统计学计算题
统计学计算题
统计学计算题1. 某企业生产的A 、B两种产品的产量及产值资料如下:产品总产值(万元)产量的环比发展速度(%)基期报告期A B 400600580760110100★标准答案:2. 某厂生产的三种产品的有关资料如下:产品名称产量单位产品成本基期报告期基期报告期甲10001200108乙500050004丙1500200087要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝★标准答案:产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)3. 某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:购进批次价格(元/吨)总金额(元)一二三200190205160001900028700★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二车间实际产量280件,完成计划100%;第三车间实际产量650件,完成计划105%,请问★标准答案:平均计划完成程度☆考生答案:解:三个车间总的计划产量=200/95%+280/100%+650/105%=1110(件)三个车间总的实际产量=200+280+650=1130(件)三个车间产品产量的平均计划完成程度=1130/1110*100%=%5. 三种商品的销售额及价格资料如下:商品销售额(万元)报告期价格比基期增(+)或减(-)的%基期报告期甲乙丙5070809010060+10+8-4合计200250—★标准答案:6. 某公司下属三个企业上季度生产计划完成情况及一级品率资料如下:企业计划产量(件)计划完成(%)实际一级品率(%)甲乙丙50034025010310198969895根据资料计算:(1)产量计划平均完成百分比;★标准答案:☆考生答案:解:(1)计划平均完成百分比=(500*+340*+250*)/(500+340+250)*100%=% (2)平均一级品率=(500**+340**+250**)/(500*+340*+250*)*100%=%7. 某商店主要商品价格和销售额资料如下:商品计量单位价格本月销售额(万元)上月本月甲乙丙件台套1005060110486311024★标准答案:8. 某市场上某种蔬菜早市每斤元,中午每斤元,晚市每斤元,现在早、中、晚各买一元,★标准答案:.平均价格H==(元)☆考生答案:解:购买的总斤数=1/+1/+1/=19(斤)平均价格=(1+1+1)/19=(元/斤)9. 某商店出售某种商品第一季度价格为元,第二季度价格为元,第三季度为6元,第四季度为元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销售额5400元,★标准答案:☆考生答案:解:平均价格=(3150+3000+5400+4650)/(3150/+3000/+5400/6+4650/)=(元)10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为%,%,%。
统计学计算题整理
:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。
解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。
第二,所给资料是组距数列,因此需计算出组中值。
采用加权算术平均数计算平均价格。
第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。
2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少解:%110%105%116===计划相对数实际相对数计划完成程度。
即1992年计划完成程度为110%,超额完成计划10%。
点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。
3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少解: 计划完成程度%74.94%95%90==计划相对数实际相对数。
即92年单位成本计划完成程度是%,超额完成计划%。
点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。
4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少 解:103%=105%÷(1+x )x=%即产值计划规定比上期增加%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x,则计划任务相对数=1+x,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.=104%),但在节奏性方面把握不解:从资料看,尽管超额完成了全期计划(5400好。
统计学计算题整理
:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。
解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。
第二,所给资料是组距数列,因此需计算出组中值。
采用加权算术平均数计算平均价格。
第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。
2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少?解:%110%105%116===计划相对数实际相对数计划完成程度。
即1992年计划完成程度为110%,超额完成计划10%。
点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。
3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少?解: 计划完成程度%74.94%95%90==计划相对数实际相对数。
即92年单位成本计划完成程度是94.74%,超额完成计划5.26%。
点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。
4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少?解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少?解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少? 解:103%=105%÷(1+x ) x=1.9%即产值计划规定比上期增加1.9%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x ,则计划任务相对数=1+x ,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.解:从资料看,尽管超额完成了全期计划(5400=104%),但在节奏 性方面把握不好。
统计学计算题
第三章统计整理例1、某厂工人日产量资料如下:(单位:公斤)162 158 158 163 156 157 160 162 168 160164 152 159 159 168 159 154 157 160 159163 160 158 154 156 156 156 169 163 167试根据上述资料,编制组距式变量数列,并计算出频率。
解:将原始资料按其数值大小重新排列。
152154 154 156 156 156 156 157 157 158158 158 159 159 159 159 160 160 159160 162 162 163 163 163 164 167168 168 169最大数=169,最小数=152,全距=169-152=17n=30, 分为6组例2、某企业50个职工的月工资资料如下:113 125 78 115 84 135 97 105 110 130105 85 88 102 101 103 107 118 103 87116 67 106 63 115 85 121 97 117 10794 115 105 145 103 97 120 130 125 127122 88 98 131 112 94 96 115 145 143试根据上述资料,将50个职工的工资编制成等距数列,列出累计频数和累计频率。
解:将原始资料按其数值大小重新排列。
6367 78 84 85 85 87 88 88 94 94 96 979797 98 101 102 103 103 103 105 105 105106107 110 112 113 115 115 115 115 116117118 120 121 122 125 125 127 130 130118131 135 143 145 145例3、有27个工人看管机器台数如下:5 4 2 4 3 4 3 4 42 434 3 2 6 4 42 2345 3 2 4 3试编制分布数列。
统计学计算题例题(含答案)
1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。
从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。
2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。
请对全部产品的合格率进行区间估计。
5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。
统计学计算题8个例题及答案
统计学计算题8个例题及答案
1.给定一组数据,X=(13,12,13,13,10,13,11),求它的众数:
答:13(众数是出现次数最多的值)
2.给定一组数据,X=(1,2,3,4,5,6,7),求它的中位数:
答:4(中位数是将一组数据按照大小顺序排列后位于正中间的一个数)
3.给定一组数据,X=(1,2,3,4,5,6,7),求它的样本标准差:
答:(样本标准差S=√ [(∑(Xi−X平均数)2)/ (n−1)],其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
4.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
5.给定一组数据,X=(21, 25, 28, 31, 34, 37, 40),求它的算术平均数:
答:31(算术平均数是将样本中数据求和,再除以样本的个数得到的数)
6.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的期望:
答:5(期望是一组数据根据概率分布定义出的一种数学期望)
7.给定一组数据,X=(3,4,5,7,12,15,18),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
8.给定一组数据,X=(7,7,7,7,8,8,9),求它的众数:
答:7(众数是出现次数最多的值)。
统计学计算习题
第四章六、计算题资更具有代表性。
1、(1)(2)计算变异系数比较根据、大小判断,数值越大,代表性越小。
假定生产条件相同,试研究这两个品种的收获率,确定那一个品种具有稳定性和推广价值.2、(1)收获率(平均亩产)(2) 稳定性推广价值(求变异指标)求、,据此判断。
8.某地20个商店,1994年第四季度的统计资料如下表4-6。
表4-6试计算(1)该地20个商店平均完成销售计划指标(2)该地20个商店总的流通费用率(提示:流通费用率=流通费用/实际销售额)8、(1)(2) 据提示计算:13、提示:(2)平均一级品率。
14、(1) (2)15.某生产小组有36名工人,每人参加生产的时间相同,其中有4人每件产品耗时5分钟,20人每件耗时8分钟,12人每件耗时10分钟。
试计算该组工人平均每件产品耗时多少分钟?如果每人生产的产品数量相同,则平均每件产品耗时多少分钟?15、(1) 设时间为t ,(2) 设产品数量为a ,16.为了扩大国内居民需求,银行为此多次降低存款利润,近5年年利润率分别为7%、5%、4%、3%、2%,试计算在单利和复利情况下5年的平均年利率。
16、(1) 单利:(2) 复利(几何平均法): 第五章2。
某企业1—7月份工人人数及总产值资料如表8-4:计算:(1)上半年平均月劳动生产率。
(2)上半年劳动生产率。
2、(1) 上半年平均月劳动生产率:(2) 上半年劳动生产率: 3.某企业第二季度有关资料如表8-5:试计算第二季度月平均流转次数及第二季度流转次数。
3、(1) 第二季度月平均流转次数: (2) 第二季度流转次数=4.设某地区1980年国民生产总值为125亿元,人口5000万。
据过去五年国民生产总值的增长速度计算,平均每年递增7.5%,试推算2000年的国民生产总值;若人口增加到6000万人问平均每人能否达到1000元?4、 求 据计算。
7、 计算方法类同9. 某地区对外贸易总额,l994年是1990年的135。
统计学计算题例题(课件)
【例1】:某企业生产A 产品的工人有1000人,某日采用不重复抽样从中随机抽取100人调查他们的当日产量,样本人均产量为35件,产量的样本标准差为4.5件。
请以95.45%的置信度估计该日人均产量的置信区间。
解:①计算抽样平均误差()件4269.0100010011005.411222≈⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-≈⎪⎭⎫ ⎝⎛--=N n n s N n N n x σμ ②计算抽样极限误差由9545.01=-)(α,查正态概率表得2=Z(件)8538.04269.02=⨯==∆x x Z μ③确定置信区间 估计区间上限:85.358538.035=+=U X (件) 估计区间下限:15.348538.035=-=L X (件)故,可以95.45%的置信度断言,该日人均产量在34.15~35.85件之间。
【例2】某企业生产某种产品的工人有1000人,某日采用不重复抽样从中随机抽取100人调查他们的当日产量,要求在95﹪的概率保证程度下,估计该厂全部工人的日平均产量和日总产量。
解: ()()()件件47.69941441126100126002==--====∑∑∑∑f f x x s f xf x ()件614.01000100110047.6122=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=N n n s x μ()件203.1614.096.1=⨯=⋅=∆x x Z μ则该企业工人人均产量及日总产量的置信区间为:()()203.11261000203.11261000,203.1126203.1126+≤≤-+≤≤-X N X即该企业工人人均产量在124.797至127.203件之间,其日总产量在124797至127303件之间,估计的可靠程度为95﹪。
【例2变形】工人日产量在118件以上者为完成生产定额任务,要求在95﹪的概率保证程度下,估计该厂全部工人中完成定额的工人比重及完成定额的工人总数。
统计学练习题——计算题
统计学练习题——计算题试计算7、8月份平均每人日产量,并简要说明8月份比7月份平均每人日产量变化的原因。
解:7月份平均每人日产量为:3736013320===∑∑f Xf X (件) 8月份平均每人日产量为:4436015840===∑∑fXf X (件)根据计算结果得知8月份比7月份平均每人日产量多7件。
其原因是不同组日产量水平的工人所占比重发生变化所致。
7月份工人日产量在40件以上的工人只占全部工人数的40%,而8月份这部分工人所占比重则为66.67%。
试比较这两年产品的平均等级,并说明该厂棉布生产在质量上有何变化及其因。
解:2009年棉布的平均等级=25010 34022001⨯+⨯+⨯=1.24(级)2010年棉布的平均等级=3006 32422701⨯+⨯+⨯=1.12(级)可见该厂棉布产品质量2010年比2009年有所提高,其平均等级由1.24级上升为1.12级。
质量提高的原因是棉布一级品由80%上升为90%,同时二级品和三级品分别由16%及4%下降为8%及2%。
试比较和分析哪个企业的单位成本高,为什么?解:甲企业的平均单位产品成本=1.0×10%+1.1×20%+1.2×70%=1.16(元)乙企业的平均单位产品成本=1.2×30%+1.1×30%+1.0×40%=1.09(元)可见甲企业的单位产品成本较高,其原因是甲企业生产的3批产品中,单位成本较高(1.2元)的产品数量占70%,而乙企业只占30%。
试计算各地区平均价格和此种商品在四个地区总的平均价格。
解:总平均价格=23010600=销售总量销售总额=46.09根据上表计算该商店售货员工资的全距,平均差和标准差,平均差系数和标准差系数。
⑴2010200==∑∑fXf X =510(元); ⑵全距=690-375=315(元) ⑶156020X XfA D f-⋅==∑∑=78(元); ⑷)(202085002==∑∑-ffXX σ=102.1(元)⑸%10051078%100⨯=⨯⋅=⋅XD A V D A =15.29%; ⑹%1005101.102%100⨯=⨯=XV σσ=20.02%6、某班甲乙两个学习小组某科成绩如下:试比较甲乙两个学习小组该科平均成绩的代表性大小。
统计学的计算题汇总(附有答案)
统计学的计算题汇总如下
答案计算过程中避免不了误差哦,请各位认真去计算一下吧!
1、某地区2010年玉米产量如下表所示:
解: 依题意知,此题数据是组距数列。
所以取产量组中值分别为450、550、650、750、850
2、已知甲组工人的平均奖金为1767元,其标准差为92元,乙组工人的奖金如下表所示:
解:依题意知,此题数据是组距数列。
所以取奖金组中值分别为1550、1650、1750、1850、1950
3、某地区2011年土地面积为2.4万平方公里,人口资料如下表所示:
4、①某企业2009年计划利润需求比上年提高5% ,实际提高了8% 。
计划产品单位成本要求比上年降低10% ,实际降低了6% 。
请计算利润和成本各自的完成情况,并加以说明?
②某班有40名学生,20岁的有3人,19岁的有25人,18岁的有12人,请用加权算数平均法和众数法分别计算该班的平均年龄?
答案如下:。
统计学计算题学时
统计学习题集第三章数据分布特征的描述五、计算题1. 某企业两个车间的工人生产定额完成情况如下表:技术水平 A车间 B车间工人数完成定额工时人均完成工时工人数完成工时定额人均完成工时高 50 14000 280 20 6000 300中 30 7500 250 40 10400 260低 20 4000 200 40 8200 205合计 100 25500 255 100 24600 246从表中看,各个技术级别的工人劳动生产率(人均完成工时定额)都是A车间低于B车间,试问:为什么A车间的平均劳动生产率又会高于B车间呢?3. 根据某城市500户居民家计调查结果,将居民户按其食品开支占全部消费开支的比重(即恩格尔系数)分组后,得到如下的频数分布资料:恩格尔系数(%) 居民户数20以下 620~30 3830~40 10740~50 13750~60 11460~70 7470以上 24合计 500要求:(1)据资料估计该城市恩格尔系数的中位数和众数,并说明这两个平均数的具体分析意义。
(2)利用上表资料,按居民户数加权计算该城市恩格尔系数的算术平均数。
(3)试考虑,上面计算的算术平均数能否说明该城市恩格尔系数的一般水平?为什么?40~501374528850~601145540260~70746547670以上2475500合计500--答:(1)Me=47.226%,指处于中间位置的居民家庭恩格尔系数水平;Mo=45.661%,指居民家庭中出现最多的恩格尔系数水平;(2)均值=47.660%;4. 某学院二年级两个班的学生英语统考成绩如下表。
要求:(1)分别计算两个班的平均成绩;(2)试比较说明,哪个班的平均成绩更有代表性?哪个班的学生英语水平差距更大?你是用什么指标来说明这些问题的;为什么?英语统考成绩学生人数A班 B班60以下 4 660~70 12 1370~80 24 2880~90 6 890以上 4 5合计 50 605. 利用上题资料,试计算A班成绩分布的极差与平均差,并与标准差的计算结果进行比较,看看三者之间是何种数量关系。
统计学试题
统计学试题题目一某班级中有40名男生和30名女生。
下列问题请你用统计学的方法回答:1.男生和女生的比例是多少?2.男生和女生的总数之和是多少?解答:1.男生和女生的比例可以通过计算男生数和女生数的比值来得到。
男生数为40,女生数为30,所以男生和女生的比例为40:30,可以简化为4:3。
2.男生和女生的总数之和可以通过将男生数和女生数相加来得到。
男生数为40,女生数为30,所以男生和女生的总数之和为40+30=70。
题目二某学校的学生进行了一项语文考试,考试成绩如下表所示:学生姓名成绩张三80李四85王五90赵六75小明95请你回答以下问题:1.这些学生的平均成绩是多少?2.这些学生中成绩最高和成绩最低的学生分别是谁?3.这些学生中有多少人的成绩高于90分?解答:1.这些学生的平均成绩可以通过将所有学生的成绩相加,然后除以学生人数来计算。
在这个例子中,学生人数为5,成绩之和为80+85+90+75+95=425,所以平均成绩为425/5=85。
2.这些学生中成绩最高的学生是小明,成绩为95。
成绩最低的学生是赵六,成绩为75。
3.这些学生中有1人的成绩高于90分,即小明。
题目三某公司的销售数据如下表所示:月份销售额(万元)1月502月603月704月805月90请回答以下问题:1.这个公司在这5个月中的总销售额是多少?2.这个公司在这5个月中平均每个月的销售额是多少?3.这个公司销售额最高和销售额最低的月份分别是哪个月份?解答:1.这个公司在这5个月中的总销售额可以通过将每个月的销售额相加来计算。
在这个例子中,总销售额为50+60+70+80+90=350万元。
2.这个公司在这5个月中平均每个月的销售额可以通过将总销售额除以月份数来计算。
在这个例子中,总销售额为350万元,月份数为5,所以平均每个月的销售额为350/5=70万元。
3.这个公司销售额最高的月份是5月,销售额为90万元。
销售额最低的月份是1月,销售额为50万元。
统计学练习题(计算题)
统计学练习题(计算题)第四章----第一部分总量指标与相对指标4.1:(1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少?(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%,实际执行结果提高了12%,劳动生产率计划完成程度是多少?4.2:某市三个企业某年的下半年产值及计划执行情况如下:要求:[1]试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2]丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少?4.3:我国2008年-2013年国内生产总值资料如下:单位:亿元根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
4.4:某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少?比计划超额完成多少?(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少?比计划超额完成多少?第四章-----第二部分平均指标与变异指标4.5:已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1)根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、4.6:已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
统计学计算题习题
第三章1、甲乙两个企业生产三种产品的单位成本和总成本资料如下:产品名称单位成本(元)总成本(元)甲企业乙企业A B C 1520302100300015003255150015002、在某地区抽取的120家企业按利润额进行分组,结果如下:按利润额分组(万元)企业数(个)200~300 19300~400 30400~500 42500~600 18600以上11合计120计算120家企业利润额的均值和标准差。
3、对10名成年人和10名幼儿的身高(厘米)进行抽样调查,结果如下:成年组166 169 172 177 180 170 172 174 168 173幼儿组68 69 68 70 71 73 72 73 74 75(1)要比较成年组和幼儿组的身高差异,你会采用什么样的指标测度值?为什么?(2)比较分析哪一组的身高差异大?4、以下是两个班某一门课程的成绩频数分布表,请分析那个班成绩分布更集中。
甲班乙班按成绩分组学生数按成绩分组学生数60分以下 6 60分以下860分-70分21 60分-70分1470分-80分1270分-80分1580分-90分 5 80分-90分 690分以上 6 90分以上9合计50 合计52第四章1、某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。
若规定寿命低于150小时为不合格品。
试求该企业生产的电池的:(1)合格率是多少?(2)电池寿命在200左右多大的范围内的概率不小于0.9。
2、某厂生产的一批小型装置,该小型装置的寿命X服从均值为10,标准差为2(单位:年)的正态分布。
(1)求整批小型装置的寿命大于9年的概率。
(2)求整批小型装置中寿命介于9-11年的概率。
(3)从该批批小型装置中随机抽取16个,求这16个小型装置的平均寿命大于9年的概率。
第五章教材例5-4、5-5、5-6、5-7、5-8、5-91、根据某大学100名学生的抽样调查,每月平均用于购买书籍的费用为4.5元,标准差为5元,求大学生每月用于购买书籍费用的区间估计(置信度为95%)。
统计学计算题例题
第四章1. 某企业1982年12月工人工资的资料如下:要求:(1)计算平均工资;(79元)(2)用简捷法计算平均工资。
2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。
7%-2%=5%3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。
实际执行结果,单位产品成本较去年同期降低4%。
问该厂第一季度产品单位成本计划的完成程度如何?104.35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%(104.35%-100%)) 4. 某公社农户年收入额的分组资料如下:要求:试确定其中位数及众数。
中位数为774.3(元)众数为755.9(元)求中位数:先求比例:(1500-720)/(1770-720)=0.74286分割中位数组的组距:(800-700)*0.74286=74.286加下限700+74.286=774.286求众数:D1=1050-480=570D2=1050-600=450求比例:d1/(d1+d2)=570/(570+450)=0.55882分割众数组的组距:0.55882*(800-700)=55.882加下限:700+55.882=755.8825.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如下:64.43(件/人)(55*300+65*200+75*140+85*60)/(300+200+140+60)6.某地区家庭按人均月收入水平分组资料如下:根据表中资料计算中位数和众数。
中位数为733.33(元) 众数为711.11(元) 求中位数:先求比例:(50-20)/(65-20)=0.6667 分割中位数组的组距:(800-600)*0.6667=66.67 加下限:600+66.67=666.677.某企业产值计划完成103%,比去年增长5%。
统计学计算题和答案完整版
统计学计算题和答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】三个企业生产的同一型号空调在甲、乙两个专卖店销售,有关资料如下:企业型号 价格 (元/台) 甲专卖店销售额(万元) 乙专卖店销售量(台) A 2500 340 B 3400 260 C 4100 200 合计——答案:2某企业甲、乙两个生产车间,甲车间平均每个工人日加工零件数为65件,标准差为11件;乙车间工人日加工零件数资料如下表。
试计算乙车间工人加工零件的平均数和标准差,并比较甲、乙两个生产车间哪个车间的平均日加工零件数更有代表性?日加工零件数(件) 60以下 60—70 70—80 80—90 90—100 工人数(人)59121410三、某地区2009—2014年GDP 资料如下表,要求: 1、计算2009—2014年GDP 的年平均增长量; 2、计算2009—2014年GDP 的年平均发展水平;年份 2009 2010 2011 2012 2013 2014 GDP (亿元)87431062711653147941580818362年平均增长速度:5100%280%100%22.9%x -=-= 年份2010 2011 2012 2013 2014 销售额(万元)320332340356380水平?答案: 2010年—2014年的数据有5项,是奇数,所以取中间为0,以1递增。
设定x 为-2、-1、0、1、2、年份/销售额(y ) x xy x2 2010 320 -2 -640 4 2011 332 -1 -332 1 2012 340 0 0 0 2013 356 1 356 1 2014 380 2 760 4合计 1728 0 144 10b=∑xy/∑x2=144/10=a=∑y/n=1728/5=y=+预测2016年,按照设定的方法,到2016年应该是5y=+*5=元五、某企业生产三种产品,2013年三种产品的总生产成本分别为20万元,45万元,35万元,2014年同2013年相比,三种产品的总生产成本分别增长8%,10%,6%,产量分别增长12%,6%,4%。
统计学计算题(有答案)
1、甲乙两班同时参加《统计学原理》课程的测试,甲班平均成绩为81分,标准差为9.5分,乙班的成绩分组资料如下:按成绩分组学生人数(人)60以下 460~70 1070~80 2580~90 1490~100 2计算乙班学生的平均成绩,并比较甲乙两班,哪个班的平均成绩更有代表性?静1 己5 甲册抽二。
也二93 Z Jti片■轨*■低4=?昭f4t/h= 1(1= 25,/, = 14.^ -1V f4*UH15*14f 144 N4 S+MU釘酿加样Mb !■ ,=^=^=0.1173 片1拆川备因加<「m«i I'irwjtwft气tf]2、某车间有甲乙两个生产组,甲组平均每个人的日产量为36件,标准差为9.6件,乙组工人产量资料如下:日产量(件)工人数(人)15 1525 3835 3445 13要求:(1)计算乙组平均每个工人的日产量和标准差(2)比较甲乙两生产小组的日产量更有代表性战屮如 K 的平均日严洛更内世表性3月份 1 23 4 5 6 8 11 12 库存额6055 48 43 40 50 456068又知月日商品库存额为万元,试计算上半年,下半年和全年的平均商品库存额。
解:(1)该商店上半年商品库存额:8 泊(63/2+60+55M8+43+40+50/2) =50417 (万元) (2) 该商店下半年商品库存额:b ={[(50+45)/2]*2 + [(45+60>/2]*3 + [(60+68)/2]* 1 >5275 (万元)(3) 该商店全年商品库存额:C- (50.147+52.75) / 2-51.5835 (万元)4品名单位销售额2002比2001销售量增长(%)2001 2002电视 台 5000 8880 23 自行车辆4500 4200-7合计950013080要求:()计算销售量总指标(2)计算由于销售量变动消费者增加或减少的支出金额工 K p 詔o[,23 x 5000 + ().93 x 4500 10335= -------------------- = --------------------------------------------- = ------------- =10S .79 %工 Pn% 5000 + 4500 9500ISxl5 + 25*38+35*34 +45<J3 dX)2'. fnr.^4 " !■<-h hlfln=0,267^629.5'U..VI5⑵山册吿员变功潇费者晏虫讨金敲= L K qPo<3o"LPo C5o =他饰9500-835(^<3)计霽苗种商品帝皆价格总指難和III十价格变动制悄您榊的誓响帥对飆.够见NS的思眛通过质11描标烷令指独号谓和平炖救持数处式之何的关帝壮得剋所需敎握”5、某商店两种商品的销售额和销售价格的变化情况如下:(万元)要求:(1)计算两件商品销售价格总指标和由于价格变动对销售额的影响绝对值(2)计算销售量总指数,计算由于销售变动消费者增加或减少的支出金额解,<”诙轴紳晦召也hl IJ2in w瀬的空,担对刃]I:I:船恪二对紀y p闭一工丄P4 =166-15032 = 15.67 万几k工PE工P0 工Pi%品備竹苗格总弗趙j-------------- =j ------------------= 寸几ItiJMSUI 和前顺的训算中y PnGi = 16(),卩“ =150.32由」旬%命苍城.占喑讪减❻的丸出伞触工卩%》几如=15°33-160 = -9厲76、某企业上半年产品量与单位成本资料如下:月份产量(千克)单位成本(元)12 73 2 3 72 34 71 4 3 73 54 69 6568要求:(1)计算相关系数,说明两个变量相关的密切程度(2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少?15033 160= 9335%,主"99二X + R 可审Ct• cao g* •<>»= 9*Z8 ・ r-zs •"=・i-z$: ・"=z 血二柬珂由 + 9=x (U -44 oooo MTT4君0 ( £》-竺N8 l 科刮站士寸孕刃衣 -4^4^ oooi nrrMT^TT=uitD “ X 岁⑷q 窪習日回Uh 耳雷宕F 丑xz8 T -ZS •"=•▲ fiiiZE ・"=gm (NR r-)-g/9Zfr= xq — « = □Z8 ・l 一 =(lN*lNy/l — GZ 〉/(9乙“INT/l -l 蔽l ) = a —严 M< M ・* M 二-心 MI/M 卜TRT-T RQTTOC6ZTZOt^E 卡 N9trSZ8^S 9 9ZN TQZtr 9T fi9* s6T^ ENWM 6 CX w卩"SIN TXFS 9T IXE9TZ ^8TS 6NZ £ Z 9" 6NW9frWZZTJLacNAA +申对侖< TT"3PTUtrl8^^OE=, 97^=18 * M<>=u<I>心M心M8^^OE=^7、根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:(重点题目)n=7 X=18090 ' y=31.1X2=535500y2 =174.157 xy =9318要求:(1)确定以利润为因变量的直线回归方程(2)解释式中回归系数的经济含义(1)鞘定収利涓率为丙Z的立线冋旧方程:Y=-5. 5-K), 037x(2)解释戌屮回归杀数的经济含突:产母制善额毎壊加1万元*钳您利満率平均増加6037^(3)肖常乜極为500万元时•利洞率为:¥=12. 9 寮8、某企业第二季度产品产量与单位成本资料如下:要求:(1)定量判断产量与单位成本间的相关程度(2)建立直线回归方程,并说明b的经济含义解:(1 )所需计算数据见下表:月份产量单位成本45 634 57369 68916 25219276 340合计12210508352.57、根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:(重点题目)因为,,所以产量每增加1000件时,即增加1单位时,单位成本的平均变动是:平均减少元。
统计学计算题36725
附录:计算题示例1.某学校工商管理系学生体重资料如下:请计算该系学生体重的算术平均数、中位数和众数。
2。
某企业2006年产品单位成本为450元,计划规定2007年单位成本比2006年降低6%,实际降低8%,要求计算:2007年单位成本计划数、2007年单位成本实际数、2007年单位成本计划完成程度指标.3.某地区2006年个体工商户开业登记注册资本金分组资料如下:试计算该地区个体工商户注册资本金的平均数.4.某公司下属三个企业上季度生产计划完成情况及一级品率资料如下:根据资料计算:1)产量计划平均完成百分比; 2)实际平均一级品率。
5.某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:6.某季度甲公司18个工业企业产值计划完成情况如下(按计划完成程度分组)完成程度为110.2%,标准差为9。
78%,问哪家公司的平均计划完成程度代表性高?7。
某笔投资的年利率是按复利计算的。
25年的年利率分配是:有2年为5%,有5年为6。
5%,有6年为8%,有8年为10%,有4年为14%。
求平均年利率。
8。
下面是某市年末户籍人口和土地面积的资料 单位:人一种相对数。
9.设两钢铁企业某月上旬的钢材供货资料如下:单位:万吨10.某商场历年销售额资料如下:单位:万元试根据上述资料,计算平均发展水平、平均增长量、平均发展速度、平均增长速度。
11.某企业2015年1~4月商品销售额和职工人数资料如下:根据上述资料计算第一季度月的平均劳动生产率.解:第一季度月平均劳动生产率(万元/人)12.某厂2010年的产值为500万元,规划十年内产值翻一番,试计算:(1)每年要保持怎样的平均增长速度,产值才能在十年内翻一番?(2)若2010~2012年两年的平均发展速度为105%,那么,后八年应有怎样的速度才能做到十年翻一番?(3)若要求提前两年达到产值翻一番,则每年应有怎样的平均发展速度?13.某旅游风景区的旅游收入资料如下:要求:(1)按同期平均法计算季节指数;(2)按移动平均趋势剔除法计算季节指数.14.某地区的市场销售额2012年为50万元,比2011年增加了10万元,销售量比2011年增长了5%,试计算:(1)该地区市场销售额总指数;(2)市场销售价格指数;(3)由于销售量变动对销售额的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录:计算题示例
1.某学校工商管理系学生体重资料如下:
请计算该系学生体重的算术平均数、中位数和众数。
2.某企业2006年产品单位成本为450元,计划规定2007年单位成本比2006年降低6%,实际降低8%,要求计算:2007年单位成本计划数、2007年单位成本实际数、2007年单位成本计划完成程度指标。
3.某地区2006年个体工商户开业登记注册资本金分组资料如下:
试计算该地区个体工商户注册资本金的平均数。
4.某公司下属三个企业上季度生产计划完成情况及一级品率资料如下:
根据资料计算:1)产量计划平均完成百分比;2)实际平均一级品率。
5.某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:
6.某季度甲公司18个工业企业产值计划完成情况如下(按计划完成程度分组)
(1)计算甲公司该季度的平均计划完成程度。
(2)若另一公司乙公司该季度的平均计划完成程度为110.2%,标准差为9.78%,问哪家公司的平均计划完成程度代表性高?
7.某笔投资的年利率是按复利计算的。
25年的年利率分配是:有2年为5%,有5年为6.5%,有6年为8%,有8年为10%,有4年为14%。
求平均年利率。
单位:人
8.下面是某市年末户籍人口和土地面积的资料
已知该市土地面积1565平方公里,试计算全部可能计算的相对指标,并指出它们属于哪一种相对数。
9.设两钢铁企业某月上旬的钢材供货资料如下:单位:万吨
10.某商场历年销售额资料如下:
单位:万元
试根据上述资料,计算平均发展水平、平均增长量、平均发展速度、平均增长速度。
11.某企业2015年1~4月商品销售额和职工人数资料如下:
根据上述资料计算第一季度月的平均劳动生产率。
解:第一季度月平均劳动生产率
(90124143)/3119
1.91945866
62(6064)/322
++=
==+++(万元/人)
12.某厂2010年的产值为500万元,规划十年内产值翻一番,试计算: (1)每年要保持怎样的平均增长速度,产值才能在十年内翻一番?
(2)若2010~2012年两年的平均发展速度为105%,那么,后八年应有怎样的速度才能做到十年翻一番?
(3)若要求提前两年达到产值翻一番,则每年应有怎样的平均发展速度?
13.某旅游风景区的旅游收入资料如下:
要求:
(1)按同期平均法计算季节指数;
(2)按移动平均趋势剔除法计算季节指数。
14.某地区的市场销售额2012年为50万元,比2011年增加了10万元,销售量比2011年增长了5%,试计算:
(1)该地区市场销售额总指数;
(2)市场销售价格指数;
(3)由于销售量变动对销售额的影响。
15.某商店三种商品的销售额和销售价格资料如下:
(2)计算销售量总指数。
(3)对总销售额的变动进行因素分析。
16.某零售企业2013年销售总额为102亿元,比上年增长16.76%,扣除价格因素实际增长6.45%,试据此推算:
(1)该零售企业2013年零售价格指数;
(2)该零售企业2013年销售按2012年价格计算的销售总额。
17.已知同样多的人民币,报告期比基期少购买8%的商品,请问:物价指数是多少?
18.某铸造厂生产某种铸件,现从该厂某月生产的500吨铸件中随机抽取100吨。
已知
一级品率为60%,试求其一级品率的抽样平均误差。
19.某工业企业有1000名工人,随机抽选其中的100名工人作为样本来调查其工资水平,经计算得到平均工资为650元,标准差为50元。
若以95.45%的可靠性进行推断,试求极限误差和该厂工人的月平均工资的置信区间。
20.已知某厂在一定时期内生产了100000个单位的纱,按简单抽样方式抽取了2000个单位来检查,合格率为95%,试求抽样平均误差。
21.某工厂从生产的一批零件中随机抽取1%检验其质量,调查资料如下表:
根据质量标准,使用寿命在800小时以上为合格品。
试以90%的概率保证程度:(1)对这批零件的平均使用寿命进行区间估计。
22.对某鱼塘的鱼进行抽样调查,从鱼塘的不同部位同时撒网捕到鱼150条,其中草鱼123条,草鱼平均每条重2千克,标准差0.7千克。
试按99.73%的保证程度:对该鱼塘草鱼平均每条重量做出区间估计。
23.一批灯泡400箱(每箱25只)运抵仓库。
今从中随机抽取1%(即4箱)检查其质量。
检验后的资料整理如下表:
试以95.45%的概率保证对该批灯泡的平均耐用时间做出区间估计。
24.从某批食品中随机抽取12袋,测定其蛋白质的含量(%),测定结果如下:
24、26、27、23、20、28、23、24、27、25、26、23
假定该食品每袋蛋白质的含量X 服从正态分布),(2σμN ,包装袋上表明蛋白质的含量为26%。
(1)问该批食品是否存在质量问题(显著水平为0.05)? (2) 你的判断结果可能会发生哪一类错误?说明该错误的实际含义。
的校友月均收入调查如表格。
问:是否判定校友三年毕业后月均收入在165元以上(α=5%)
26.某公司研发新产品,调查市场占有率,对500名潜在客户调查:有15%的顾客绝对要购买新产品。
公司研究认为,新产品达到12%市场占有的机会。
假设15%的客户都会成为真实顾客。
α=5%
27.根据过去学校的记录,学生的统计学考试的平均分数为65分,标准差为16分。
现在学校改革了教学方法,经抽取64名学生作调查,得平均分数为69分,问平均分数有无显著提高?(α=0.05)
28.某工厂生产瓶装1千克的某饮料,标准差为0.02千克,现随机抽取36瓶进行检验,得平均重量为0.9962千克,问能否相信该厂生产的饮料每瓶重量为1千克。
(α=0.05)。