阻尼二极管的IGBT管,若所测值在50kΩ左右,则所测IGBT管内不含阻尼二极管。
对于数字万用表,正常情况下,IGBT管的C、C极问正向压降约为0.5V。
综上所述,内含阻尼二极管的IGBT管检测示意图如图所示,表笔连接除图中所示外,其他连接检测的读数均为无穷大。
如果测得IGBT管三个引脚间电阻均很小,则说明该管已击穿损坏;若测得IGBT管三个引脚间电阻均为无穷大,说明该管已开路损坏。
实际维修中IGBT管多为击穿损坏。
IGBT的过流,过压及过热保护方法1 引言IGBT(绝缘栅双极性晶体管)是一种用MOS来控制晶体管的新型电力电子器件,具有电压高、电流大、频率高、导通电阻小等特点,因而广泛应用在变频器的逆变电路中。
实验五直流斩波电路实验报告
实验五:直流斩波电路实验报告摘要:本实验通过搭建直流斩波电路,探究斩波电路的工作原理和特性。
实验过程中分别采用了负载电阻和电感作为负载,测量了负载电压和负载电流的波形,并对实验结果进行了分析和总结。
一、实验目的:1. 熟悉直流斩波电路的基本原理和组成;2. 探究负载对直流斩波电路性能的影响;3. 学习使用示波器测量电路中的电压和电流波形。
二、实验仪器与材料:1. 电压信号发生器2. 直流电源3. 电阻4. 电感5. 整流二极管6. 电容7. 示波器8. 万用表9. 连接线三、实验原理:直流斩波电路是一种可以将直流电信号转换为脉冲电信号的电路。
其基本原理是利用一个开关元件(如开关管)对直流信号进行开关控制,通过对开关的开关和关断,可以产生近似方波的脉冲信号。
斩波电路一般由直流电源、开关元件、负载电阻、滤波电路等组成。
四、实验内容:1. 搭建直流斩波电路;2. 分别设置负载电阻和电感作为负载;3. 设置电压信号发生器输出直流信号;4. 调节直流电源的输出电压,观察负载电压和负载电流的波形;5. 利用示波器测量并记录负载电压和负载电流的波形;6. 分析实验结果,总结实验现象和规律。
五、实验步骤:1. 将直流电源和电容连接成充电电路,电容两端接地;2. 将电容两端接入斩波电路,与负载电阻或电感串联;3. 将电容两端连接到示波器,观察负载电压的波形;4. 将负载电阻或电感两端接入示波器,观察负载电流的波形;5. 调节电压信号发生器输出直流信号,设置合适的频率和幅度。
六、实验结果与分析:在负载电阻为负载时,通过示波器观察到负载电压为一周期的方波信号,频率与信号发生器设置的频率相同,幅度由直流电源的输出电压决定。
过渡过程中存在电阻的上升和下降,但变化很快并趋于平稳。
在电感为负载时,观察到负载电压和电流呈现一周期的正弦波信号。
电感的存在使得电流与电压之间存在相位差,并且电感会给斩波电路引入一个时间常数,导致波形的变化较为平缓。
直流斩波电路原理实验
直流斩波电路原理实验概述直流斩波电路是一种将直流信号转换为脉冲信号的电路。
该电路通过控制开关管的导通和截止,实现了直流信号的二值化处理。
本文将介绍直流斩波电路的原理和实验步骤。
直流斩波电路原理直流斩波电路的原理基于开关管的开关功能,当开关管导通时,直流信号通过;当开关管截止时,直流信号被切断,产生脉冲信号。
在直流斩波电路中,常用的开关管有晶体管和场效应管。
实验材料1.直流电源2.NPN型晶体管3.耦合电容4.变压器5.负载电阻6.示波器实验步骤1. 搭建电路根据电路原理图,搭建直流斩波电路实验电路。
将直流电源连接到变压器的输入端,变压器的输出端与晶体管的集电极相连,同时将负载电阻接在晶体管的发射极和地之间。
2. 调整参数调整变压器的变比,使得输出信号的幅值适当。
同时调整负载电阻的阻值,以达到所需的输出功率。
3. 连接示波器将示波器的探头分别连接到晶体管的集电极和发射极上,以观察输出信号的波形。
4. 实验记录记录示波器显示的波形和各个参数的数值。
实验结果分析根据实验记录的数据,分析直流斩波电路的性能和特点。
主要包括以下几个方面:1. 输出波形通过示波器观察输出波形,可以判断直流斩波电路的工作状态和性能。
根据波形的幅值、频率和占空比等参数,可以评估电路的性能。
2. 电路效率根据输入功率和输出功率的比值,计算直流斩波电路的效率。
效率越高,电路的能量转换效率越高。
3. 噪声分析通过分析输出波形的噪声水平,可以评估直流斩波电路的抗干扰能力和噪声性能。
实验应用直流斩波电路在实际应用中有着广泛的用途,主要包括以下几个方面:1. 消息传输直流斩波电路可以将模拟信号转换为数字信号,用于消息传输和通信系统中。
2. 电力变换直流斩波电路在电力系统中可以用于直流与交流的转换,实现电力的变压变频控制。
3. 电动机控制直流斩波电路可用于电动机控制系统,实现电机的速度和方向控制。
4. 脉冲控制直流斩波电路产生的脉冲信号可用于触发其他电路和系统的工作,如触发器、计数器等。
直流斩波电路实验报告
直流斩波电路实验报告直流斩波电路实验报告引言:直流斩波电路是电力电子学中的重要实验之一。
通过该实验,我们可以深入了解斩波电路的原理和工作方式,以及其在电力转换中的应用。
本实验旨在通过搭建和测试直流斩波电路,验证其性能和有效性。
一、实验目的本实验的主要目的是搭建直流斩波电路,并通过实验测试来验证其性能和有效性。
具体而言,我们将实现以下目标:1. 理解直流斩波电路的原理和工作方式;2. 掌握搭建直流斩波电路的方法和步骤;3. 测试直流斩波电路的输出波形,分析其性能和有效性。
二、实验原理直流斩波电路是一种将直流电压转换为交流电压的电路。
其基本原理是利用开关器件(如晶闸管、IGBT等)控制直流电源的导通和截断,从而改变电路中的电流路径,实现对直流电压的切割和转换。
直流斩波电路通常由三个主要部分组成:1. 输入滤波电路:用于滤除直流电源中的纹波和杂散信号,保证直流电压的稳定性;2. 斩波开关电路:由开关器件和控制电路组成,用于控制直流电源的导通和截断;3. 输出滤波电路:用于滤除斩波开关引起的高频脉冲信号,使输出电压变为平滑的交流电压。
三、实验步骤1. 搭建直流斩波电路:按照实验指导书提供的电路图和元器件清单,依次连接电路中的各个元器件和开关器件。
确保连接正确无误。
2. 调整控制电路参数:根据实验要求,调整控制电路中的参数,如频率、占空比等。
确保电路能够正常工作。
3. 测试输出波形:将示波器连接到输出端口,调整示波器的设置,观察并记录输出波形。
分析波形的频率、幅值和形状,评估直流斩波电路的性能和有效性。
4. 分析实验结果:根据实验数据和观察结果,对直流斩波电路的性能和有效性进行分析和总结。
比较实验结果与理论预期的差异,并提出可能的原因和改进方法。
四、实验结果与分析经过实验测试,我们得到了直流斩波电路的输出波形。
通过观察和分析波形,我们可以得出以下结论:1. 输出波形呈现出周期性的正弦波形,表明直流斩波电路能够将直流电压有效地转换为交流电压。
直流斩波电路实验报告
实验名称:直流斩波电路实验实验日期:2021年X月X日实验地点:实验室实验目的:1. 理解直流斩波电路的工作原理及组成;2. 掌握直流斩波电路的基本性能参数;3. 分析直流斩波电路在不同负载下的性能变化。
实验仪器:1. 直流斩波电路实验装置;2. 数字示波器;3. 数字万用表;4. 电源及负载。
实验原理:直流斩波电路是一种将直流电压转换为可调直流电压的电力电子电路。
它主要由斩波器、滤波器和控制器等部分组成。
斩波器是直流斩波电路的核心部分,其主要作用是将输入的直流电压斩成脉冲电压,再通过滤波器滤去脉冲电压中的高频谐波,得到稳定的输出电压。
实验步骤:1. 连接实验装置,确保各部分连接正确;2. 打开电源,调整输入电压,观察斩波器输出波形;3. 使用示波器观察斩波器输出波形,分析斩波器开关频率、占空比等参数;4. 调整负载,观察输出电压变化,分析负载对斩波电路性能的影响;5. 记录实验数据,进行数据分析。
实验结果与分析:1. 斩波器输出波形通过观察斩波器输出波形,可以看出斩波器开关频率和占空比对输出波形有重要影响。
当开关频率较高时,输出波形较为平滑;当占空比较大时,输出电压较高。
2. 负载对斩波电路性能的影响当负载增大时,输出电压降低,电流增大。
这是由于负载电流的增加导致斩波器开关频率和占空比发生变化,进而影响输出电压。
3. 实验数据分析通过对实验数据的分析,可以得出以下结论:(1)斩波器开关频率对输出波形有重要影响,频率越高,输出波形越平滑;(2)占空比对输出电压有直接影响,占空比越大,输出电压越高;(3)负载对斩波电路性能有较大影响,负载增大时,输出电压降低,电流增大。
实验结论:通过本次实验,我们了解了直流斩波电路的工作原理及组成,掌握了直流斩波电路的基本性能参数,分析了负载对斩波电路性能的影响。
实验结果表明,斩波器开关频率、占空比和负载对斩波电路性能有显著影响。
注意事项:1. 实验过程中,注意安全,确保电源及负载连接正确;2. 观察波形时,注意调整示波器参数,确保波形清晰;3. 实验数据记录准确,便于后续分析。
直流斩波与IGBT驱动保护电路测试
电力电子与系统实验室
电力电子与如图3.1所示,电路分为三部分,上部分为 整流电路,中间部分为脉宽调制电路,下部分为IGBT驱 动电路。
L B
IGBT
图3.1 直流斩波电路的原理框图
电力电子与系统实验室
五、实验电路的工作原理
• 1.整流电路及直流斩波电路 • 220V单相交流经整流变压器TR降为100V交流电,再 经桥堆B及滤波电容C5、C6后,变为平直的直流电,其幅 值在90V~140V之间,视负载电流大小而定。 • 直流电路的负载为110V,25W白炽灯,以绝缘栅双 极性晶体管IGBT作为开关管, • 来控制直流电路的通断, IGBT L • 以调节负载上平均电压的大小。 • 其原理框图如图3.1所示。 B
电力电子与系统实验室
五、实验电路的工作原理
• 图3.3 EXB841的内部工作 原理
图3.2 IGBT直流斩波电路图
电力电子与系统实验室
五、实验电路的工作原理
• 限幅电路保护。集成模块中的电阻R′和VST′构成分压,经 1脚,为IGBT的发射极提供一个反向偏置(-5V)的电压 ,由于UGE=VG-VE,因此发射极电位VE的提高,相对 UGE来说,为反向偏置。若VE=5V,VG=0V,则UGE=5V<0,G-E结处于反偏。由于IGBT为电压控制型,截止 时容易因感应电压而误导通,所以通常设置一个较高的反 向偏压(-5V),使IGBT提高抗干扰能力,可靠截止。 • 3)IGBT的过电流保护电路 • 当集电极电流过大时,管子的饱和电压UCE 将明显增 加,使集电极电位升高,过高的集电极电位将使二极管 VD1截止,它作为过电流信号,送至6脚,通过模块中的 保护电路,会使栅极电位下降,IGBT截止,从而起到过 电流保护的作用。 • 此外,当出现过电流时,5脚将输出低电平,使光电耦 合器LE导通,输出过电流保护信号(送至显示或报警或其 他保护环节)。在本实验中,是在R2与LE间,串接一个 发光二极管LED,作为过电流显示。
IGBT驱动测试
落木源IGBT驱动器短路保护功能的测试IGBT在应用中要解决的主要问题就是如何在过流、短路和过压的情况下对IGBT实行比较完善的保护。
过流故障一般需要稍长的时间才使电源过热,因此对它的保护都由主控制板来解决。
过压一般发生在IGBT 关断时,较大的di/dt在寄生电感上产生了较高的电压,这需要用缓冲电路来钳制,或者适当降低关断的速率。
短路故障发生后瞬时就会产生极大的电流,很快就会损坏IGBT,主控制板的过流保护根本来不及,必须由驱动电路或驱动器立刻加以保护。
因此驱动器的短路保护功能设计的是否完善,对电源的安全运行至关重要。
拿到一个驱动电路,使用前先测试一下它的短路保护功能是否完善,是很有必要的。
本文介绍两种测试方法。
1、第一种测试方法图中PWM信号送到驱动器的信号输入端,故障后再启动电容Creset=10nF,Dhv是高反压快恢复管,限流电阻Rlimit=10-100R,电容C=10-470uF。
示波器可在驱动器的输入和输出端监测。
如果不接Creset,则驱动器输出端输出的是约1ms的脉冲,也就是IGBT每1ms短路一次。
考虑到有的IGBT在这种情况下时间长了仍有可能过热烧毁,接入10nF的Creset后,则为约12ms短路一次,保证了IGBT的安全。
过流动作阈值设置电阻Rn的选取,请根据所试驱动器说明中的关于Rn的说明和所试验IGBT的正向伏安特性曲线选取合适的阻值。
在单管电路的开关电源中,接入适当的Creset后,可以省去通常的短路信号反馈光耦,仅靠落木源驱动器自身就能保证IGBT的安全运行,这也是落木源产品的特点之一。
2、第二种测试方法与第一种方法类似,只是不让IGBT始终保持短路,用手工来短路A、B两点。
这种短路试验比第一种更严酷,对驱动器的要求也更高,因为手工短路,不可能一下接实,实际是一连串的通断过程。
落木源的驱动器可以保证您的IGBT的安全。
注意:实验时一定注意人身安全,最好在工频输入处加一个隔离变压器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子与系统实验室
五、实验电路的工作原理
• 3.脉冲宽度调制电路 • 脉冲宽度调制器采用555定时集成电 路构成的多谐振荡器(占空比可调,而频 率不变),并经过射极跟随器V2、R10输 出(以提高带载能力),调节电位器RP, 即可调节脉冲宽度。 • 为了使脉冲调制器输出低电平时, V1能可靠截止,因此在V1的基极处加一个 由+5V和-5V的电源及R7、R8构成的负偏置 电路。VD6为V1基极反向限幅保护电路。
•
•
电力电子与系统实验室
七、实验注意事项
• 1、实验中直流电源电压可以达到150V左右,有一定危险 ,要注意用电安全; • 2、实验中所有开关以拨向右侧为导通状态; • 3、用示波器测量直流电压波形及数值时,要用DC档,若 用AC档则可能观察不到信号。 • 4、做完试验后,要把开关OS3拨到断开位置,以防电容 C6中储存的电能伤到其他人。
电力电子与系统实验室
六、实验内容与步骤
• • • • • 1.测量+20V、+5V、-5V直流电压的幅值是否正确,并将这些电 压接入电路板相应的电源插口。 2.用示波器观察脉冲信号发生器输出脉冲的宽度和幅值。调节 RP,观察它们的变化,并做记录。 3.在脉冲信号电压和主回路电压(包括波形和数值)都正常的 情况下,连接电路。(2-3,4-5,6-1,8-10,5-7,注意极性不可接 反。) 4.用示波器和万用表测量主电路电源(100V整流电路输出)的 波形和数值。 5.使占空比为50%时,测量负载电压UL的波形和数值,并测量 IGBT管的UGE和UCE数值。 6.使占空比分别为最小(3%),30%,最大(98%)时,重复 步骤5。 7.负载电压最高时,将二极管VD1至IGBT管集电极的连线断开 (设置为IGBT过载信号),观察保护电路工作情况(测量UL、UGE 和UCE数值)。
直流斩波与IGBT驱动保护电路测 试
电力电子与系统实验室
一、实验性质
•综合性试验
•二、实验目的
•1.熟悉降压直流斩波电路的工作原理。 •2.掌握IGBT器件的应用、IGBT驱动模块EXB841电路的驱 动与保护环节的测试。 •3.掌握脉冲调制电路的测试及负载电压波形的分析。
•三、实验设备
•1.高自EAD—I型电力电子与自控系统实验装置 •2.万用表 •3.双踪示波器
电力电子与系统实验室
五、实验电路的工作原理
• 图3.3 EXB841的内部工作 原理
图3.2 IGBT直流斩波电路图
电力电子与系统实验室
五、实验电路的工作原理
• 限幅电路保护。集成模块中的电阻R′和VST′构成分压,经 1脚,为IGBT的发射极提供一个反向偏置(-5V)的电压 ,由于UGE=VG-VE,因此发射极电位VE的提高,相对 UGE来说,为反向偏置。若VE=5V,VG=0V,则UGE=5V<0,G-E结处于反偏。由于IGBT为电压控制型,截止 时容易因感应电压而误导通,所以通常设置一个较高的反 向偏压(-5V),使IGBT提高抗干扰能力,可靠截止。 • 3)IGBT的过电流保护电路 • 当集电极电流过大时,管子的饱和电压UCE 将明显增 加,使集电极电位升高,过高的集电极电位将使二极管 VD1截止,它作为过电流信号,送至6脚,通过模块中的 保护电路,会使栅极电位下降,IGBT截止,从而起到过 电流保护的作用。 • 此外,当出现过电流时,5脚将输出低电平,使光电耦 合器LE导通,输出过电流保护信号(送至显示或报警或其 他保护环节)。在本实验中,是在R2与LE间,串接一个 发光二极管LED,作为过电流显示。
电力电子与系统实验室
四、实验电路
• 实验电路如图3.1所示,电路分为三部分,上部分为 整流电路,中间部分为脉宽调制电路,下部分为IGBT驱 动电路。
L B
IGBT
图3.1 直流斩波电路的原理框图
电力电子与系统实验室
五、实验电路的工作原理
• 1.整流电路及直流斩波电路 • 220V单相交流经整流变压器TR降为100V交流电,再 经桥堆B及滤波电容C5、C6后,变为平直的直流电,其幅 值在90V~140V之间,视负载电流大小而定。 • 直流电路的负载为110V,25W白炽灯,以绝缘栅双 极性晶体管IGBT作为开关管, • 来控制直流电路的通断, IGBT L • 以调节负载上平均电压的大小。 • 其原理框图如图3.1所示。 B
•
•
电力电子与系统实验室
六、实验内容与步骤
• • • • • 1.测量+20V、+5V、-5V直流电压的幅值是否正确,并将这些电 压接入电路板相应的电源插口。 2.用示波器观察脉冲信号发生器输出脉冲的宽度和幅值。调节 RP,观察它们的变化,并做记录。 3.在脉冲信号电压和主回路电压(包括波形和数值)都正常的 情况下,连接电路。(2-3,4-5,6-1,8-10,5-7,注意极性不可接 反。) 4.用示波器和万用表测量主电路电源(100V整流电路输出)的 波形和数值。 5.使占空比为50%时,测量负载电压UL的波形和数值,并测量 IGBT管的UGE和UCE数值。 6.使占空比分别为最小(3%),30%,最大(98%)时,重复 步骤5。 7.负载电压最高时,将二极管VD1至IGBT管集电极的连线断开 (设置为IGBT过载信号),观察保护电路工作情况(测量UL、UGE 和UCE数值)。
图3.1 直流斩波电路的原理框图
电力电子与系统实验室
五、实验电路的工作原理
• 2.由EXB841构成的IGBT驱动电路的工作原理 • 以EXB841型模块,来介绍IGBT驱动电路的工作原理。 • EXB841型模块,可驱动额定参数为300A/1200V的IGBT 元件,整个电路信号延迟时间小于1μs,最高工作频率可 达40~50KHZ。他只需要外部提供一个+20V的电源。模 块采用高速光电耦合(隔离)输入,信号电压经电压放大 和推挽(射极跟随)功率放大输出,并有过电流保护环节 。其功能原理如图3.2。 • 15脚接高电平(+5V)输入,14脚输入控制脉冲信号(输 入负脉冲,将光电隔离器导通),光电耦合信号经电压放 大器A放大后,由脚3输出,经限流电阻RG送至IGBT的栅 极G,驱动IGBT导通工作。稳压管VST1、VST2为栅极电 压正反向电压