北科高数上册第一章答案

合集下载

大学高数高数第一章(终)课后参考答案及知识总结

大学高数高数第一章(终)课后参考答案及知识总结

第一章函数、极限与连续内容概要课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① a log □,( □0>) ② /N □, ( □0≠) ③(0)≥W④ arcsin W (W[]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ;(2)31121121arcsin≤≤-⇒≤-≤-⇒-=x x x y ; (3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★ 2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,x x g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★ 3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数;思路:注意自变量的不同范围; 解:216sin)6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★ 4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。

北大高数(上)第1章习题

北大高数(上)第1章习题

习题1-11. 下列函数是否相等,为什么? 函数 函数的概念 函数相同的条件222(1)()();(2)sin (31),sin (31);1(3)(),() 1.1f xg x y x u t x x f x g x x x ===+=+-==+- 解: (1)相等.因为两函数的定义域相同,都是实数集R ;x =知两函数的对应法则也相同;所以两函数相等.(2)相等.因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等.(3)不相等.因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 求下列函数的定义域 函数 函数的概念 定义域和值域的概念211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x xy y x x ==-==-解: (1)要使函数有意义,必须40x x -≥⎧⎨≠⎩ 即 4x x ≤⎧⎨≠⎩ 所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩即 301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1).(3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须12sin 1x -≤≤ 即 11sin 22x -≤≤ 即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数). 也即ππππ66k x k -+≤≤+ (k 为整数).3. 设1()1x f x x -=+,求1(0),(),().f f x f x-函数函数的概念 函数的基本运算解: 10(0)110f -==+,1()1(),1()1x x f x x x --+-==+--1111().111x x f x x x--==++ 4. 设1,10()1,02x f x x x -≤<⎧=⎨+≤≤⎩,求(1)f x -.函数函数的概念 函数的基本运算解: 1,1101,01(1).(1)1,012,13x x f x x x x x -≤-<≤<⎧⎧-==⎨⎨-+≤-≤≤≤⎩⎩5. 设()2,()ln x f x g x x x ==,求(()),(()),(())f g x g f x f f x 和(())g g x . 函数函数的概念 复合函数的概念解: ()ln (())22,g x x x f g x ==(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==⋅=⋅()2(())22,(())()ln ()ln ln(ln ).xf x f f xg g x g x g x x x x x ====6. 求下列函数的反函数及其定义域:函数 反函数、复合函数 反函数的定义2531(1); (2)ln(2)1;1(3)3; (4)1cos ,[0,π].x xy y x xy y x x +-==+++==+∈ 解: (1)由11x y x -=+解得11yx y-=+, 所以函数11x y x -=+的反函数为1(1)1xy x x-=≠-+. (2)由ln(2)1y x =++得1e 2y x -=-,所以,函数ln(2)1y x =++的反函数为1e 2()x y x -=-∈ R .(3)由253x y +=解得31(log 5)2x y =- 所以,函数253x y +=的反函数为31(log 5)(0)2y x x =-> .(4)由31cos y x =+得cos x =又[0,π]x ∈,故x =又由1cos 1x -≤≤得301cos 2x ≤+≤,即02y ≤≤,故可得反函数的定义域为[0,2],所以,函数31cos ,[0,π]y x x =+∈的反函数为(02)y x =≤≤.7. 判断下列函数在定义域内的有界性及单调性:函数 函数的特性 有界性、单调性2(1); (2)ln 1xy y x x x==++ 解: (1)函数的定义域为(-∞,+∞), 当0x ≤时,有201x x ≤+,当0x >时,有21122x x x x ≤=+, 故(,),x ∀∈-∞+∞有12y ≤.即函数21xy x =+有上界.又因为函数21xy x =+为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数21xy x =+有界. 又由1212121222221212()(1)11(1)(1)x x x x x x y y x x x x ---=-=++++知,当12x x >且121x x <时,12y y >,而 当12x x >且121x x >时,12y y <. 故函数21xy x=+在定义域内不单调. (2)函数的定义域为(0,+∞),10,0M x ∀>∃>且12;e 0M x M x >∃>>,使2ln x M >.取012max{,}x x x =,则有0012ln ln 2x x x x M M +>+>>, 所以函数ln y x x =+在定义域内是无界的. 又当120x x <<时,有12120,ln ln 0x x x x -<-<故1211221212(ln )(ln )()(ln ln )0y y x x x x x x x x -=+-+=-+-<. 即当120x x <<时,恒有12y y <,所以函数ln y x x =+在(0,)+∞内单调递增.8. 已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.函数 函数的概念 定义域、值域的概念图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h hS S h h h h ϕϕϕϕϕ=++==+=+---=+=+ 由00,cot 0S h BC h hϕ>=->得定义域为0tan 40)S .9. 下列函数是由哪些基本初等函数复合而成的?函数 基本初等函数 基本初等函数5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.习题1-21. 写出下列数列的通项公式,并观察其变化趋势:极限 数列极限的概念与性质 数列极限的定义1234579(1)0,,,,,; (2)1,0,3,0,5,0,7,0,; (3)3,,,,.3456357----解: 1(1),1n n x n -=+当n →∞时,1n x →. 1(2)cos π2n n x n -=,当n 无限增大时,有三种变化趋势:趋向于+∞,趋向于0,趋向于-∞.21(3)(1)21nn n x n +=--,当n 无限增大时,变化趁势有两种,分别趋于1,-1. 2. 对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有n x a ε-<:极限数列极限的概念与性质 数列极限的定义1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε==== 解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin 2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<. 当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数.(2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21n ε>即可.取21N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有0n x ε-<. 当0.0001ε=时, 821100.0001N ⎡⎤==⎢⎥⎣⎦或大于108的整数. 3. 根据数列极限的定义,证明:极限 数列极限的概念与性质 数列极限的定义21313(1)lim0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<-,只要n >,取n =,则当n>N 时,1ε<,从而1n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.4. 若lim n n x a →∞=,证明lim n n x a →∞=,并举反例说明反之不一定成立.极限 函数极限的概念与性质 函数极限的定义证:lim 0n n x →∞=,由极限的定义知,0,0N ε∀>∃>,当n N >时,恒有n x a ε-<.而 n n x x a a ε-<-<0,0N ε∴∀>∃>,当n N >时,恒有n x a ε-<,由极限的定义知lim .n n x a →∞=但这个结论的逆不成立.如(1),lim 1,nn n n x x →∞=-=但lim n n x →∞不存在.5. 利用收敛准则证明下列数列有极限,并求其极限值:极限数列极限的概念与性质数列极限的定义1111(1)1,2,; (2)1,1,1,2,.1nn n nx x x n x x n x ++=====+=+证: (1)122x =<,不妨设2k x <,则12k x +=<=.故对所有正整数n 有2n x <,即数列{}n x 有上界.又1n n n x x x +-==0>,又由2n x <从而10n n x x +->即1n n x x +>,即数列{}n x 是单调递增的.由极限的单调有界准则知,数列{}n x 有极限. 设lim n n x a →∞=,则a =于是22a a =,2,0a a ==(不合题意,舍去),lim 2n n x →∞∴=.(2) 因为110x =>,且111nn nx x x +=++, 所以02n x <<, 即数列有界又 111111111(1)(1)n n n n n n nn n n x x x x x x x xx x --+---⎛⎫⎛⎫++-=-= ⎪ ⎪++++⎝⎭⎝⎭ 由110,10n n x x -+>+>知1n n x x +-与1n n x x --同号, 从而可推得1n n x x +-与21x x -同号, 而 1221131,1,022x x x x ==+=-> 故10n n x x +->, 即1n n x x +>所以数列{}n x 单调递增,由单调有界准则知,{}n x 的极限存在. 设lim n n x a →∞=, 则11a a a=++, 解得1122a a +==(不合题意,舍去). 所以1lim 2n n x →∞=习题1-31. 选择题 (1)设1,1()0,1x f x x ≠⎧=⎨=⎩,则0lim ()x f x →=(D )A.不存在B.∞C.0D.1(2)设()f x x =,则1lim ()x f x →=(B ) A.1- B.1 C.0 D.不存在(3)0(0)f x +与0(0)f x -都存在是函数()f x 在点0x x =处有极限的一个(A )A.必要条件B.充分条件C.充要条件D.无关条件(4)函数()f x 在点0x x =处有定义,是当0x x →时()f x 有极限的(D )A.必要条件B.充分条件C.充分必要条件D.无关条件 (5)设1()1x f x x -=-,则1lim ()x f x →=(D ) A.0 B.1- C.1 D.不存在 2.证明01lim arctanx x→不存在. 0000011lim arctan ,lim arctan ,2211lim arctan lim arctan ,1limarctan x x x x x x x x xx ππ+-+-→→→→→==-∴≠∴不存在。

高等数学上册第一章习题详解

高等数学上册第一章习题详解

习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈ f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒ ∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2) ⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1); 解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形. 解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xxy -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), - f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3; (3)2211xx y +-=;(4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2xx a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f xx x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2); (2)y =cos 4x ; (3)y =1+sin πx ; (4)y =x cos x ; (5)y =sin 2 x .解 (1)是周期函数, 周期为l =2π. (2)是周期函数, 周期为2π=l .(3)是周期函数, 周期为l =2. (4)不是周期函数. (5)是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ; (2)xx y +-=11;(3)d cx b ax y ++=(ad -bc ≠0);(4) y =2sin3x ; (5) y =1+ln(x +2);(6)122+=x xy .解 (1)由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为x x y +-=11.(3)由d cx b ax y ++=得a cy bdy x -+-=, 所以dcx b ax y ++=的反函数为a cx b dx y -+-=.(4)由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin 3x 的反函数为2arcsin 31x y =.(5)由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M , 即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;(2) y =sin u , u =2x , ,81π=x ,42π=x ;(3)u y =, u =1+x 2, x 1=1, x 2= 2; (4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 (1)y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2)y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)21x y +=, 21121=+=y , 52122=+=y . (4)2x e y =, 1201==e y , e e y ==212.(5)y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a )(a >0);(4)f (x +a )+f (x -a )(a >0).解 (1)由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2)由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3)由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4)由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f .()⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| ][101)(x e x x e e x f g x f , 即()⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| ][1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AC +CD +DB)与水深h 之间的函数关系式, 并说明定义域. 图1-37 解40sin h DC Ab ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以 h h S L40sin 40cos 20-+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定, 定义域为 40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元. (1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0. 01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0. 01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p .(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0. 01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=;(2)n x n n 1)1(-=;(3)212n x n +=;(4)11+-=n n x n ;(5) x n =n (-1)n .解 (1)当n →∞时, n n x 21=→0, 021lim =∞→n n .(2)当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)当n →∞时, 212nx n +=→2, 2)12(lim 2=+∞→n n .(4)当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5)当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问nn x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ;(2)231213lim =++∞→n n n ;(3)1lim22=+∞→na n n (4)19 999.0lim =⋅⋅⋅∞→个n n . (1)分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n, 所以01lim 2=∞→n n .(2)分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n 41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)分析 要使ε<<++=-+=-+n a n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >.证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→n a n n .(4)分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n .证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有εε=⋅<≤=-MM y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }若x 2k →a (k →∞), x 2k +1→a (k →∞), 证明: x n →a (n →∞). 证明 因为x 2k →a (k →∞), x 2k +1→a (k →∞), 所以∀ε>0, ∃K 1, 当2k >2K 1时, 有| x 2k -a |<ε ;∃K 2, 当2k +1>2K 2+1时, 有| x 2k +1-a |<ε..取N =max{2K 1, 2K 2+1}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;(2)12)25(lim 2=+→x x ;(3)424lim22-=+--→x x x ; (4)21241lim31=+--→x x x . 证明 (1)分析 |(3x -1)-8|=|3x -9|=3|x -3|, 要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε >0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)分析 |(5x +2)-12|=|5x -10|=5|x -2|, 要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有|(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)分析 |)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 要使ε<--+-)4(242x x , 只须ε<--|)2(|x .证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)分析|)21(|2|221|212413--=--=-+-x x x x , 要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim321=+--→x x x . 2. 根据函数极限的定义证明: (1)2121lim33=+∞→x x x ; (2)0sin lim=+∞→xxx .证明 (1)分析333333||21212121x x x x x x =-+=-+, 要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x .证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x .(2)分析 xxx xx 1|sin |0sin ≤=-, 要使ε<-0sin x x, 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx, 所以0sin lim =+∞→x xx .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0. 001?解 由于x →2, |x -2|→0, 不妨设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0. 001, 只要0002.05001.0|2|=<-x , 取δ=0. 0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001. 4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只397301.04||=->x , 397=X . 5. 证明函数f (x )=|x | 当x →0时极限为零.6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x xx f ,11lim lim )(lim 000===+++→→→x x x x xx f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 00-=-==---→→→x xx x x x x x ϕ, 1lim ||lim )(lim 00===+++→→→xxx x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有|f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有| f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |.习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小. 2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε >0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε >0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xxy 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M xx>+21,所以当x →0时, 函数x xy 21+=是无穷大. 取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104.4. 求下列极限并说明理由:(1)xx n 12lim+∞→;(2)xx x --→11lim 20.解 (1)因为x x x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→xx n .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim20=--→x x x . 5. 根据函数极限或无穷大定义, 填写下表:6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数x x y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取 πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ;解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ;解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim-+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim02220220=+=-++=-+→→→.(6))112(lim 2x x x +-∞→; 解 21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x .(8)13lim242--+∞→x x x x x ; 解 013lim242=--+∞→x x x x x (分子次数低于分母次数, 极限为零) 或 012111lim13lim 4232242=--+=--+∞→∞→x x x x x x xx x x . (9)4586lim 224+-+-→x x x x x ;解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x x x x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x .(6)nn n x2sin2lim ∞→(x 为不等于零的常数). 解 x x x x nn n n n =⋅=∞→∞→22sinlim 2sin 2lim . 2. 计算下列极限: (1)x x x 1)1(lim -→;解 {}111)1(101(1[lim (1[lim )1(lim --→-→→=-+=-+=-e x x x x x x x .(2)xx x 1)21(lim +→;解 []222122101)21(lim )21(lim )21(lim e x x x xx x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→;解 []222)11(lim )1(lim e x x x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '.解4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为nn 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I, 111lim =+∞→nn .(2)()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n ,所以 ()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2,22+,222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅).先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n nn n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n ,1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-xx x .又因为11lim )1(lim 0==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小? 解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x ,所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小. (2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ; (2)2~1sec 2x x -.证明 (1)因为1tan lim arctan lim00==→→y y xxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x . (2)因为()122sin2lim 22sin 2limcos cos 1lim 2211sec lim20222020===-=-→→→→x xx x x x xx x x x x x ,所以当x →0时, 2~1sec 2x x -.4. 利用等价无穷小的性质, 求下列极限:(1)xxx 23tan lim0→;(2)mn x x x )(sin)sin(lim0→(n , m 为正整数);(3)xx x x 3sin sin tan lim -→;(4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2) ⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0), 23232223231~11)1(11x x x x x ++++=-+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim230320-=⋅-=-+-+-→→xx x x x xx x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性).证明 (1)1lim=αα, 所以α ~α ; (2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形: (1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 (1)已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数. (2)只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, )1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);(3),1cos 2x y = x =0;(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的; 令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. (3)因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 2→不存在, 所以x =0是函数的第二类间断点. (4)因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型.解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;(3)f (x )在R 上处处有定义, 但仅在一点连续. 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的, 且这些点是函数的无穷间断点.解(2)函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.解(3)函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)3)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→; (5)145lim1---→x xx x ;(6)ax ax a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以 1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以 0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x .(4)211101111lim )11(lim )11()11)(11(lim 11lim0000=++=++=++=++++-+=-+→→→→x x x x x x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(6)ax ax a x ax ax a x a x --+=--→→2sin 2cos2limsin sin lima a a a x ax ax ax ax cos 12cos 22sinlim 2coslim =⋅+=--⋅+=→→.。

高等数学习题集答案(第一章)

高等数学习题集答案(第一章)

第一章 函数、极限与连续§1.1函数习题11.(1)⎪⎭⎫⎢⎣⎡+∞-,32,(2)[)(]1,00,1⋃-,(3)[]2,0,(4){}0≠x x ,(5)()∞+-.1; 2.(1)不同,(2)不同,(3)相同,(4)不同;3.单调增加;4.(1)偶,(2)非奇非偶,(3)非奇非偶,(4)偶,(5)奇;5.(1)x y 2sin ln =是由,u y =v u ln =,2w v =,x w sin =四个函数复合而成;(2)2arctan x e y =是由ue y =,v u arctan =,2x v =三个函数复合而成; (3))2ln(cos 2x y +=是由2u y =, v u cos =,w v ln =,x w +=2四个函数复合而成;(4)32cos arctan x e y =是由31u y =,v u arctan =,w v cos =,t e w =,x t 2=五个函数复合而成; (5))e ln(tan sin 22x x y +=是由u y ln =,v u tan =,w e v =,x x w sin 22+=四个函数复合而成; 6.()011)(2>++=x xx x f ; 7.()1,011)]([≠-=x x x f f ,{}()1,0)]([≠=x x x f f f 。

习题2 1.(1){}0≠x x ,(2)(]1,0,(3)⎭⎬⎫⎩⎨⎧≥-⎪⎭⎫ ⎝⎛+≠≥01210k k x x x π且; 2.(1)不同,(2)不同;3.(1)奇,(2)偶;4.原点;5. ()1sin 0211)(2<<--=x x x x f 。

§1.2数列的极限习题1.(1)0;(2)0;(3)2(4)1;(5)极限不存在。

2.(1)]1[ε=N ;(2)]41[ε=N ;(3)]1lg 1[ε+=N ; §1.3函数的极限习题 1. 397=X 。

高等代数北大版第三版习题答案一到四章

高等代数北大版第三版习题答案一到四章

u1(x) f (x) + v1(x)g (x) = 1
(1)
u2 (x) f (x) + v2 (x)h(x) = 1
将(1)(2)两式相乘,得
(2)
[u1(x)u2(x) f (x) + v1(x)u2(x)g (x) + u1(x)v2(x)h(x)] f ( x) , +[v1(x)v2 (x)]g( x)h( x) = 1 所以 ( f ( x), g( x) h( x)) =1 。
( f2( x), g1( x) g2( x)... gn( x)) =1 ................................................, ( fm (x), g1( x) g2( x)...gn ( x)) = 1
从而可得
( f1(x) f 2(x)... f m(x), g1( x) g 2( x)...gn( x)) =1 。
即[u(x) − v(x)] f ( x) + v( x)[ f ( x) + g( x)] = 1 ,
所以 ( f (x), f ( x) + g( x)) =1。
同理 ( g( x), f ( x) + g( x)) =1 。
再由 12 题结论,即证 ( f ( x) g( x), f ( x) + g( x)) =1。
9.证明: ( f ( x)h( x), g( x) h( x)) = ( f( x), g( x)) h( x) , (h( x) 的首系数为1)。
证 因为存在多项式 u(x), v( x) 使 ( f ( x), g( x)) = u( x) f ( x) + v( x) g( x) ,

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案

第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。

解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。

2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。

解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。

时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。

综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。

2(X — X。

)~ + …+ C n(X — X。

)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。

高等数学第一章参考答案(精华)

高等数学第一章参考答案(精华)

第一章参考答案习题1.11.(1)证:对0,(要使得33110nn ,考虑到311n n,只要1n,即1n)取1=[]+1N ,则当n N 时,有310n,故31lim0nn。

(2)证:2121131393n n n n,对0,(要使得212313n n ,只要1n 即可,即1n)取1=[]+1N ,则当nN 时,有212313n n ,故212lim313nn n 。

(3)证:0,(要使得22sin 10n nn,由于211nn ,只要1n,即1n)取1=[]+1N ,则当nN 时,有2sin 0n n ,则2sin lim0nn n。

(4)证:1111n nn n n故对0,(要使1n n,只要1n ,即21n)取21=[]+1N ,则当n N 时,有10n n,则lim 10nn n ()。

2.证明:对实数a 、b ,0,ab a b证“”ab ,则0a b,故0a b,即a b再证“”假设a b ,不妨令a b ,取0=2a b ,由条件可知=2a ba b,即112,矛盾。

3. 证明:“”,{}n a 收敛于a ,0,N ,当nN 时,na a,即naa a,nN 时,(,)n a U a ,故(,)U a之外最多只含数列n a 的前N 项。

“”,若对0,(,)U a 之外只含数列n a 的有限项,不妨设为120,,...,m k k k a a a ,取|精. |品. |可. |编. |辑. |学. |习. |资. |料. * | * | * | * | |欢. |迎. |下. |载.12max{,,...,}m Nk k k ,则当nN 时,na (,)U a ,即na a{}n a 收敛于a 。

4.证:lim nna a ,则对0,故N ,当nN 时,n a a(由于a ba b ),故此时nna aa alim nna a 。

该命题的逆命题不成立,例如数列{(1)}n,令(1)nna ,则有lim 1nn a ,而lim n n a 不存在。

高等数学第一章课后习题答案

高等数学第一章课后习题答案

高等数学(本)第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤[]ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a ax a a x a x班级 姓名 学号3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()x e x g =,求()[]x g f 和()[]x f g ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}n x 有界, 又,0lim =∞→n n y 证明: .0lim =∞→n n n y x{}结论成立。

高数第一章+习题详细解答

高数第一章+习题详细解答

习 题 1-11.求下列函数的自然定义域:(1)211y x =-;解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x =解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-; 当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+; 当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫= ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=- ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证.6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么?(1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x == 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞.解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1x y x -=-是单调递减的.8. 判定下列函数的奇偶性.(1)lg(y x =;解:因为1()lg(lg(lg(()f x x x x f x --=-==-=-,所以lg(y x =是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数.(3)22cos sin 1y x x x =++-; 解:因为2()2c o s s i n 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22c o s s i n 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则 ()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证.10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界. 证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =; 周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1yx y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax by ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭.解:依题意,arccos32yx =,所以反函数1arccos 3(),[0,3]2x f x x -=∈.13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πVh V r H r=∈.15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+ , (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n > 取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-< 成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=. 解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使2212)nε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε<, 则1n →∞=. 3.若lim n n x a →∞=,证明lim||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0,由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim||||n n x a →∞=. 同理可证0a <时, lim||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =,显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理,0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时,||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<,只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|xx --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+.(4) 由于0|-=<,任给0ε>,要使0|ε-<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有|0|ε<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=; (3)lim ()x af x b +→=; (4)3lim ()8x f x -→=-. 解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于0lim ||lim 0x x x x ++→→==, 0lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=. 6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则l i m ()x f x A →∞=.证明: 由于li m ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x =为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+.(2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以 013lim x x x→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数 sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+且()n x n →+∞→∞, πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ ; (3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭ ;(4)1132lim 32n nn n n ++→∞+-; (5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h→+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+;(16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦ = 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭=21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅. (5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--.(6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx=limx=111lim2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim 11x xx x →+=++. (11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim 12x x x→∞=+∞+.(14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩问当a 为何值时,极限0lim ()x f x →存在.解:因为0lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当0lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数12111x x e x ---的极限. 解:因为11211111limlim(1)0,1x x x x x e x e x ----→→-=+=- 11211111lim lim(1),1x x x x x e x e x ++--→→-=+=+∞- 所以12111lim1x x x e x -→--不存在。

高等数学第1章课后习题答案(科学出版社).

高等数学第1章课后习题答案(科学出版社).

第一章函数、极限、连续习题1-11.求下列函数的自然定义域:x3+ (1)y=21-xx-1arccos (3) y=解:(1)解不等式组⎨(2) y=arctan1x⎧3x≠1⎪(4) y=⎨. ⎪3 , x=1⎩⎧x+3≥0得函数定义域为[-3,-1) (-1,1) (1,+∞); 2⎩1-x≠0⎧3-x2≥0(2)解不等式组⎨得函数定义域为[ ; ⎩x≠0x-1⎧-1≤≤1⎪(3)解不等式组⎨得函数定义域为[-4,-2) (3,6]; 52⎪⎩x-x-6>0(4)函数定义域为(-∞,1].2.已知函数f(x)定义域为[0,1],求ff(cosx),f(x+c)+f(x-c) (c>0)义域.解:函数f要有意义,必须0≤1,因此f的定义域为[0,1];同理得函数f(cosx)定义域为[2kπ-,2kπ+]; 22⎧0≤x+c≤11函数f(x+c)+f(x-c)要有意义,必须⎨,因此,(1)若c<,定义域为:2⎩0≤x-c≤1(2)若c=[c,1-c];的定ππ111,定义域为:{;(3)若c>,定义域为:∅. 222 1⎛x-a⎫3.设f(x)=2 1-⎪,a>0,求函数值f(2a),f(1). x⎝|x-a|⎭解:因为f(x)=f(2a)=1⎛x-a⎫1- ⎪,所以 2x⎝|x-a|⎭1⎛a⎫1⎛1-a1-=0,f(1)=1- ⎪2 4a⎝a⎭12 ⎝-a⎫⎧2 ,a>1,. =⎪⎪⎨0 ,0<a<1⎭⎩4. 证明下列不等式:(1) 对任何x∈R有 |x-1|+|x-2|≥1;(2) 对任何n∈Z+有 (1+1)n+1>(1+1)n; n+1n(3) 对任何n∈Z+及实数a>1有 a-1≤a-1. n1n证明:(1)由三角不等式得|x-1|+|x-2|≥|x-1-(x-2)|=1(2)要证(1+1)n+1>(1+1)n,即要证1+1>n+1nn+1=111(1+)+(1+)+ +(1+)+11 < =1+n+1n+1得证。

高等数学(上)课后习题参考答案

高等数学(上)课后习题参考答案

0 ,极大值
f
(e2 )
=
4 e2
2. x = 2 , x = 0 5
3.最大值为 2,最小值为 -2.
4.最小值 y x=−2 = 12
5.
x0
=
16 3
,
Smax
(16 3
)
=
151.7
3.6 函数图形的描绘
1. 水平渐近线 y = 0 .
区间 (0,1), (1, 2), (2,3) 内.
3.提示:利用反证法.
1、(1) arctan x ~ x ;
4、-1 6、0
7、2 x 8、3
(2) a = e 时等价; a ≠ e 时同阶;
(3) 同阶; (4) 同阶.
9、(1) a ; (2) 2 e n
(3) 3 abc 10、0
2、(1) n = 6 ; (2) n = 1; (3) m = 1 ,n = 2 . 2
2
分别补充定义 1,0;
2.1 导数概念 1、(1)-20 (2)1
2、(1) f ′(0) (2) − f ′(x0 ) (3) 2 f ′(x0 )
x = kπ(k ≠ 0)为第二类无穷;
(3) x = 0 第二类无穷. 3、(− ∞,− 2),(− 2,1),(1,+ ∞)
f(x)⎯⎯x→⎯−2→ − 1,f(x)⎯⎯x⎯→1→ ∞. 3
高等数学作业答案(14-15-1)
第一章 函数、极限与连续 1.1 映射与函数
(2)
例:
f
(x)
=
⎧1 ⎨⎩−1
x > 0, x≤0
1.(1) f(x)与 h(x)相同;
g(x)与 f(x),h(x)不同.

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案第一章多项式一、习题及参考解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当??+==10q p m 或=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等数学第一章1-3节参考答案

高等数学第一章1-3节参考答案

第一章 函数与极限第一节 函数教材习题1-1答案(上册P17) 1. 解:(1)(]2,6x ∈.(2)911,21010x ⎛⎫∈ ⎪⎝⎭. (3). (,100)(100,)x ∈-∞-⋃+∞.(4). (0.99,1)(1,1.01)x ∈⋃.2.解:由2212x x εε-<⇒-<.又因(1,)x U δ∈,即该邻域以1为中心, δ为半径,所以2εδ=.当0.1ε=时, 0.05δ=;当0.01ε=时, 0.005δ=.3.解: (1)不同. ()f x 的定义域为0x ≠,而()g x 的定义域为0x >. (2) 不同.对应法则不同: ()f x x =,而()g x x =. (3)相同. ()()f x g x ==.(4)不同.对应法则不同: ()sin f x x ∈而()sin g x x =.4.解(1) {}110x x x -≤≤≠且 . (2) {}12x x ≠≠且 . (3) {}24x x ≤≤ . (4) {}30x x x ≤≠且. (5) {}1x x >- . (6) {}0x x ≠.5.解: (0)2f ==,(1)f ==(1)f -==1()f a ==0()f x =0()f x h +=6.解: ()sin 66ππϕ==12,()()sin4442πππϕϕ=-==, (2)0ϕ-=.7.证: 2211251()2()5()()11()()f f t ttt tt=+++=.# 8.证:(1)左边=()()()xyx yF x F y e e eF x y +=⋅==+=右边(2)左边= ()()()x x yyF x e e f x y F y e-==-=右边.#9. 证:(1)左边=()()ln ln ln()()G x G y x y xy G xy +=+===右边(2)左边= ()()ln ln ln()()x xG x G y x y G y y-==-===右边.#10.解(1)偶函数 . (2) 既非奇函数又非偶函数 . (3) 奇函数. (4) 偶函数.(5) 既非奇函数又非偶函数. (6) 既非奇函数又非偶函数. 11.证:(1)设12(),()f x f x 都是偶函数, 12(),()g x g x 都是奇函数.令12()()(),F x f x f x =+12()()(),G x g x g x =+则12()()()F x f x f x -=-+-=12()()()f x f x F x +=,所以()F x 为偶函数.12()()()G x g x g x -=-+-=12()(())g x g x -+-=12(()())g x g x -+=()G x -,所以()G x为奇函数. #12.证: ()12,,0,x x l ∀∈- 不妨设12x x <,,则()12,0,,x x l --∈且12x x ->-,因为()()0,f x l 在内单调更加,所以12()()f x f x ->-.又因为()f x 为奇函数,所以12()()f x f x ->-,即12()()f x f x <.所以()(),0f x l -在内单调更加. #13.解:(1) 周期2T π= . (2) 22T ππ== . (3)不是周期函数 . (4) 21cos 2sin 2xy x -==,22T ππ∴==.14.解(1)由11x y x-=+得11y x y-=+,则11x y x -=+的反函数为11x y x-=+.(2) 由2sin 3y x =得1arcsin 32y x =,则2sin 3y x =的反函数为1arcsin 32x y =.(3) 由1ln(2)y x =++得2yex e =-,则所求的反函数为12x y e-=-.(4) 由221xxy =+得2log 1yx y=-,则所求的反函数为2log 1x y x=-.15.解(1)复合函数为2()sin y f x x ==,则1()6y f π=2sin 6π==14,2()3y f π=23sin34π== (2) 复合函数为()y f x ==,则1(1)y f ===,2(2)y f ===(3) 复合函数为2()xy f x e ==,则01(0)1y f e ===,12(1)y f e e ===.(4) 复合函数为22()()x x y f x e e ===,则21(1)y f e ==,22(1)y f e -=-=.16.解:此函数为分段函数: 10.15(50)()0.1550(50)(50)x x y x x x ⎧≤⎪=⎨⨯+->⎪⎩为正整数.图形略.17.解:总数为一年期存款为A 时:一年后连本带息共有0.042(10.042)A A A +=+;将(10.042)A +再存一年即两年后连本带息共有2(10.042)(10.042)(10.042)A A ++=+;半年期存款时:半年后连本带息共有(10.02),A +一年后连本带息共有2(10.02)(10.02)(10.02)A A ++=+,一年半后可取出3(10.02)(10.02)(10.0A A +++=+,两年后可取出4(10.02)(10.02)(10.2)A A ++++=+,所以存一年期的定期收益较多,多了24(10.042)(10.02)0.0033A A A +-+=.第二节 数列的极限教材习题1-2答案(上册P27) 1. 解(1)收敛, 1lim lim02n nn n x →∞→∞==. (2) 收敛, 1lim lim (1)0nn n n x n →∞→∞=-=. (3) 收敛, 21lim lim (2)2n n n x n→∞→∞=+=.(4) 收敛, 12lim limlim (1)111n n n n n x n n →∞→∞→∞-==-=++.(5)发散,因为当n 为偶数时, n x =n ,n →∞时, n x →+∞;当n 为奇数时, n x =-n ,n →∞ 时, n x →-∞. 2. 解:1lim limcos 02n n n n x nπ→∞→∞==. 对0,ε∀>要使11cos02n nnπε-≤<,只需使1n ε>,即取1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,有0n x ε-<.所以当0.001ε=时, 110000.001N ⎡⎤==⎢⎥⎣⎦. 3.证:(1) 对0,ε∀>要使221100n a nnε-=-=<,只需使21n ε>,即n >.于是对0,ε∀>取N=,当n N >时,都有2100n a n ε-=-<.由数列极限的定义21lim0n n→∞=.#(2)331311221221n n a n n n+-=-<<++ ,要使313212n n ε+-<+,只需1nε<,即1n ε>.于是对0,ε∀>取1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,都有313212n n ε+-<+, 由313lim212n n n →∞+∴=+.#(3) 2211n aa nn-==<<故对0,ε∀>1ε<,只需2anε<,即2an ε>.于是对0,ε∀>取2a n ε⎡⎤=⎢⎥⎣⎦,当n N >时,1ε<,.lim1n n→∞∴=.#(4) 110.9999110n na -=⋅⋅⋅-=n 个,故对0,ε∀>要使1n a ε-<,只需110nε<,即1lgn ε>.于是对0ε∀>(1)ε<,取 1lg n ε⎡⎤=⎢⎥⎣⎦,当n N >时,都有,10.99991,n a ε-=⋅⋅⋅-<lim 0.99991n →∞∴⋅⋅⋅=n 个. # 4. 证:lim n n u a →∞= ,∴对0ε∀>,,N Z +∃∈当n N >时, n n u a u a ε-≤-<,∴lim n n u a →∞=.#例如: 若()1nn u =-,则1n u =,lim 1n n u →∞=,而数列{}n u 没有极限.第三节 函数的极限教材习题1-3答案(上册P36)1. 证:(1) ()(31)833f x A x x -=--=- ,要想使33x ε-<,即33x ε-<, 0ε∴∀>,取03εδ=>,当03x δ<-<时, 总有(31)8333,x x δε--=-<=由函数极限的定义3lim (31)8x x →-=.#(2)24()(4)24(2)2x f x A x x x --=--=-+=--+ ,要想使24(4)2x x ε---<+,即(2)x ε--<,0ε∴∀>,取0δε=>,当0(2)x δ<--<时, 总有24(4)24(2)2x x x x ε---=-+=--<+,由函数极限的定义224lim42x x x →--=-+. #2. 证:(1) 333111()222x f x A xx+-=-=,要想使331122x xε+-<,即312xε<,亦即 x >0ε∴∀>,取0M =>,当x M >时,总有333311112222x xMxε+-=<=,由函数极限的定义,3311lim22x x x→∞+=. #(2) ()0f x A-=-≤,0ε-<,ε<,亦即21x ε>,0ε∴∀>,取210M ε=>,当x M >时,0ε<,∴sin limx x →+∞=.#3. 解: 222lim 4422x x x x x →=⇔-=+⋅- ,要想使24x ε-<,即2222221144lim11333x x x x x x x→∞--=⇔-=<+++ 22x x ε+⋅-<,(此时13x <<),亦即52x ε-<25x ε⇒-<,0ε∴∀>,取m in(1,)5εδ=,当02x δ<-<时, 总有24225x x x δε-=+⋅-<=.#若取0001ε=⋅,则0001m in(1,)000025δ⋅==⋅.4. 解: 2222221144lim11333x x x x x x x→∞--=⇔-=<+++ ,要想使22113x x ε--<+,即24xε<⇒x >,0ε∴∀>,取X =,当x X >时,222221444133x x x xXε--=<<=++. # 若取001ε=⋅,则20,X ==即当20x >时,就有22110.013x x --<+.5. 证: ()0,f x A x x -=-= 要想使0,x ε-<即,x ε<0ε∴∀>,取0δε=>,当00x δ<-<时,()()00,f x A f x x x δε-=-=-=<=由函数极限的定义 0lim 0x x →=.#6.解: 0lim ()limlim 11x x x x f x x+++→→→=== ,0lim ()lim lim 11x x x x f x x---→→→===,0lim ()1x f x →∴=.而0lim ()lim lim 11,x x x x x xϕ+++→→→===0lim ()lim lim lim (1)1,x x x x x x x xxϕ----→→→→-===-=-由于lim ()lim ()x x x x ϕϕ-+→→≠,所以0lim ()x x ϕ→不存在.。

高等代数(北版)第1章习题参考答案

高等代数(北版)第1章习题参考答案

第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等数学讲义答案第一章

高等数学讲义答案第一章

第一章 极限与连续第一节 函 数【例1】研究函数)1ln()(2x x x f ++=的奇偶性,并求其反函数. 【分析】()f x 定义域为R ,()ln(ln(()f x x x f x -=-==-+=-故()f x 为奇函数.由)1ln()(2x x x f ++=得,y e x =yex -=-+两式相减得.2y ye e x --=【例2】设0,0()1,0x f x x <⎧=⎨≥⎩, 22,1()||2,1x x g x x x ⎧-<⎪=⎨-≥⎪⎩, 试求[()],[()]f g x g f x .【分析】0,12[()]1,12x f g x x x ⎧≤<⎪=⎨<≥⎪⎩或,2,0[()]=1,0x g f x x <⎧⎨-≥⎩.【例3】设函数2||sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界( ).()()A 1,0- ()()B 0,1 ()()C 1,2 ()()D 2,3【分析】()1,0x ∈-,2||sin(2)11()(1)(2)144x x f x x x x -=≤=--⨯,故有界,选(A ) 2111||sin(2)sin(2)lim ()lim lim (1)(2)(1)x x x x x x f x x x x x ---→→→--===+∞--- 111sin(2)sin(2)lim ()lim lim (1)(1)x x x x x f x x x +++→→→--===-∞-- 222222sin(2)(2)1lim ()lim lim lim (2)(2)2x x x x x x f x x x x ++++→→→→--====+∞--- 故BCD 均不正确.第二节 极 限【例1】讨论11012lim12x x x→-+.【分析】1111001212lim 1,lim 11212x x x x xx+-→→--=-=++,故此极限不存在.【例2】讨论1121lim ()xx x x e e+→-. 【分析】111111221122lim ()lim ,lim ()limttttt t xx xx t t x x e e e ex e e x e e t t +-++++→+∞→-∞→→---==+∞-==故此极限不存在.【例3】110|sin |lim 21x x x x e x e →⎛⎫⎪- ⎪ ⎪+⎝⎭. 【分析】1111000|sin |sin lim 2lim 2lim 12111x xx x x x x x e x e x x e e +++→→→⎛⎫ ⎪-=-=-=- ⎪ ⎪++⎝⎭1111000|sin |sin lim 2lim 2lim 10111x xx x x x x x e x e x x e e --+→→→⎛⎫- ⎪-=-=--=- ⎪ ⎪++⎝⎭,故110|sin |lim 2 1.1x x x x e x e →⎛⎫⎪-=- ⎪ ⎪+⎝⎭【例1】)0,0,0()(lim 1>>>++∞→c b a c b a nnnn n【分析】不妨设0a b c ≥≥>,由3n n n nna abc a ≤++≤得11()3n nn n na abc a ≤++≤ 又因为1lim lim3nn n a a a →∞→∞==,由三明治定理得1lim().nnn nn a b c a →∞++=故()1lim()max ,,.nnn nn a b c a b c →∞++=【例2】)2211(lim 222n n nn n n +++++∞→【分析】由2221i i i n n n i n ≤≤+++得2221111n n n i i i i i in n n i n ===≤≤+++∑∑∑又因为22111lim lim 12nn n n i i i i n n n →∞→∞====++∑∑,由三明治定理得211lim .2nn i i n i→∞==+∑题型一 极限概念与性质【例1】设数列{}n x 与{}n y 满足lim 0n n n x y →∞=, 则下面断言正确的是 ( ).(A)若{}n x 发散,则{}n y 必发散 (B)若{}n x 无界,则{}n y 必有界 (C)若{}n x 有界, 则{}n y 必为无穷小 (D)若1{}nx 为无穷小,则{}n y 必为无穷小 【分析】令,0n n x n y ==,(A)不正确;令0,n n x y n ==,(C)不正确;令,1,3,50,1,3,5,0,2,4,6,2,4,6n n n n n x y n n n ==⎧⎧==⎨⎨==⎩⎩(B)不正确;选(D). 事实上,lim lim01nn n n n ny x y x →∞→∞==,分母趋于0,分子趋于0,(D)正确. 【例2】{},{},{}n n n a b c 均为非负数列, 且lim 0n n a →∞=,lim 1n n b →∞=,lim n n c →∞=∞, 则 ( ). (A),n n a b n <∀ (B),n n b c n <∀ (C)lim n n n a c →∞不存在 (D)lim n n n b c →∞不存在【分析】对n ∀,(A) (B)肯定不正确,lim n n n a c →∞可能存在可能不存在,选(D).【例3】设函数()f x 在(),-∞+∞内单调有界, {}n x 为数列, 下面命题正确的是 ( ). (A)若{}n x 收敛,则{()}n f x 必收敛 (B)若{}n x 单调,则{()}n f x 必收敛 (C)若{()}n f x 收敛, 则{}n x 收敛 (D)若{()}n f x 单调, 则{}n x 收敛【分析】{}n x 单调,由于()f x 单调,则{()}n f x 单调,又因为其有界,故由单调有界定理,(B)正确.题型二 不定式求极限【例1】(1) 0x0011233lim .3x x xx o x o x x (2) )cos 1(sin 1tan 1limx x xx x -+-+→()30002tan 1cos 1tan sin 1lim lim .1222x x x x x x xx x x →→→--===⨯(3) limxlimlimlim1.x x x ===(4) 3012cos lim 13x x x x32200012cos 12cos 1cos 11lim 1lim ln lim .3336x x x x x x x xx x(5) sin 30limx xx e e x →-()sin sin 3330001sin 1lim lim lim .6x x x x x x x x e e e e x x x x x -→→→---===-(6) 211lim (arctan arctan )1x x x x →∞-+()222220011arctan arctan 11111lim (arctan arctan )lim lim 12x t t t t t t t t x x x t t →∞→→--++++-==+()()222011lim1.2t t t t t→++-+==(7) ()()4sin sin sin sin limx x x x x →-()()()34330001sin sin sin sin sin sin sin sin 16lim lim lim .6x x x x x x x x x x x x →→→--=== (8)()()()401cos ln 1tan limsin x x x x x→--+()()()()()42220001cos ln 1tan ln 1tan tan ln 1tan 11tan limlim lim sin 22x x x x x x x x x x x x xx x x →→→--+-+-+⎛⎫-==+ ⎪⎝⎭2201tan 112lim .24x xx →==【例2】 (1) 22211lim sin cos x x x x →⎛⎫- ⎪⎝⎭()()2222222224000cos sin cos sin 11cos sin lim lim lim sin cos cos sin x x x x x x x x x x x x x x x x x x x →→→+--⎛⎫-== ⎪⎝⎭30cos sin 22lim.3x x x x x →-==-(2)()12lim x x x x e →+∞⎛- ⎝ ()()()121222011lim lim 1.txx t t e t x x e t +→+∞→--+⎛-==- ⎝【例3】(1) 310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→()333000tan 1cos 11tan 1tan sin 1limln lim lim .1sin 1sin 2x x x x x x x x x x x x x →→→-+-⎛⎫⎛⎫=== ⎪ ⎪++⎝⎭⎝⎭ 311201tan lim .1sin x x x e x →+⎛⎫= ⎪+⎝⎭(2) 21coslim x x x ⎪⎭⎫ ⎝⎛∞→ 222211111lim ln cos lim cos 1lim .22x x x x x x x x x →∞→∞→∞⎛⎫⎛⎫⎛⎫=-=-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2121lim cos .x x e x -→∞⎛⎫= ⎪⎝⎭ (3) ()110ln 1lim xe x x x -→+⎛⎫ ⎪⎝⎭()()()2000ln 1ln 1ln 1111lim ln lim 1lim .12x x x x x x x x e x x x x →→→+++-⎛⎫⎛⎫=-==- ⎪ ⎪-⎝⎭⎝⎭()11120ln 1lim .xe x x e x --→+⎛⎫= ⎪⎝⎭(4)()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()()()()()22lim ln lim .x x x x a x b x x x a b x a x b x a x b →∞→∞⎡⎤--+==-⎢⎥-+-+⎣⎦()()2lim .xa b x x e x a x b -→∞⎡⎤=⎢⎥-+⎣⎦(5) 11ln lim 1xxx x →+∞⎛⎫- ⎪⎝⎭()1112111ln 1ln 1ln 11ln lim ln 1lim lim lim 1.ln 111xx x x x x x x x x x x x x x x x x x x x x x x e →+∞→+∞→+∞→+∞-⎛⎫ ⎪⎛⎫--⎝⎭-=⋅===- ⎪⎛⎫⎛⎫⎝⎭--- ⎪ ⎪⎝⎭⎝⎭ 11ln 1lim 1.xxx x e -→+∞⎛⎫-= ⎪⎝⎭(6) lim nn →∞⎣⎦()02ln ln 1lim ln lim 1lim ln 22222t t x x t a b a b x x ab t +→+∞→+∞→⎤+-+=-===⎢⎢⎥⎣⎦⎣⎦lim lim n xn x →∞→+∞==⎣⎦⎣⎦【例4】 (1) 若30sin 6()lim0x x xf x x →+=, 求206()lim .x f x x →+233300006()sin 6()6sin 6sin 6()6sin 6limlim lim lim 36.x x x x f x x xf x x x x xf x x xx x x x →→→→+++-+-==+=(2)设0ln(1()sin 5)lim 121x x f x x →+=-, 求0lim ().x f x →000ln(1()sin 5)()sin 55()lim lim lim 1.21ln 2ln 2x x x x f x x f x x f x x →→→+===-0ln 2lim ().5x f x →= 题型三 连加或连乘求极限【例1】(1) ()11lim ()nn i l N i i l +→∞=∈+∑(2)231lim nn i i n →∞=∑ (3) n n x x x 2cos 4cos 2cos lim ∞→ 11111111111,11,lim 1.()22311()nnn i i l i i l n n n i i l →∞====-+-++-=-=++++∑∑1111111111112,11,()232422212ni l i i l n n n n =⎛⎫⎛⎫==-+-++-=+-- ⎪ ⎪++++⎝⎭⎝⎭∑1111lim 1.()22nn i i i l →∞=⎛⎫=+ ⎪+⎝⎭∑同理,得()11111lim1.()2nn i l N i i l l l +→∞=⎛⎫∈=+++ ⎪+⎝⎭∑ (2)231lim nn i i n →∞=∑ ()()2331111lim lim 121.63nn n i i n n n nn →∞→∞==⨯++=∑ (3) n n xx x 2cos 4cos 2coslim ∞→cos cos cos 2sin sin sin 2422lim cos cos cos limlim .2422sin 2sin 22n n nn n n n n n n nx x x xx x x x x x x x →∞→∞→∞⋅===【例2】 (1))212654321(lim nn n -⋅⋅∞→()()()()()22222212+11352113355711()=24622462+12+12n n n n n n n --⨯⨯⨯⋅⋅⋅⋅⋅≤ 因为1lim=02+1n n →∞,由三明治定理得213521lim()=02462n n n →∞-⋅⋅, 故13521lim()=0.2462n n n→∞-⋅⋅ (2)⎰∞→xx dt t x 0sin 1lim()()()10sin sin 11,sin 1n n xt dtt dt n x n t dt n x n ππππππ+≤<+≤≤+⎰⎰⎰即()()02121sin 1xn n t dt n x n ππ+≤≤+⎰ ()()2122lim lim 1x x n n n n πππ→∞→∞+==+,由三明治定理得012lim sin .x x t dt x π→∞=⎰(3))0,0i n p a >>设()12max ,,p M a a a =M ≤≤lim n n M M →∞==,由三明治定理得()1max ,,.p n M a a == 【例3】(1)1limn n i →∞=11011limlnln 1112lim lim .nn i in nxdxn n n n i n e e e n n n →∞=-→∞→∞=∑⎛⎫⎰=⋅⋅⋅=== ⎪⎝⎭(2)lim n11013lim 112lim .n n i i xdxn n n e e e →∞=⎛⎫+ ⎪+⎝⎭∑⎰===【例4】(1) 1limn i →∞=111nnni i i ===≤≤11lim lim 1.nnn n i i →∞→∞====由三明治定理,得1lim 1.nn i →∞==(2)1limnn i →∞=((11111lim lim ln ln 1.nnn n i i x n →∞→∞======+⎰(3)1limnn i →∞=)10111lim lim 21.nn n n i i n →∞→∞======⎰(4)21limnn i →∞=222111nn ni i i ===≤≤22111lim lim .3n n n n i i →∞→∞====故211lim.3nn i →∞==(5)11limnn i n i →∞=+∑()1100111111lim lim ln 1ln 2.11nn n n i i dx x i n i n x n→∞→∞=====+=+++∑∑⎰(6)21limn i nn i →∞=++∑2221111nn ni i i i i in n n n n i n n ===≤≤++++++∑∑∑ 22111lim lim .12nnn n i i i i n n n n n →∞→∞====++++∑∑ 故211lim.2nn i i n n i →∞==++∑ (7) 221limnn i n n i →∞=+∑ 1102222011111lim lim arctan .141nnn n i i n dx x n i n x i n π→∞→∞======++⎛⎫+ ⎪⎝⎭∑∑⎰(8) 221lim1nn i n n i →∞=++∑()22222211111nnni i i nn nn i n i ni ===≤≤+++++∑∑∑()1222220111lim lim .141nnn n i i nn dx n i x n i π→∞→∞=====++++∑∑⎰【例5】(1)2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭222sin sin sin sin sin sin sin sin sin 1111112n n n n n n n n n n n n n n n n nn n n n n πππππππππ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪+++≤+++≤+++ ⎪ ⎪ ⎪++++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1022sin sin sin sin sin sin 2lim lim sin .111n n n n n n n n n n xdx n n n n n n ππππππππ→∞→∞⎛⎫⎛⎫ ⎪ ⎪+++=+++== ⎪ ⎪+++ ⎪ ⎪⎝⎭⎝⎭⎰2sin sin sin 2lim .1112n n n n n n n n n ππππ→∞⎛⎫⎪+++=⎪+ ⎪++⎝⎭(2)21tanlim nn i i n n n i →∞=+∑222111tann tan tan 1n n ni i i i i in n n n n n n n i n ===≤≤+++∑∑∑1100222111tantan tanlim lim lim tan ln cos lncos1.1n n n n n n i i i i i in n n n n n xdx x n n n n →∞→∞→∞=======-=-++∑∑∑⎰【例6】(1)1lim 1nn i →∞=⎫⎪⎪⎭∑111lim 1lim .4nn n n i i →∞→∞==⎫==⎪⎪⎭∑ (2)()1222411lim n n n i n i n →∞=+∏()()()12222421011limln 2ln 12242arctan 2411lim25.n n n i n i nn nx dx n i niee e n →∞=⎡⎤+⎢⎥+⎢⎥-+⎣⎦→∞=∏⎰+===∏题型四 数列极限的存在性【例1】(1)设111,0n a a +=+=,证明数列{}n a 收敛,并求lim n n a →∞.121,0a a ==设1k k a a +≤,则≤21k k a a ++≤由数学归纳法得{}n a 递减下面证明n a ≥显然112a ≥-设12k a +≥-则12+≥-,即112k a +≥-由数学归纳法得n a ≥由单调有界必收敛得{}n a 收敛.设lim ,n n a A →∞=两边取极限得0A =,即A =(2) 123a a a === ,证明数列{}n a 收敛,并求lim n n a →∞.lim 2.n n a →∞=(3) 设1111,2n n n a a a a a a +⎛⎫=>=+ ⎪⎝⎭,证明数列{}n a 收敛,并求lim n n a →∞. lim n n a →∞=(4) 设1103,n a a +<<={}n a 收敛,并求lim n n a →∞.3lim .2n n a →∞= 【例2】设)(x f 是区间[)0,+∞上单调减少且非负的连续函数,()()()11,1,2,nnn k a f k f x dx n ==-=∑⎰…证明数列{}n a 的极限存在.()()()()1111110n n n n nna a f n f x dx f n f n dx +++-=+-≤+-+=⎰⎰,即{}n a 递减.()()()()()()23112112nn n k a f k f x dx f f x dx f f x dx ==-=-+-+∑⎰⎰⎰()()()()110.nn f n f x dx f n f n -+--+≥≥⎰故{}n a 有下界.由单调有界定理,{}n a 的极限存在.题型五 含参数的极限【例1】确定,,a b c 值,使()()3sin lim0ln 1x x bax xc c t dtt→-=≠+⎰. 【分析】分式极限不为0,分子趋于0,则分母趋于0,故0.b =()()()233000sin cos cos limlimlim 0ln 1ln 1x x x x ax xa x a xc c x t x dttx→→→---===≠++⎰故11,.2a c ==【例2】()()22ln 1lim2x x ax bx x →+-+=,求,a b .【分析】()()()()222222001ln 12lim lim 2x x x x o x ax bx x ax bx x x →→-+-++-+==故51,.2a b ==-题型六 含变积分限的极限【例1】设()(),g f x x 连续,且()()()g 0f x x x → ,又lim ()0x ax ϕ→=,证明:()()()()()0x x f t dt g t dt x a ϕϕ→⎰⎰.【例2】设)(x f 是[)0,+∞上的连续函数,且满足()2lim 1x f x x →+∞=,求()()220limxx t x e e f t dtf x -→+∞⎰.【分析】()()()()()222222222limlimlimxxxxttt xxx x x ee f t dte f t dte f t dt xf x x e f x x e -→+∞→+∞→+∞=⋅=⎰⎰⎰()()()2222221limlim .22222xxx x f x e f x x x x x xx e →+∞→+∞==⋅=++题型七 函数的连续与间断【例1】设()()()f x x ϕ-∞+∞和在内有定义,()f x 为连续函数,且()()0,f x x ϕ≠有间断点,则 ( ). (A)()f x ϕ⎡⎤⎣⎦必有间断点(B)()2f x ϕ⎡⎤⎣⎦必有间断点(C)()f x ϕ⎡⎤⎣⎦必有间断点 (D)()()x f x ϕ必有间断点【分析】(D) 【例2】设函数nn x xx f 211lim)(++=∞→,讨论函数)(x f 的连续性与间断点.【分析】0,11,11()1,10,1x x x f x x x ≤-⎧⎪+-<<⎪=⎨=⎪⎪>⎩()f x 在1x =处是跳跃间断点,在其他区域均连续.【例3】求()sin sin sin lim sin x t xt x t f x x -→⎛⎫=⎪⎝⎭的间断点,并判别其类型.【分析】()sin sin sin sin lim .sin xx t xxt x t f x e x -→⎛⎫== ⎪⎝⎭其中,,0x k k Z k π=∈≠且为第二类间断点,0x =为可去间断点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 1-1 (A)1.填空题. (1)函数y 44x -≤≤;(2)函数239x y x +=-的定义域为3x ≠±;(3)函数y =14x ≤≤;(4)函数y =的定义域为x<-3;(5)函数2()sin 2f x x =的周期为2π.2.设(sin )cos 12x f x =+,求()f x 及(cos )2xf .解:(sin )cos 12xf x =+212sin12x=-+222sin2x =-∴2()22f x x=- 则2(cos )22cos 1cos 22xx f x =-=-3.设20,()30,xx x f x x +≤⎧=⎨>⎩,,求(1),(0),(3)(5).f f f f x --及解:(1)211f -=-=355(0)202(3)3272(5)535(5)3535x x f f x x x x f x x x --=+===+-≤-≤⎧⎧-==⎨⎨>>⎩⎩,,,,4.将函数341y x =--用分段形式表示,并作出函数图形.解:113(41)4444113(41)4244x x x x y x x x x ⎧⎧--≥-≥⎪⎪⎪⎪==⎨⎨⎪⎪+-<+<⎪⎪⎩⎩,,,,5.判断下列函数的奇偶性. (1) 22(1)y x x =-;解:()()f x f x -=,则为偶函数. (2) 1()1x xe f x e---=+;解:11()()11xx xxe ef x f x e e-----===-++,则为奇函数.(3) ()xxf x =+;解:11()(2(2()xxxxf x f x -----=+=-++=,则为偶函数.6.设()2x y f t x =-,且当x=1时, 21122y t t =-+,求()f x .解:当x=1时,2111(1)222t t f t -+=-2(1)(1)f t t -=-则:2()f x x =.7.求下列函数的反函数. (1) 22x y x-=+;解:22y xy x +=-221y x y-=+则反函数为:221x y x-=+ (1)x ≠(2) 331xx y =-;解:33x x y y -=3log 1y x y =-则反函数为:3log 1x y x =- (10)x ><或x (3)2110ln 21x x x y x x e x -⎧-≤<⎪=<≤⎨⎪<≤⎩,,01,2; 解:10x -≤<时,x =,则反函数为:y = (x <≤01)x <≤01时,y x e =,则反函数为:x y e = (0)x-∞<≤ 1x <≤2时,ln12y x =+,则反函数为:ln12x y =+(22)x e <≤则其反函数为:ln 1222xy x y y e x xy x e ⎧=<≤⎪⎪==-∞<≤⎨⎪⎪=+<≤⎩01, , 8.证明:函数()f x 在()a,b 内有界的充分必要条件是在()a,b 内既有上界,又有下界.证明:首先来看必要性设()f x 在()a,b 内有界,且n ≤ ()f x ≤ m()f x ≤ m ,则()f x 有上界m ;n ≤ ()f x ,则()f x 有下界n ; 再来看充分性设()f x 上界和下界分别是m 和n ,取}{M m ax m n =,n ≤ ()f x ≤ m ,则()f x M ≤,()f x 有界。

9.某厂生产某产品1200t ,每吨定价100元,销售量在900t 以内时,按原价出售;超过900t 时,超过的部分打8折出售,试将销售总收入与总销售量的函数关系用数学表达式表示.解:依题意,设总销售量为x 吨,销售总收入为y 元100900(900)801200x x y x x x ≤⎧=⎨+-⨯<≤⎩,900,900 100980720001200x x x x ≤⎧=⎨+<≤⎩,900,90010.在半径为r 的球内嵌入一圆柱,试将圆柱的体积表示为其高h 的函数,并确定此函数的定义域. 解:设圆柱底面半径为R 由几何关系得:222+h r R =即R =圆柱体积为:22223(r h )r h V R h h h πππ==-=-(0h <<(B)12.填空题.(1)对一切实数x,有11()22f x +=+,则()f x 是周期为1的周期函数; (2)函数1()arcsinf x x=的定义域为3x ≥;(3)已知()sin f x x =,2(())1f x x ϕ=-,则()x ϕ的定义域为x ≤≤.13.计算题.(1)已知2()x f x e =,(())1f x x ϕ=-,且()0x ϕ≥,求()x ϕ,并写出它的定义域; 解:2()1x x eϕ-=,则()x ϕ=定义域为:(1)0ln(1)0x x ->⎧⎨-≥⎩,即0x ≤.(2)设2()f x x =,令22()()()f x h f x g x h+-=,求2()g x ;解:222()2()2x h xhx hg x x h hh+-+===+则:22()2g x x h =+.(3)设()f x =()(((())))n f x f f f x = ,并讨论()n f x 的奇偶性和有界性;解:2()f x ==3()f x ==以此类推:()n f x =()()n n f x f x -==-,为奇函数当x=0时,()0n f x = 当0x ≠时,()n f x ==±()n f x ≤∴()n f x 有界.(4)设00,()1x f x x <⎧=⎨≥⎩,,0,试将()()(1)F x f x f x =--表示成分段函数;解:11101()()(1)100110100000x x F x f x f x x x x x -≥≥⎧⎧⎪⎪=--=-≤<≤<⎨⎨⎪⎪-<<⎩⎩,,, =, ,,. (5)求y =解:323y x x x y=+--=- 332y y x +=则反函数:33()2x x y y R +=∈14.证明题.(1)若周期函数()f x 的周期为T 且0a ≠,则()f ax b +得的周期为T a;证明:由已知:()()f x f x T =+则:()[()]T f ax b T f a x b a ++=++得证.(2)若函数()f x 满足1()()0,,caf x bf x a b x x+=≠≠,则()f x 为奇函数. 证明: 1()()c af x bf x x+=(1)则,1()()af bf x cx x+= (2)(1)+ (2)得:11()[()()]()a b f f x c x xx++=+由a b ≠,则()0a b +≠∴111[()()]()[()()]()c f f xx ff x xa b x x-+-=-+=-++ 即()f x 为奇函数.习题1-2(A)1.观察下列一般项为n x 的数列{}n x 的变化趋势,判断它们是否有极限?若存在极限,则写出它们的极限. (1) 11(1)nn x n=+-;有极限,极限为1;(2) 1cos n x n=;有极限,极限为1;(3) 13n nx =;有极限,极限为0; (4) 11n n x n -=+;有极限,极限为1;(5) (1)nn x =-;无极限;(6) sin n x n =;无极限.2.利用数列极限的定义证明. (1) 313lim414n n n →∞+=-;证明:3141n n x n +=-令,由于313714141611n n n n +-=<---,0,(1),εε∀><于是,对于不妨设要使111,1n n εε<>+-,只须131,4n n N x εε⎡⎤+>-<⎢⎥⎣⎦因此,对上述,取N=则当时,就有成立,313lim414n n n →∞+=-故.(2) 1(1)lim0nn n→∞+-=;证明:1(1)nn x n+-=令,由于1(1)1(1)10nnnnn+-+--=<,0,(1),εε∀><于是,对于不妨设要使11,n nεε<>,只须1,0n n N x εε⎡⎤>-<⎢⎥⎣⎦因此,对上述,取N=则当时,就有成立,1(1)lim0nn n→∞+-=故.(3) lim1n n→∞=;证明:n x n=令由于111n=<,0,(1),εε∀><于是,对于不妨设要使11,n nεε<>,只须1,1n n N x εε⎡⎤>-<⎢⎥⎣⎦因此,对上述,取N=则当时,就有成立,lim1n n→∞=故.(4) cos2lim0n n nπ→∞=; 证明:cos2n n x nπ=令,由于cos120n n nπ-<, 0,(1),εε∀><于是,对于不妨设要使11,n nεε<>,只须1,0n n N x εε⎡⎤>-<⎢⎥⎣⎦因此,对上述,取N=则当时,就有成立,cos2lim0n n nπ→∞=故.3.证明:若lim n n x a →∞=,则lim n n x a →∞=,并举例说明:数列{}n x 有极限,但数列{}n x 未必有极限.证明:由lim n n x a →∞=及数列极限定义,对0ε∀>,存在正整数N ,当n>N 时,有n x a ε-<,则:n n x a x a ε-<-<. 故lim n n x a →∞=.举例:数列{}n x 的极限为1,而数列{}n x 11,1,1,1,,(1),n ---- 无极限.5.设21lim n n x a -→∞=,2lim n n x a →∞=,证明:lim n n x a →∞=.证明:由极限定义可知,1121,,21n N n N x a εε-∀∃->-<使当时,222,2n N n N x a ε∃>-<使当时,,112N n +∴>22N n >取121m ax ,22N N N ⎧+⎫⎡⎤⎡⎤=⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭则当n>N 时,n x a ε-<,则lim n n x a →∞=7.求极限222111lim ()2n n n n n n πππ→∞++++++ 解:由于22222111()()()2n n n n n n n n n n n n πππππ<+++<+++++21l i m ()l i m 11n n nn n n nππ→∞→∞==++而 221l i m ()l i m 11n n nn n n ππ→∞→∞==++由夹逼准则可得222111lim ()=12n n n n n n πππ→∞++++++ .8.设12n x x x =,{}n x 的极限存在,并求其极限.证明:显然21x x >{}1211,,1,lim ,0.2lim 2.k k k k n n n n n n n n k x x x x n x x x x a a x a a x ++++→∞→∞>=>=≥>=>====设对某正整数有则由归纳法可知,对任意的正整数,有即数列单调递增.又易知该数列有上界2,所以由单调有界准则可知:数列收敛.设且在两端极限得:求得,故10.求下列极限. (1) 222+3-4lim+2n n n n →∞;解:2222342+-2+3-4lim=lim22+21+n n n n n n n n→∞→∞=.(2) 3232--5+6lim4-2n+1n n n n n →∞;解:32233231562--+2--5+61limlim214-2n+124-+n n n n n n n n n n n→∞→∞==.(3) 3(1)(2)(3)lim3n n n n n→∞+++;解:3123(1)(1)(1)(1)(2)(3)1lim lim333n n n n n nnn n→∞→∞++++++==.(4) 2123limn nn→∞++++ ;解:2211123(1)1limlimlim 222n n n nn n nn n→∞→∞→∞++++++===.(5) n111lim (1++)242n →∞++;解:n11-()1112lim (1++)=lim2124212nn n →∞→∞++=-.(6) 102030(1)(21)lim(21)n n n n →∞+++;解:1020102030103011(1)(2)(1)(21)1limlim1(21)2(2)n n n n nnn n →∞→∞++++==++.12.设数列{}n x 收敛,证明:{}n x 中必有最大项或最小项.证明:由数列{}n x 收敛,则此数列有界,即n x M ≤则{}n x 中必有最大项或最小项.13.设lim n n x a →∞=,且a>b ,证明:存在某正整数N ,使得当n>N 时,有n x b >.证明:由lim n n x a →∞=,存在某正整数N ,使得当n>N 时,对0ε∀>,有,n n n x a a x x a εε-<-≤-<则n x a ε∴>-取ε为无穷小,则n x a b >>.16.设111,2,n x n +=== ,证明:数列{}n x 收敛,并求其极限. 证明:显然21x x >{}1211,,1,lim ,0.3lim 3.k k k k n n n n n n n n k x x x x n x x x x a a x a a x ++++→∞→∞>=>=≥>=>====设对某正整数有则由归纳法可知,对任意的正整数,有即数列单调递增.又易知该数列有上界3,所以由单调有界准则可知:数列收敛.设且在两端极限得:求得,故17.设1=(1)sin2n n x n π+,证明:数列{}n x 发散.证明:数列{}n x 有两个子数列:2k x =0(1,2,)k = ,1211=(1)(1)k k x n+++- (1,2,)k = ,而2lim 0k n x →∞=,数列21k x +发散∴数列{}n x 发散.习题1.3(P47)1. 答案:D 解:例:211lim21=--→x x x 在1=x 处没有定义但是有极限。

相关文档
最新文档