河南省郑州市2015-2016学年高一(下)期末数学试卷(解析版)
河南省郑州市高一下学期期末考试数学试题 扫描版含答
2015—2016学年度下期期末高一数学参考答案一、 选择题BCBBB CAACB CB二、 填空题 13. 13 14. 231- 15. [1,1]- 16. 1[1,)2- 三、 解答题17.解 (Ⅰ)∵c ∥a ,∴设c =λa ,则c =(λ,2λ).…………2分又|c |=25,∴λ=±2,∴c =(2,4)或(-2,-4).……………5分(Ⅱ)∵()a +2b ⊥(2a -b ),∴(a +2b )·(2a -b )=0. ……………7分∵|a |=5,|b |=52,∴a·b =-52. ∴cos θ=a·b |a||b |=-1,∴θ=180°. ……………10分 18.解:( Ⅰ)设回归直线方程为ˆy =ˆbx+ˆa . ∵72i i 1x =∑=280,72i i 1y =∑=45 309,7i 1=∑x i y i =3 487,x =6,y =5597, ……………2分 ∴ˆb =5593487767280736-⨯⨯-⨯=13328=4.75, ……………4分 ˆa =5597-6×4.75≈51.36, ∴回归直线方程为ˆy =4.75x+51.36. ……………6分(Ⅱ)当x=20时,ˆy =4.75×20+51.36≈146.故某天的销售量为20件时,估计这天可获纯利大约为146元. ……………12分19.解:(Ⅰ)由题设可知,第3组的频率为0.06×5=0.3,第4组的频率为0.04×5=0.2,第5组的频率为0.02×5=0.1. ……………3分(Ⅱ)第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10. ……………5分因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为第3组:3060×6=3, 第4组:2060×6=2, 第5组:1060×6=1. 所以第3、4、5组分别抽取3人,2人,1人. ……………7分(Ⅲ)设第3组的3位同学为A 1,A 2,A 3,第4组的2位同学为B 1,B 2,第5组的1位同学为C 1.则从六位同学中抽两位同学有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共15种可能. ……………9分其中第4组的2位同学为B 1,B 2至少有一位同学入选的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2).(A 3,B 1),(B 1,B 2),(A 3,B 2),(B 1,C 1),(B 2,C 1),共9种可能.所以第4组至少有一名学生被甲考官面试的概率为915=35.……………12分 20.解 (Ⅰ)如图所示建立直角坐标系, 设角(0)2πϕϕ-<<是以Ox 为始边,0OP 为终边的角,则.6πϕ=-……………2分OP 每秒钟内所转过的角为52.606ππ⨯=……………4分 由OP 在时间()t s 内所转过的角为52().606t t ππ⨯= 由题意可知水轮逆时针转动, 故所求的函数关系式为4sin() 2.66z t ππ=-+……………6分 (Ⅱ)令4sin()26,66z t ππ=-+=……………9分 得sin()1,66t ππ-=,4,662t t πππ-==令得故点p 第一次到达最高点大约需要4s . ……………12分21.解:(Ⅰ)sin θ因为,θcos 为方程21204x bx -+=的两根, 则有: 220(1)sin cos (2)21sin cos (382)b b θθθθ⋯⎧⎪∆=-≥⎪⎪+=⎨⋯⎪⋯=⋯⋯⎪⎪⎩分由(2)、(3)有:21144b =+,解得:b =520∆=->,……………4分又sin cos )04πθθθ+=+>,b ∴=……………6分 (Ⅱ)sin 1cos 1sin cos 1cos sin 1sin cos θθθθθθθθ+++==-+-因为……………8分且sin cos )04πθθθ-=->,sin cos θθ∴-=10分sin 1cos 1sin cos 21cos sin 1sin cos θθθθθθθθ+++∴+=⋅=-+-.……………12分1cos(2)1cos 2322.:()()221[cos(2)cos 2]23132cos 2)22)3x x f x x x x x x πωωπωωωωπω+--=-=-+=+=+解Ⅰ………………………………………………………2分 2,(),0,,12f x ππωπωω>∴==由题意可知的最小正周期为且即())3()122f x x f ππ∴=+∴=………………………………………………………………………………5分 ()|()|1,()1()1f x m f x m f x -≤-≤≤+Ⅱ即min max 7[,0]|()|1,12()1()1,x f x m m f x m f x π∃∈--≤≥-≤+因为使得成立所以且 ………………………………………………………………………………7分max min 750,2126331sin(2)33)343(),()42x x x x f x f x ππππππ-≤≤-≤+≤-≤+≤≤+≤==-因为所以所以所以即 …………………………………………………………………10分7147[1,].24m m -≤≤--即的取值范围是 ………………………………………………………………………………12分。
2015-2016学年高一下学期期末考试数学试题带答案
2015—2016学年度高一下学期期末考试数学试题命题人:陈文科 考试时间:120分钟 分值:150分一、选择题(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.等差数列{}n a 中,若464=+a a ,则132a a -的值为 ( )A .1B .2C .3D .4 2.设βα,为不重合的两个平面,n m ,为不重合的两条直线,则下列判断正确的是 ( ) A .若α⊥β,α∩β=n ,m ⊥n ,则m ⊥α B .若m ⊂α,n ⊂β,m ∥n ,则α∥βC .若m ∥α,n ∥β,m ⊥n ,则α⊥βD .若n ⊥α,n ⊥β,m ⊥β,则m ⊥α 3.若两直线0343=++y x 与016=++my x 平行,则它们之间的距离为( )A .21B .25 C .52 D .552 4.在如图所示的长方体1111D C B A ABCD -中,21==AB AA ,1=AD ,G F E ,,分别是11,,CC AB DD 的中点,则异面直线E A 1与FG 所成角的余弦值是 ( )A .515B .22 C .510D .05.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥ B .324k ≤≤ C .324k k ≥≤或 D .2k ≤ 6.在空间直角坐标系中,点)2,3,2(),2,3,1(--B A ,则B A ,两点间的距离为 ( ) A .14B .5C .31D .257.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,已知4,6π==A b ,若三角形有两解,则边a 的取值范围为 ( )A .)6,0(B .)6,1(C .)6,3(D .),3(+∞8.半径为1,圆心角为π32的扇形卷成一个圆锥,则它的体积为 ( ) A .8122πB .2722πC .27π D .3π 9.过点)2,4(P 作圆222=+y x 的两条切线,切点分别为B A ,,点O 为坐标原点,则AOB ∆的外接圆方程是 ( ) A .()5)1(222=+++y xB .()20)2(422=+++y xC .()5)1(222=-+-y xD .()20)2(422=-+-y x10.一个几何体是由一个三棱柱截去一个四棱锥而成,它的三视图如图所示,则这个几何体的体积是 ( ) A .1 B .2 C .3 D .4 11.已知圆4:22=+y x O 上到直线m y x l =+:的距离为1的点有且仅有2个,则m 的取值范围是( ) A .(),2()2,+∞-∞- B .)23,2()2,23( -- C .)23,23(- D . )2,2(-12.已知圆1)1(:22=+-y x M ,设)25(),6,0(),,0(-≤≤-+t t B t A ,若圆M 是ABC ∆的内切圆,则ABC ∆面积的最大值为( ) A .215B .429C .7D .427 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上) 13.经过直线01:,05:21=--=-+y x l y x l 的交点且垂直于直线032=-+y x 的直线方程为 .正视图侧视图14.已知y x ,满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(0≤k ),若目标函数3z x y =+的最大值为8,则k 的值为 .15.已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,则222PC PB PA ++的最大值为 .16.已知正方体D C B A ABCD ''''-的棱长为1,下列说法:①对角线C A '被平面BD A '和平面D C B ''三等分;②以正方体的顶点为顶点的四面体的体积都是61; ③正方体的内切球,与各条棱相切的球,外接球的表面积 之比为3:2:1;④正方体与以A 为球心,1为半径的球的公共部分的体积为3π; 则正确的是 . (写出所有正确的序号)三、解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)设直线l 的方程为R a a y x a ∈=-+++,02)1(;(Ⅰ)若直线l 不经过第二象限,求实数a 的取值范围;(Ⅱ)若直线l 与坐标轴围成三角形的面积为2,求实数a 的值.18.(12分)在ABC ∆中,角,,A B C 的对边分别为54cos ,4,,,=π=B A c b a . (Ⅰ)求C cos 的值; (Ⅱ)若2=c ,求ABC ∆的面积.19.(12分)如图1所示,在边长为1的等边三角形ABC 中,E D ,分别是AC AB ,边上的点,AE AD =,F 是BC 的中点,AF 与DE 交于点G ,将ABC ∆沿AF 折叠,得到如图2所示的三棱锥BCF A -,其中22=BC; (Ⅰ)证明://DE 平面BCF ;(Ⅱ)证明:⊥CF 平面ABF ;(III )当32=AD 时, 求三棱锥DEG F -的体积.20.(12分)甲、乙两地相距1000km ,货车从甲地匀速行驶到乙地,速度不得超过80km/h ,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的14倍,固定成本为a 元; (Ⅰ)将全程运输成本y (元)表示为速度v (km/h )的函数,并指出这个函数的定义域; (Ⅱ)若400=a ,为了使全程运输成本最小,货车应以多大的速度行驶?21.(12分)已知点))(,(*N n b a P n n n ∈都在直线22:+=x y l 上,1P 为直线l 与x 轴的交点,数列{}n a 成等差数列,公差为1; (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)若)(n f =⎩⎨⎧)(b )(n 为偶数为奇数n n a n 问是否存在*N k ∈,使得2)(2)5(-=+k f k f 成立;若存在,求出k 的值,若不存在,说明理由; (III )求证:*21231221,2,52111N n n P P P P P P n∈≥<+⋅⋅⋅++.22.(12分)已知⎩⎨⎧+-≥≤+--+501810222a x y y x y xR y x ∈,,若由不等式组围成的区域为P ,设两曲线的交点为B A ,,)5,(a C 且P C ∈; (Ⅰ)求实数a 的取值范围;(Ⅱ)若0=a ,求ABC ∆的面积; (III )求ABC ∆的面积的最大值.2015—2016学年度高一下学期期末考试数学答案一、选择题1~5 BDADC 6~10 BCACD 11~12 BA 二、填空题13. 012=+-y x 14. 88 15. 6- 16. ①③ 三、解答题17. 解:(Ⅰ)由题意知:⎩⎨⎧≤-≥+-020)1(a a ∴1-≤a(Ⅱ)由题意知:1-≠a 令2,0-==a y x 令12,0+-==a a y y ∴212221=+--=a a a S ∴0=a ,或8=a 18.(Ⅰ)53sin ,054cos =∴>=B B )4c o s ()]4(cos[cos B B C +-=+-=πππ10254225322)sin 4sincos 4(cos-=⋅-⋅=--=B B ππ(Ⅱ)由(Ⅰ)知1027sin =C 由正弦定理知:C c A a sin sin = ∴ 725=a∴7353272521sin 21=⋅⋅⋅==B ac S19.(Ⅰ)在等边三角形ABC 中,AD =AE ,∴AD DB =AEEC .在折叠后的三棱锥A -BCF 中也成立,∴DE ∥BC . ∵DE 平面BCF ,BC ⊂平面BCF ,∴DE ∥平面BCF . (Ⅱ)在等边三角形ABC 中,F 是BC 的中点, ∴AF ⊥FC ,BF =CF =12.∵在三棱锥A -BCF 中,BC =22, ∴BC 2=BF 2+CF 2,∴CF ⊥BF . ∵BF ∩AF =F ,∴CF ⊥平面ABF .(III )由(1)可知GE ∥CF ,结合(2)可得GE ⊥平面DFG .∴V F -DEG =V E -DFG =13×12×DG ×FG ×GE =13×12×13×⎝⎛⎭⎫13×32×13=3324. 20.(Ⅰ)可变成本为241v ,固定成本为a 元,所用时间为v1000 ∴⎪⎭⎫ ⎝⎛+=a v v y 2411000,即⎪⎭⎫ ⎝⎛+=v a v y 411000。
2015-2016学年河南省郑州市一中高一上学期期末数学试卷(带解析)
绝密★启用前2015-2016学年河南省郑州市一中高一上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:153分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•郑州校级期末)设集合A={(x ,y )|x 2+y 2≤|x|+|y|,x ,y ∈R},则集合A 所表示图形的面积为( )A .1+πB .2C .2+πD .π2、(2015秋•郑州校级期末)方程=k (x ﹣1)+2有两个不等实根,则k 的取值范围是( )A .(,+∞)B .(,1]C .(0,)D .(,1]3、(2015•陕西模拟)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点A (2,0),B (0,4),且AC=BC ,则△ABC 的欧拉线的方程为( )A .x+2y+3=0B .2x+y+3=0C .x ﹣2y+3=0D .2x ﹣y+3=04、(2015秋•郑州校级期末)函数f (x )=log a (ax ﹣2)在[1,3]上单调递增,则a 的取值范围是( )A .(1,+∞)B .(0,2)C .(0,)D .(2,+∞)5、(2005•江西)在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B ﹣AC ﹣D ,则四面体ABCD 的外接球的体积为( ) A .π B .π C .π D .π6、(2013•潼南县校级模拟)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1B 与平面BB 1D 1D 所成的角的大小是( )A .90°B .30°C .45°D .60°7、(2015秋•郑州校级期末)四面体ABCD 中,E 、F 分别为AC 、BD 中点,若CD=2AB ,EF ⊥AB ,则EF 与CD 所成的角等于( ) A .30° B .45° C .60° D .90°8、(2015秋•郑州校级期末)下列命题中正确的是( ) A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 B .有一个面是多边形,其余各面都是三角形的几何体叫棱锥 C .由五个面围成的多面体一定是四棱锥 D .棱台各侧棱的延长线交于一点9、(2015秋•郑州校级期末)若函数f (x )=2ax 2﹣x ﹣1在(0,1)内恰有一个零点,则a 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .(﹣1,1)D .[0,1)10、(2015秋•郑州校级期末)已知a=log5,b=log 23,c=1,d=3﹣0.6,那么( )A .a <c <b <dB .a <d <c <bC .a <b <c <dD .a <c <d <b11、(2015秋•郑州校级期末)下列函数中,在(﹣∞,1)内是增函数的是( )A .y=1﹣x 3B .y=x 2+xC .y=D .y=12、(2012•湖南)设集合M={﹣1,0,1},N={x|x 2≤x},则M∩N=() A .{0} B .{0,1} C .{﹣1,1} D .{﹣1,0,1}第II卷(非选择题)二、填空题(题型注释)13、(2015秋•郑州校级期末)圆C的方程为x2+y2﹣6x+8=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.14、(2015秋•郑州校级期末)当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是.15、(2015秋•郑州校级期末)(log3)2﹣3+log0.25+()﹣4= .16、(2014•天津三模)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为.三、解答题(题型注释)17、(2015秋•郑州校级期末)已知函数,其反函数为y=g(x).(Ⅰ)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(Ⅱ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(Ⅲ)是否存在实数m>n>2,使得函数y=h(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.18、(2011•兴化市校级模拟)如图,已知圆心坐标为(,1)的圆M 与x 轴及直线y=x 分别相切于A ,B 两点,另一圆N 与圆M 外切、且与x 轴及直线y=x 分别相切于C 、D 两点.(1)求圆M 和圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度.19、(2015秋•郑州校级期末)如图,已知矩形ABCD 中,AB=10,BC=6,将矩形沿对角线BD 把△ABD 折起,使A 移到A 1点,且A 1在平面BCD 上的射影O 恰在CD 上,即A 1O ⊥平面DBC .(Ⅰ)求证:BC ⊥A 1D ;(Ⅱ)求证:平面A 1BC ⊥平面A 1BD ; (Ⅲ)求点C 到平面A 1BD 的距离.20、(2015秋•郑州校级期末)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?21、(2015秋•郑州校级期末)分别求出适合下列条件的直线方程: (Ⅰ)经过点a >2,t=2且在x 轴上的截距等于在y 轴上截距的2倍;(Ⅱ)经过直线2x+7y﹣4=0与7x﹣21y﹣1=0的交点,且和A(﹣3,1),B(5,7)等距离.22、(2015秋•郑州校级期末)已知集合A={x|x2﹣x﹣12<0},集合B={x|x2+2x﹣8>0},集合C={x|x2﹣4ax+3a2<0,a≠0},(Ⅰ)求A∩(C R B);(Ⅱ)若C⊇(A∩B),试确定实数a的取值范围.参考答案1、C2、D3、C4、D5、C6、B7、A8、D9、A10、B11、C12、B13、.14、(﹣∞,﹣5].15、.16、17、(Ⅰ)m∈(1,+∞);(Ⅱ);(Ⅲ)不存在m,n满足条件.18、(1),;(2)19、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ).20、(1)(2)5年.(3)今后最多还能砍伐15年21、(Ⅰ)直线方程为x+2y﹣1=0或2x+3y=0.(Ⅱ)直线l的方程是21x﹣28y﹣13=0或x=1.22、(Ⅰ)(﹣3,2];(Ⅱ)【解析】1、试题分析:根据不等式,分别讨论x,y的取值,转化为二元二次不等式组,结合圆的性质进行求解即可.解:若x≥0,y≥0,则不等式等价为x2+y2≤x+y,即(x﹣)x2+(y﹣)2≤,若x≥0,y<0,则不等式等价为x2+y2≤x﹣y,即(x﹣)x2+(y+)2≤,若x≤0,y≤0,则不等式等价为x2+y2≤﹣x﹣y,即(x+)x2+(y+)2≤,若x<0,y≥0,则不等式等价为x2+y2≤﹣x+y,即(x+)x2+(y﹣)2≤,则对应的区域如图:在第一象限内圆心坐标为C(,),半径=,则三角形OAC的面积S==,圆的面积为×=π,则一个弓弧的面积S=π﹣,则在第一象限的面积S=π×()2﹣2×(π﹣)=﹣+=+,则整个区域的面积S=4×(+)=2+π,故选:C考点:圆方程的综合应用;Venn图表达集合的关系及运算.2、试题分析:由题意可得,函数y=的图象和直线y=k(x﹣1)+2有2个交点,数形结合求得k的范围.解:方程=k(x﹣1)+2有两个不等实根,即函数y=的图象和直线y=k(x﹣1)+2有2个交点.而函数y=的图象是以原点为圆心,半径等于1的上半圆(位于x轴及x轴上方的部分),直线y=k(x﹣1)+2,即kx﹣y+2﹣k="0" 的斜率为k,且经过点M(1,2),当直线和半圆相切时,由=1,求得k=.当直线经过点A(﹣1,0)时,由0=k(﹣1﹣2)+3求得k=1.数形结合可得k的范围为(,1],故选:D.考点:函数的零点与方程根的关系.3、试题分析:由于AC=BC,可得:△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,求出线段AB的垂直平分线,即可得出△ABC的欧拉线的方程.解:线段AB的中点为M(1,2),k AB=﹣2,∴线段AB的垂直平分线为:y﹣2=(x﹣1),即x﹣2y+3=0.∵AC=BC,∴△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,因此△ABC的欧拉线的方程为:x﹣2y+3=0.故选:C.考点:待定系数法求直线方程.4、试题分析:由题意可得可得,由此解得a的范围.解:函数f(x)=log a(ax﹣2)在[1,3]上单调递增,可得,解得a>2,故选:D.考点:复合函数的单调性.5、试题分析:球心到球面各点的距离相等,即可知道外接球的半径,就可以求出其体积了.解:由题意知,球心到四个顶点的距离相等,所以球心在对角线AC上,且其半径为AC长度的一半,则V球=π×()3=.故选C.考点:球的体积和表面积.6、试题分析:连接A1C1交B1D1于O,连接OB,说明∠A1BO为A1B与平面BB1D1D 所成的角,然后求解即可.解:连接A1C1交B1D1于O,连接OB,因为B1D1⊥A1C1,A1C1⊥BB1,所以A1C1⊥平面BB1D1D,所以∠A1BO为A1B与平面BB1D1D所成的角,设正方体棱长为1,所以A1O=,A1B=,sin∠A1BO=,∠A1BO=30°.故选B.考点:直线与平面所成的角.7、试题分析:取AD的中点G,连接EG、FG,由三角形中位线定理得EG∥CD,从而得到∠GEF是EF与CD所成的角,由此能求出EF与CD所成的角的大小.解:设CD=2AB=2,取AD的中点G,连接EG、FG,∵E、F分别为AC、BD中点,∴EG∥CD,且EG=,FG∥AB,且FG==.∵EF⊥AB,FG∥AB,∴EF⊥FG.∵EG∥CD,∴∠GEF是EF与CD所成的角,在Rt△EFG中,∵EG=1,GF=,EF⊥FG,∴∠GEF=30°,即EF与CD所成的角为30°.故选:A.考点:异面直线及其所成的角.8、试题分析:根据棱柱、棱锥、棱台的几何特征,即可得出结论.解:有两个面平行,其余各面是相邻的公共边都相互平行的平行四边形的几何体叫棱柱,故A错误;有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故B错误;由5个面成的多面体可能是四棱锥或三棱柱,故C不正确;拿一个平行于底面的平面截棱锥,底面与截面之间的部分叫棱台,故棱台各侧棱的延长线交于一点,即D正确.考点:命题的真假判断与应用.9、试题分析:根据函数零点存在性定理,若函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,则f(0)f(1)<0,可得关于a的不等式,解不等式,即可求出a的范围.解:当△=0时,a=﹣,此时有一个零点x=﹣2,不在(0,1)上,故不成立.∵函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,∴f(0)f(1)<0,即﹣1×(2a﹣1)<0,解得,a>1,故选A考点:函数零点的判定定理.10、试题分析:利用对数函数、指数数的性质求解.解:∵a=log5<=﹣2,b=log23>log22=1,c=1,0<d=3﹣0.6<30=1,∴a<d<c<b.故选:B.考点:对数值大小的比较.11、试题分析:逐一判断函数的单调性,推出正确结果即可.解:y=1﹣x3函数在(﹣∞,1)内是减函数.y=x2+x对称轴为x=﹣,在(﹣∞,1)内不是增函数.y==﹣1,在(﹣∞,1)内是增函数,满足题意.y=,函数在(﹣∞,1)内是减函数.故选:C.考点:函数单调性的判断与证明.12、试题分析:求出集合N,然后直接求解M∩N即可.解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.考点:交集及其运算.13、试题分析:由于圆C的方程为(x﹣3)2+y2=1,由题意可知,只需(x﹣43)2+y2=4与直线y=kx﹣2有公共点即可.解:∵圆C的方程为x2+y2﹣6x+8=0,整理得:(x﹣3)2+y2=1,即圆C是以(3,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣3)2+y2=4与直线y=kx﹣2有公共点即可.设圆心C′(3,0)到直线y=kx﹣2的距离为d,则d=≤2,即5k2﹣12k≤0,∴0≤k≤.∴k的最大值.故答案为:.考点:直线与圆的位置关系.14、试题分析:利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m≤﹣5.∴m的取值范围是(﹣∞,﹣5].故答案为:(﹣∞,﹣5].考点:函数的最值及其几何意义.15、试题分析:直接利用对数运算法则化简求解即可.解:(log3)2﹣3+log0.25+()﹣4=﹣4+1+4=.故答案为:.考点:对数的运算性质.16、试题分析:由已知中的三视图,我们可以判断出该几何体的形状,及关键数据,代入棱锥体积公式,即可求出答案.解:由已知中的三视图可得,该几何体有一个半圆锥和一个四棱维组合而成,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2为正方形,他们的高均为则V=(+4)•=故答案为:考点:由三视图求面积、体积.17、试题分析:(Ⅰ)求得g(x)=,由定义域为R,可得mx2+2x+1>0恒成立,即有m>0,判别式小于0,解不等式即可得到所求范围;(Ⅱ)令,即有y=t2﹣2at+3=(t﹣a)2+3﹣a2,讨论对称轴和区间的关系,运用单调性,即可得到所求最小值;(Ⅲ)h(x)=7﹣4x,x∈(2,+∞),且h(x)在x∈(2,+∞)上单调递减,可得h (n)=m2,h(m)=n2,两式相减,即可判断.解:(Ⅰ)由函数,可得其反函数为y=,因为定义域为R,即有mx2+2x+1>0恒成立,所以,解得m∈(1,+∞);(Ⅱ)令,即有y=t2﹣2at+3=(t﹣a)2+3﹣a2,当a>2,区间[,2]为减区间,t=2时,y min=7﹣4a;当≤a≤2,t=a时,y min=3﹣a2;当a<,区间[,2]为增区间,t=时,y min=﹣a.则;(Ⅲ)h(x)=7﹣4x,x∈(2,+∞),且h(x)在x∈(2,+∞)上单调递减.所以,两式相减得,m+n=4,与m>n>2矛盾,所以不存在m,n满足条件.考点:函数的最值及其几何意义;反函数.18、试题分析:(1)圆M的圆心已知,且其与x轴及直线y=x分别相切于A,B两点,故半径易知,另一圆N与圆M外切、且与x轴及直线y=x分别相切于C、D两点,由相似性易得其圆心坐标与半径,依定义写出两圆的方程即可.(2)本题研究的是直线与圆相交的问题,由于B点位置不特殊,故可以由对称性转化为求过A点且与线MN平行的线被圆截得弦的长度,下易解.解:(1)由于⊙M与∠BOA的两边均相切,故M到OA及OB的距离均为⊙M的半径,则M在∠BOA的平分线上,同理,N也在∠BOA的平分线上,即O,M,N三点共线,且OMN为∠BOA的平分线,∵M的坐标为(,1),∴M到x轴的距离为1,即⊙M的半径为1,则⊙M的方程为,(4分)设⊙N的半径为r,其与x轴的切点为C,连接MA,NC,由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC,即得r=3,则OC=,则⊙N的方程为;(8分)(2)由对称性可知,所求的弦长等于过A点直线MN的平行线被⊙N截得的弦的长度,此弦的方程是,即:x﹣﹣=0,圆心N到该直线的距离d=,则弦长=2.考点:直线和圆的方程的应用.19、试题分析:(Ⅰ)由线面垂直得A1O⊥BC,再由BC⊥DC,能证明BC⊥A1D.(Ⅱ)由BC⊥A1D,A1D⊥A1B,得A1D⊥平面A1BC,由此能证明平面A1BC⊥平面A1BD.(Ⅲ)由=,能求出点C到平面A1BD的距离.证明:(Ⅰ)∵A1O⊥平面DBC,∴A1O⊥BC,又∵BC⊥DC,A1O∩DC=O,∴BC⊥平面A1DC,∴BC⊥A1D.(Ⅱ)∵BC⊥A1D,A1D⊥A1B,BC∩A1B=B,∴A1D⊥平面A1BC,又∵A1D⊂平面A1BD,∴平面A1BC⊥平面A1BD.解:(Ⅲ)设C到平面A1BD的距离为h,∵=,∴=,又∵=S△DBC,,∴.∴点C到平面A1BD的距离为.考点:点、线、面间的距离计算;平面与平面垂直的判定.20、试题分析:(1)根据每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,设每年砍伐面积的百分比为x 可建立方程,解之即可得到每年砍伐面积的百分比;(2)设经过m年剩余面积为原来的.根据题意:到今年为止,森林剩余面积为原来的.可列出关于m的等式,解之即可;(3)根据题意设从今年开始,以后砍了n年,再求出砍伐n年后剩余面积,由题意,建立关于n的不等关系,利用一些不等关系即可求得今后最多还能砍伐多少年.解:(1)设每年砍伐面积的百分比为x (0<x<1).则,即,解得(2)设经过m年剩余面积为原来的,则,即,,解得m=5故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍了n年,则n年后剩余面积为令≥,即(1﹣x)n≥,≥,≤,解得n≤15故今后最多还能砍伐15年.考点:函数模型的选择与应用.21、试题分析:(Ⅰ)分别讨论直线过原点和不过原点两种情况,设出直线方程,解出即可;(Ⅱ)先求出直线的交点坐标,设出直线方程,再根据点到直线的距离公式求出斜率k即可.解:(Ⅰ)当直线不过原点时,设所求直线方程为+=1,将(﹣3,2)代入所设方程,解得a=,此时,直线方程为x+2y﹣1=0.当直线过原点时,斜率k=﹣,直线方程为y=﹣x,即2x+3y=0,综上可知,所求直线方程为x+2y﹣1=0或2x+3y=0.(Ⅱ)有解得交点坐标为(1,),当直线l的斜率k存在时,设l的方程是y﹣=k(x﹣1),即7kx﹣7y+(2﹣7k)=0,由A、B两点到直线l的距离相等得,解得k=,当斜率k不存在时,即直线平行于y轴,方程为x=1时也满足条件.所以直线l的方程是21x﹣28y﹣13=0或x=1.考点:直线的一般式方程.22、试题分析:(Ⅰ)先通过解一元二次不等式化简集合A和B,再求集合B的补集,最后求出A∩(C R B)即可;(Ⅱ)由于一元二次方程x2﹣4ax+3a2=0的两个根是:a,3a.欲表示出集合C,须对a 进行分类讨论:①若a=0,②若a>0,③若a<0,再结合C⊇(A∩B),列出不等关系求得a的取值范围,最后综合得出实数a的取值范围即可.解:(Ⅰ)依题意得:A={x|﹣3<x<4},B={x|x<﹣4或x>2},(C R B)={x|﹣4≤x≤2}∴A∩(C R B)=(﹣3,2](Ⅱ)∴A∩B={x|2<x<4}①若a=0,则C={x|x2<0}=∅不满足C⊇(A∩B)∴a≠0②若a>0,则C={x|a<x<3a},由C⊇(A∩B)得③若a<0,则C={x|3a<x<a},由C⊇(A∩B)得综上,实数a的取值范围为考点:一元二次不等式的解法;集合的包含关系判断及应用;交集及其运算;补集及其运算.。
2015-2016年河南省郑州市中牟县高一下学期数学期末试卷与解析PDF
. ( , 是任意的 .
两上向量) .若 p=(1,﹣2) ,q=(﹣2,4) ,r=(3,4) ,则(p⊗ q)⊗ r=
三、解答题(共 6 小题,满分 70 分.解答时应写出文字说明、证明过程或演算步 骤) 17. (10 分) 某校 1200 名高中一年级学生参加了一次物理测验 (满分为 100 分) , 为了分析这次物理测验的成绩,从这 1200 人的物理成绩中随机抽取 200 人的成 绩绘制成如下的统计表: 成绩分组 [0,20) [20,40) [40,60) [60,80) [80,100] 频数 3 a 25 c 62 频率 0.015 b 0.125 0.5 0.31 平均分 16 32.1 55 74 88
2. (5 分)已知点 A(0,1) ,B(3,2) ,向量 A. (﹣7,﹣4)
B. (7,4) C. (﹣1,4) D. (1,4) )
3. (5 分)函数 f(x)=(sinx+cosx)2 的一条对称轴的方程是( A.x= B.x= C.x= D.x=π
4. (5 分) 已知向量 , 都为单位向量, 且 ⊥ (2 ﹣ ) , 则 , 的夹角为 ( A.30° B.45° C.60° D.90° 5. (5 分)若 tan(α+45°)<0,则下列结论正确的是( A.sinα<0 B.cosα<0 C.sin2α<0 D.cos2α<0 )
)
6. (5 分)实数 m 是[0,5]上的随机数,则关于 x 的方程 x2﹣2x+m=0 有实根的 概率为( A. B. ) C. D. ,则顶角的余弦值为( )
7. (5 分)某等腰三角形中,底角的正弦值为 A.﹣ B.﹣ C. D.
8. (5 分)已知函数 f(x)=
2015-2016学年高一下学期期末考试数学试题带答案
2016年春季学期高一期末考试数学试卷(本试卷共三大题,满分150分,考试时间为120分钟)一、 选择题(12道题,每题5分,共60分)1、若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B 等于( )A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0} 2.若θ是第二象限的角,且4sin 5θ=,则cos θ=( )A. 15B. 15- C. 35D. 35-3. 设=-=-=(1,3),(2,4),(0,5)a b c 则-+3a b c =( )A. (3,-8)B.(-2,3)C.(2,3)D.(3,8) 4若已知=(4,2), =(6,x),且∥,则x=( )A.3B. 5C.1D.-1 5.-400°角的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6. 函数y=sin(3x+3π)+2的最小正周期为( )A. 2πB. 3πC. 3πD.23π7. 若向量a =(3,3),b =(-3,2),则|a +2b|=( )8已知角α的终边过点P (-1-,2),tan α的值为 ( )A .-55 B .2 C D .129已知向量1(2BA =uu v ,1),2BC =uu u v 则∠ABC=( )(A)300 (B) 450 (C) 600 (D)120010若A 是第三象限的角,1cos()3A p -=,求2sin()A p+=( )A.13-B.23C.23-D. 1311在ABC △中,A B 边上的高等于13BC ,则cos B = ( )(A (B (C (D )-12设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为( )A. 2πB. πC.23pD.2p二、 填空题(4道题,每题5分,共20分)13.=(4,2), =(6,x)若与相互垂直,则X= 14. sin 810°= 15.若tanA=12,求4c si os n 2s in o s c A A AA -+=16.函数的图像可由函数的图像得到。
2015-2016学年河南省郑州一中高二(下)期末数学试卷(理科)(解析版)
2015-2016学年河南省郑州一中高二(下)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<02.(5分)抛物线y=2x2的准线方程为()A.B.C.D.3.(5分)以棱长为1的正方体ABCD﹣A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴,建立空间直角坐标系,则平面AA1B1B对角线交点的坐标为()A.(0,)B.()C.()D.()4.(5分)在等差数列{a n}中,已知a4+a8=16,则a2+a6+a10=()A.12B.16C.20D.245.(5分)在△ABC中,根据下列条件解三角形,其中有两解的是()A.b=7,c=3,C=30°B.a=20,b=30,C=30°C.b=4,c=2,C=60°D.b=5,c=4,C=45°6.(5分)有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底.其中正确的命题是()A.①②B.①③C.②③D.①②③7.(5分)已知F是双曲线C:y2﹣mx2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.C.D.8.(5分)数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n﹣1,则a12+a22+a32+…+a n2等于()A.(2n﹣1)2B.C.D.4n﹣19.(5分)已知△ABC,A,B,C所对的边分别为a,b,c,且ac sin A<,则()A.△ABC是钝角三角形B.△ABC是锐角三角形C.△ABC是直角三角形D.无法判断10.(5分)设x,y满足约束条件,若x2+4y2≥m恒成立,则实数m的最大值为()A.B.C.D.11.(5分)正项等比数列{a n}中,存在两项a m、a n使得=4a1,且a6=a5+2a4,则的最小值是()A.B.2C.D.12.(5分)设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN =120°,则该双曲线的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x•+3y•+4z•,则2x+3y+4z=.14.(5分)已知F是抛物线y2=x的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为.15.(5分)若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2﹣c2=4,且C=60°,则a+b的最小值为.16.(5分)把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{a n},若a n=2015,则n=.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知函数f(x)=ax2﹣c满足﹣4≤f(1)≤﹣1,﹣1≤f(2)≤5,求f(3)的取值范围.18.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c.已知A=,b sin(+C)﹣c sin(+B)=a,(1)求证:B﹣C=(2)若a=,求△ABC的面积.20.(12分)已知各项均不相等的等差数列{a n}的前四项和S4=14,a3是a1,a7的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,若对一切n∈N*恒成立,求实数λ的最大值.21.(12分)已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,P A⊥平面ABCD,E、F分别是线段AB、BC的中点.(1)证明:PF⊥FD;(2)判断并说明P A上是否存在点G,使得EG∥平面PFD;(3)若PB与平面ABCD所成的角为45°,求二面角A﹣PD﹣F的余弦值.22.(12分)已知椭圆C的中心在原点,焦点F在x轴上,离心率,点在椭圆C上.(1)求椭圆C的标准方程;(2)若斜率为k(k≠0)的直线n交椭圆C与A、B两点,且k OA、k、k OB成等差数列,点M(1,1),求S△ABM的最大值.2015-2016学年河南省郑州一中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.【解答】解:根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有x2≥0”的否定为“∃x0∈R,使得”.故选:A.2.【解答】解:抛物线的方程可变为x2=y故p=,其准线方程为y=﹣,故选:D.3.【解答】解:由题意如图,平面AA1B1B对角线交点是横坐标为AB的中点值,竖坐标为AA1的中点值,纵坐标为0,所以平面AA1B1B对角线交点的坐标为().故选:B.4.【解答】解:∵在等差数列{a n}中,a4+a8=16,∴a4+a8=2a6=16,解得a6=8,∴a2+a6+a10=3a6=24.故选:D.5.【解答】解:对于A,∵b=7,c=3,C=30°,∴由正弦定理可得:sin B===>1,无解;对于B,∵a=20,b=30,C=30°,∴由余弦定理可得c===,有一解;对于C,∵b=4,c=2,C=60°,∴由正弦定理可得:sin B===1,B=90°,A=30°,有一解;对于D,∵b=5,c=4,C=45°,∴由正弦定理可得:sin B===,又B为三角形的内角,∴B∈(45°,180°),可得B有2解,本选项符合题意;故选:D.6.【解答】解:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;这是正确的.③已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.故选:C.7.【解答】解:双曲线C:y2﹣mx2=3m(m>0)即为﹣=1,可得a2=3m,b2=3,c2=a2+b2=3m+3,设F(0,),一条渐近线方程为y=x,则点F到C的一条渐近线的距离为=.故选:A.8.【解答】解:∵a1+a2+a3+…+a n=2n﹣1…①∴a1+a2+a3+…+a n﹣1=2n﹣1﹣1…②,①﹣②得a n=2n﹣1,∴a n2=22n﹣2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选:C.9.【解答】解:△ABC中,ac sin A<,∴ac sin A<ca cos B,即sin A<cos B,∴sin A<sin(﹣B),∴A<﹣B,∴A+B<,∴C>,∴△ABC是钝角三角形.故选:A.10.【解答】解:设a=x,b=2y,则不等式x2+4y2≥m等价为a2+b2≥m,则约束条件等价为,作出不等式组对应的平面区域如图:设z=a2+b2,则z的几何意义是区域内的点到原点的距离,由图象知O到直线2a+b=2的距离最小,此时原点到直线的距离d=,则z=d2=,即m≤,即实数m的最大值为,故选:C.11.【解答】解:在等比数列中,∵a6=a5+2a4,∴,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∵=4a 1,∴,即2m+n﹣2=16=24,∴m+n﹣2=4,即m+n=6,∴,∴=()=,当且仅当,即n=2m时取等号.故选:A.12.【解答】解:不妨设圆与y=x相交且点M的坐标为(x0,y0)(x0>0),则N点的坐标为(﹣x0,﹣y0),联立y0=x0,得M(a,b),N(﹣a,﹣b),又A(﹣a,0)且∠MAN=120°,所以由余弦定理得4c2=(a+a)2+b2+b2﹣2•b cos 120°,化简得7a2=3c2,求得e=.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵=2x•+3y•+4z•,∴=﹣2x•﹣3y•﹣4z•,∵O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面∴﹣2x﹣3y﹣4z=1∴2x+3y+4z=﹣1故答案为:﹣114.【解答】解:∵F是抛物线y2=x的焦点F(,0)准线方程x=﹣设A(x1,y1),B(x2,y2)∴|AF|+|BF|=x1++x2+=3解得x1+x2=∴线段AB的中点横坐标为∴线段AB的中点到y轴的距离为故答案为:.15.【解答】解:∵(a+b)2﹣c2=4,∴c2=a2+b2+2ab﹣4①∵△ABC中,C=60°,∴c2=a2+b2﹣2ab cos C=a2+b2﹣ab②由①②得:3ab=4,ab=.∴a+b≥2=2=(当且仅当a=b=时取“=”).∴a+b的最小值为.故答案为:.16.【解答】解:分析图乙,可得①第k行有k个数,则前k行共有个数,②第k行最后的一个数为k2,③从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列,又由442=1936,452=2025,则442<2015<452,则2015出现在第45行,第45行第一个数为442+1=1937,这行中第=40个数为2015,前44行共有=990个数,则2015为第990+40=1030个数.故答案为:1030.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.【解答】解:∵f(x)=ax2﹣c,∴f(1)=a﹣c,f(2)=4a﹣c,f(3)=9a﹣c则由题意可得,,作出其平面区域如下图:则过点A(0,1),B(3,7)时,有f(3)有最值,f(3)min=0﹣1=﹣1,f(3)max=9×3﹣7=20.故f(3)的取值范围为[﹣1,20].18.【解答】解:(1)a=1时,命题p:x2﹣4x+3<0⇔1<x<3命题q:⇔⇔2<x≤3,p∧q为真,即p和q均为真,故实数x的取值范围是2<x<3(2)﹁p是﹁q的充分不必要条件⇔q是p的充分不必要条件,即q⇒p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.由(1)知命题q:2<x≤3,命题p:实数x满足x2﹣4ax+3a2<0⇔(x﹣a)(x﹣3a)<0由题意a>0,所以命题p:a<x<3a,所以,所以1<a≤219.【解答】解:(1)证明:由b sin(+C)﹣c sin()=a,由正弦定理可得sin B sin (+C)﹣sin C sin()=sin A.sin B()﹣sin C()=.整理得sin B cos C﹣cos B sin C=1,即sin(B﹣C)=1,由于0<B,C,从而B﹣C=.(2)解:B+C=π﹣A=,因此B=,C=,由a=,A=,得b==2sin,c==2sin,所以三角形的面积S==cos sin=.20.【解答】解:(I)设公差为d,∵S4=14,a3是a1,a7的等比中项∴,解得:或(舍去),∴a n=2+(n﹣1)=n+1;(II)∵,∴T n=﹣+﹣+…+=﹣=,∵对一切n∈N*恒成立,∴∴∀n∈N*恒成立,又≥16,∴λ≤16∴λ的最大值为16.21.【解答】解法一:(Ⅰ)∵P A⊥平面ABCD,∠BAD=90°,AB=1,AD=2,建立如图所示的空间直角坐标系A﹣xyz,则A(0,0,0),B(1,0,0),F(1,1,0),D(0,2,0).(2分)不妨令P(0,0,t)∵,∴,即PF⊥FD.(4分)(Ⅱ)设平面PFD的法向量为,由,得,令z=1,解得:.∴.(6分)设G点坐标为(0,0,m),,则,要使EG∥平面PFD,只需,即,得,从而满足的点G即为所求.(8分)(Ⅲ)∵AB⊥平面P AD,∴是平面P AD的法向量,易得,(9分)又∵P A⊥平面ABCD,∴∠PBA是PB与平面ABCD所成的角,得∠PBA=45°,P A=1,平面PFD的法向量为(10分)∴,故所求二面角A﹣PD﹣F的余弦值为.(12分)解法二:(Ⅰ)证明:连接AF,则,,又AD=2,∴DF2+AF2=AD2,∴DF⊥AF(2分)又P A⊥平面ABCD,∴DF⊥P A,又P A∩AF=A,∴(4分)(Ⅱ)过点E作EH∥FD交AD于点H,则EH∥平面PFD,且有(5分)再过点H作HG∥DP交P A于点G,则HG∥平面PFD且,∴平面GEH∥平面PFD(7分)∴EG∥平面PFD.从而满足的点G即为所求.(8分)(Ⅲ)∵P A⊥平面ABCD,∴∠PBA是PB与平面ABCD所成的角,且∠PBA=45°.∴P A=AB=1(9分)取AD的中点M,则FM⊥AD,FM⊥平面P AD,在平面P AD中,过M作MN⊥PD于N,连接FN,则PD⊥平面FMN,则∠MNF即为二面角A﹣PD﹣F的平面角(10分)∵Rt△MND∽Rt△P AD,∴,∵,且∠FMN=90°∴,,∴(12分)22.【解答】解:(1)设椭圆方程为(a>b>0),则∵椭圆离心率,点在椭圆C上,∴,解得a=2,b=1,∴椭圆方程为;(2)设直线n的方程为y=kx+m,A(x1,y1),(x2,y2),则∵k OA、k、k OB成等差数列,∴m(x1+x2)=0,∴m=0,∴直线n的方程为y=kx代入椭圆方程得(1+4k2)x2=4,∴|AB|=.∵M到y=kx的距离为d=∴S=•=∴S2=,∴(S2)′=,∴k,(S2)′>0,﹣<k<1,(S2)′<0,k>1,(S2)′>0,∴k=﹣时,S取得最大值.。
2015-2016学年河南省郑州一中高二(下)期末数学试卷(文科)(解析版)
2015-2016学年河南省郑州一中高二(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)下列命题是全称命题的是()A.存在x∈R,使x2﹣x+1<0B.所有2的倍数都是偶数C.有一个实数x,使|x|≤0D.有的三角形是等边三角形2.(5分)抛物线y2=2x的准线方程是()A.y=B.y=﹣C.x=D.x=﹣3.(5分)已知等比数列{a n}的前n项和为S n,且S3=7a1,则数列{a n}的公比q的值为()A.2B.3C.2或﹣3D.2或34.(5分)在等差数列{a n}中,已知a4+a8=16,则a2+a6+a10=()A.12B.16C.20D.245.(5分)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=2a,则()A.a>bB.a<bC.a=bD.a与b的大小关系不能确定6.(5分)椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为,则的值为()A.B.C.D.7.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m8.(5分)在△ABC中,B=60°,b2=ac,则△ABC一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形9.(5分)已知数列{a n}:,+,++,…,+++…+,…,那么数列b n=的前n项和S n为()A.B.C.D.10.(5分)已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<,则f(x)<+的解集为()A.{x|﹣1<x<1}B.{x|<﹣1}C.{x|x<﹣1或x>1}D.{x|x>1} 11.(5分)正项等比数列{a n}中,存在两项a m、a n使得=4a1,且a6=a5+2a4,则的最小值是()A.B.2C.D.12.(5分)设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN =120°,则该双曲线的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知直线y=kx+1与曲线y=x3+ax+b切于点(1,3),则a,b的值分别为.14.(5分)已知F是抛物线y2=x的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为.15.(5分)若x,y满足约束条件,且z=kx+y取最小值时的最优解有无数个,则k=.16.(5分)若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2﹣c2=4,且C=60°,则a+b的最小值为.三、解答题:本大题共6小题,共70分.17.(10分)等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=+n,求b1+b2+b3+…+b10的值.18.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.19.(12分)如图,货轮在海上以50浬/时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为155°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为125°.半小时后,货轮到达C点处,观测到灯塔A的方位角为80°.求此时货轮与灯塔之间的距离(得数保留最简根号).20.(12分)在△ABC中,角A,B,C的对边分别为a,b,c.已知A=,b sin(+C)﹣c sin(+B)=a,(1)求证:B﹣C=(2)若a=,求△ABC的面积.21.(12分)若椭圆C的中心在原点,焦点在x轴上,离心率,点在椭圆C上.(1)求椭圆C的标准方程;(2)若斜率为k(k≠0)的直线n交椭圆C与A、B两点,且k OA、k、k OB成等差数列,又有点M(1,1),求S△ABM的面积(结果用k表示);(3)求出(2)中S△ABM的最大值.22.(12分)已知函数f(x)=lnx﹣x.(1)求f(x)的单调区间及最大值;(2)若不等式xf(x)+x2﹣kx+k>0对∀x∈(2,+∞)恒成立,求实数k的最大值;(3)若数列{a n}的通项公式为,试结合(1)中有关结论证明:a1•a2•a3…a n<e(e为自然对数的底数).2015-2016学年河南省郑州一中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.【解答】解:对于A,C,D中,分别含有特称量词“有一个”,“有的”,“存在”,故A,C,D都是特称命题;对于B,含有全称量词“所有”,故B是全称命题.故选:B.2.【解答】解:∵抛物线的方程为y2=2x,∴2p=2,得=,可得抛物线的焦点为F(,0),准线方程为x=﹣.故选:D.3.【解答】解:由S3=7a1,则a1+a2+a3=7a1,即a1+a1q+a1q2=7a1,由a1≠0,化简得:1+q+q2=7,即q2+q﹣6=0,因式分解得:(q﹣2)(q+3)=0,解得q=2或q=﹣3,则数列{a n}的公比q的值为2或﹣3.故选:C.4.【解答】解:∵在等差数列{a n}中,a4+a8=16,∴a4+a8=2a6=16,解得a6=8,∴a2+a6+a10=3a6=24.故选:D.5.【解答】解:由题意得,∠C=120°,c=2a,根据正弦定理得,sin C=2sin A,即2sin A=,所以sin A=,又∠C=120°,所以A<30°,又B=180°﹣C﹣A=60°﹣A>30°=A,所以b>a,故选:B.6.【解答】解:联立椭圆方程与直线方程,得ax2+b(1﹣x)2=1,(a+b)x2﹣2bx+b﹣1=0,A(x1,y1),B(x2,y2),,y1+y2=1﹣x1+1﹣x2=2﹣=,AB中点坐标:(),AB中点与原点连线的斜率k===.故选:A.7.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.8.【解答】解:由余弦定理得:b2=a2+c2﹣2ac cos B=a2+c2﹣ac,又b2=ac,∴a2+c2﹣ac=ac,∴(a﹣c)2=0,∴a=c,∴A=B=C=60°,∴△ABC的形状是等边三角形.故选:D.9.【解答】解:由题意,数列{a n}的通项为a n==∴b n==4()∴S n=4(1﹣++…+)=4()=故选:A.10.【解答】解:设g(x)=f(x)﹣﹣,则函数的g(x)的导数g′(x)=f′(x)﹣,∵f(x)的导函数f′(x)<,∴g′(x)=f′(x)﹣<0,则函数g(x)单调递减,∵f(1)=1,∴g(1)=f(1)﹣﹣=1﹣1=0,则不等式f(x)<+,等价为g(x)<0,即g(x)<g(1),则x>1,即f(x)<+的解集{x|x>1},故选:D.11.【解答】解:在等比数列中,∵a6=a5+2a4,∴,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∵=4a 1,∴,即2m+n﹣2=16=24,∴m+n﹣2=4,即m+n=6,∴,∴=()=,当且仅当,即n=2m时取等号.故选:A.12.【解答】解:不妨设圆与y=x相交且点M的坐标为(x0,y0)(x0>0),则N点的坐标为(﹣x0,﹣y0),联立y0=x0,得M(a,b),N(﹣a,﹣b),又A(﹣a,0)且∠MAN=120°,所以由余弦定理得4c2=(a+a)2+b2+b2﹣2•b cos 120°,化简得7a2=3c2,求得e=.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′|x=1=3+a=2,解得a=﹣1,把(1,3)及a=﹣1代入曲线方程得:1﹣1+b=3,则b的值为3.故答案为:﹣1和3.14.【解答】解:∵F是抛物线y2=x的焦点F(,0)准线方程x=﹣设A(x1,y1),B(x2,y2)∴|AF|+|BF|=x1++x2+=3解得x1+x2=∴线段AB的中点横坐标为∴线段AB的中点到y轴的距离为故答案为:.15.【解答】解:∵z=kx+y则y=﹣kx+z,z为直线y=﹣x+在y轴上的截距,要使目标函数取得最小值的最优解有无穷多个,则截距最小时的最优解有无数个.把z=kx+y平移,使之与可行域中的边界AC,或BC重合即可,∵A(2,2),B(﹣1,2),C(1,0),∴﹣k==2或﹣k=解得k=2或k=﹣1,故答案为:2或﹣1.16.【解答】解:∵(a+b)2﹣c2=4,∴c2=a2+b2+2ab﹣4①∵△ABC中,C=60°,∴c2=a2+b2﹣2ab cos C=a2+b2﹣ab②由①②得:3ab=4,ab=.∴a+b≥2=2=(当且仅当a=b=时取“=”).∴a+b的最小值为.故答案为:.三、解答题:本大题共6小题,共70分.17.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.18.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p 真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]19.【解答】解:在△ABC中,∠ABC=155°﹣125°=30°,∠BCA=180°﹣155°+80°=105°,∠BAC=180°﹣30°﹣105°=45°,BC=×50=25,由正弦定理,得∴AC==(浬)答:船与灯塔间的距离为浬.20.【解答】解:(1)证明:由b sin(+C)﹣c sin()=a,由正弦定理可得sin B sin (+C)﹣sin C sin()=sin A.sin B()﹣sin C()=.整理得sin B cos C﹣cos B sin C=1,即sin(B﹣C)=1,由于0<B,C,从而B﹣C=.(2)解:B+C=π﹣A=,因此B=,C=,由a=,A=,得b==2sin,c==2sin,所以三角形的面积S==cos sin=.21.【解答】解:(1)设椭圆方程为+=1(a>b>0),由点在椭圆C上,知+=1 ①又e===②联立①②解得,a=2,b=1,所以椭圆方程为+y2=1;(2)由题意可知,直线l的斜率存在且不为0,故可设直线n的方程为y=kx+m,A(x1,y1),B(x2,y2),由,消去y得(1+4k2)x2+8kmx+4(m2﹣1)=0.△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,且x1+x2=﹣,因为直线OA,AB,OB的斜率依次成等差数列,所以+=2k,即x1y2+x2y1=2kx1x2,又y=kx+m,所以kx1x2+mx2+kx1x2+mx1=2kx1x2,即为m(x1+x2)=0,即m=0,联立易得A(,),B(﹣,﹣),弦AB的长为,又点M到直线y=kx的距离d=,所以S△ABM=••=;(3)令f(k)=,则f′(k)=,易知f(k)在(﹣∞,﹣),(1,+∞)上单调递增,在(﹣,1)上单调递减.又f(﹣)=5,且x→+∞时,f(k)→1.所以当k=﹣时,f(k)取最大值5,此时,S△ABM的面积取最大值.22.【解答】(1)解因f(x)=ln x﹣x,所以f′(x)=﹣1=.当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.所以f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)解:令g(x)==,则g′(x)=,令h(x)=x﹣ln x﹣1,则h′(x)=1﹣,x>2时h′(x)>0,故h(x)在(2,+∞)上单调递增,而h(x)>h(2)=1﹣ln 2>0,h(x)>0,即g′(x)>0,所以g(x)在(2,+∞)上单调递增,故g(x)>g(2)==2ln 2.由题意有k≤2ln 2,所以k的最大值是2ln 2.(3)证明:由(1)知,当x>0时,f(x)<f(1)=﹣1,即ln x<x﹣1.因为a n=1+(n∈N*),所以ln a n=ln(1+)<.令k=1,2,3,…+,n,这n个式子相加得:ln a1+ln a2+…+ln a n<+++…=1﹣<1.即ln(a1a2a3…+a n)<1,所以a1a2a3…a n<e.。
2015-2016学年河南省郑州市高二(下)期末数学试卷(文科)(解析版)
在此流程图中,①②两条流程线与“推理与证明”中的思维方法匹配正确的是( A.①﹣综合法,②﹣分析法 C.①﹣综合法,②﹣反证法 B.①﹣分析法,②﹣综合法 D.①﹣分析法,②﹣反证法
)
9. (5 分)如图是某同学为求 50 个偶数:2,4,6,…,100 的平均数而设计的程序框图的 部分内容,则在该程序框图中的空白判断框和处理框中应填入的内容依次是( )
①相关系数 r,|r|值越小,变量之间的相关性越强. ②命题“存在 x∈R,x +x﹣1<0”的否定是“不存在 x∈R,x +x﹣1≥0” . ③“p∨q”为真是“¬p”为假的必要不充分条件. ④ 若回归直线的斜率估计值是 1.23 ,样本点的中心为( 4 , 5 ) ,则回归直线方程是 1.23x+0.08. A.4 B.2 + C.3 的最大值为( C.3 D.1 ) D.2 =
17.直线
(t 为参数)被曲线
所截的弦长为(
)
A. [选修 4-5:不等式选讲]
B.
C.
D.
18.不等式|x+3|﹣|x﹣1|≤2 对任意实数 x 恒成立,则实数 a 的取值范围是( A. (﹣∞,﹣2] C.[2,+∞) B. (﹣∞,﹣2]∪[2,+∞) D.a∈R
a
)
二.填空题: (本大题共 4 题,每小题 5 分,共 20 分) 19. (5 分)若复数 z 满足(2﹣i)z=4+3i(i 为虚数单位) ,则 z= 20. (5 分)具有线性相关关系的变量 x,y,满足一组数据如下表所示: X y 0 ﹣1 1 1 2 m 3 8 . .
ቤተ መጻሕፍቲ ባይዱD.8062
[选修 4-1:几何证明选讲] 16. (5 分)如图,锐角三角形 ABC 中,以 BC 为直径的半圆分别交 AB、AC 于点 D、E,则
2015-2016学年高一第二学期期末考试数学试题带答案
2015~2016学年度第二学期期末考试高一数学试题(考试时间:120分钟 总分:160分)注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.参考公式:棱锥的体积公式:V棱锥13sh =,其中s 为棱锥的底面积,h 为高. 一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知(1,1)A ,(2,2)B ,则直线AB 的斜率为 . 2.在公差为2的等差数列}{n a 中,若21a =,则5a 的值是 .3.若ABC ∆满足:60A =︒,75C =︒,BC =AC 的长度为 . 4.已知π4αβ+=,且tan 2α=,则tan β的值是 . 5.如图,在直三棱柱111ABC A B C -中, 3 cm AB =, 4 cm BC =, 5 cm CA =,1 6 cm AA =,则四棱锥111A B BCC -的体积为 3cm .6.在平面直角坐标系x O y 中,直线210x a y +-=和直线(21)10a x y --+=互相垂直,则实数a 的值是 .7.已知正实数,a b 满足24a b +=,则ab 的最大值是 .8.在平面直角坐标系x O y 中,(1,3)A ,(4,2)B ,若直线20ax y a --=与线段AB 有公共点,则实数a 的取值范围是 .9.已知实数,x y 满足:11x y -≤+≤,11x y -≤-≤,则2x y +的最小值是 . 10.如图,对于正方体1111ABCD A B C D -,给出下列四个结论:①直线// AC 平面1111A B C D ②直线1// AC 直线1A B ③直线AC ⊥平面11DD B B ④直线1AC ⊥直线BD 其中正确结论的序号为 .11.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知πsin()62bC a+=,则角A 的值是 .12.在平面直角坐标系xOy 中,圆C 的方程为22(2)(3)9x y -+-=,若过点(0,3)M 的直线与圆C 交于,P Q 两点(其中点P 在第二象限),且2PMO PQO ∠=∠,则点Q 的横坐标为 .13.已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=()n N *∈,且120a a =,则1a 的最大值是 .14.如图,边长为1a b ++(0,0a b >>)的正方形被剖分为9个矩形,这些矩形的面积如图所示,则3572468152S S S S S S S S S +++++的最小值是 .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本题满分14分)在平面直角坐标系xOy 中,直线:30l x by b ++=. (1)若直线l 与直线20x y -+=平行,求实数b 的值;(2)若1b =,(0,1)A ,点B 在直线l 上,已知AB 的中点在x 轴上,求点B 的坐标. 16.(本题满分14分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c (a b c <<),已知2cos 2cos a C c A a c +=+.(1)若35c a =,求sin sin AB的值; (2)若2sin 0c A =,且8c a -=,求ABC ∆的面积S .17.(本题满分14分)如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA PC ⊥,AB BC =,点M ,N 分别为PC ,AC 的中点.求证:(1)直线 //PA 平面BMN ;(2)平面PBC ⊥平面BMN .18.(本题满分16分)如图,某隧道的截面图由矩形ABCD 和抛物线型拱顶DEC 组成(E 为拱顶DEC 的最高点),以AB 所在直线为x 轴,以AB 的中点为坐标原点,建立平面直角坐标系xOy ,已知拱顶DEC 的方程为2164y x =-+(44)x -≤≤.(1)求tan AEB ∠的值;(2)现欲在拱顶上某点P 处安装一个交通信息采集装置,为了获得最佳采集效果,需要点P 对隧道底AB 的张角APB ∠最大,求此时点P 到AB 的距离.19.(本题满分16分)在平面直角坐标系xOy 中,圆C 的方程为22(4)1x y -+=,且圆C 与x 轴交于M ,N 两点,设直线l 的方程为 (0)y kx k =>. (1)当直线l 与圆C 相切时,求直线l 的方程; (2)已知直线l 与圆C 相交于A ,B 两点.(ⅰ)若AB ≤,求实数k 的取值范围; (ⅱ)直线AM 与直线BN 相交于点P ,直线AM ,直线BN ,直线OP 的斜率分别为1k ,2k ,3k , 是否存在常数a ,使得123k k ak +=恒成立?若存在,求出a 的值;若不存在,说明理由.20.(本题满分16分)已知数列}{n a 的首项10a >,前n 项和为n S .数列n S n ⎧⎫⎨⎬⎭⎩是公差为12a的等差数列.(1)求62a a 的值; (2)数列}{nb 满足:1(1)2n a pn n n b b ++-=,其中,N*n p ∈. (ⅰ)若11p a ==,求数列}{n b 的前4k 项的和,N*k ∈;(ⅱ)当2p =时,对所有的正整数n ,都有1n n b b +>,证明:1112111222a a a b ---<<.2015~2016学年度第二学期期末考试高一数学参考答案一、填空题1.1; 2.7; 3 4.13-; 5.24; 6.23; 7.2; 8.(,3][1,)-∞-+∞ ; 9. 2-; 10.①③④; 11.π6; 12.1; 13.512 ; 14.2. 二、解答题15. 解:(1)∵直线l 与直线20x y -+=平行, ∴1(1)10b ⨯--⨯=,∴1b =-,经检验知,满足题意. ………………7分 (2)由题意可知::30l x y ++=, 设00(,3)B x x --, 则AB 的中点为002(,)22x x --, ………………10分 ∵AB 的中点在x 轴上,∴02x =-,∴(2,1)B --. ………………14分 16. 解:(1)∵2cos 2cos a C c A a c +=+由正弦定理:2sin cos 2sin cos sin sin A C C A A C+=+∴sin sin 2sin()2sin(π)2sin A C A C B B +=+=-= ………………2分 ∵35c a =由正弦定理:3sin 5sin C A =, ………………4分∴82sin sin sin sin 3B A C A =+=,∴sin 3sin 4A B =. ………………7分(2)由2sin 0c A =得:sin C =,∵(0,π)C ∈,∴π3C =或2π3C = 当π3C =时, ∵a b c <<,∴A B C <<,此时πA B C ++<,舍去, ∴23C π=, ………………9分 由(1)可知:2a c b +=, 又∵8c a -=, ∴4,8b a c a =+=+,∴2222(8)(4)2(4)cos3a a a a a π+=++-⋅+, ∴6a =或4a =-(舍) ………………12分所以11sin 61022S ab C ==⨯⨯= ………………14分 17.(1)证明:∵点M ,N 分别为PC ,AC 的中点,∴//MN PA , ………………2分 又∵PA ⊄平面BMN ,MN ⊂平面BMN ,∴直线 //PA 平面BMN . ………………6分 (2)证明:∵AB BC =,点N 为AC 中点, ∴BN AC ⊥,∵平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,BN ⊂平面ABC ,BN AC ⊥, ∴BN ⊥平面PAC , ………………9分 ∵PC ⊂平面PAC ,∴PC BN ⊥, 由(1)可知://MN PA , ∵PA PC ⊥,∴PC MN ⊥,∵PC BN ⊥,PC MN ⊥,BN MN N = ,,BN MN 在平面BMN 内,∴PC ⊥平面BMN , ………………12分 ∵PC ⊂平面PAC ,∴平面PBC ⊥平面BMN . ………………14分18. (1)解:由题意:(0,6)E ,(4,0)B , ∴2tan 3BO BEO EO ∠==, ∴222123tan tan 2251()3AEB BEO ⨯∠=∠==-, ………………5分 (2)(法1)设00(,)P x y ,026y ≤≤, 过P 作PH AB ⊥于H ,设,APH BPH αβ∠=∠=,则000044tan ,tan x x y y αβ+-==, ………………8分 ∴00222000088tan tan()1648y y APB y x y y αβ∠=+==---+00828()4y y =≤=+- ………………12分∵026y ≤≤,∴当且仅当0y =tan APB ∠最大,即APB ∠最大.答:位置P 对隧道底AB 的张角最大时P 到AB的距离为 ………………14分 (法2)设00(,)P x y ,026y ≤≤,∴22200000000(4,)(4,)1648PA PB x y x y x y y y ⋅=---⋅--=-+=-+ ,∴200||||cos 48PA PB AFB y y ⋅∠=-+ ,∴20048cos y y AFB PA PB-+∠=⋅ ………………8分∵011||||sin 822AFB S PA PB APB y ∆=⋅∠=⋅⋅ ,∴08sin y APB PA PB∠=⋅∴0200008sin 8tan 28cos 48()4y APB APB APB y y y y ∠∠====≤=∠-++- ………12分∵026y ≤≤,∴当且仅当0y =tan APB ∠最大,即APB ∠最大.答:位置P 对隧道底AB 的张角最大时P 到AB的距离为 ………………14分 19.(1)解:由题意,0k >,∴圆心C 到直线l的距离d =, ………………2分∵直线l 与圆C相切,∴1d ==,∴k =,∴直线:l y . ………………4分 (2)解:由题意得:0AB <=≤,1d ≤<, ………………6分 由(1)可知:d =,1<,∴14k ≤<. ………………9分 (3)证明:1:(3)AM l y k x =-,与圆C 22:(4)1x y -+=联立, 得:2211(3)[(1)(35)]0x k x k -+-+=, ∴3M x =,2121351A k x k +=+,∴2112211352(,)11k k A k k +++, 同理可得:2222222532(,)11k k B k k +-++, ………………12分 ∵OA OB k k =,∴122212221222122211355311k k k k k k k k -++=++++,即1212(1)(35)0k k k k ++=, ∵121k k ≠-,∴2135k k =-, ………………14分 设00(,)P x y ,∴010020(3)(5)y k x y k x =-⎧⎨=-⎩, ∴1201212012352k k x k k k k y k k -⎧=⎪-⎪⎨-⎪=⎪-⎩,∴12121212352(,)k k k k P k k k k ----,即1315(,)44kP ,∴1313141554k k k ==, ∴1213225k k k k +==,∴存在常数2a =,使得1232k k k +=恒成立. ………………16分 20. (1)解:由题意,1111(1)122n S S a n n a n +=+-⋅=, ∴1(1)2n n n S a +=, 当2n ≥时,1111(1)(1)22n n n n n n n a S S a a na -+-=-=-=,当1n =时,上式也成立,∴1n a na =,*n N ∈, ∵10a > ∴6121632a a a a ==. ………………3分 (2)(ⅰ)由题意:1(1)2n n n n b b ++-=,当N*k ∈时,4342432k k k b b ----=,4241422k k k b b ---+=,414412k k k b b ---=, ∴4243434341222k k k k k b b -----+=-=,4142424242232k k k k k b b ----+=+=⋅,∴43434241472k k k k k b b b b ----+++=⨯, ………………6分 ∴前4k 项的和4123456784342414()()()k k k k k T b b b b b b b b b b b b ---=++++++++++++154314(161)72727215k k --=⨯+⨯++⨯=. ………………8分 (ⅱ)证明:由题意得:1112(2)na a n n n b b ++==,令12a t =,(1,)t ∈+∞, ∴11()(1)(1)n n nn nb b t ++-=----, ∴112211112211()()()(1)(1)(1)(1)(1)(1)(1)(1)n n n n n n n n n n b b b b b b b b ------=-+-++-+-------- 12111()[()()()]()11nn t t t t t b b t t--=--+-++--=-+-+ ,∴1()(1)11n nn t t b b t t=--+++, ………………11分 ∵1n n b b +>,N*n ∈,∴11111()(1)()(1)1111n n n nn n t t t t b b b b t t t t +++-=--+----++++ 12()(1)(1)011n nt t b t t t=---+->++,∴1(1)()(1)12(1)n nt t t b t t --->++,N*n ∈, ①当n 为偶数时,1(1)2(1)1n t t tb t t->+++,∵(1,)t ∈+∞,2(1)(1)(2)2(1)12(1)12n t t t t t t t t t t t t ---+≤+=++++,∴1(2)2t t b ->, ………………13分 ②当n 为奇数时,1(1)2(1)1n t t tb t t-<+++,∵(1,)t ∈+∞,1(1)(1)2(1)12(1)12n t t t t t t tt t t t --+≥+=++++, ∴12tb <, ………………15分高一数学试题 第 11 页 共 11 页 综上:1(2)22t t t b -<<,即1112111222a a a b ---<<. ………………16分。
河南省郑州市高一数学下学期期末考试试卷(含解析)
2014-2015学年河南省郑州市高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.与角﹣终边相同的一个角是( )A.B.C.D.2.平面向量=(1,﹣2),=(﹣2,x),若∥,则x等于( )A.4B.﹣4C.﹣1D.23.半径为1m的圆中,60°的圆心角所对的弧的长度为( )m.A.B.C.60D.14.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A.80B.40C.60D.205.若P(A)+P(B)=1,则事件A与B的关系是( )A.A与B是互斥事件B.A与B是对立事件C.A与B不是互斥事件D.以上都不对6.在某次测量中,得到的A样本数据为81,82,82,84,84,85,86,86,86,若B样本数据恰好是A样本数据分别加2后所得的数据,则A、B两个样本的下列数字特征对应相同的是( )A.众数B.平均数C.标准差D.中位数7.已知向量=(0,2),b=(1,),则向量在上的投影为( )A.3B.C.﹣D.﹣38.阅读如图所示的程序框图,运行相应的程序,若输入x的值为﹣5,则输出的y值是( )A.﹣1B.1C.2D.9.如图,在5个并排的正方形图案中作∠AO n B(n=1,2,3,4,5,6),则这6个角中恰为135°的有( )个.A.0B.1C.2D.410.已知实数x,y满足0≤x≤2π,|y|≤1则任意取期中的x,y使y>cosx的概率为( ) A.B.C.D.无法确定11.已知cos(α﹣β)=,sinβ=﹣,且α∈(0,),β∈(﹣,0),则sinα=( ) A.B.C.﹣D.﹣12.如图,a∈(0,π),且a≠,当∠xOy=e时,定义平面坐标系xOy为a仿射坐标系,在α﹣仿射坐标系中,任意一点P的斜坐标这样定义:、分别为与x轴、y轴正向相同的单位向量,若=x+y,则记为=(x,y),若在仿射坐标系中,已知=(m,n),=(s,t),下列结论中不正确的是( )A.若=,则m=s,n=tB.若,则mt﹣ns=0C.若⊥,则ms+nt=0D.若m=t=1,n=s=2,且与的夹角,则a=二、填空题(本大题共4小题,每小题5分,共20分)13.若sinα<0,且tanα>0,则α是第__________象限角.14.102,238的最大公约数是__________.15.将八进制数123(8)化为十进制数,结果为__________.16.sin1,sin2,sin3,sin4的大小顺序是__________.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程及演算步骤)17.某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:单位x(元)8 8.2 8.4 8.6 8.8 9销量y(件)90 84 83 80 75 68(Ⅰ)按照上述数据,求四归直线方程=bx+a,其中b=﹣20,a=﹣b;(Ⅱ)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入﹣成本)18.已知函数f(x)=sin(ωx﹣)(ω>0,x∈R)的最小正周期为π.(Ⅰ)求f();(Ⅱ)在给定的平面直角坐标系中,画出函数y=f(x)在区间[﹣,]上的图象.19.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.20.如图,在平面内将四块直角三角板接在一起,已知∠ABC=45°,∠BCD=60°,记=,=.(Ⅰ)试用,表示向量;(Ⅱ)若||=1,求.21.已知函数f(x)=2cos2x+2sinxcosx+2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)先将函数y=f(x)的图象上的点纵坐标不变,恒坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=t在区间[0,]上所有根之和.22.某休闲农庄有一块长方形鱼塘ABCD,AB=100米,BC=50米,为了便于游客休闲散步,该农庄决定在鱼塘内建3条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上(不含顶点),且∠EOF=90°.(≈1.4,≈1.7)(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.2014-2015学年河南省郑州市高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.与角﹣终边相同的一个角是( )A.B.C.D.考点:终边相同的角.专题:计算题;三角函数的求值.分析:与﹣终边相同的角为2kπ﹣,k∈z,选择适当k值,得到选项.解答:解:与角﹣终边相同的一个角是﹣+2π=.故选:D.点评:本题考查终边相同的角的定义和表示方法,得到与﹣终边相同的角为2kπ﹣,k∈z,是解题的关键.2.平面向量=(1,﹣2),=(﹣2,x),若∥,则x等于( )A.4B.﹣4C.﹣1D.2考点:平面向量的坐标运算;平行向量与共线向量.专题:计算题;平面向量及应用.分析:根据两向量平行的坐标表示,列出方程组,求出x的值即可.解答:解:∵平面向量=(1,﹣2),=(﹣2,x),且∥,∴1•x﹣(﹣2)•(﹣2)=0,解得x=4.故选:A.点评:本题考查了平面向量平行的坐标表示及其应用问题,是基础题目.3.半径为1m的圆中,60°的圆心角所对的弧的长度为( )m.A.B.C.60D.1考点:弧长公式.专题:计算题.分析:根据题意可以利用扇形弧长公式l扇形直接计算.解答:解:根据题意得出:60°=l扇形=1×=,半径为1,60°的圆心角所对弧的长度为.故选A.点评:此题主要考查了扇形弧长的计算,注意掌握扇形的弧长公式是解题关键.4.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A.80B.40C.60D.20考点:分层抽样方法.专题:概率与统计.分析:要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,根据一、二、三、四年级的学生比为4:3:2:1,利用三年级的所占的比例数除以所有比例数的和再乘以样本容量即得抽取三年级的学生人数.解答:解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4:3:2:1,∴三年级要抽取的学生是×200=40,故选:B.点评:本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.5.若P(A)+P(B)=1,则事件A与B的关系是( )A.A与B是互斥事件B.A与B是对立事件C.A与B不是互斥事件D.以上都不对考点:互斥事件与对立事件.专题:概率与统计.分析:通过理解互斥与对立事件的概念,核对四个选项即可得到正确答案.解答:解:若是在同一试验下,由P(A)+P(B)=1,说明事件A与事件B一定是对立事件,但若在不同试验下,虽然有P(A)+P(B)=1,但事件A和B也不见得对立,所以事件A与B的关系是不确定的.故选D.点评:本题考查了互斥事件与对立事件的概念,是基础的概念题.6.在某次测量中,得到的A样本数据为81,82,82,84, 84,85,86,86,86,若B样本数据恰好是A样本数据分别加2后所得的数据,则A、B两个样本的下列数字特征对应相同的是( )A.众数B.平均数C.标准差D.中位数考点:极差、方差与标准差.专题:概率与统计.分析:根据样本数据的众数和平均数以及中位数和方差的概念,即可得出正确的结论.解答:解:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数都加上2,只有标准差不会发生变化.故选:C.点评:本题考查了众数、平均数、中位数、标准差的定义与应用问题,是基础题目.7.已知向量=(0,2),b=(1,),则向量在上的投影为( )A.3B.C.﹣D.﹣3考点:平面向量数量积的运算.专题:平面向量及应用.分析:由两向量的坐标求出两向量夹角的余弦值,代入投影公式得答案.解答:解:由,,得cos=,∴向量在上的投影为.故选:A.点评:本题考查平面向量的数量积运算,考查了向量在向量方向上的投影的概念,是基础题.8.阅读如图所示的程序框图,运行相应的程序,若输入x的值为﹣5,则输出的y值是( )A.﹣1B.1C.2D.考点:程序框图.专题:图表型.分析:框图输入框中首先输入x的值为﹣5,然后判断|x|与3的大小,|x|>3,执行循环体,|x|>3不成立时跳出循环,执行运算y=,然后输出y的值.解答:解:输入x的值为﹣5,判断|﹣5|>3成立,执行x=|﹣5﹣3|=8;判断|8|>3成立,执行x=|8﹣3|=5;判断|5|>3成立,执行x=|5﹣3|=2;判断|2|>3不成立,执行y=.所以输出的y值是﹣1.故选A.点评:本题考查了程序框图中的循环结构,考查了当型循环,当型循环是先判断后执行,满足条件执行循环体,不满足条件时算法结束,此题是基础题.9.如图,在5个并排的正方形图案中作∠AO n B(n=1,2,3,4,5,6),则这6个角中恰为135°的有( )个.A.0B.1C.2D.4考点:计数原理的应用.专题:计算题;排列组合.分析:设O n(x,1),∠O n AB=θ,∠O n BA=φ,作出图形,利用两角和的正切可求得tan(θ+φ)====1,从而可得答案.解答:解:设O n(x,1),∠O n AB=θ,∠O n BA=φ,则tanθ=,tanφ=,∵∠AO n B=135°,∴θ+φ=,∴tan(θ+φ)====1解得:x=3或x=4,依题意,n=x,即n=3或n=4.故选:C.点评:本题考查两角和的正切,设O n(x,1),∠O n AB=θ,∠O n BA=φ,求得tan(θ+φ)====1是关键,考查转化思想与运算求解能力,属于中档题.10.已知实数x,y满足0≤x≤2π,|y|≤1则任意取期中的x,y使y>cosx的概率为( ) A.B.C.D.无法确定考点:几何概型.专题:概率与统计.分析:本题考查的知识点是几何概型的意义,关键是要找出满足:“0≤x≤2π,|y|≤1,且y>cosx”对应平面区域面积的大小,及0≤x≤2π,|y|≤1对应平面区域面积的大小,再将它们一块代入几何概型的计算公式解答.解答:解:0≤x≤2π,|y|≤1所对应的平面区域如下图中长方形所示,“0≤x≤2π,|y|≤1,且y>cosx”对应平面区域如下图中蓝色阴影所示:根据余弦曲线的对称性可知,蓝色部分的面积为长方形面积的一半,故满足“0≤x≤2π,|y|≤1,且y>cosx”的概率P==.故选A.点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=N(A)/N求解.11.已知cos(α﹣β)=,sinβ=﹣,且α∈(0,),β∈(﹣,0),则sinα=( ) A.B.C.﹣D.﹣考点:两角和与差的正弦函数;同角三角函数间的基本关系;两角和与差的余弦函数.专题:计算题.分析:由α和β的范围求出α﹣β的范围,然后由cos(α﹣β)及sinβ的值,分别利用同角三角函数间的基本关系求出sin(α﹣β)及cosβ的值,最后把所求式子中的角α变形为(α﹣β)+β,利用两角和与差的正弦函数公式化简后,将各自的值代入即可求出值.解答:解:∵α∈(0,),β∈(﹣,0),∴α﹣β∈(0,π),又cos(α﹣β)=,sinβ=﹣,∴sin(α﹣β)==,cosβ==,则sinα=sin[(α﹣β)+β]=sin(α﹣β)cosβ+cos(α﹣β)sinβ=×+×(﹣)=.故选A点评:此题考查了两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键,同时注意角度的范围.12.如图,a∈(0,π),且a≠,当∠xOy=e时,定义平面坐标系xOy为a仿射坐标系,在α﹣仿射坐标系中,任意一点P的斜坐标这样定义:、分别为与x轴、y轴正向相同的单位向量,若=x+y,则记为=(x,y),若在仿射坐标系中,已知=(m,n),=(s,t),下列结论中不正确的是( )A.若=,则m=s,n=tB.若,则mt﹣ns=0C.若⊥,则ms+nt=0D.若m=t=1,n=s=2,且与的夹角,则a=考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:根据在仿射坐标系中斜坐标的定义,便可得到,然后由平面向量基本定理及共线向量基本定理,以及向量垂直的充要条件,向量夹角的余弦公式即可判断每项结论的正误.解答:解:根据斜坐标的定义,;∴;A.若,根据平面向量基本定理得:m=s,n=t,∴该结论正确;B.若∥,则存在实数k,使,;∴;∴;∴mt﹣ns=0;∴该结论正确;C.若,则:=;;∴ms+nt≠0;∴该结论错误;D.若m=t=1,n=s=2,,的夹角为,则:;,,;∴;解得;∴;∴该结论正确.故选:C.点评:考查对仿射坐标系的理解,及对定义的斜坐标的理解,以及平面向量基本定理、共面向量基本定理,向量垂直的充要条件,向量夹角的余弦公式.二、填空题(本大题共4小题,每小题5分,共20分)13.若sinα<0,且tanα>0,则α是第三象限角.考点:象限角、轴线角.专题:计算题.分析:由于sinα<0,故α可能是第三或第四象限角;由于tanα>0,故α可能是第一或第三象限角;故当sinα<0且tanα>0时,α是第三象限角.解答:解:由于sinα<0,故α可能是第三或第四象限角;由于tanα>0,故α可能是第一或第三象限角.由于sinα<0 且tanα>0,故α是第三象限角,故答案为:三.点评:本题考查象限角的定义,三角函数在各个象限中的符号,得到sinα<0时,α是第三或第四象限角;tanα>0时,α是第一或第三象限角,是解题的关键.14.102,238的最大公约数是34.考点:辗转相除法.专题:计算题.分析:利用“辗转相除法”即可得出.解答:解:∵238=102×2+34,102=34×3.故答案为:34.点评:本题考查了“辗转相除法”,属于基础题.15.将八进制数123(8)化为十进制数,结果为83.考点:进位制.专题:计算题;算法和程序框图.分析:利用累加权重法,即可将四进制数转化为十进制,从而得解.解答:解:由题意,123(4)=1×82+2×81+3×80=83,故答案为:83.点评:本题考查四进制与十进制之间的转化,熟练掌握四进制与十进制之间的转化法则是解题的关键,属于基本知识的考查.16.sin1,sin2,sin3,sin4的大小顺序是sin2>sin1>sin3>sin4.考点:正弦函数的图象.专题:函数的性质及应用.分析:根据正弦函数的图象和性质结合三角函数的诱导公式和函数的单调性即可得到结论.解答:解:∵1是第一象限,2,3是第二象限,4是第三象限,∴sin4<0,sin2>sin3>0,∵sin1=sin(π﹣1),且2<π﹣1<3,∴sin2>sin(π﹣1)>sin3,即sin2>sin1>sin3>sin4,故答案为:sin2>sin1>sin3>sin4点评:本题主要考查三角函数值的大小比较,根据三角函数的诱导公式以及正弦函数的单调性是解决本题的关键.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程及演算步骤)17.某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:单位x(元)8 8.2 8.4 8.6 8.8 9销量y(件)90 84 83 80 75 68 (Ⅰ)按照上述数据,求四归直线方程=bx+a,其中b=﹣20,a=﹣b;(Ⅱ)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入﹣成本)考点:线性回归方程;二次函数的性质.专题:概率与统计.分析:(I)计算平均数,利用b=﹣20,a=﹣b即可求得回归直线方程;(II)设工厂获得的利润为W元,利用利润=销售收入﹣成本,建立函数,利用配方法可求工厂获得的利润最大解答:解:(I)由于=(x1+x2+x3+x4+x5+x6)=8.5,=(y1+y2+y3+y4+y5+y6)=80.…所以a=﹣b=80+20×8.5=250,从而回归直线方程为=﹣20x+250.…(II)设商场获得的利润为W元,依题意得W=x(﹣20x+250)﹣7.5(﹣20x+250)=﹣20x2+400x﹣1875…当且仅当x=10时,W取得最大值.故当单价定为10元时,商场可获得最大利润.…点评:本题主要考查回归分析,考查二次函数,考查运算能力、应用意识,属于中档题.18.已知函数f(x)=sin(ωx﹣)(ω>0,x∈R)的最小正周期为π.(Ⅰ)求f();(Ⅱ)在给定的平面直角坐标系中,画出函数y=f(x)在区间[﹣,]上的图象.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:(1)根据T=,求出周期,得到函数的解析式,代入值计算即可;(2)利用五点作图法作图即可.解答:解:(1)依题意得,T==π,解得ω=2,所以f(x)=sin(2x﹣),所以 f(π)=sin(2×﹣)=sin(π+)=﹣sin=﹣,(2)画出函数在区间上的图象如图所示:点评:本题考查了三角函数的周期性质,以及三角函数值的求法和函数图象的做法,属于基础题.19.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.考点:用样本的频率分布估计总体分布;频率分布直方图;古典概型及其概率计算公式.专题:计算题.分析:(1)利用频率分布直方图中的频率等于纵坐标乘以组距求出绩大于或等于14秒且小于16秒的频率;利用频数等于频率乘以样本容量求出该班在这次百米测试中成绩良好的人数.(2)按照(1)的方法求出成绩在[13,14)及在[17,18]的人数;通过列举得到m,n都在[13,14)间或都在[17,18]间或一个在[13,14)间一个在[17,18]间的方法数,三种情况的和为总基本事件的个数;分布在两段的情况数是事件“|m﹣n|>1”包含的基本事件数;利用古典概型的概率公式求出事件“|m﹣n|>1”的概率.解答:解:(1)由直方图知,成绩在[14,16)内的人数为:50×0.16+50×0.38=27(人),所以该班成绩良好的人数为27人、(2)由直方图知,成绩在[13,14)的人数为50×0.06=3人,设为为x,y,z;成绩在[17,18]的人数为50×0.08=4人,设为A、B、C、D.若m,n∈[13,14)时,有xy,xz,yz共3种情况;若m,n∈[17,18]时,有AB,AC,AD,BC,BD,CD,共6种情况;若m,n分别在[13,14)和[17,18]内时,A B C Dx xA xB xC xDy yA yB yC yDz zA zB zC zD有12种情况、所以,基本事件总数为3+6+12=21种,事件“|m﹣n|>1”所包含的基本事件个数有12种、∴点评:本题考查频率分布直方图中的频率等于纵坐标乘以组距、考查频数等于频率乘以样本容量、考查列举法求完成事件的方法数、考查古典概型的概率公式.20.如图,在平面内将四块直角三角板接在一起,已知∠ABC=45°,∠BCD=60°,记=,=.(Ⅰ)试用,表示向量;(Ⅱ)若||=1,求.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(Ⅰ)利用向量的三角形法则、共线定理即可得出;(Ⅱ)利用数量积的定义及其运算性质即可得出.解答:解:(Ⅰ),由题意可知,AC∥BD,BD=BC=.∴,则=,=;(Ⅱ)∵||=1,∴,,则==.点评:本题考查了向量共线定理、数量积运算及其性质,属于中档题.21.已知函数f(x)=2cos2x+2sinxcosx+2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)先将函数y=f(x)的图象上的点纵坐标不变,恒坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=t在区间[0,]上所有根之和.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(Ⅰ)利用倍角公式、和差公式及其三角函数的单调性即可得出;(Ⅱ)由图象变换可得到函数g(x)=,由,可得≤≤,由g(x)=0,可得=0,π,2π,3π.即可得出.解答:解:(Ⅰ)函数f(x)=2cos2x+2sinxcosx+2=cos2x+sin2x+3=+3.由≤,解得≤x≤kπ+(k∈Z).∴f(x)的单调递增区间为(k∈Z).(Ⅱ)由题意,将图象上的点纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位,可得到函数g(x)=,由,可得≤≤,由g(x)=0,可得=0,π,2π,3π.∴方程g(x)=t在区间[0,]上所有根之和==.点评:本题考查了三角函数的图象与性质、图象变换、函数的零点,考查了数形结合方法、计算能力,属于中档题.22.某休闲农庄有一块长方形鱼塘ABCD,AB=100米,BC=50米,为了便于游客休闲散步,该农庄决定在鱼塘内建3条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上(不含顶点),且∠EOF=90°.(≈1.4,≈1.7)(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.考点:根据实际问题选择函数类型;函数解析式的求解及常用方法.专题:函数的性质及应用.分析:(1)要将△OEF的周长l表示成α的函数关系式,需把△OEF的三边分别用含有α的关系式来表示,而OE,OF,分别可以在Rt△OBE,Rt△OAF中求解,利用勾股定理可求EF,从而可求.(2)铺路总费用最低,只要求△OEF的周长l的最小值即可.由(1)得l=,α∈[],利用换元,设sinα+cosα=t,则sinαcosα=,从而转化为求函数在闭区间上的最小值.解答:解:(1)∵在Rt△BO E中,OB=25,∠B=90°,∠BOE=α,∴OE=在Rt△AOF中,OA=25,∠A=90°,∠AFO=α,∴OF=.又∠EOF=90°,∴EF==,∴l=OE+OF+EF=.当点F在点D时,这时角α最小,此时α=;当点E在C点时,这时角α最大,求得此时α=.故此函数的定义域为[];(2)由题意知,要求铺路总费用最低,只要求△OEF的周长l的最小值即可.由(1)得,l=,α∈[],设sinα+cosα=t,则sinαcosα=,∴l==由t=sinα+cosα=sin(α+),又≤α+≤,得≥t≤,∴≤t﹣1≤﹣1,从而当α=,即BE=25时,l min=50(+1),所以当BE=AF=25米时,铺路总费用最低,最低总费用为200000(+1)元.点评:本题主要考查了借助于三角函数解三角形在实际问题中的应用,考查了利用数学知识解决实际问题的能力,及推理运算的能力.。
河南省高一数学下学期期末试卷(含解析)
2015-2016学年河南省北大附中分校宇华教育集团高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知命题P:∀x∈R,x>sinx,则P的否定形式为()A.¬P:∃x∈R,x≤sinxB.¬P:∀x∈R,x≤sinxC.¬P:∃x∈R,x<sinxD.¬P:∀x∈R,x<sinx2.等差数列{a n}的前n项和为S n,若a2+a6+a7=18,则S9的值为()A.64B.72C.54D.843.设函数f(x)=x m+ax的导函数f′(x)=2x+1,则数列{}(n∈N*)的前n项和是()A. B. C. D.4.由曲线y=x2,y=x3围成的封闭图形面积为()A. B. C. D.5.在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A. B. C. D.6.已知实数对(x,y)满足,则2x+y取最小值时的最优解是()A.6B.3C.(2,2)D.(1,1)7.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则+()等于()A. B. C. D.8.已知点M(,0),椭圆+y2=1与直线y=k(x+)交于点A、B,则△ABM的周长为()A.4B.8C.12D.169.对于函数f(x),在使f(x)≤M恒成立的所有常数M中,我们把M中的最小值称为函数f(x)的“上确界”.已知函数f(x)=+a(x∈[﹣2,2])是奇函数,则f(x)的上确界为()A.2B. C.1D.10.在数列{a n}中a n≠0,a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,则a1,a3,a5()A.是等差数列B.是等比数列C.三个数的倒数成等差数列D.三个数的平方成等差数列11.已知F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为()A. B. C. D.212.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B. C. D.二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题5分,共20分).13.已知t>0,则函数的最小值为.14.若A、B是锐角△ABC的两个内角,则点P(cosB﹣sinA,sinB﹣cosA)在第象限.15.设{a n}是正项等比数列,令S n=lga1+lga2+…+lga n,n∈N*,若存在互异的正整数m,n,使得S m=S n,则S m+n= .16.已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.已知命题p:x+2≥0且x﹣10≤0,命题q:1﹣m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,求实数m的取值范围.18.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(Ⅰ)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.19.如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD,(1)求异面直线BF与DE所成的角的大小;(2)证明平面AMD⊥平面CDE;(3)求二面角A﹣CD﹣E的余弦值.20.数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.21.已知双曲线﹣=1(a>0,b>0)的离心率e=,直线l过A(a,0),B(0,﹣b)两点,原点O到直线l的距离是.(1)求双曲线的方程;(2)过点B作直线m交双曲线于M、N两点,若•=﹣23,求直线m的方程.22.设函数的极值点.(I)若函数f(x)在x=2的切线平行于3x﹣4y+4=0,求函数f(x)的解析式;(II)若f(x)=0恰有两解,求实数c的取值范围.2015-2016学年河南省北大附中分校宇华教育集团高一(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知命题P:∀x∈R,x>sinx,则P的否定形式为()A.¬P:∃x∈R,x≤sinxB.¬P:∀x∈R,x≤sinxC.¬P:∃x∈R,x<sinxD.¬P:∀x∈R,x<sinx【考点】命题的否定.【分析】根据命题P:∀x∈R,x>sinx为全称命题,其否定形式为特称命题,由“任意的”否定为“存在”,“>“的否定为“≤”可得答案.【解答】解:∵命题P:∀x∈R,x>sinx为全称命题,∴命题P的否定形式为:∃x∈R,x≤sinx故选A.2.等差数列{a n}的前n项和为S n,若a2+a6+a7=18,则S9的值为()A.64B.72C.54D.84【考点】等差数列的性质.【分析】把所有的量用等差数列中的基本量a1和d表示,再利用求和公式和性质求S9的值即可.【解答】解:设等差数列{a n}的公差为d,由题意得,a2+a6+a7=18,则3a1+12d=18,即a1+4d=6,即a5=6,所以S9==9a5=54,故选:C.3.设函数f(x)=x m+ax的导函数f′(x)=2x+1,则数列{}(n∈N*)的前n项和是()A. B. C. D.【考点】数列的求和;导数的运算.【分析】函数f(x)=x m+ax的导函数f′(x)=2x+1,先求原函数的导数,两个导数进行比较即可求出m,a,然后利用裂项法求出的前n项和,即可.【解答】解:f′(x)=mx m﹣1+a=2x+1,∴a=1,m=2,∴f(x)=x(x+1),==﹣,用裂项法求和得S n=.故选A4.由曲线y=x2,y=x3围成的封闭图形面积为()A. B. C. D.【考点】定积分在求面积中的应用.【分析】要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx即可.【解答】解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)dx═,故选A.5.在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A. B. C. D.【考点】余弦定理.【分析】通过余弦定理求出cosC的表达式,利用基本不等式求出cosC的最小值.【解答】解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选C.6.已知实数对(x,y)满足,则2x+y取最小值时的最优解是()A.6B.3C.(2,2)D.(1,1)【考点】简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y中,z表示直线在y轴上的截距,要求z的最小,则只要可行域直线在y轴上的截距最小即可.【解答】解:作出不等式组所表示的平面区域,如图所示由z=2x+y可得y=﹣2x+z,则z为直线在y轴上的截距,截距越小,z越小结合图象可知,当直线经过A(1,1)时,截距最小,z最小,则2x+y取最小值时的最优解是为(1,1).故选D.7.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则+()等于()A. B. C. D.【考点】向量的加法及其几何意义.【分析】由向量加法的平行四边形法则可知G是CD的中点,所以可得=(),从而可以计算化简计算得出结果.【解答】解:如图所示:因为G是CD的中点,所以()=,从而+()=+=.故选A.8.已知点M(,0),椭圆+y2=1与直线y=k(x+)交于点A、B,则△ABM的周长为()A.4B.8C.12D.16【考点】直线与圆锥曲线的关系.【分析】直线过定点,由椭圆定义可得 AN+AM=2a=4,BM+BN=2a=4,由△ABM的周长为AB+BM+AM=(AN+AM)+(BN+BM),求出结果.【解答】解:直线过定点,由题设知M、N是椭圆的焦点,由椭圆定义知:AN+AM=2a=4,BM+BN=2a=4.△ABM的周长为AB+BM+AM=(AN+BN)+BM+AM=(AN+AM)+(BN+BM)=8,故选:B.9.对于函数f(x),在使f(x)≤M恒成立的所有常数M中,我们把M中的最小值称为函数f(x)的“上确界”.已知函数f(x)=+a(x∈[﹣2,2])是奇函数,则f(x)的上确界为()A.2B. C.1D.【考点】函数恒成立问题;奇函数.【分析】首先根据函数是奇函数求出a=﹣1,然后将函数化成f(x)=,再根据均值不等式求出函数的最小值,即可得出答案.【解答】解:∵函数f(x)=+a(x∈[﹣2,2])是奇函数∴f(0)=0∴a=﹣1f(x)=﹣1=∵x+≥2∴f(x)=﹣1=≤1∴f(x)的上确界为1故选C.10.在数列{a n}中a n≠0,a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,则a1,a3,a5()A.是等差数列B.是等比数列C.三个数的倒数成等差数列D.三个数的平方成等差数列【考点】等比关系的确定.【分析】根据a1,a2,a3成等差数列可得a2=,根据a3,a4,a5的倒数成等差数列可知a4=,根据a2,a3,a4成等比数列可知a32=a2•a4,把刚才求得的a2和a4代入此等式化简可得a32=a1•a5,根据等比数列的等比中项的性质可判断a1,a3,a5成等比数列【解答】解:依题意,2a2=a1+a3①a32=a2•a4②③由①得a2=④,由③得a4=⑤将④⑤代入②化简得a32=a1•a5,故选B.11.已知F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为()A. B. C. D.2【考点】双曲线的简单性质.【分析】先设F1F2=2c,由题意知△F1F2P是直角三角形,进而在RT△PF1F2中结合双曲线的定义和△PF1F2的面积,进而根据双曲线的简单性质求得a,c之间的关系,则双曲线的离心率可得.【解答】解:设F1F2=2c,由题意知△F1F2P是直角三角形,∴F1P2+F2P2=F1F22,又根据曲线的定义得:F1P﹣F2P=2a,平方得:F1P2+F2P2﹣2F1P×F2P=4a2从而得出F1F22﹣2F1P×F2P=4a2∴F1P×F2P=2(c2﹣a2)又当△PF1F2的面积等于a2即F1P×F2P=a22(c2﹣a2)=a2∴c=a,∴双曲线的离心率e==.故选A.12.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B. C. D.【考点】导数在最大值、最小值问题中的应用.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题5分,共20分).13.已知t>0,则函数的最小值为﹣2 .【考点】基本不等式在最值问题中的应用.【分析】将函数变为﹣4,用基本不等式求解即可.【解答】解:,当且仅当t=1时等号成立,故y min=﹣2.14.若A、B是锐角△ABC的两个内角,则点P(cosB﹣sinA,sinB﹣cosA)在第二象限.【考点】象限角、轴线角.【分析】由题意知A、B、C是锐角,推出A、B的关系,分别求它的正弦和余弦,即可得到结果.【解答】解:在锐角三角形ABC中,有A<90°,B<90°,C<90°,又因为A+B+C=180°所以有A+B>90°,所以有A>90°﹣B.又因为Y=cosx在0°<x<90°上单调减即cosx的值随x的增加而减少,所以有cosA<cos(90°﹣B)=sinB,即cosA<sinB,sinB﹣cosA>0同理B>90°﹣A,则cosB<cos(90°﹣A)=sinA,所以cosB﹣sinA<0故答案为:二.15.设{a n}是正项等比数列,令S n=lga1+lga2+…+lga n,n∈N*,若存在互异的正整数m,n,使得S m=S n,则S m+n= 0 .【考点】等比数列的性质;等比数列的前n项和.【分析】根据{a n}是正项等比数列,推断出lga n+1﹣lga n结果为常数,判断出数列{lga n}为等差数列,进而用等差数列求和公式分别表示出S m和S n,根据S m﹣S n=0求得lga1+)=0代入S m+n求得答案.【解答】解:∵{a n}是正项等比数列,设公比为q,∴lga n+1﹣lga n=lgq∴数列{lga n}为等差数列,设公差为d则S m=mlga1+,S n=nlga1+∵S m=S n,∴S m﹣S n=mlga1+﹣nlga1﹣=(m﹣n)(lga1+)=0∵m≠n∴lga1+)=0∴S m+n=(m+n)lga1+=(m+n)(lga1+)=0故答案为0.16.已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为\frac{8}{3} .【考点】抛物线的简单性质;点到直线的距离公式;抛物线的定义.【分析】设BF=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.【解答】解:设BF=m,由抛物线的定义知AA1=3m,BB1=m∴△ABC中,AC=2m,AB=4m,直线AB方程为与抛物线方程联立消y得3x2﹣10x+3=0所以AB中点到准线距离为故答案为三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.已知命题p:x+2≥0且x﹣10≤0,命题q:1﹣m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】先解出¬p,¬q,然后根据¬p是¬q的必要不充分条件,即可得到限制m的不等式,解不等式即可得m的取值范围.【解答】解:命题p:﹣2≤x≤10,命题q:1﹣m≤x≤1+m,m>0;∴¬p:x<﹣2,或x>10;¬q:x<1﹣m,或x>1+m,m>0;¬p是¬q的必要不充分条件,就是由¬q能得到¬p,而¬p得不到¬q;∴集合{x|x<﹣2,或>10}真包含集合{x|x<1﹣m,或x>1+m,m>0};∴1﹣m≤﹣2,且1+m≥10,且两等号不能同时取;∴解得:m≥9,即实数m的取值范围为[9,+∞).18.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(Ⅰ)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.【考点】正弦定理;三角函数中的恒等变换应用;余弦定理.【分析】(1)注意角的范围,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出边长c,由二倍角公式求cosC,用余弦定理解方程求边长b.【解答】解:(Ⅰ)解:因为cos2C=1﹣2sin2C=,及0<C<π所以 sinC=.(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理=,解得c=4.由cos2C=2cos2C﹣1=,及0<C<π 得cosC=±.由余弦定理 c2=a2+b2﹣2abcosC,得b2±b﹣12=0,解得b=或b=2.所以b=或b=2,c=4.19.如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD,(1)求异面直线BF与DE所成的角的大小;(2)证明平面AMD⊥平面CDE;(3)求二面角A﹣CD﹣E的余弦值.【考点】异面直线及其所成的角;平面与平面垂直的判定;与二面角有关的立体几何综合题.【分析】(1)先将BF平移到CE,则∠CED(或其补角)为异面直线BF与DE所成的角,在三角形CED中求出此角即可;(2)欲证平面AMD⊥平面CDE,即证CE⊥平面AMD,根据线面垂直的判定定理可知只需证CE与平面AMD内两相交直线垂直即可,易证DM⊥CE,MP⊥CE;(3)设Q为CD的中点,连接PQ,EQ,易证∠EQP为二面角A﹣CD﹣E的平面角,在直角三角形EQP中求出此角即可.【解答】(1)解:由题设知,BF∥CE,所以∠CED(或其补角)为异面直线BF与DE所成的角.设P为AD的中点,连接EP,PC.因为FE=∥AP,所以FA=∥EP,同理AB=∥PC.又FA⊥平面ABCD,所以EP⊥平面ABCD.而PC,AD都在平面ABCD内,故EP⊥PC,EP⊥AD.由AB⊥AD,可得PC⊥AD设FA=a,则EP=PC=PD=a,CD=DE=EC=,故∠CED=60°.所以异面直线BF与DE所成的角的大小为60°(2)证明:因为DC=DE且M为CE的中点,所以DM⊥CE.连接MP,则MP⊥CE.又MP∩DM=M,故CE⊥平面AMD.而CE⊂平面CDE,所以平面AMD⊥平面CDE.(3)解:设Q为CD的中点,连接PQ,EQ.因为CE=DE,所以EQ⊥CD.因为PC=PD,所以PQ⊥CD,故∠EQP为二面角A﹣CD﹣E的平面角.可得,.20.数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【分析】(I)由已知中(n∈N+),我们易变形得:,即,进而根据等差数列的定义,即可得到结论;(II)由(I)的结论,我们可以先求出数列的通项公式,进一步得到数列{a n}的通项公式a n;(Ⅲ)由(II)中数列{a n}的通项公式,及b n=n(n+1)a n,我们易得到数列{b n}的通项公式,由于其通项公式由一个等差数列与一个等比数列相乘得到,故利用错位相消法,即可求出数列{b n}的前n项和S n.【解答】解:(Ⅰ)证明:由已知可得,即,即∴数列是公差为1的等差数列(Ⅱ)由(Ⅰ)知,∴(Ⅲ)由(Ⅱ)知b n=n•2nS n=1•2+2•22+3•23++n•2n2S n=1•22+2•23+…+(n﹣1)•2n+n•2n+1相减得: =2n+1﹣2﹣n•2n+1∴S n=(n﹣1)•2n+1+221.已知双曲线﹣=1(a>0,b>0)的离心率e=,直线l过A(a,0),B(0,﹣b)两点,原点O到直线l的距离是.(1)求双曲线的方程;(2)过点B作直线m交双曲线于M、N两点,若•=﹣23,求直线m的方程.【考点】双曲线的简单性质.【分析】(1)先求出直线l的方程,再点到直线的距离公式建立关于a,b,c的方程,解这个方程求出a,b,从而得到双曲线的方程.(2)设m方程为y=kx﹣1,则点M、N坐标(x1,y1),(x2,y2)是方程组的解,消去y,得(1﹣3k2)x2+6kx﹣6=0.由根与系数关系和题设条件推导出k的值,从而求出直线m的方程.【解答】解:(1)依题意,l方程+=1,即bx﹣ay﹣ab=0,由原点O到l的距离为,得=,又e==,∴b=1,a=.故所求双曲线方程为﹣y2=1.(2)显然直线m不与x轴垂直,设m方程为y=kx﹣1,则点M、N坐标(x1,y1),(x2,y2)是方程组的解,消去y,得(1﹣3k2)x2+6kx﹣6=0.①依题意,1﹣3k2≠0,由根与系数关系,知x1+x2=,x1x2=•=(x1,y1)•(x2,y2)=x1x2+y1y2=x1x2+(kx1﹣1)(kx2﹣1)=(1+k2)x1x2﹣k(x1+x2)+1=﹣+1=+1.又∵•=﹣23,∴+1=﹣23,k=±,当k=±时,方程①有两个不相等的实数根,∴方程为y=x﹣1或y=﹣x﹣1.22.设函数的极值点.(I)若函数f(x)在x=2的切线平行于3x﹣4y+4=0,求函数f(x)的解析式;(II)若f(x)=0恰有两解,求实数c的取值范围.【考点】利用导数研究曲线上某点切线方程;根的存在性及根的个数判断.【分析】(I)求导函数,利用x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x﹣4y+4=0,可得f′(1)=0,f′(2)=,从而可求函数f(x)的解析式;(II)(x>0),分类讨论:①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0;②若0<c<1,则f极大(x)=clnc,f极小(x)=;③若c≥1,则f极小(x)=clnc,f极大(x)=,由此可确定实数c的取值范围.【解答】解:(I)求导函数,可得∵x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x﹣4y+4=0,∴f′(1)=0,f′(2)=∴∴b=﹣,c=∴函数f(x)的解析式为;(II)(x>0)①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0,即∴②若0<c<1,则f极大(x)=f(c)=clnc+,f极小(x)=f(1)=∵b=﹣1﹣c,∴f极大(x)=clnc,f极小(x)=∴f(x)=0不可能有两解③若c≥1,则f极小(x)=clnc,f极大(x)=,∴f(x)=0只有一解综上可知,实数c的取值范围为.。
河南省郑州市_学年高一数学下学期期末试卷(含解析)【含答案】
2015-2016学年河南省郑州市高一(下)期末数学试卷一、选择题本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.sin780°等于()A.﹣B. C. D.﹣2.某商场想通过检查发票存根及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票存根上的销售额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数法C.系统抽样法D.其他方式的抽样3.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为()A. B.2C.2D.24.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m甲,m乙,则()A.,m甲>m乙B.,m甲<m乙C.,m甲>m乙D.,m甲<m乙5.把函数y=sinx(x∈R)图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把图象上所有的点向左平行移动个单位长度,得到的图象所表示的函数是()A.y=sin(2x﹣)(x∈R)B.y=sin()(x∈R)C.y=sin(2x+)(x∈R)D.y=sin(2x+)(x∈R)6.执行如图所示的程序框图,若输入x的值为2,则输出的x值为()A.25B.24C.23D.227.函数的一个递减区间为()A. B. C. D.8.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式()A.y=﹣4sin(x﹣)B.y=4sin(x﹣)C.y=﹣4sin(x+)D.y=4sin(x+)9.已知tan(α+β)=,tan(β﹣)=,那么tan(α+)等于()A. B. C. D.10.在直角△A BC中,∠BCA=90°,CA=CB=1,P为AB边上的点且=λ,若•≥•,则λ的取值范围是()A.[,1]B.[,1]C.[,]D.[,]11.已知A为△ABC的最小内角,若向量=(cos2A,sin2A),=(,),则的取值范围是()A.(﹣∞,)B.(﹣1,)C.[﹣,)D.[﹣,+∞)12.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则•的最小值是()A.﹣B.﹣C.﹣D.﹣1二、填空题(本大题共2小题,每小题5分,共20分,将答案填在答题卡上的相应位置)13.已知,均为单位向量,<,>=60°,那么|+3|= .14.如图所示,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内概率是.15.求函数f(x)=sinx+cosx+sinxcosx的值域.16.f(x)=3sin(﹣x+),若实数m满足f()>f(),则m的取值范围是.三、解答题:本大题共6小题,共70分。
河南省郑州市2015-2016学年高二(下)期末数学试卷(文科)(解析版)
2015-2016学年河南省郑州市高二下期末数学试卷(文)参考答案与试题解析一.选择题(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项,只有一项是符合题目要求的)1.复数4﹣3i虚部为()A.﹣3i B.﹣3 C.3i D.3【考点】复数的基本概念.【分析】根据复数的概念进行求解即可.【解答】解:在复数4﹣3i中实部是4,虚部是﹣3,故选:B2.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【考点】反证法与放缩法.【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是方程x2+ax+b=0没有实根.故选:A.3.下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③ B.②①③ C.②③① D.③②①【考点】演绎推理的基本方法.【分析】根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.【解答】解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cosx((x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R )是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B4.在下列各图中,两个变量具有较强正相关关系的散点图是()A. B.C.D.【考点】散点图.【分析】观察两个变量的散点图,样本点成直线形带状分布,则两个变量具有相关关系,若带状从左向右上升,是正相关,下降是负相关,由此得出正确的选项.【解答】解:A中两个变量之间是函数关系,不是相关关系;在两个变量的散点图中,若样本点成直线形带状分布,则两个变量具有相关关系,对照图形:B中样本点成直线形带状分布,且从左到右是上升的,∴是正相关关系;C中样本点成直线形带状分布,且从左到右是下降的,∴是负相关关系;D中样本点不成直线形带状分布,相关关系不明显.故选:B.[选修4-4:坐标系与参数方程]6.极坐标方程2ρcos2θ﹣sinθ=0表示的曲线是()A.双曲线B.椭圆 C.圆D.抛物线【考点】简单曲线的极坐标方程.【分析】极坐标方程2ρcos2θ﹣sinθ=0即2ρ2cos2θ﹣ρsinθ=0,利用即可化为直角坐标方程.【解答】解:极坐标方程2ρcos2θ﹣sinθ=0即2ρ2cos2θ﹣ρsinθ=0,化为直角坐标方程:2x2﹣y=0,化为:y=2x2,表示抛物线.故选:D.[选修4-5:不等式选讲]7.不等式>1的解集是()A.(﹣∞,﹣1)B.(﹣4,+∞)C.(﹣4,2)D.(﹣4,﹣1)【考点】其他不等式的解法.【分析】先移项化简分式不等式,再转化为一元二次不等式,求出不等式的解集.【解答】解:由得,则,所以(x+4)(x+1)<0,解得﹣4<x<﹣1,∴不等式的解集是(﹣4,﹣1),故选:D.8.以下是解决数学问题的思维过程的流程图:在此流程图中,①②两条流程线与“推理与证明”中的思维方法匹配正确的是()A.①﹣综合法,②﹣分析法B.①﹣分析法,②﹣综合法C.①﹣综合法,②﹣反证法D.①﹣分析法,②﹣反证法【考点】流程图的概念.【分析】根据综合法和分析法的定义,可知由已知到可知进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,进而得到答案.【解答】解:根据已知可得该结构图为证明方法的结构图:∵由已知到可知,进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,故①②两条流程线与“推理与证明”中的思维方法为:①﹣综合法,②﹣分析法,故选:A9.如图是某同学为求50个偶数:2,4,6,…,100的平均数而设计的程序框图的部分内容,则在该程序框图中的空白判断框和处理框中应填入的内容依次是()A. B.C.D.【考点】循环结构.【分析】由已知得本程序的作用是求50个偶数:2,4,6,…,100的平均数,由于第一次执行循环时的循环变量初值为0,计数变量为1,步长为1,最后一次执行循环进循环变量值为100,我们根据利用循环结构进行累加的方法,不难给出结论.【解答】解:本程序的作用是求50个偶数:2,4,6,…,100的平均数,由于第一次执行循环时的循环变量x初值为0,计数变量i为1,步长为1,最后一次执行循环进循环变量值为100,故判断框:i>50;执行框:x=.故选A.[选修4-4:坐标系与参数方程]11.若点P为曲线(θ为参数)上一点,则点P与坐标原点的最短距离为()A.B.C.D.2【考点】参数方程化成普通方程.【分析】将曲线方程化为普通方程,根据几何意义得出最短距离.【解答】解:曲线的普通方程为(x﹣1)2+(y﹣1)2=1,∴曲线表示以(1,1)为圆心,以1为半径的圆.∴曲线的圆心到原点得距离为,∴点P与坐标原点的最短距离为.故选:A.[选修4-5:不等式选讲]12.已知函数f(x)是R上的增函数,A(0,﹣2),B(3,2)是其图象上的两点,记不等式|f(x+2)|<2的解集M,则∁R M=()A.(﹣2,1)B.(﹣1,2)C.(﹣∞,﹣2]∪[1,+∞)D.(﹣∞,﹣1]∪[2,+∞)【考点】函数奇偶性的性质.【分析】根据已知f(0)=﹣2,f(3)=2,从而由|f(x+2)|<2便得f(0)<f(x+2)<f (3),根据f(x)为增函数便得0<x+2<3,这样便可得到M,求补集即可得出∁R M.【解答】解:由条件,f(0)=﹣2,f(3)=2;由|f(x+2)|<2得﹣2<f(x+2)<2;∴f(0)<f(x+2)<f(3);∵f(x)是R上的增函数;∴0<x+2<3;∴﹣2<x<1;即M=(﹣2,1);∴∁R M=(﹣∞,﹣2]∪[1,+∞).故选C.13.以下判断正确的个数是()①相关系数r,|r|值越小,变量之间的相关性越强.②命题“存在x∈R,x2+x﹣1<0”的否定是“不存在x∈R,x2+x﹣1≥0”.③“p∨q”为真是“¬p”为假的必要不充分条件.④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是=1.23x+0.08.A.4 B.2 C.3 D.1【考点】命题的真假判断与应用.【分析】①根据相关系数r的大小与相关性强弱的关系进行判断.②特称命题的否定是全称命题进行判断③根据复合命题与充分条件和必要条件的定义进行判断,④根据回归方程的性质代入进行求解判断.【解答】解:①相关系数|r|值越小,变量之间的相关性越弱,故错误.②命题“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1≥0”,故错误.③“p∨q”为真时,“¬p”为假不一定成立,故“p∨q”为真是“¬p”为假的不充分条件,“¬p”为假时,“p”为真,“p∨q”为真,故“p∨q”为真是“¬p”为假的必要条件,故“p∨q”为真是“¬p”为假的必要不充分条件,故正确;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则a=5﹣1.23×4=0.08,则回归直线方程是=1.23x+0.08,故正确;故选:B14.已知a,b>0,a+b=5,则+的最大值为()A.18 B.9 C.3D.2【考点】二维形式的柯西不等式.【分析】利用柯西不等式,即可求出+的最大值.【解答】解:由题意,( +)2≤(1+1)(a+1+b+3)=18,∴+的最大值为3,故选:C.15.设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx ﹣3的某一个对称中心,并利用对称中心的上述定义,可得到的值为()A.﹣4031 B.4031 C.﹣8062 D.8062【考点】函数的值;抽象函数及其应用.【分析】利用函数对称中心的性质得到当x1+x2=2时,恒有f(x1)+f(x2)=﹣4,能此能求出结果.【解答】解:∵f(x)=x+sinπx﹣3,∴当x=1时,f(1)=1+sinπ﹣3=﹣2,∴根据对称中心的定义,可得当x1+x2=2时,恒有f(x1)+f(x2)=﹣4,∴=2015[f()+f()]+f()=2015×(﹣4)﹣2=﹣8062.故选:C.[选修4-4:坐标系与参数方程]17.直线(t为参数)被曲线所截的弦长为()A.B.C.D.【考点】点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.【分析】先把参数方程和极坐标方程化为普通方程,并求出圆心到直线的距离d,再利用关系:l=2即可求出弦长l.【解答】解:直线(t为参数)化为普通方程:直线3x+4y+1=0.∵曲线,展开为ρ=cosθ﹣sinθ,∴ρ2=ρcosθ﹣ρsinθ,化为普通方程为x2+y2=x﹣y,即,∴圆心C,.圆心C到直线距离d==,∴直线被圆所截的弦长=.故选C.[选修4-5:不等式选讲]18.不等式|x+3|﹣|x﹣1|≤2a对任意实数x恒成立,则实数a的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣2]∪[2,+∞)C.[2,+∞)D.a∈R【考点】绝对值三角不等式;其他不等式的解法.【分析】令f(x)=|x+3|﹣|x﹣1|,写出分段函数,求得f(x)的最大值4,由2a≥4求得实数a的取值范围.【解答】解:令f(x)=|x+3|﹣|x﹣1|=,作出图象如图,∴f(x)≤4,∵不等式|x+3|﹣|x﹣1|≤2a对任意实数x恒成立,∴2a≥4,得a≥2.∴实数a的取值范围是[2,+∞).故选:C.二.填空题:(本大题共4题,每小题5分,共20分)19.若复数z满足(2﹣i)z=4+3i(i为虚数单位),则z=1+2i.【考点】复数代数形式的乘除运算.【分析】由(2﹣i)z=4+3i,得,再利用复数代数形式的乘除运算化简则答案可求.【解答】解:由(2﹣i)z=4+3i,得=,故答案为:1+2i.20.具有线性相关关系的变量x,y,满足一组数据如下表所示:X 0 1 2 3y ﹣1 1 m 8若y与x的回归直线方程为=3x﹣,则m的值是4.【考点】线性回归方程.【分析】利用平均数公式计算预报中心点的坐标,根据回归直线必过样本的中心点可得答案.【解答】解:由题意,=1.5,=,∴样本中心点是坐标为(1.5,),∵回归直线必过样本中心点,y与x的回归直线方程为=3x﹣,∴=3×1.5﹣1.5,∴m=4故答案为:4.21.已知a n=log n(n+2)(n∈N*),观察下列算式:+1a1•a2=log23•log34=•=2;a1•a2•a3•a4•a5•a6=log23•log34•…•=••…•=3…;若a1•a2•a3…a m=2016(m∈N*),则m的值为22016﹣2.【考点】归纳推理.【分析】根据已知中的等式,结合对数的运算性质,可得a1•a2•a3•…•=n(n≥2),进而得到答案.【解答】解:∵a n=log n(n+2)(n∈N*),+1∴a1•a2=log23•log34=•=2;a1•a2•a3•a4•a5•a6=log23•log34•…•=••…•=3;…归纳可得:a1•a2•a3•…•=n(n≥2),若a1•a2•a3•…•a m=2016,则m=22016﹣2,故答案为:22016﹣2[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).[选修4-5:不等式选讲]24.设a,b,m,n∈R,且a2+b2=3,ma+mb=3,则的最小值为.【考点】二维形式的柯西不等式.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=3,ma+nb=3,∴(m2+n2)≥3∴的最小值为.故答案为:.三.解答题(本大题共1小题,共70分,解答应写出文字的说明,证明过程或演算步骤)[选修4-4:坐标系与参数方程]26.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且只有一个公共点,求a.【考点】简单曲线的极坐标方程.【分析】把极坐标方程化为直角坐标方程,利用直线与圆相切的充要条件即可得出.【解答】解:曲线C:ρ=2acosθ(a>0),即ρ2=2aρcosθ(a>0),∴x2+y2=2ax,配方可得:C的直角坐标方程为(x﹣a)2+y2=a2.直线l:ρcos(θ﹣)=,展开为+=,可得直角坐标方程:.由直线与圆相切可得:,a>0.解得:a=1.[选修4-5:不等式选讲]27.已知函数f(x)=+,求f(x)的最大值.【考点】二维形式的柯西不等式.【分析】直接利用柯西不等式,即可求f(x)的最大值.【解答】解:由柯西不等式有…当且仅当,即x=1时,等号成立.…所以,f(x)最大值的是3.…28.复数z=(1﹣i)a2﹣3a+2+i(a∈R),(1)若z=,求|z|;(2)若在复平面内复数z对应的点在第一象限,求a的范围.【考点】复数求模;复数的基本概念.【分析】(1)根据z=,确定方程即可求|z|;(2)利用复数的几何意义,即可得到结论.【解答】解z=(1﹣i)a2﹣3a+2+i=a2﹣3a+2+(1﹣a2)i,(1)由知,1﹣a2=0,故a=±1.当a=1时,z=0;当a=﹣1时,z=6.(2)由已知得,复数的实部和虚部皆大于0,即,即,所以﹣1<a<1.29.某学校研究性学习小组对该校高二学生视力情况进行调查,在高二的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图:(Ⅰ)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?年级名次1~50 951~1000是否近视近视41 32不近视9 18P(K2≥k)0.10 0.05 0.025 0.010 0.005k 2.706 3.841 5.024 6.635 7.879附:K2=.【考点】独立性检验的应用;频率分布直方图.【分析】(Ⅰ)利用直方图中前三组的频率成等比数列,后四组的频率成等差数列,求出视力在5.0以下的频率,即可估计全年级视力在5.0以下的人数;(Ⅱ)求出K2,与临界值比较,即可得出结论.【解答】解:(Ⅰ)设各组的频率为f i(i=1,2,3,4,5,6),由图可知,第一组有3人,第二组7人,第三组27人,…因为后四组的频数成等差数列,所以后四组频数依次为27,24,21,18…所以视力在5.0以下的频率为3+7+27+24+21=82人,故全年级视力在5.0以下的人数约为1000×=820.…(Ⅱ)K2==≈4.110>3.841.…因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.…30.观察下面的解答过程:已知正实数a,b满足a+b=1,求+的最大值.解:∵•≤=a+,•≤=b+,相加得•+•=•(+)≤a+b+3=4,∴+≤2,等号在a=b=时取得,即+的最大值为2.请类比以上解题法,使用综合法证明下题:已知正实数x,y,z满足x+y+z=3,求++的最大值.【考点】类比推理.【分析】利用基本不等式,结合类比思想,再相加,即可求++的最大值.【解答】证明:∵,….….…∴…因为x+y+z=3,所以.…当且仅当等号在x=y=z=1时取得.即得最大值为.…31.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70(1)求回归直线方程;(2)试预测广告费支出为10万元时,销售额多大?(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.(,a=﹣b)【考点】线性回归方程.【分析】(1首先求出x,y的平均数,利用最小二乘法做出线性回归方程的系数,根据样本中心点满足线性回归方程,代入已知数据求出a的值,写出线性回归方程.(2当自变量取10时,把10代入线性回归方程,求出销售额的预报值,这是一个估计数字,它与真实值之间有误差.(3)确定基本事件的个数,求出两组数据其预测值与实际值之差的绝对值都超过5的事件,即可得出结论.【解答】解:(1)===5,===50,∴===6.5,因此,所求回归直线方程为y=6.5x+17.5…(2)根据上面求得的回归直线方程,当广告费支出为10万元时,=6.5×10+17.5=82.5(万元),即这种产品的销售收入大约为82.5万元.…(3)x 2 4 5 6 8y 30 40 60 50 7030.5 43.5 50 56.5 69.5基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个.两组数据其预测值与实际值之差的绝对值都超过5有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为1﹣=.…[选修4-4:坐标系与参数方程]33.已知曲线C的极坐标方程为ρ﹣4cosθ=0,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,直线l过点M(3,0),倾斜角为.(1)求曲线C的直角坐标方程与直线l的参数方程;(2)设直线l与曲线C交于AB两点,求|MA|+|MB|.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C的极坐标方程为ρ=4cosθ,得ρ2=4ρcosθ,利用代入即可得出.由直线l过点M(3,0),倾斜角为,可得参数方程.(2)把直线l代入圆的直角坐标方程x2+y2﹣4x=0,得,化简后利用韦达定理可求t1+t2,t1t2的值,由|MA|+|MB|=|t1﹣t2|=即可求值得解.【解答】(本题满分10分)解:(1)对于C:由ρ=4cosθ,得ρ2=4ρcosθ,∵,∴x2+y2=4x,∴对于l:有.(2)设A,B两点对应的参数分别为t1,t2将直线l的参数方程带入圆的直角坐标方程x2+y2﹣4x=0,得,化简得,[选修4-5:不等式选讲]34.设f(x)=|x﹣1|﹣|x+3|(1)解不等式f(x)>2;(2)若不等式f(x)≤kx+1在x∈[﹣3,﹣1]上恒成立,求实数k的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)去掉绝对值符号,将函数化为分段函数的形式,解不等式f(x)>2即可;(2)由于不等式f(x)≤kx+1在x∈[﹣3,﹣1]上恒成立,可得﹣2x﹣2≤kx+1在x∈[﹣3,﹣1]上恒成立,分离参数求最小值即可求实数k的取值范围.【解答】解:(1)∵f(x)=|x﹣1|﹣|x+3|,∴x≤﹣3时,f(x)=﹣x+1+x+3=4>2,∴x≤﹣3;﹣3<x<1时,f(x)=﹣x+1﹣x﹣3=﹣2x﹣2>2,∴x<﹣2,∴﹣3<x<﹣2;x≥1时,f(x)=x﹣1﹣x﹣3=﹣4>2,不成立.综上,不等式的解集为{x|x<﹣2};(2)x∈[﹣3,﹣1]时,f(x)=﹣x+1﹣x﹣3=﹣2x﹣2,由于不等式f(x)≤kx+1在x∈[﹣3,﹣1]上恒成立,∴﹣2x﹣2≤kx+1在x∈[﹣3,﹣1]上恒成立,∴k≤﹣2﹣∵g(x)=﹣2﹣在x∈[﹣3,﹣1]上为增函数,∴﹣1≤g(x)≤1∴k≤﹣1.。
高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。
河南省郑州市第一中学2015-2016学年高一下学期入学考试数学试题Word版含答案
高一年级寒假课程学习效果验收考试数学试卷 第Ⅰ卷(共60分)一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.满足{}{}1,11,0,1A-=-的集合A 共有( )A .2个B .4个C .8个D .16个2.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) A .21()f x x=B .2()1f x x =+C .3()f x x =D .()2xf x -=4.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的解析式为( ) A .12y x =B.4y x = C.8y x = D.16y x = 5.方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)6.已知2,(0)()2,(0)0,(0)x x f x x x ⎧>⎪==⎨⎪<⎩,则[]{}(2)f f f -的值为( )A .0B .2C .4D .87.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( )1.38)==== A .38% B .41% C .44% D .73% 8.比较113.13.13.11.522、、的大小关系是( )A .113.13.1 3.1221.5<< B .113.13.13.11.522<< C .11 3.13.1 3.11.522<< D .11 3.13.13.121.52<<9.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的( )A .316 B .916 C .38 D .5810.已知直线l 过圆22(3)4x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是( ) A .20x y +-= B .20x y -+= C .30x y +-= D .30x y -+=11.平面α截球O 的球面所得圆的半径为1,球心O 到平面α,则此球的体积为( )A B . C . D .12. 如图所示,将等腰直角ABC ∆沿斜边BC 上的高AD 折成一个二面角,此时060B AC '∠=,那么这个二面角大小是( )A .90°B .60°C .45°D .30°第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在题中横线上) 13.方程220x y x y m +-++=表示一个圆,则m 的范围是________.14.下列四个命题:①若//,//a b a α;②若//,a b αα⊂,则//a b ;③若//a α,则a 平行于α内所有的直线;④若//,//,a a b b αα⊄,则//b α.其中正确命题的序号是________.15.已知函数2log ,0()2,0xx x f x x >⎧=⎨≤⎩,若1()2f a =,则a =________. 16.某几何体的三视图如图所示,则该几何体的体积为________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知集合{}{}2|4,|450A x x a B x x x =-<=-->. (1)若1a =,求A B ;(2)若AB R =,求实数a 的取值范围.18.(12分)设直线l 的方程为(1)20()a x y a a R +++-=∈. (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. 19.(12分)已知圆22:2430C x y x y ++-+=.(1)若圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零,求此切线的方程; (2)从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM PO =,求使得PM 取得最小值的点P 的坐标.20.(12分)已知()f x 为定义在[]1,1-上的奇函数,当[]1,0x ∈-时,函数解析式1()()42x xaf x a R =-∈. (1)写出()f x 在[]0,1上的解析式; (2)求()f x 在[]0,1上的最大值.21.(12分)如图,在三棱柱111ABC A B C -中,01111,60,1,AA BC A AC A A AC BC A B ⊥∠=====(1)求证:平面1A BC ⊥平面11ACC A ;(2)如果D 为AB 中点,求证:1//BC 平面1A CD .22.(12)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,1,2,1AB BC AA AC BC ⊥===,,E F 分别是11,A C BC 的中点.(1)求证:平面ABE⊥平面11B BCC;(2)求证:1//C F平面ABE;(3)求三棱锥E ABC-的体积.详解答案1.B3.C4. C5. A6.C7.B8.D9.A10.D11.B12.A13.1(,)2-∞ 解析:22224(1)140D E F m +-=-+->,得12m <. 14.④ 解析①中b 可能在α内;②a 与b 可能异面或垂直;③a 可能与α内的直线异面或垂直.15.或-1解析:当0a >时,21log 2a =,则a =0a ≤时,122a=,则1a =-. 16. 24解析:由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,11111435302ABC ABC A B C V S AA ∆-==⨯⨯⨯=棱柱,11111111114336332A B C P A B C V S PB ∆-==⨯⨯⨯⨯=棱柱.故几何体11ABC PAC -的体积为30624-=.故选C .17.解:(1)当1a =时,{}{}2|14|35,45015A x x x x x x x x =-<=-<<-->⇒<->或,则{}{}|1,5|31B x x x A B x x =<->=-<<-或.(2)根据题意,得{}{}|44,|15A x a x a B x x x =-<<+=<->或,若AB R =,则有4145a a -<-⎧⎨+>⎩,解可得13a <<,∴ a 的取值范围是13a <<.18.解:(1)令0x =,得2y a =-.令0y =,得2(1)1a x a a -=≠-+, 由221a a a --=+,解得2a =,或0a =. ∴所求直线l 的方程为30x y +=或20x y ++=.(2)直线l 的方程可化为(1)2y a x a =-++-.∵l 不过第二象限,∴(1)020a a -+≥⎧⎨-≤⎩,∴1a ≤-.∴a 的取值范围为(],1-∞-.19.解:(1)∵切线在两坐标轴上的截距相等且截距不为零, ∴设切线方程为(0)x y a a +=≠,又∵圆22:(1)(2)2C x y ++-=,∴圆心(1,2)C -,1a ==-,或3a =,则所求切线的方程为10x y ++=或30x y +-=.(2)∵切线PM 与半径CM 垂直,∴222PM PC CM =-,∴22221111(1)(2)2x y x y ++--=+,∴112430x y -+=,∴动点P 的轨迹是直线2430x y -+=.PM 的最小值就是PO 的最小值,而PO 的最小值为O 到直线2430x y -+=的距离10d =.此时P 点坐标为33(,)105-. 20.解:(1)∵()f x 为定义在[]1,1-上的奇函数,且()f x 在0x =处有意义,∴(0)0f =, 即001(0)1042af a =-=-=.∴1a =. 设[]0,1x ∈,则[]1,0x -∈-.(2)当[]0,1x ∈时,2()242(2)xxxx f x =-=-,∴设2(0)xt t =>,则2()f t t t =-.∵[]0,1x ∈,∴[]1,2t ∈.当1t =时,取最大值,最大值为110-=.21.证明:(1)因为01160,1A AC A A AC ∠===,所以1A AC ∆为等边三角形,所以11A C =.因为11,BC A B ==,所以22211A C BC A B +=. 所以0190A CB ∠=,即1A C BC ⊥. 因为11111,,BC A A BC AC AA AC A ⊥⊥=,所以BC ⊥平面11ACC A . 因为BC ⊂平面1A BC ,所以平面1A BC ⊥平面11ACC A . (2)连接1AC 交1A C 于点O ,连接OD .因为11ACC A 为平行四边形,所以O 为1AC 的中点.因为D 为AB 的中点,所以1//OD BC ,因为OD ⊂平面1,ACD BC ⊄平面1A CD ,所以1//BC 平面1A CD .22.(1)证明:在三棱柱111ABC A B C -中,1BB ⊥底面ABC ,所以1BB AB ⊥. 又因为AB BC ⊥,所以AB ⊥平面11B BCC , 又AB ⊂平面ABE ,所以平面ABE ⊥平面11B BCC . (2)证明 :取AB 的中点G ,连接,EG FG . 因为,E F 分别是11A C ,BC 的中点, 所以//FG AC ,且12FG AC =. 因为11//AC A C ,且11AC A C =,所以1//FG EC ,且1FG EC =,所以四边形1FGEC 为平行四边形. 所以1//C F EG .又因为EG ⊂平面ABE ,1C F ⊄平面ABE , 所以1//C F 平面ABE .(3)解:因为12,1,AA AC BC AB BC ===⊥,所以AB ==所以三棱锥E ABC -的体积111112332ABC V S AA ∆==⨯⨯=.。
河南省郑州市高一下学期期末数学试卷
河南省郑州市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高一下·南沙期末) 已知a∈R,b∈R,且a>b,则下列不等式中一定成立的是()A . >1B . a2>b2C . ()a<() bD . lg(a﹣b)>02. (2分) (2016高三上·定州期中) △ABC中,若sinC=( cosA+sinA)cosB,则()A . B=B . 2b=a+cC . △ABC是直角三角形D . a2=b2+c2或2B=A+C3. (2分) (2016高三上·辽宁期中) 已知R是实数集,,则N∩∁RM=()A . (1,2)B . [0,2]C . ∅D . [1,2]4. (2分)(2018·郑州模拟) 等比数列中,,前3项和为,则公比的值是()A . 1B .C . 1或D . 或5. (2分) (2018高二下·中山月考) 下列论断中错误的是()A . a、b、m是实数,则“am2>bm2”是“a>b”的充分非必要条件;B . 命题“若a>b>0,则a2>b2”的逆命题是假命题;C . 向量a,b的夹角为锐角的充要条件是a b>0;D . 命题p:“∃x∈R,x2-3 x+2≥0”的否定为¬p:“∀x∈R,x2-3x+2<0”6. (2分) (2017高二上·湖北期中) 设x,y满足约束条件则的取值范围是()A .B . [1,12]C .D . [2,12]7. (2分) (2016高二上·黑龙江期中) 过定点A的直线x﹣my=0(m∈R)与过定点B的直线mx+y﹣m+3=0(m∈R)交于点P(x,y),则|PA|2+|PB|2的值为()A .B . 10C . 2D . 208. (2分)设数列{xn}满足log2xn+1=1+log2xn(n∈N+),且x1+x2+…+x10=10,记{xn}的前n项和为Sn ,则S20=()A . 1 025B . 1 024C . 10 250D . 10 2409. (2分)如图是某个四面体的三视图,该四面体的体积为()A . 72B . 36C . 24D . 1210. (2分)已知等差数列中,,则的值是()A . 15B . 30C . 31D . 6411. (2分) (2016高二上·屯溪期中) 四棱锥S﹣ABCD的底面是边长为2的正方形,顶点S在底面的射影是底面正方形的中心O,SO=2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为()A .B .C .D . +12. (2分)在△ABC中,,且,则内角C的余弦值为()A . 1B .C .D .二、填空题 (共4题;共7分)13. (2分) (2017高一下·台州期末) 已知直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,则m=________,l1与l2之间的距离为________.14. (1分)设a>0为常数,若对任意正实数x,y不等式(x+y)()≥9恒成立,则a的最小值为________15. (1分) (2020高三上·浦东期末) 在△ 中,边、、满足,,则边的最小值为________16. (3分)在棱长为a的正方体ABCD A1B1C1D1中,A到平面B1C的距离为________,A到平面BB1D1D的距离为________,AA1到平面BB1D1D的距离为________.三、解答题 (共6题;共45分)17. (5分) (2018高一下·石家庄期末) 已知直线过点,且与轴正半轴、轴正半轴分别交于、两点,为坐标原点,若的面积为,求直线的方程.18. (5分)在△A BC中,角 A.B.C所对的边分别为a.b.c,已知sin2 B+sin2C=sin2 A+sin BsinC.(1)求角 A的大小;(2)若cosB=, a=3,求c值.19. (10分) (2017高一上·舒兰期末) 在如图所示的几何体中,是的中点,.(1)已知,,求证:平面;(2)已知分别是和的中点,求证:平面.20. (10分)(2018高二上·大连期末) 已知数列{满足,.(1)求证:数列是等比数列;(2)若数列是单调递增数列,求实数的取值范围.21. (5分) (2017高一上·厦门期末) 某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2 ,三月底测得覆盖面积为36m2 ,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=kax(k>0,a>1)与y=px +q(p>0)可供选择.(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;(Ⅱ)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4771)22. (10分) (2018高二上·湖南月考) 数列满足, .(1)求证:数列是等差数列;(2)若,求的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共7分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17、答案:略18-1、19-1、19-2、20-1、20-2、21-1、22-1、22-2、。
2015-2016年河南省郑州一中高一(下)期中数学试卷和答案
第 3 页(共 17 页)
④函数 f(x)=
,x∈(﹣ , )有最小值,无最大值.
则所有正确结论的序号是
.
三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算
步骤.)
17.(10 分)已知 sinαcosα= ,且 α 是第三象限角.
求
+
.
18.(12 分)某高中男子体育小组的 50 米跑成绩(单位:s)为:6.4,6.5,7.0, 6.8,7.1,7.3,6.9,7.4,7.5,6.7,
2015-2016 学年河南省郑州一中高一(下)期中数学试卷
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项是符合题目要求的.
1.(5 分)cos(﹣150°)=( )
A.﹣
B.
ቤተ መጻሕፍቲ ባይዱC.﹣
D.
2.(5 分)下列程序语句正确的是( )
A.输出语句 PRINT A=4
是由专业人士组成的?并说明理由. 20.(12 分)设关于 x 的一元二次方程 x2+ax﹣ +1=0. (1)若 a 是从 1,2,3 这三个数中任取的一个数,b 是从 0,1,2 这三个数中
任取的一个数,求上述方程中有实根的概率; (2)若 a 是从区间[0,3]中任取的一个数,b 是从区间[0,2]中任取的一个数,
计了某 4 天的用电量与当天气温(如表),并求得线性回归方程为 =﹣
2x+60.不小心丢失表中数据 c,d,那么由现有数据知 2c+d=
.
x
c
13
10
﹣1
y
24
34
38
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河南省郑州市高一(下)期末数学试卷一、选择题本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的 1.sin780°等于( )A .﹣B .C .D .﹣2.某商场想通过检查发票存根及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票存根上的销售额组成一个调查样本.这种抽取样本的方法是( ) A .抽签法B .随机数法C .系统抽样法D .其他方式的抽样3.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A .B .2C .2D .24.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m 甲,m 乙,则( )A .,m 甲>m 乙B .,m 甲<m 乙C .,m 甲>m 乙D .,m 甲<m 乙5.把函数y=sinx (x ∈R )图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把图象上所有的点向左平行移动个单位长度,得到的图象所表示的函数是( )A .y=sin (2x ﹣)(x ∈R )B .y=sin ()(x ∈R )C .y=sin (2x+)(x ∈R )D .y=sin (2x+)(x ∈R )6.执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为( )A.25B.24C.23D.227.函数的一个递减区间为()A.B.C.D.8.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式()A.y=﹣4sin(x﹣)B.y=4sin(x﹣)C.y=﹣4sin(x+)D.y=4sin(x+)9.已知tan(α+β)=,tan(β﹣)=,那么tan(α+)等于()A.B.C.D.10.在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点且=λ,若•≥•,则λ的取值范围是()A.[,1]B.[,1]C.[,]D.[,]11.已知A为△ABC的最小内角,若向量=(cos2A,sin2A),=(,),则的取值范围是()A.(﹣∞,)B.(﹣1,)C.[﹣,)D.[﹣,+∞)12.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则•的最小值是()A.﹣B.﹣C.﹣D.﹣1二、填空题(本大题共2小题,每小题5分,共20分,将答案填在答题卡上的相应位置)13.已知,均为单位向量,<,>=60°,那么|+3|=.14.如图所示,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内概率是.15.求函数f(x)=sinx+cosx+sinxcosx的值域.16.f(x)=3sin(﹣x+),若实数m满足f()>f(),则m的取值范围是.三、解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤17.已知:、、是同一平面内的三个向量,其中=(1,2)(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.18.某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x(2)若该周内某天销售服装20件,估计可获纯利多少元?已知:x=280,y=45309,x i y i=3487,=,=﹣.19.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(Ⅰ)分别求第3,4,5组的频率;(Ⅱ)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.20.如图,一个水轮的半径为4m,水轮圆心O距离水面2m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点p0)开始计算时间.(1)将点p距离水面的高度z(m)表示为时间t(s)的函数;(2)点p第一次到达最高点大约需要多少时间?21.已知关于x的方程2x2﹣bx+=0的两根为sinθ、cosθ,θ∈(,).(1)求实数b的值;(2)求+的值.22.已知x0,x0+是函数f(x)=cos2(wx﹣)﹣sin2wx(ω>0)的两个相邻的零点(1)求的值;(2)若对,都有|f(x)﹣m|≤1,求实数m的取值范围.2015-2016学年河南省郑州市高一(下)期末数学试卷参考答案与试题解析一、选择题本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.sin780°等于()A.﹣B.C.D.﹣【考点】运用诱导公式化简求值.【分析】利用诱导公式,特殊角的三角函数值即可化简求值得解.【解答】解:sin780°=sin(2×360°+60°)=sin60°=.故选:B.2.某商场想通过检查发票存根及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票存根上的销售额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数法C.系统抽样法D.其他方式的抽样【考点】系统抽样方法.【分析】本题所给的抽样的方法符合系统抽样的过程,分组时每50个个体一组,从第一组抽到15号,后面的号依次加50,得到整个样本.【解答】解:∵总体的个体比较多,抽样时某本50张的发票存根中随机抽一张,如15号,这是系统抽样中的分组,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.∴样本间隔相同,∴这种抽取样本的方法是系统抽样故选C.3.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为()A.B.2C.2D.2【考点】扇形面积公式.【分析】半径为r的扇形圆心角的弧度数为α,则它的面积为S=αr2,由此结合题中数据,建立关于圆心角的弧度数α的方程,解之即得该扇形的圆心角的弧度数.【解答】解:设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4解得:α=2故选:D.4.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m 甲,m 乙,则( )A .,m 甲>m 乙B .,m 甲<m 乙C .,m 甲>m 乙D .,m 甲<m 乙【考点】茎叶图;众数、中位数、平均数.【分析】直接求出甲与乙的平均数,以及甲与乙的中位数,即可得到选项.【解答】解:甲的平均数甲==,乙的平均数乙==,所以甲<乙.甲的中位数为20,乙的中位数为29,所以m 甲<m 乙 故选:B .5.把函数y=sinx (x ∈R )图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把图象上所有的点向左平行移动个单位长度,得到的图象所表示的函数是( )A .y=sin (2x ﹣)(x ∈R )B .y=sin ()(x ∈R )C .y=sin (2x+)(x ∈R )D .y=sin (2x+)(x ∈R )【考点】函数y=Asin (ωx+φ)的图象变换.【分析】先根据横坐标缩短到原来的倍时w 变为原来的2倍进行变换,再根据左加右减的原则进行平移,即可得到答案.【解答】解:由y=sinx 的所得图象上所有点的横坐标缩短到原来的倍得到y=sin2x ,再把图象向左平行移动个单位得到y=sin2(x+)=sin (2x+),故选C6.执行如图所示的程序框图,若输入x的值为2,则输出的x值为()A.25B.24C.23D.22【考点】循环结构.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算x,并输出x值.【解答】解:程序运行过程中,各变量的值如下表示:是否继续循环x n循环前/2 1第一圈是 5 2第二圈是11 3第三圈是23 4第四圈否此时输出的x值为23故选C.7.函数的一个递减区间为()A.B.C.D.【考点】正弦函数的单调性.【分析】先根据正弦函数的单调性求得函数y的单调递减时2x﹣的范围,进而求得x的范围得到了函数的单调递减区间,然后结合选项进行判定即可.【解答】解:由正弦函数的单调性可知y=sin(2x+)的单调减区间为2kπ+≤2x+≤2kπ+即k π+π≤x ≤k π+π(k ∈Z )而⊂[k π+π,k π+π](k ∈Z )故选A .8.函数y=Asin (ωx+φ)(ω>0,|φ|<,x ∈R )的部分图象如图所示,则函数表达式( )A .y=﹣4sin (x ﹣)B .y=4sin (x ﹣)C .y=﹣4sin (x+)D .y=4sin (x+)【考点】由y=Asin (ωx+φ)的部分图象确定其解析式.【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.【解答】解:由函数的解析式可得A=4, ==6+2,可得ω=.再根据sin[(﹣2)×+φ]=0,可得(﹣2)×+φ=k π,k ∈z ,再结合|φ|<,∴φ=,∴y=4sin (x+),故选:D .9.已知tan (α+β)=,tan (β﹣)=,那么tan (α+)等于( )A .B .C .D .【考点】两角和与差的正切函数.【分析】把已知的条件代入=tan[(α+β)﹣(β﹣)]=,运算求得结果.【解答】解:∵已知,∴=tan[(α+β)﹣(β﹣)]===,故选C.10.在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点且=λ,若•≥•,则λ的取值范围是()A.[,1]B.[,1]C.[,]D.[,]【考点】向量在几何中的应用;平面向量数量积的运算.【分析】把三角形放入直角坐标系中,求出相关点的坐标,利用已知条件即可求出λ的取值范围.【解答】解:∵直角△ABC中,∠BCA=90°,CA=CB=1,∴以C为坐标原点CA所在直线为x轴,CB所在直线为y轴,如图:C(0,0),A(1,0),B(0,1),,∵=λ,∴λ∈[0,1],,.•≥•,∴λ﹣1+λ≥λ2﹣λ+λ2﹣λ.2λ2﹣4λ+1≤0,解得:,∵λ∈[0,1]∴λ∈[,1]故选:B.11.已知A为△ABC的最小内角,若向量=(cos2A,sin2A),=(,),则的取值范围是()A.(﹣∞,)B.(﹣1,)C.[﹣,)D.[﹣,+∞)【考点】平面向量数量积的运算.【分析】利用向量的数量积得出=cos2A•+sin2A•=2+,A∈(0,],再利用单调性求解即可.【解答】解:∵A为△ABC的最小内角,若向量=(cos2A,sin2A),=(,),∴=cos2A•+sin2A•=2+,A∈(0,]根据函数解析式判断为减函数∴最大值为:2﹣=,(此值取不着)最小值为:2=∴的取值范围[,)故选:C12.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则•的最小值是()A.﹣B.﹣C.﹣D.﹣1【考点】平面向量数量积的运算.【分析】由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P(0,1),点M(x1,y1),则点N(﹣x1,y1),由得•=,求出最小值.【解答】解:由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P(0,1),点M(x1,y1),则点N(﹣x1,y1),﹣1≤y1<1∴=(x1,y1﹣1),=(﹣x1,y1﹣1),.∴•===2﹣,∴当y1=时•的最小值是故选:B.二、填空题(本大题共2小题,每小题5分,共20分,将答案填在答题卡上的相应位置)13.已知,均为单位向量,<,>=60°,那么|+3|=\sqrt{13}.【考点】平面向量数量积的运算.【分析】,均为单位向量,则它们的模都是1,要求向量|+3|的模,可求其平方,然后利用向量模的平方等于向量的平方,展开后再利用平面向量的数量积运算求解.【解答】解:∵,均为单位向量,∴.又<,>=60°,∴===.故答案为:.14.如图所示,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内概率是1﹣\frac{\sqrt{3}}{2}.【考点】几何概型.【分析】根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为﹣1,面积为4﹣2;故飞镖落在阴影区域的概率.故答案为:1﹣.15.求函数f(x)=sinx+cosx+sinxcosx的值域.【考点】函数的值域;三角函数的最值.【分析】利用换元法令t=sinx+cosx=sin(x+),从而可得﹣≤t≤,sinxcosx=,从而可得f(x)=sinx+cosx+sinxcosx=t+=(t2+2t﹣1)=(t+1)2﹣1;从而求函数的值域.【解答】解:令t=sinx+cosx=sin(x+),则﹣≤t≤,t2=1+2sinxcosx,则sinxcosx=,则f(x)=sinx+cosx+sinxcosx=t+=(t2+2t﹣1)=(t+1)2﹣1;∵﹣≤t≤,∴﹣1≤(t+1)2﹣1≤+;故函数f(x)=sinx+cosx+sinxcosx的值域为[﹣1,+].16.f(x)=3sin(﹣x+),若实数m满足f()>f(),则m的取值范围是[﹣1,\frac{1}{2}).【考点】正弦函数的图象.【分析】由二次函数性质可知0≤≤2,0≤≤2,根据正弦函数的性质可得f(x)在[0,2]上单调递减,于是0≤)≤≤2,利用二次函数性质解出m的范围.【解答】解:∵f(x)=3sin(﹣x+)=﹣3sin(﹣),实数m满足f()>f(),令﹣+2kπ≤﹣≤2kπ+,解得﹣π+10kπ≤x≤4π+10kπ,∴f(x)的单调减区间为[﹣π+10kπ,4π+10kπ],k∈Z,∴f(x)在区间[0,2]上是减函数.∴,求得﹣1≤m<,故不等式的解集为[﹣1,),故答案为:[﹣1,).三、解答题:本大题共6小题,共70分。