江苏省江阴长寿中学七年级数学下学期第13周周练试题(无答案)
七年级数学下学期第十三周周末作业试题试题
初一数学周末作业单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明一、用心选一选,将你认为正确之答案填入下表中。
〔每一小题3分,一共36分〕 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、以下各计算中,正确的选项是( )A .824a a a ÷=B .336x x x +=C .()2m -·()35m m -=- D .()336a a =2、如下图,△ABC ≌△AEF ,AC 与AF 是对应边,那么∠EAC 等于〔 〕A.∠ACBB.∠CAFC.∠BAFD.∠BAC3、.如图,与左边正方形图案属于全等的图案是( )4、△ABC ≌△DEF ,∠A =30°,∠B =60°,∠C =90°,那么以下说法错误〔 〕A .∠C 与∠F 互余B .∠C 与∠F 互补C .∠A 与∠E 互余D .∠B 与∠D 互余5、如图AD=AE ,补充以下一个条件后,仍不能断定△ABE ≌△ACD 的是〔 〕A.∠B=∠CB.AB=ACC.BE=CDD.∠AEB=∠ADC6、如图,以下条件中,不能断定l1∥l2的是A.∠1=∠3 B.∠2+∠4=180° C.∠4=∠5 D.∠2=∠37、如图,△ABC为直角三角形,∠C=90°,假设沿图中虚线剪去∠C,那么∠1+∠2等于( )A.90° B.135° C.270° D.315°8、9x2-mxy+16y2是一个完全平方式,那么m的值是〔〕A.12B.-12C.±12D.±249、某中学七年级—班40名同学为灾区捐款,一共捐款2000元,捐款情况如下表:由于忽略,表格中捐款40元和50元的人数忘记填写上了,假设设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )A.2240502000x yx y+=⎧⎨+=⎩B.2250402000x yx y+=⎧⎨+=⎩C.2240501000x yx y+=⎧⎨+=⎩D.2250401000x yx y+=⎧⎨+=⎩10、以下等式由左边向右边的变形中,属于因式分解的是A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3x C.x2-9=(x+3)(x-3) D.(x+2)(x-2)=x2-411、不管x、y为何数,x 2 +y 2-10x+8y+45的值均为 ( )A .正数B .零C .负数D .非负数 12、一定是全等三角形的是〔 〕A .面积相等的三角形B .周长相等的三角形C .形状一样的三角形D .可以完全重合的两个三角形 二、细心填一填:〔每一小题3分,一共30分〕 13、:,3,6-==+xy y x 那么=+22xy y x ____________ 14、假设442-=m m ,那么m= 15、假如⎩⎨⎧-==23y x ,是方程634=-ay x 的一个解,那么________=a 。
七年级数学下学期第13周周末作业(含解析) 苏科版
2015-2016学年江苏省无锡市江阴市山观二中七年级(下)第13周周末数学作业一、选择题:(3分/题,共24分)1.下列计算正确的是()A.x3x2=2x6B.x4x2=x8C.(﹣x2)3=﹣x6D.(x3)2=﹣x5 2.若(x2﹣mx+1)(x﹣2)的积中不含有x2项,则m的值为()A.2 B.﹣2 C.﹣1 D.13.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a24b3D.x2﹣4=(x+2)(x﹣2)4.不等式2x﹣1<3的最大整数解是()A.0 B.1 C.2 D.35.不等式组的解集在数轴上表示为()A.B.C.D.6.某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A.B.C.D.7.三个连续自然数的和不大于15,这样的自然数组有()A.3组B.4组C.5组D.6组8.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定二、填空题:(2分/空,共18分)9.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是______m.10.若a+b=6,ab=4,则(a﹣b)2=______.11.当x______时,代数式5x﹣3的值是正数;“x的5倍大于x的3倍与9的差”用不等式表示为______.12.不等式组的解集是______;整数解为______.13.二元一次方程2x+ay=7有一个解是,则a的值为______.14.已知关于x的不等式组无解,则a的取值范围是______.15.如图(1),把边长为1的等边三角形每边三等分,经其向外长出一个边长为原来的三分之一的小等边三角形得到图(2),称为一次“生长”.在得到的多边形上类似“生长”,一共生长n次,得到的多边形周长是______.三、解答题(共58分)16.计算:(1)(﹣2)﹣2+(﹣)﹣3﹣3﹣1+(π﹣3.14)0(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)17.解下列方程组:①②.18.解不等式(组),并将其解集在数轴上表示出来:(1)(2).19.解不等式组,并写出不等式组的正整数解.20.已知关于x、y的二元一次方程组的解互为相反数,求x、y、a的值.21.若关于x,y的二元一次方程组的解满足x﹣y>4,求k的取值范围.22.根据如图对话,可以求得小红所买的笔和笔记本的价格分别是多少?23.该试题已被管理员删除2015-2016学年江苏省无锡市江阴市山观二中初一(下)第13周周末数学作业参考答案与试题解析一、选择题:(3分/题,共24分)1.下列计算正确的是()A.x3x2=2x6B.x4x2=x8C.(﹣x2)3=﹣x6D.(x3)2=﹣x5【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘除法则及幂的乘方法则,结合选项进行判断即可.【解答】解:A、x3x2=x5,故本选项错误;B、x4x2=x6,故本选项错误;C、(﹣x2)3=﹣x6,故本选项正确;D、(x3)2=x6≠x﹣5,故本选项错误;故选C.【点评】此题考查了同底数幂的乘除法及幂的乘方法则,属于基础题,解答本题的关键是熟练各部分的运算.2.若(x2﹣mx+1)(x﹣2)的积中不含有x2项,则m的值为()A.2 B.﹣2 C.﹣1 D.1【考点】多项式乘多项式.【分析】根据多项式与多项式相乘的法则进行计算,根据题意求出m的值.【解答】解:(x2﹣mx+1)(x﹣2)=x3﹣(2+m)x2+(2m+1)x﹣2,由题意得,2+m=0,解得,m=﹣2,故选:B.【点评】本题考查的是多项式与多项式相乘的法则,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a24b3D.x2﹣4=(x+2)(x﹣2)【考点】因式分解的意义.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.不等式2x﹣1<3的最大整数解是()A.0 B.1 C.2 D.3【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,在其解集范围内找出符合条件的x的最大整数解即可.【解答】解:2x﹣1<3,解得:x<2.∴x的最大整数解是1.故选:B.【点评】本题考查的是一元一次不等式的整数解,熟知不等式的基本性质是解答此题的关键.5.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】首先分别解出两个不等式,再根据“大小小大中间找”确定解集,然后再在数轴上表示出解集即可.【解答】解:,由①得:x>1,由②得:x≤2,不等式组的解集为:1<x≤2,在数轴上表示为:,故选:C.【点评】此题主要考查了解不等式组,以及在数轴上表示解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设六班得x分,七班得y分,根据:六班与七班的得分比为4:3,六班比七班的得分2倍少40分,可列方程组.【解答】解:设六班得x分,七班得y分,则根据题意可列方程组:,故选:D.【点评】本题主要考查根据实际问题列方程组的能力,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.7.三个连续自然数的和不大于15,这样的自然数组有()A.3组B.4组C.5组D.6组【考点】一元一次不等式的应用.【分析】本题首先根据题意列出不等式即x+x+1+x+2≤15,解出进而可知这样的自然数组有5组.【解答】解:设这三个连续自然数分别为x,x+1,x+2,则有:x+x+1+x+2≤15,解得x≤4,∵x为自然数,则x可取0,1,2,3,4;∴这样的自然数组有5组.故选:C.【点评】本题主要考查一元一次不等式的应用,解题的关键是找出题中的等量关系即这三个连续自然数的和不大于15.8.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定【考点】二元一次方程组的解;二元一次方程的解.【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题:(2分/空,共18分)9.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是 1.56×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001 56m这个数用科学记数法表示是1.56×10﹣6m.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若a+b=6,ab=4,则(a﹣b)2= 20 .【考点】完全平方公式.【分析】根据完全平方公式,对已知的算式和各选项分别整理,得出a2+b2=28,然后再去括号即可得出答案.【解答】解:∵a+b=6,ab=4,∴(a+b)2=36,a2+b2+2ab=36,∴a2+b2=28,∴(a﹣b)2=a2+b2﹣2ab=28﹣8=20,故答案为:20.【点评】此题主要考查了完全平方公式,熟记公式的几个变形公式对解题大有帮助.11.当x x>时,代数式5x﹣3的值是正数;“x的5倍大于x的3倍与9的差”用不等式表示为5x>3x﹣9 .【考点】由实际问题抽象出一元一次不等式.【分析】(1)根据代数式5x﹣3的值是正数列出不等式5x﹣3>0,解不等式可得;(2)x的5倍即“5x”,大于x的3倍与9的差即为“>3x﹣9”.【解答】解:(1)根据题意,得:5x﹣3>0,解得:x>,∴当x>时,代数式5x﹣3的值是正数,故答案为:x>;(2)“x的5倍大于x的3倍与9的差”用不等式表示为5x>3x﹣9,故答案为:5x>3x﹣9.【点评】本题主要考查列不等式、解不等式能力,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.12.不等式组的解集是﹣2<x<1 ;整数解为﹣1,0 .【考点】解一元一次不等式组.【分析】分别解不等式,进而得出不等式组的解集,进而得出整数解.【解答】解:,解①得:x<1,解②得:x>﹣2,则不等式组的解集为:﹣2<x<1,整数解为:﹣1,0.故答案为:﹣2<x<1;﹣1,0.【点评】此题主要考查了解一元一次不等式,正确解不等式是解题关键.13.二元一次方程2x+ay=7有一个解是,则a的值为﹣3 .【考点】二元一次方程的解.【分析】将x=2,y=﹣1代入已知方程中,即可求出a的值.【解答】解:将x=2,y=﹣1代入方程2x+ay=7中,得:4﹣a=7,解得:a=﹣3.故答案为:﹣3.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.已知关于x的不等式组无解,则a的取值范围是a≥3 .【考点】解一元一次不等式组.【分析】由题意分别解出不等式组中的两个不等式,由题意不等式的解集为无解,再根据求不等式组解集的口诀:大大小小找不到(无解)来求出a的范围.【解答】解:由x﹣a>0,∴x>a,由5﹣2x≥﹣1移项整理得,2x≤6,∴x≤3,又不等式组无解,∴a≥3.【点评】主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集为无解反过来求a的范围.15.如图(1),把边长为1的等边三角形每边三等分,经其向外长出一个边长为原来的三分之一的小等边三角形得到图(2),称为一次“生长”.在得到的多边形上类似“生长”,一共生长n次,得到的多边形周长是.【考点】规律型:图形的变化类.【分析】此题注意结合图形计算几个具体数值,从而发现规律进行推广.【解答】解:观察图形发现:第一个图形的周长是3,经过第一次生长的图形的周长是3+3×=3×.经过第二次生长的图形的周长是3×+3×4××=3×.以此类推,则经过第n次生长的第n个图形的周长是3×=.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.三、解答题(共58分)16.计算:(1)(﹣2)﹣2+(﹣)﹣3﹣3﹣1+(π﹣3.14)0(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)【考点】平方差公式;完全平方公式;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=﹣8﹣+1=﹣7;(2)原式=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y2.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.17.解下列方程组:①②.【考点】解二元一次方程组.【分析】①先用加减消元法求出x的值,再用代入消元法求出y的值即可;②先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:①,①×3﹣②×2得:5x=﹣16,∴x=﹣3.2,把x=﹣3.2代入①得:y=﹣15.6,∴原方程组的解为;②原方程组可化为,①+②得:6x=12,∴x=2,把x=2代入①得:y=2,∴原方程组的解为.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.18.解不等式(组),并将其解集在数轴上表示出来:(1)(2).【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】(1)去分母、去括号、移项、合并同类项、系数化成1即可求解,然后在数轴上表示即可;(2)去分母、去括号、移项、合并同类项、系数化成1即可求解,然后在数轴上表示即可.【解答】解:(1)去分母,得3(x+1)﹣2(2x﹣1)>6,去括号,得3x+3﹣4x+2>6,移项,得3x﹣4x>6﹣3﹣2,合并同类项,得﹣x>1,系数化为1得x<﹣1,;(2)去分母,得12(x+1)+2(x﹣2)≤21x﹣6,去括号,得12x+12+2x﹣4≤21x﹣6,移项,得12x+2x﹣21x≤﹣6﹣12+4,合并同类项,得﹣7x≤﹣14,系数化为1得x≥2,.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.19.解不等式组,并写出不等式组的正整数解.【考点】一元一次不等式组的整数解.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其正整数解.【解答】解:解不等式得x≤3,解不等式x﹣2<4(x+1)得x>﹣2,∴原不等式组的解集是﹣2<x≤3,∴原不等式组的正整数解是1,2,3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.已知关于x、y的二元一次方程组的解互为相反数,求x、y、a的值.【考点】二元一次方程组的解.【分析】根据x与y互为相反数得到x=﹣y,代入方程组求出a与y的值,进而求出x的值即可.【解答】解:根据题意得:x=﹣y,代入方程组得:,消去y得:2a=4﹣2a,解得:a=1,把a=1代入得:y=﹣2,x=2.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.若关于x,y的二元一次方程组的解满足x﹣y>4,求k的取值范围.【考点】解一元一次不等式;二元一次方程组的解.【分析】用①﹣②可得出x﹣y的表达式,再由x﹣y>4求出m的取值范围即可.【解答】解:,①﹣②得,x﹣y=3k+1,∵x﹣y>4,∴3k+1>4,解得k>1.【点评】本题考查的是解一元一次不等式,根据题意得出x﹣y的表达式是解答此题的关键.22.根据如图对话,可以求得小红所买的笔和笔记本的价格分别是多少?【考点】二元一次方程组的应用.【分析】设小红所买的笔和笔记本的价格分别是x元,y元,分别根据第一次花了42元,第二次花了30元,两个等量关系联立方程组求解即可.【解答】解:设小红所买的笔和笔记本的价格分别是x元,y元,则,解得,答:小红所买的笔的价格是1.2元,笔记本的价格是3.6元.【点评】此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
江苏省无锡市江阴初级中学七年级数学下学期周周练(无答案) 苏科版
A BF D C E 第1题图第3题图第5题图第6题图第11题图 第14题图 第15题图 第16题图 第17题图 第18题图 江苏省无锡市江阴初级中学2015-2016学年七年级数学下学期周周练一、选择题:(每题2分,共20分)1. 下图中,∠1和∠2是同位角的是( )2.下列说法不正确的是( )A 、同旁内角相等,两直线平行B 、内错角相等,两直线平行C 、同位角相等,两直线平行D 、若两个角的和是180°,则这两个角互补3.如图 ,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有( )A .4对 B .5对 C .6对 D .7对 4.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )A .18B .15C .18或15D .无法确定 5.如图,直线a 、b 都与直线c 相交,下列条件中,能说明a ∥b 的是( ) ①∠1=∠2;②∠2=∠7;③∠2=∠8;④∠1+∠4=180°A 、 ①②B 、 ①②③C 、 ①②④D 、 ①②③④6.图中如果AD ∥BC ,则①︒=∠+∠180B A ②︒=∠+∠180C B ③︒=∠+∠180D C , 上述结论中正确的是( )A 、只有① B、只有② C、只有③ D、只有①和③ 7.一个三角形的两条边是9和4,且周长为偶数,那么第三边的长可能是 ( ) A. 5 B. 7 C. 8 D. 13 8.以两边长为10和3,另一边长为整数的三角形共有( ) A .3个B .4个C .5个D .无数个9. 下列各组三条线段中,不能组成三角形的是( )A .a +1,a +2,a +3(a >0)B .3a ,5a ,2a +1(a >1)C .三线段之比为1︰2︰3D .3㎝,8㎝,10㎝10.若△ABC 内角分别为m 、n 、p ,且()02=-+-p n n m ,则这个三角形为 ( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 二、填空题:(每空2分,共26分)11.如图,①如果AD∥BC,那么根据两直线平行,同旁内角互补,得∠ +∠ABC =180°; ②如果A B∥CD,那么根据两直线平行,同旁内角互补,可得∠ +∠ABC =180° 12. 三角形有两条边的长分别为5、7,则第三边a 的范围是 , 周长P 的范围是 。
苏教版初中数学七年级下册第二学期第13周周考试卷
苏教版初中数学七年级下册第二学期第13周周考试卷一、选择题(每题4分,共32分)1.在方程组21,31;x y y z -=⎧⎨=+⎩2,31;x y x =⎧⎨-=⎩0,35;x y x y +=⎧⎨-=⎩1,23;xy x y =⎧⎨+=⎩111,1;x yx y ⎧+=⎪⎨⎪+=⎩1,1x y =⎧⎨=⎩中,二元一次方程组有 ( )A .2个B .3个C .4个D .5个2.若773x y a b +和2427y x a b --是同类项,则x 、y 的值为 ( )A .x =-3,y =2B .x =2,y =-3C .x =-2,y =3D .x =3,y =-23.已知3,2x y =-⎧⎨=-⎩是方程组1,2ax cy cx by +=⎧⎨-=⎩的解,则a 、b 之间的关系是 ( ) A .4b -9a =1 B .3a +2b =1 C .4b -9a --1 D .9a +4b =1 4若二元一次方程3x -y =7,2x +3y =1,y =k x -9有公共解则k 的值为 ( )A .3B .-3C .-4D .45.6年前,A 的年龄是B 的3倍,现在A 的年龄是B 的2倍,则A 现在的年龄为 ( )A .12岁B .18岁C .24岁D .30岁6.若方程组313,31x y a x y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为 ( )A .-1B .1C .0D .不能确定7.方程ax -4y =x -1是二元一次方程,则a 的值满足 ( )A .a ≠0B .a ≠-1C .a ≠1D .a ≠28.解方程组2,78ax by cx y +=⎧⎨-=⎩时,一学生把c 看错而得2,2x y =-⎧⎨=⎩而正确的解是3,2,x y =⎧⎨=-⎩那么 ( ) A .a 、b 、c 的值不能确定 B .a =4,b =5,c =-2C .a 、b 不能确定,c =-2D .a =4,b =7,c =2二、填空题(每题4分,共24分)9.若(a -2)x 1a -+3y =1是二元一次方程,则a =________.10.方程ax +by =10的两组解为1,0;x y =-⎧⎨=⎩1,5,x y =⎧⎨=⎩则a =________,b =________.11.若x :y =3:2,且3x +2y =13,则x =________,y =________.12.方程x +2y =7的正整数解有________组,解为________________________.13.如果关于x 的方程4x -2m =3x +2和x =2x -3m 的解相同,那么m =________.14.已知梯形的面积为25平方厘米,高为5厘米,它的下底比上底的2倍多1厘米,则梯形的上底和下底长分别为________.三、解答题(共50分)15.(每题6分,共24分)解下列方程组:(1) 434,4614x y x y -=-⎧⎨+=⎩ (2) 326,2317x y x y -=⎧⎨+=⎩\(3) ()()()92()3,2452x y x y x y x y -⎧++-=⎪⎨⎪+--=⎩ (4) 231763,172357x y x y +=⎧⎨+=⎩16.(6分)王大伯承包了25亩土地,今年春季种茄子和西红柿两种大棚蔬菜,用去了44 000元,其中种茄子每亩用了1 700元,获纯利2 400元;种西红柿每亩用了1 800元,获纯利2 600元,问王大伯一共获纯利多少元?17.(10分)如图,在长方形ABCD 中,放入六个形状、大小都相同的长方形,所标尺寸如图所示,求图中阴影部分的面积.18.(10分)已知m 是整数,方程组436,626x y x my -=⎧⎨+=⎩有整数解,求m 的值.。
2019-2020年七年级数学下学期第13周周末作业试题苏科版
2019-2020年七年级数学下学期第13周周末作业试题苏科版班级姓名家长签名得分一、选择题1、在下列数学的式子中,是不等式的有……………………………………………()①-3<0 ②>0 ③=3 ④⑤≠5 ⑥>A.1个 B.3个 C.4个 D.5个2、. 下列不等式中,属于一元一次不等式的是 ( )A. B.C. D.3、若则下列不等式中一定成立的是 ( )A. B. C. D.4、. 一个不等式的解集在数轴上表示如图,对应的不等式是()A. B. C. D.5、若是方程的惟一解,则是不等式<3的………………………()A.惟一解 B.一个根 C.一个解 D.解集6、. 不等式12-4x≥3的正整数解的个数有()A. 3个B. 2个C. 1个D. 0个7、如果,则x的取值范围是()A B C D8、如图,若关于x的不等式x-m≥-1的解集如图所示,则m等于…………………()A.0 B.1C.2 D.39、已知,下列四个不等式中,不正确...的是……………………………………()A.B.C.D.10、若不等式(―5)x<1的解集是x>,则的取值范围是()A、>5 B、<5 C、≠5 D、以上都不对11、.如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,那么()4321(第3题)(A)m=6 (B)m等于5,6,7 (C)无解 (D)5≤m≤7二、填空1.用“>”或“<”号填空(1) 0 -4 (2)-1 -7 (3) -2 4 (4)2. 已知”填空>,ba>用“<”或“(1) a+5 b+5 (2) a-1 b-1 (3) 4a 4b(4) -2a -2b (5) 2+3a 2+3b (6) 2a-1 2b-13. 不等式2x-1<0的解集是 ,不等式-2x<1的解集是4、用不等式表示:(1)的一半不小于0:(2)的与3的差不小于5:5、已知不等式:①<3 ②2≤0 ③3≤≤4 ④≥3中,其解集中只有一个实数的是(只填序号)。
2019-2020年七年级(下)第13周周测数学试卷
2019-2020年七年级(下)第13周周测数学试卷一、选择题(3分×8=24分)1.计算2x3•x2的结果是()A.2x B.2x5C.2x6D.x52.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)3.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.4.已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是()A.8 B.7 C.4 D.35.满足不等式组的正整数解的和为()A.0 B.1 C.2 D.36.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=17.若不等式组有解,则实数m的取值范围是()A.m≤B.m<C.m>D.m≥8.小明发现:若设∠BAC=θ(0°<θ<90°).把小棒依次摆放在两射线AB、AC之间,并使小棒两端分别落在两射线上,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.若只能摆放5根小棒,则θ的范围是()A.10<θ<15 B.15<θ≤20 C.15≤θ<18 D.20≤θ≤30二、填空题(每空2分,共22分)9.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示为米.10.已知二元一次方程x=y+1,若y的值大于﹣1,则x的取值范围是.11.若a=2,a+b=3,则a2+ab=.若x+y=3,xy=1,则x2+y2=.12.如图,小明从点A出发,沿直线前进8m后向左转60°,再沿直线前进8m,又向左转60°…照这样走下去,小明第一次回到出发点A,一共走了米.13.若x3m﹣3﹣2y2n﹣1=5是二元一次方程,则m=,n=.14.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°则∠1的度数为度.15.若关于x、y的二元一次方程组的解满足﹣1<x+y≤1,则k的取值范围.16.若关于x的不等式的整数解共有4个,则m的取值范围是.17.若(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=.三、解答题18.计算:(1)(﹣)100×3101﹣(π﹣3)0﹣(﹣2)﹣2(2)(a+2b)(a﹣2b)+(a+2b)2﹣4ab.19.把下列各式分解因式:(1)2x2﹣4x+2(2)x2﹣3x﹣28(3)16(m﹣n)2﹣9(m+n)2.20.解不等式(组)或方程组,并把解集在数轴上表示出来.(1)x﹣1>2x,(2)(3)解方程组:.21.已知关于x、y的方程组为(1)求方程组的解(用含有m的代数式表示);(2)若方程组的解满足x<1且y>1,求m的取值.万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.23.已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,点E是AC边上的一个动点(点E与点A、C不重合).(1)当a、b满足a2+b2﹣16a﹣12b+100=0,且c是不等式组的最大整数解,试求△ABC的三边长;(2)在(1)的条件得到满足的△ABC中,若设AE=m,则当m满足什么条件时,BE分△ABC的周长的差不小于2?xx学年江苏省无锡市宜兴外国语学校七年级(下)第13周周测数学试卷参考答案与试题解析一、选择题(3分×8=24分)1.计算2x3•x2的结果是()A.2x B.2x5C.2x6D.x5【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加解答.【解答】解:2x3•x2=2x5.故选B.2.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.3.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.【考点】不等式的性质.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.【解答】解:A,∵a>b,∴a+c>b+c,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项错误;C,∵a>b,c<0,∴ac<bc,故此选项错误;D,∵a>b,c<0,∴<,故此选项错误;故选:A.4.已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是()A.8 B.7 C.4 D.3【考点】等腰三角形的性质;三角形三边关系.【分析】因为腰长与底边不确定,所以分①7为腰长,3为底边,②7为底边,3为腰长两种情况,再根据“三角形任意两边之和大于第三边,两边之差小于第三边”进行讨论.【解答】解:分两种情况讨论:①当7为腰长,3为底边时,三边为7、7、3,能组成三角形,故第三边的长为7,②当3为腰长,7为底边时,三边为7、3、3,3+3=6<7,所以不能组成三角形.因此第三边的长为7.故选B.5.满足不等式组的正整数解的和为()A.0 B.1 C.2 D.3【考点】一元一次不等式组的整数解.【分析】先解每一个不等式,求出不等式组的解集,再求出正整数解,然后相加即可.【解答】解:解不等式x﹣1≤1,得x≤2,解不等式2x>﹣4,得x>﹣2,所以,不等式组的解集为﹣2<x≤2,正整数解是:1,2,1+2=3,故选D.6.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.7.若不等式组有解,则实数m的取值范围是()A.m≤B.m<C.m>D.m≥【考点】不等式的解集.【分析】分别解两个关于x的不等式,根据不等式组有解即可得m的范围.【解答】解:解不等式5﹣3x≥0,得:x≤,解不等式x﹣m≥0,得:x≥m,∵不等式组有解∴m≤,故选:A.8.小明发现:若设∠BAC=θ(0°<θ<90°).把小棒依次摆放在两射线AB、AC之间,并使小棒两端分别落在两射线上,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.若只能摆放5根小棒,则θ的范围是()A.10<θ<15 B.15<θ≤20 C.15≤θ<18 D.20≤θ≤30【考点】等腰三角形的性质.【分析】根据题意可以列出关于θ的不等式,从而可以解答本题.【解答】解:由题意可得,θ1=2θ,θ2=3θ,则,θ5=6θ,∵若只能摆放5根小棒,∴解得,15°≤θ<18°,故选C.二、填空题(每空2分,共22分)9.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示为8×10﹣8米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 08=8×10﹣8;故答案为:8×10﹣8.10.已知二元一次方程x=y+1,若y的值大于﹣1,则x的取值范围是x>0.【考点】解一元一次不等式.【分析】先用x表示出y,根据y的值大于﹣1求出x的值即可.【解答】解:∵x=y+1,∴y=x﹣1.∵y的值大于﹣1,∴x﹣1>﹣1,解得x>0.故答案为:x>0.11.若a=2,a+b=3,则a2+ab=6.若x+y=3,xy=1,则x2+y2=7.【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:a2+ab=a(a+b)=2×3=6,x2+y2=(x+y)2﹣2xy=32﹣2×1=9﹣2=7,故答案为:6,7.12.如图,小明从点A出发,沿直线前进8m后向左转60°,再沿直线前进8m,又向左转60°…照这样走下去,小明第一次回到出发点A,一共走了48米.【考点】多边形内角与外角.【分析】先利用外角和为360°计算出多边形的边数,再利用8米乘以它的边数即可.【解答】解:360°÷60°=6,8×6=48(米),故答案为:48.13.若x3m﹣3﹣2y2n﹣1=5是二元一次方程,则m=,n=1.【考点】二元一次方程的定义.【分析】依据二元一次方程的定义求解即可.【解答】解:∵x3m﹣3﹣2y2n﹣1=5是二元一次方程,∴3m﹣3=1,2n﹣1=1,解得m=,n=1.故答案为:;1.14.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°则∠1的度数为98度.【考点】三角形内角和定理.【分析】先根据三角形的内角和定理可出∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∵∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°﹣82°=98°.故答案为:98.15.若关于x、y的二元一次方程组的解满足﹣1<x+y≤1,则k的取值范围0<k≤2.【考点】解一元一次不等式组;二元一次方程组的解.【分析】将两方程相加进而得出x+y=k﹣1,再利用不等式组的解法得出k的取值范围.【解答】解:由题意可得:3x+3y=3k﹣3,则:x+y=k﹣1,∵﹣1<x+y≤1,∴,解①得:k>0,解②得:k≤2,故不等式组的解为:0<k≤2.故答案为:0<k≤2.16.若关于x的不等式的整数解共有4个,则m的取值范围是6<m≤7.【考点】一元一次不等式组的整数解;不等式的性质;解一元一次不等式;解一元一次不等式组.【分析】关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.【解答】解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.17.若(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=0.【考点】代数式求值.【分析】令x=0求出a0的值,令x=1即可确定出所求式子的值.【解答】解:令x=0得:a0=1,当x=1时,a0+a1+a2+a3+a4=1,则a1+a2+a3+a4=0.故答案为:0.三、解答题18.计算:(1)(﹣)100×3101﹣(π﹣3)0﹣(﹣2)﹣2(2)(a+2b)(a﹣2b)+(a+2b)2﹣4ab.【考点】平方差公式;幂的乘方与积的乘方;完全平方公式;零指数幂;负整数指数幂.【分析】(1)本题涉及积的乘方的逆运算、零指数幂、负整数指数幂等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先计算平方差公式,完全平方公式,再去括号合并同类项即可求解.【解答】解:(1)(﹣)100×3101﹣(π﹣3)0﹣(﹣2)﹣2=(﹣×3)100×3﹣1﹣=1×3﹣1﹣=3﹣1﹣=1;(2)(a+2b)(a﹣2b)+(a+2b)2﹣4ab.=a2﹣4b2+a2+4ab+4b2﹣4ab=2a2.19.把下列各式分解因式:(1)2x2﹣4x+2(2)x2﹣3x﹣28(3)16(m﹣n)2﹣9(m+n)2.【考点】提公因式法与公式法的综合运用;因式分解-十字相乘法等.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据十字相乘法,可得答案;(3)根据平方差公式,可得答案.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2;(2)原式=(x+4)(x﹣7);(3)原式=[4(m﹣n)+3(m+n)][4(m﹣n)﹣3(m+n)]=(7m﹣n)(m﹣7n).20.解不等式(组)或方程组,并把解集在数轴上表示出来.(1)x﹣1>2x,(2)(3)解方程组:.【考点】解一元一次不等式组;解二元一次方程组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)直接利用不等式的性质,进而解不等式得出答案;(2)分别解两不等式,进而得出公共解集;(3)利用加减消元法解方程组得出答案.【解答】解:(1)x﹣1>2x,移项得:﹣2x>1,整理得:﹣x>1,解得:x<﹣2,如图所示:;(2),解①得:x≥﹣3,解②得:x<5,故不等式组的解为:﹣3≤x<5,;(3)整理得:,①﹣②得:4y=16,解得:y=4,则x=10,故方程组的解为:.21.已知关于x、y的方程组为(1)求方程组的解(用含有m的代数式表示);(2)若方程组的解满足x<1且y>1,求m的取值.【考点】解一元一次不等式组;二元一次方程组的解.【分析】(1)因为x、y的系数对称性比较好,故两式相加后的等式再分别与两式相加减即可简单求解;(2)将(1)中所求的x、y的值代入x<1且y>1中,组成不等式组求解即可.【解答】解:(1)①+②得:x﹣y=2m﹣2 ③②﹣③得:x=4m+1③﹣①得:y=2m+3∴所求方程组的解为:(2)若方程组的解满足x<1且y>1,求m的取值,则:解这个不等式组的:﹣1<m<0即m的取值为:﹣1<m<0万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为15.5万元和两种手机的销售利润为2.1万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【解答】解:(1)设商场计划购进甲种手机x部,乙种手机y部,由题意,得,解得:,答:商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a部,则乙种手机增加2a部,由题意,得0.4(20﹣a)+0.25(30+2a)≤16,解得:a≤5.设全部销售后获得的毛利润为W万元,由题意,得W=0.03(20﹣a)+0.05(30+2a)=0.07a+2.1∵k=0.07>0,∴W随a的增大而增大,=2.45.∴当a=5时,W最大答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元.23.已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,点E是AC边上的一个动点(点E与点A、C不重合).(1)当a、b满足a2+b2﹣16a﹣12b+100=0,且c是不等式组的最大整数解,试求△ABC的三边长;(2)在(1)的条件得到满足的△ABC中,若设AE=m,则当m满足什么条件时,BE分△ABC的周长的差不小于2?【考点】一元一次不等式组的应用;勾股定理的逆定理.【分析】(1)根据a2+b2﹣16a﹣12b+100=0,且c是不等式组的最大整数解,可以分别求得a、b、c的值,然后根据勾股定理的逆定理可以判断△ABC的形状;(2)由题意可以得到关于m的不等式,从而可以解答本题.【解答】解:(1)∵a2+b2﹣16a﹣12b+100=0,∴(a﹣8)2+(b﹣6)2=0,∴a﹣8=0,b﹣6=0,得a=8,b=6,解得,﹣4≤x<11,∵c是不等式组的最大整数解,∴c=10,∵a=8,b=8,c=10,62+82=102,∴△ABC是直角三角形;(2)由题意可得,|(AB+AE)﹣(BC+CE)|≥2,即|(10+m)﹣(8+6﹣m)|≥2,解得,m≥3或m≤1,即当m≥3或m≤1时,BE分△ABC的周长的差不小于2.xx年11月2日。
苏教版初中数学七年级下册第二学期第13周周考试卷
苏教版初中数学七年级下册第二学期第13周周考试卷一、选择题(每小题3分,共30分)1.下列不等式总成立的是( )A .4a >2aB .a 2>0C .a 2>aD .﹣a 2≤02.下列不等关系中,正确的是( )A .a 不是负数表示为a >0B .x 不大于5可表示为x >5C .x 与1的和是非负数可表示为x+1>0D .m 与4的差是负数可表示为m ﹣4<03.无论x 取什么数,下列不等式总成立的是( )A .x+6>0B .x+6<0C .﹣(x ﹣6)2<0D .(x ﹣6)2≥04.下列式子中,不成立的是( )A .﹣2>﹣1B .3>2C .0>﹣1D .2>﹣15.在数学表达式:①﹣2<0;②3x ﹣5>0;③x=1;④x 2﹣x ;⑤x≠﹣2;⑥x+2>x ﹣1中,不等式有( )A .2个B .3个C .4个D .5个6.下列表达式:①﹣m 2≤0;②x+y >0;③a 2+2ab+b 2;④(a ﹣b )2≥0;⑤﹣(y+1)2<0.其中不等式有( )A .1个B .2个C .3个D .4个7. 暑假里父母带孩子准备外出旅行,咨询时了解到东方旅行社规定:若父母各买一张全票,则孩子的费用可按全票价七折优惠(即优惠30%);而光明旅行社规定:三人旅行可按团体票计价,即按全票价的90%收费,若已知旅行社的全票价相同,则实际收费 ( )A .东方旅行社比光明旅行社低B .东方旅行社与光明旅行社相同C .东方旅行社比光明旅行社高D .谁高谁低视全票价多少而定8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >-D.5a =- 10. a 是一个整数,比较a 与3a 的大小是( )A.3a a > B.3a a < C.3a a = D.无法确定二、填空题(每小题3分,共30分) 11.当实数a <0时,6+a 6﹣a (填“<”或“>”).12.写出一个解集为x >1的一元一次不等式: .13.写出一个解为x≥1的一元一次不等式 .14.三角形三边长分别为4,a ,7,则a 的取值范围是15.如果四个连续自然数的和小于34,那么这样的自然数有多少组?请依次填空:设四个连续自然数分别为x 、 、 、 ,则列出不等式为,它的解集为 。
七年级数学下学期周周练十三(无答案) 苏科版(2021学年)
(无答案)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省扬州市江都区宜陵镇2016-2017学年七年级数学下学期周周练十三(无答案) 苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省扬州市江都区宜陵镇2016-2017学年七年级数学下学期周周练十三(无答案) 苏科版的全部内容。
一方程组1若a+b=﹣2,a﹣b=4,则a2﹣b2=______.2若x、y是两个实数,且,求xyyx的值3根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦b时的部分超过300千瓦时的部分a+0。
52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0。
85元?4某民营边贸公司要把240吨白砂糖运往东盟某国的A 、B 两地,先用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A 地,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.二 不等式(组)性质 1若x>y ,则a x>ay 。
七年级数学下学期第13周周考试题试题
射洪外国语2021-2021学年七年级数学下学期第13周周考试题一、选择题〔每一小题3分,一共30分〕1、以下各式中一定成立的是〔 〕A .22)2(2-= B.33)2(2-= C. 2222-=- D. 33)2()2(-=-2、假设b c a <<<0,那么以下各式正确的选项是〔 〕A .0<abc B. 0=abc C. 0>abc3、2021年3月温家宝HY 在2021年政府工作报告中指出和2021在国际HY 的冲击下,我国国内消费总值仍高达33.5万亿元,比上年增长8.7%,33.5万亿用科学记数法表示为〔 〕A .9105.33⨯ B. 12105.33⨯ C. 121035.3⨯ D. 131035.3⨯4、当x 分别等于3和-3时,多项式356642+-+x x x 的值〔 〕5、假设3)1(41522-+-y m y x m 是三次三项式,那么m 等于〔 〕 A. 1± B.1 C6、假设M 是三次多项式,N 是四次多项式,那么M-N 的值是〔 〕7、以下表达正确的有〔 〕○1.最小的有理数不存在 ○2.自然数一定是正数; ○3.两个有理数的积等于1,这两个有理数就互为倒数; ○4.最大的负数是-1; A 、4个 B 、3个 C 、2个 D 、1个8、以下表达正确的选项是〔 〕A.延长直线ABB.延长射线OMC.延长线段AB 到C ,使BC=ABD.画直线AB=3厘米9、如图,C 是线段AB 的中点,D 是BC 上的一点,以下说法中错误的选项是〔 〕 A. CD=AC-BD B. CD=BC 21 C. CD=BD AB -21 D. CD=BC AD -10、A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么AC=〔 〕A 、8cmB 、2cmC 、4cmD 、 8cm 或者者2cm二、填空题〔每空2分,一共24分〕11、在数1%.10-01.0-0,34-312)-2(7-332,,,,,,-中属于非负整数的有__________ __ ____,属于分数的有___________________________。
苏科版七年级数学下册-周周练(13).docx
初中数学试卷 桑水出品姓名班级1. .不等式475x a x ->+的解集是1x <-,则a 为 ( )A 、-2B 、2C 、8D 、52.若x >y ,则ax >ay.那么一定有( )A.a >0B.a ≥0C.a <0D.a ≤03.已知关于x 的不等式(1-a)x >2的解集是x <21a-,则a 的取值范围( ) A.a >0 B.a >1 C.a <0 D.a <14.下列说法正确的有( )(1)5是y -1>6的解;(2)不等式m -1>2的解有无数个;(3)x >4是不等式x +3>6的解集;(4)不等式x +1<2有无数个整数解.A .1个B .2个C .3个D .4个5.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.6.某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,是低可打( )折出售A 、7折B 、7.5折C 、 8折D 、8.5折7.知关于x 的不等式2x+m>-5的解集如图所示,则m 的值为 ( )A .1B .0C .-1D .-28.求不等式)1(2)3(410-≥--x x 的非负整数解。
9.解不等式,并把解集在数轴上表示出来4138)1(32--<++y y ;10.解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出它的所有整数解11.a 取什么值时,解方程32x a -=得到的x 的值.(1)是正数;(2)是负数.练习巩固1.不等式043≤-x 的非负整数解有( ).(A )1个 (B )2个 (C )3个 (D )4个2.若111=--x x ,则x 的取值范围是( )A. x>1B. x<1C. x ≤1D. x ≥13.如果关于x 的不等式 (a +1) x >a +1的解集为x <1,那么a 的取值范围是( ) .(A)a >0(B) a <0 (C)a >-1 (D) a <-1 4.不等式组⎩⎨⎧<+<-a x x x 5335的解集为4<x ,则a 满足的条件是…………( ) A 、4a < B 、4a = C 、4a ≤ D 、4a ≥5.如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .6.不等式组⎩⎨⎧<+≥+3201x x 的整数解是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省江阴长寿中学2015-2016学年七年级数学下学期第13周周练试题
一.用心选一选:(每题3分,共24分)
1.下列计算中,正确的是【 】
A .2223a a a +=
B .824a a a ÷=
C .326a a a ⋅=
D .326
()a a =
2.如图,不一定能推出b a //的条件是【 】
A .31∠=∠
B .42∠=∠
C .41∠=∠
D .ο18032=∠+∠
3.如图,射线OC 的端点O 在直线AB 上,设1∠的度数为x ,2∠的度数为y ,
且x 比y 的2倍多ο10,则列出的方程组正确的是【 】
A .⎩⎨⎧+==+10180y x y x
B .⎩⎨⎧+==+102180y x y x
C .⎩⎨⎧-==+y x y x 210180
D .⎩
⎨⎧-==+10290x y y x 4.下列各式从左到右的变形,属因式分解的是【 】
A. 2(3)(2)56x x x x ++=++
B. 4x x x x x 6)32)(32(692+-+=+-
C. 22
1025(5)x x x ++=+ D. b a b a 521022⋅= 5.如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=°,则AEF ∠=【 】
A .115°
B .105°
C .130°
D .120°
6.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点 G , 若∠EFG =
72°,则∠EGF 的度数为【 】
A .36° B.54° C.72° D.108°
7. 如图,在△ABC 中,沿DE 折叠,点A 落在三角形所在的平面内的点为A 1,若∠A=30°,∠BDA 1=80°,
则∠CEA 1的度数为【 】
8.现有一段旧围墙长20米,李叔叔想紧靠这段围墙圈一块长方形空地作为兔舍饲养小兔. 已知他
圈好的空地如图所示,是一个长方形,它的一条边用墙代替,另三边用总长度为50米的篱笆围成,
设垂直于墙的一边的长度为a 米,则a 的取值范围是【 】
A.20<a <50
B. 15≤a <25
C.20≤a <25
D. 15≤a ≤20
二.细心填一填:(每空2分,共20分)
(第8题图)
9.计算:()42a a b --= . 10. 水滴穿石,水珠不断滴在一块石头上,经过若干年,石头上形成了一个深为0.0000075m 的小洞,则数字0.0000075用科学记数法可表示为 .
11.用完全平方公式计算 22()4x m x x n -=-+,则m +n 的值为 .
12.若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+2
2132y x k y x 的解满足y x +﹥1,则k 的取值范围是__ __.
13.一个三角形的三边长分别是3、a 、6,则a 的取值范围是 .
14.已知多边形的内角和比它的外角和大540°,则多边形的边数为 .
15.已知x +3y -3=0,则3x ·27y = .
16.若不等式组(1)有解,则a 的取值范围是 .
(2)有两个整数解,则a 的取值范围是 .
17. 已知x =2是不等式 (x-5)(ax-3a+2)≤0的解,且x =1不是这个不等式的解,则a 的取值范围是
三.耐心做一做:(本大题共6题,计56分)
18.(本题8分)计算:
(1) 021(2013)()43π---+- (2) 2332
()(2)x y xy ⋅-
19.(本题8分)将下列各式分解因式:
(1)3182m m - (2)22216)4(x x -+
20.(本题10分)解方程组或不等式组: (1)13523432x y x y +-⎧=⎪⎨⎪+=⎩
(2)⎪⎩⎪⎨⎧+≤->-42214215x x x x 并把它的解集在数轴上表示
21.(本题10分) 如图,∠ABD 和∠BDC 的平分线交于点E ,BE 的延长线交CD 于点F ,且 ∠1 +∠2 = 90°.
求证:(1)AB∥CD; (2)猜想∠2 与∠3的关系并证明
22.(本题10分)便利店老板到厂家购进A ,B 两种香油,A 种香油每瓶进价6.5元,B 种香油每瓶进价8元,购进140瓶,共花了1000元,且该店A 种香油每瓶售价8元,B 种香油每瓶售价10元.
(1)该店购进A ,B 两种香油各多少瓶?
(2)老板打算再以原来的进价购进A ,B 两种香油共200瓶,计划投资不超过1420元,且按原来的售价将这200瓶香油销售完,且获利不低于339元,请问有哪几种购货方案?
23.(本题10分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.
在图①中,∠B =90°,∠A =30°;图②中,∠D =90°,∠F =45°.图③是该同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).
(1)在△DEF 沿AC 方向移动的过程中,该同学发现:F 、C 两点间的距离逐渐 ;连接FC ,∠FCE 的度数逐渐 .(填“不变”、“变大”或“变小”)
(2)△DEF 在移动的过程中,∠FCE 与∠CFE 度数之和是否为定值,请加以说明;
(3)能否将△DEF 移动至某位置,使F 、C 的连线与AB 平行?若能,求出∠CFE 的度数;若不能,请说明理由.
C 1
2 3 A B D F。