Analysis of heuristic synergies
近十年国外知识可视化研究发展述评_刘超
在知识经济时代,“有效教育不能再集中于曾经需要记忆的、构成稳固知识库的信息块的传播。
教育必须帮助学生学会如何高效学习,这样他们就能应对不断变化的信息、技术、工作与社会环境”,[1]实现高效学习的手段之一即“帮助学生发展必要的认知(智力)工具和学习策略”,[2]对所学知识建模,因为“获得的知识,如果没有完满的结构把它关联在一起,那是一种多半会被遗忘的知识。
一串不连贯的论据在记忆中仅有短促得可怜的寿命。
”[3]知识可视化作为认知工具中的重要表征,在教育领域中有机运用,所能发挥的作用恰如一剂催化剂,“能帮助教师采用学生易于理解和接受的教与学的方式,激发学生的学习动机,使教与学在学生‘想学’、‘愿学’、‘乐学’的心理基础上展开”,[4]在学生“学懂”、“学会”、学活”的能力层次中升华,从而促进有效教与学。
笔者以Knowledge Visualization 为主题关键词,以“2004~2011”为起止日期,从CALIS 外文期刊网数据库中共检索至相关文献共135302篇,经过筛选获得部分有一定代表性的文献,并通过对这些核心文献的仔细研读后发现:国外对于“知识可视化”无论是理论研究、实践研究抑或评价研究都凸显出相当的深广度,尤其是理论研究,更是涌现出一批蕴含较高参考价值、引领学术潮流的文献。
此外,以上诸多研究方向皆保持不断创新、臻于完善的发展态势。
具体主要研究成果大致归纳如下。
一、知识可视化的前世及今生“知识可视化”虽是2004年才正式兴起的新兴研究领域,但“可视化”的相关研究却由来已久。
早在由布洛斯·麦卡米克(Bloss McCamic )于1987年2月所发表的美国国家科学基金会报告《科学计算中的可视化》(Visualization in Scientific Computing ),可视化(Visualization )一词即作为专业术语正式出现,由此拉开国外“可视化研究”的序幕。
直到2004年7月,M.J.埃普拉(M.J.Eppler )和R.A.伯卡德(R.A.Burkhard )共同编写的工作文档《知识可视化———通向一个新的学科及其应用领域》(Knowledge Visual -ization -Towards a New Discipline and its Fields ofApplication )[5]发布,则标志着知识可视化正式成为〔摘要〕知识可视化是在科学计算可视化、数据可视化、信息可视化基础上发展起来的新兴研究领域,它应用视觉表征手段促进群体知识的传播和创新,在日益强调有效教与学的今天,已逐步受到越来越多的教育技术学家及一线教学实践者的关注。
虫草素改善脑缺血小鼠学习记忆及对海马神经元数量的影响
crye i at ce i i uy( 8 o cpnf e i hm c n r n= ) d rs j
2 11 造模后给予 虫草素对脑缺血小鼠学习能力 .. 的影响 模型组第 2 第 3和第 5天的脑缺 血小 鼠 、 正 确 反 应 率 分 别 为 5 . % 485 7. % 4 5 0 - . %、 13 - 1. %和 8 .% - . %( 1 , 36 6 3 1 9 表 )显著低于假手术组 - 9
虫 草 素 (odcpn , 称 3 cryei) 又 一脱 氧 腺 苷 ( 一 3 doydns e , 天然 中 药 材 冬 虫 夏 草 的 活性 成 exaeoi ) 为 n 分 之一 , 子式 为 C。 N O , 构 式 见 图 1 . 分 H, 3结 … 研
பைடு நூலகம்
海马各区神经元数量的影响, 为虫草素在神经 系统 的开发和应用提供实验依据.
的 6 . % ±1 . % 、 2 2 ±9 7 和 9 . % ± 94 04 8. % .% 56
2 12 造模 前给 予 虫草 素 对 脑缺 血 小 鼠迷 宫 学 习 ..
的影响 表 2 和图 3 所示 , 型组每天正确反应率 模 均低 于 假 手 术 组 , 标 所 需 训 练 次 数 ( 3. ± 达 125 2. ) 显 著 高 于假 手 术 组 ( 2 5±2. ) P< 60 也 9. 12 ( 00 )药物组每天正确反应率从第 2天开始均高于 .1.
C 1C D A 、 A 和 G区 , 取各 区 中部 500 m 围 , 选 0 范
蟊
悬
统计神经元数量.
1 7 统 计 学方法 .
矍
栏
龌
各组数据以均值 ± 标准差 ( s 表示 , ± ) 组间 比 较 采用 单 因 素 方 差 分 析 . 据 处 理 采 用 SS 30 数 P S1. 统 计软 件进 行分 析处理 .
远志皂苷对小鼠行为习得及海马CA_3区突触形态的影响
表 1所示 , 为训 练 使 各 组 小 鼠每 天 的正 确 反 应 率 行 均 逐渐 升高 . 志皂 苷 组 的正 确 反 应 率 均 高 于 相应 远 的对 照 组 ; 练第 4—8天 , 志 皂 苷 组 小 鼠的 正 确 训 远 反 应率 显著 高 于 对 照 组 小 鼠 ( < .5 ; 7天远 P 00 )第 志皂 苷组 小 鼠已达 学 会标 准 , 对 照组 小 鼠直 至第 而 9天 才达 学 会 标 准 . 9~1 第 0天 2组 小 鼠均 已达 学 会标 准 , 2组小 鼠在 正确 反应 率上 没 有显 著性 差异 .
益 智 Ⅱ号 对小 鼠突触 结 构 的影 响 , 现益 智 Ⅱ号 能 发
的远志皂苷溶液, 对照组动物则灌 胃等剂量的生理 盐水, 训练 结束后 , 每组随机各取 7只小鼠进行突触形态观察.
小 鼠饲养 环 境 温 度 为 2 5±l , ℃ 自然 光 照 , 给
rt i c ( a mi n=1 ) en e 5
突触 拍 片. 个样 品 随 机选 取 4~6张 电镜 照 片 , 每 应 用I g mae—PoPu . r ls6 0软件 进 行 测 量 和统 计 . 突触 活性 带长 度 的测 定 按 罗 兰 等 (90 的方 法 ( 1 19 ) 图 )
摘要 : 了探讨 远志皂苷对小 鼠学 习能力及海马 C 区突触形态 的影响 , 3 为 A 把 0只小鼠随机分 为 2组 : 药物组灌 胃生 药量为4 5 /g的远志皂苷溶液 , 照组灌 胃相等剂量的 生理 盐水 ,4d后进 行行 为学训练 , 间继续给 药 1 . .0gk 对 1 期 0d 训练结束后, 各取 7只小鼠检测海马 C 区突触 密度 、 A 活性带长度 、 突触 间隙宽度、 S P D厚度及 穿孔突触 的比例.结
通信信号调制方式识别方法综述
通信信号调制方式识别方法综述曾创展;贾鑫;朱卫纲【摘要】对通信信号调制方式的识别进行了深入研究,对通信信号常用的数字调制技术和调制识别预处理技术、理想高斯白噪声条件下基于决策论和基于统计模式的识别法、非理想信道条件下的调制识别法以及对共信道多信号调制方式的识别等进行了总结.在简要介绍各种方法的来源、理论基础和发展基础上讨论了各自的优缺点,并提出了调制识别研究领域的进一步发展方向.【期刊名称】《通信技术》【年(卷),期】2015(048)003【总页数】6页(P252-257)【关键词】通信信号调制识别;基于决策论;基于统计模式;非理想信道条件下;共信道多信号【作者】曾创展;贾鑫;朱卫纲【作者单位】装备学院研究生管理大队,北京101416;装备学院光电装备系,北京101416;装备学院光电装备系,北京101416【正文语种】中文【中图分类】TN76;TN911调制识别通常位于接收机的前端,在信号检测和信号解调之间,接收方要根据信号的调制方式进行解调才能继续进行下一步操作直至最终获取信号携带的信息。
而在诸如无线电检测、侦察、对抗等应用中,侦察方通常缺乏足够的先验知识,如信号的调制参数、方式等,而为了达到区分信号来源、性质、内容等目的,就需要侦察方对信号的调制方式进行正确识别分类。
当前,制电磁权已日益成为重要的作战要素,战场电磁环境中存在着大量未知信号,此时人工识别已无法满足信号识别的实时性要求,因而,人们开始研究自动调制识别方法,1969年,C.S.Weaver等人就发表了第一篇关于自动调制识别方法研究的论文[1],根据信号频谱的差异完成了自动识别。
随着通信信号从模拟调制发展为数字调制,调制方式更加复杂多样,调制识别算法的研究成果也越来越多,涉及方法体系也十分广泛。
本文从AWGN 条件下的调制识别、非理想信道条件下的调制识别以及共信道多信号的调制识别三方面概述了多种识别方法,在对各方法简要介绍的基础上对比讨论了各自的优缺点,展望了调制识别研究领域的进一步发展方向。
《额尔敦-乌日勒的活性成分分析及其对小胶质细胞基因调控作用的研究》范文
《额尔敦-乌日勒的活性成分分析及其对小胶质细胞基因调控作用的研究》篇一摘要:本研究对额尔敦-乌日勒(一种传统中草药)的活性成分进行了详细分析,并探讨了其对小胶质细胞的基因调控作用。
通过一系列实验研究,发现额尔敦-乌日勒的多种活性成分能有效影响小胶质细胞的基因表达,对神经性疾病的防治具有重要意义。
一、引言额尔敦-乌日勒作为一种传统中草药,具有悠久的历史和广泛的应用。
近年来,随着对中草药研究的深入,其药理作用和活性成分逐渐被揭示。
小胶质细胞作为神经系统中的重要组成部分,与多种神经性疾病的发生和发展密切相关。
因此,研究额尔敦-乌日勒对小胶质细胞的基因调控作用,对于深入了解其药理作用及开发新的神经性疾病治疗方法具有重要意义。
二、额尔敦-乌日勒的活性成分分析1. 实验材料与方法本部分详细介绍了实验所使用的额尔敦-乌日勒药材、实验试剂、仪器等,并阐述了活性成分的提取、分离和鉴定方法。
2. 实验结果通过高效液相色谱、质谱等技术手段,成功分离并鉴定了额尔敦-乌日勒中的多种活性成分,包括生物碱、黄酮、酚酸等。
其中,某几种主要成分被证实具有显著的生物活性。
三、额尔敦-乌日勒对小胶质细胞基因调控作用的研究1. 实验设计与方法本部分详细介绍了实验设计思路、细胞培养、基因表达分析等技术手段。
通过不同浓度的额尔敦-乌日勒活性成分处理小胶质细胞,观察其对小胶质细胞基因表达的影响。
2. 实验结果与分析通过基因芯片、实时荧光定量PCR等技术手段,发现额尔敦-乌日勒的活性成分能有效影响小胶质细胞的基因表达。
其中,某些基因的表达被显著上调或下调,这些基因与神经细胞的生长、分化、炎症反应等密切相关。
进一步分析表明,额尔敦-乌日勒的活性成分可能通过调控这些基因的表达,从而发挥其药理作用。
四、讨论与结论本部分对实验结果进行了深入讨论,分析了额尔敦-乌日勒的活性成分及其对小胶质细胞基因调控的作用机制。
研究结果表明,额尔敦-乌日勒的多种活性成分能有效影响小胶质细胞的基因表达,从而发挥其药理作用。
洋桔梗ISSR最佳反应体系的建立与品种遗传多样性检测
关键词 : 桔梗 ; S R分子标记 ;最佳反应体系 ; 传多样性 洋 IS 遗
中圈分类号 : 6 2 1 0 3 ¥ 8 . 9 .6
一
文献标志码 : A
文章编号 :0 2—10 (0 0 0 —04 0 10 32 2 1 ) 1 0 3— 4
般 观 赏 植 物 栽 培 品种 间 因 亲缘 关 系较 近 , 仅靠 花 色 、 花
3 g L 0n/ 洋桔 梗基 因组 D A模 板 及 20U 的 T qD A 聚 合 酶 。试 验 结 果 表 明 , 反 应 体 系 具 有 良好 的稳 定 性 和通 用 N . a N 该
性 。8个不同基 因型洋桔梗材料遗传多 样性检 测结 果表 明 , IS 该 SR分子 标记 可有 效地 检测 出其 中 4个 不 同品种 之 间、 同一品种 F 代 及 F 代之 间的遗 传多样性 , : 但未能检测 出同 1 品种 F 代 2个株 系之间或 2个转基 因株 系之 间的 个 。 遗传多样性 。
1 材 料 与 方 法
1 1 材 料 .
洋桔 梗品种 “ o beMa ah Pn ” F 代种子( 自昆 D ul r ci ik 的 . i 购 明缤纷 园艺有 限公 司) 萌发幼苗 , 经离体 培养 、 性繁殖得 到 无 的 2个 F 代株系 ; F 代 自交得 到的 F 代种 子萌发成 的 1 由 。 :
江苏农业科学
21 0 0年第 1 期
马 文晔, 陈崇顺 , 曹伟杰 , 等.洋桔梗 IS S R最佳反应体系的建 立与品种遗传 多样性检测[ ] J .江苏农业科学 ,0 0 1 4 2 1 ( ):3—4 6
洋桔梗 IS SR最佳反 应体系 的建立与 品种遗传 多样性检测
Globally networked risks and how to respond
BOX 1
Risk, systemic risk and hyper-risk
According to the standard ISO 31000 (2009; /iso/ catalogue_detail?csnumber543170), risk is defined as ‘‘effect of uncertainty on objectives’’. It is often quantified as the probability of occurrence of an (adverse) event, times its (negative) impact (damage), but it should be kept in mind that risks might also create positive impacts, such as opportunities for some stakeholders.
马桑内酯致痫大鼠海马结构内SYN和GFAP的表达及其意义
鼠 3 0只 , 机 分 为 模 型 组 及 对 照 组 , 用 马 桑 内 酯 (0 g k ) 脑 室 注 射 法 建 立 急 , 痫 随 采 5 ̄ / g 侧 J 生癫
( zo 4 0 0 Lu h u 6 6 0 ) Ha Xu F c i H u n ih n n Yi u u a g Jc u e l ta
ABS TRACT Obe t e jci :To su yt e c a g si x rs in fs n p o h sn ( YN)a d giI v t d h h n e n e p e so so y a tp y i S n l a
维普资讯
11 18
陕 西医学 杂志 2 0 0 7年 9月第 3 6卷第 9期
马桑 内酯致 病大 鼠海 马结构 内 S YN 和 G AP的表 达及 其意义 △ F
泸 州医学 院组织 学 与胚 胎学教研 室( 泸州 6 6 0 ) 韩 艺 4 0 0 徐 富翠 黄 吉春 王 巧稚
mo e u a a e n t ed n a e g r s( lc lrl y r i h e t t y u P< O 0 ) . 5 .Co a e t o to r u mp r d wih c n r l o p.t e a e a e o t a e s t g h v r g p i l n iy c d
a d c n r l r u .Th aswe eijce noltr l e til LV)wihc rai a t n 5 g k .Th n o to o p g ert r e tdit aea n rce( n v t o iraIco e( O / g) e
海马区神经胶质细胞基因组学
海马区神经胶质细胞基因组学
【中英文版】
Title: Genomics of Hippocampal Glial Cells
海马区神经胶质细胞是大脑中一类重要的非神经元细胞,对于学习和记忆等认知功能至关重要。
Recent studies have revealed that these cells have a complex genome, which differs from that of neurons.
最近的研究发现,这些细胞的基因组与神经元不同,具有复杂性。
The genomic differences between glial cells and neurons are due to both cell type-specific gene expression and cell-to-cell heterogeneity.
胶质细胞和神经元之间基因组差异的原因,既有细胞类型特定的基因表达,也有细胞间的异质性。
These findings have important implications for our understanding of brain development and function, as well as for the diagnosis and treatment of neurological diseases.
这些发现对于我们对大脑发育和功能的理解具有重要意义,也为神经疾病的诊断和治疗提供了新的视角。
有机化合物的陆地和水生环境毒性的计算机预测研究英文
有机化合物的陆地和水生环境毒性的 计算机预测研究
程飞雄 , 沈
* 1
Байду номын сангаас
� � � � � � � � � � � � � � � � (� 1 .D � � � a � � � � � � � � P a ac ca S c c , Sc P a ac , Ea C a U � � � � � � � � � � � � � � � � Sc c a T c , 130 M R a , S a a 2 002 3 7, C a; � � � � � � � � � � � � 2 .G� � a a � � � S� c � � � � � A c , K� � U , K a a a a O a -c , Sa - , K 606 -85 02 , Ja a )
Ab
ac : Q u al i t at i vecl assi f i cat i on a n d qu ant i t at i ve re gre ssi on m ode l sf or fa t h e a dmi nnow a nd h one y
be et oxi ci t y pre di ct i on w e rede ve l ope d u si ng di f f e re nt ch e m oi nf or m a t i cs t e ch ni qu e s su ch as su b st ru ct u re pat t e rn re cogni t i on and di ff e re nt m ach i nel e a r ni ng m e t h ods.S pe ci f i ca l l y, me t h ods i ncl u desu pport ve ct or m achi ne , C 4 .5 de ci si on t re e ,ne a re st ne i gh b ors, random f ore st and nai ve b ay e s.R e l i ab l e pr e di ct i ve m ode l swe rede ve l ope da nd a l l m ode l swe reval i da t e db y t hei nde pe nde nt t e st se t .Th eove ra l l pr e di ct i ve accu r a cy of t hecl a ssi f i ca t i on m ode l s u si ng su pport ve ct or m ach i new e re95 .9% f or t h ef at h e ad m i nnow t e st se ta nd 9 5.0% for t heh one y be et e st se t .Th esqu a reofcorr e l at i on coe ff i ci e nt of r e gr e ssi on m ode l s we r e0.87 8 for t h efa t h e a dmi nnow t e st se t and 0.66 3 f or t h eh one y be et e st se t u si ng s u pport ve ct or m achi n e re gre ss i on al gori t h m.At l a st ,som e r e pr e se nt a t i ve su b st ru ct u re pa t t e r ns for ch a ra ct e ri zi ng fa t h e a dmi nnow a nd h one y be et ox i ci t y com pou nds, su ch as 1 , 2di ph e nol , di a l k yl t h i oe t he r, di a ryl e t h e r and ph osphori c_ a ci d_ de ri va t i vew e r ea l so i de nt i fi e d vi at h ei nf or m a t i on ga i n ana l y si s.T h ea pproache s pr ovi dea u se fu lst rat e gy a nd r ob u st t ool si n t h e scr e e ni ng of e cot oxi col ogi ca lr i sk or e n vi r onm e nt a l h aza r d pot e nt i a lof ch e mi cal s. Ke d : fa t h e a d mi nnow t oxi ci t y; h one y be et oxi ci t y ; qu a nt i t a t i ve st ru ct u re a ct i vi t y re l a t i onsh i p ( Q S A R ) ; su b st r u ct u r epat t e rn r e cogni t i on; i nf orm at i on ga i n ; su ppor t ve ct or m a ch i ne
第一章第一节课
如今,这一预言开始得到证实: 克隆动物的诞生 DNA在身份鉴定中的运用 人类基因组计划的实施 转基因食品的出现 生物制药的发展 各种抗病毒疫苗的研发… …
近十年生物学领域的诺贝尔奖
2002年,英国科学家悉尼·布雷内、约翰·苏尔斯顿和美国科学家 罗伯特·霍维茨。他们为研究器官发育和程序性细胞死亡过程中的 基因调节作用做出了重大贡献。
17、为什么人类的基因这么少?
2003年,当人类基因组计划接近完成的时候,生 物学家在欢呼这一成就的同时,惊奇地发现人类的基 因数量比原先估计的少,是的,人只有大约2.5万个, 而原来认为应该有10万个。相比之下,一种非常简单 的生物——线虫也有2万个基因。拟南芥植物的基因 数量比人类稍多,而水稻的基因数量则是人类的一倍。 科学家认为,基因组运作的方式应该比以前认为的更 加灵活和复杂,他们正在探寻这些少用基因多办事的 分子机制。
欢迎同学们走进 生物学课堂
成都七中生物组 徐琛
徐老师自我介绍
二、生物学科带你遨游神秘的自然界, 感悟生命的真谛,实现人生理想
美国著名杂志《science》 为建刊125周年提出了125 个未解之谜,其中25个为 重中之重,25个中有17个 与生物学有关。
9、意识的生物学基础是什么? 17世纪的法国哲学家笛卡尔有一句名言:“我思故 我在”。可以看出,意识在很长时间里都是哲学讨论的 话题。现代科学认为,意识是从大脑中数以亿计的神经 元的协作中涌现出来的。但是这仍然太笼统了,具体来 说,神经元是如何产生意识的?近年来,科学家已经找 到了一些可以对这个最主观和最个人的事物进行客观研 究的方法和工具,并且借助大脑损伤的病人,科学家得 以一窥意识的奥秘。除了要弄清意识的具体运作方式, 科学家还想知道一个更深层次问题的答案:它为什么存 在,它是如何起源的?
判断与决策中的易得性启发式
判断与决策中的易得性启发式李燕;徐富明;孔诗晓【摘要】易得性启发式是指个体根据相关事件的易获得性作为捷径做出决策.Tversky和Kahneman的系列研究证实了易得性启发式普遍存在,目前对于易获得性的评估机制主要有基于提取信息内容和信息提取过程的容易感受.此外,易得性启发式的影响因素主要包括事件的生动性、突出性和新近性.在总结相关研究后发现,易得性启发式具有其自身独特的信息加工模式.易得性启发式影响个体的风险认知和决策行为,具有重要的应用价值和理论价值.未来的研究应深入探究其产生根源,探索易得性启发式与其他现象之间的关系,并扩展其应用领域的研究.【期刊名称】《心理研究》【年(卷),期】2015(008)005【总页数】8页(P20-26,31)【关键词】易得性启发式;易获得性;风险认知;情感启发式【作者】李燕;徐富明;孔诗晓【作者单位】华中师范大学心理学院暨湖北省人的发展与心理健康重点实验室;青少年网络心理与行为教育部重点实验室,武汉430079;华中师范大学心理学院暨湖北省人的发展与心理健康重点实验室;青少年网络心理与行为教育部重点实验室,武汉430079;华中师范大学心理学院暨湖北省人的发展与心理健康重点实验室;青少年网络心理与行为教育部重点实验室,武汉430079【正文语种】中文易得性启发式(availability heuristic)指个体根据相关事件的易获得性作为捷径做出决策[1]。
个体的判断与决策结果受到事件易获得性(availability)程度的调节[2]。
具体而言,对于越易知觉到的或回忆的事件,个体会觉得其越易发生,这就是所谓的易得性启发。
Tversky和Kahneman通过一系列实验首次验证了易得性启发式的存在,其中最广为大家熟知的是单词实验,该实验要求被试判断在一篇英文短文中以字母K开头的单词多还是第三个字母是K的单词多。
研究结果发现,尽管实际情况是前者远少于后者,但近70%的被试认为以字母K开头的单词更多[2]。
淫羊藿苷对阿尔茨海默病模型大鼠记忆能力及其海马内GFAP、TNF-α、IL-6表达的影响
关键 词 : 阿 尔 茨海 默 病 ; 淫羊藿苷 ; 胶质纤维酸性蛋 白; 肿 瘤坏 死 因子 d ; 白细 胞 介 素 6 中图分类号 : R 7 4 3 R 2 8 5 . 5 文献标识码 : A 文章编号 : 1 6 7 2 —1 3 4 9 ( 2 0 1 3 ) O 2一 O 1 9 2— 0 3
Z h e n J i n, Li Ru n j i n , Wa n g Me i l i n g/ /De p a r t me n t o f Ne u r o l o g y, I n n e r Mo n g o l i a n P e o p l e ’ s Ho s p i t a l( Hu h h o t 0 1 0 0 1 7 )
・
19 2 ・
C HI NE S E J OURNAL OF I NTEGRAT I VE ME DI C I NE ON CARDI O一 / C E RE B ROVAS CUI AR D I S E AS E Fe b r u a r y 2 01 3 Vo 1 .1 1 No . 2
睾酮在自由基损伤的海马神经元保护作用中的机制
ne r n da g y f e a ia u o ma e b r e r d c l d
Ca hpn ,L h o u 。 h u i ,Cu iin ,JaJa xn 一 ,Hu n s e g i iig一 Z iZ a h i ,S i qn ’ S i Huxa i in i o Do g h n
Th i p c mp l e r n fr t r r r u t r d f r 1 a s n h n dv d d i t o to r u e h p o a a u o s o a swe e p i n ma y c l e o 0 d y ,a d t e i i e o a c n r l o p,H 2 r u n u n g g o pa d 02
0 0 1 ;2包头 医学 院人体解剖学教研 室 , 507 包头
001 ; 5 0 7 4包头医学 院第二附属 医院药剂科 ,包头
( 1河北 医科 大学人体解剖 学教研 室 , 石家庄
3河北 医科大学第二 医院神经外一科 , 石家庄
046 ; 10 0
043) 10 0
摘要 目的: 用荧光染色和免疫印迹方法观察睾酮发挥神经保护作用 中是否有抗神 经元 凋亡 机制的参 与。方法 : 鼠原代培 大 养 1 海马神经元 , 0d 按实验分为对照组 、 处理组 、 H2 02 预先加入睾酮后再暴露于 H ( 组 。Hocs 32 8 ) 2 eht 3 5 显色 , 光显微镜 荧 下观察拍照 。原代 培养海马神经元 B l 和 B x 白进行免疫分析 。结果 : c2 - a蛋 原代培养海马神经元 , eht32 8 色后神经 Hocs 3 5 显 元呈均匀蓝色光 , 胞核明显 。在 Hz 2 (0 /n 可见凋亡 的细胞 , 组 1 0a ) 0 胞核呈深染半月形或碎块状荧光 , 突起不 明显 。预先加入 睾酮组再暴露于 Hz), ( 海马神经元可见细胞核染色明显 , 2 胞核清楚 , 明显核碎片。免疫 印迹法 显示 对照组海马神经元有极 无 少量 B l c 2与 B x表达。加入 Hz]后细胞 B x - a ( 2 a 表达增 加 , Bl 表达下降 , 而 c2 - 与对照组相 比, 差异有统计学意义 。提前加入睾 酮后暴露于 10 0
相似性分析用于丹参二萜醌组分平衡溶解度和油水分配系数的研究
相似性分析用于丹参二萜醌组分平衡溶解度和油水分配系数的研究目的:研究丹参二萜醌组分内各代表性成分的平衡溶解度和油水分配系数的相似性,从而为丹参二萜醌組分整体水溶性和脂溶性的表征奠定基础。
方法:以丹参二萜醌组分为模型药物,借助指标成分法测定组分在不同缓冲液中的平衡溶解度和油水分配系数,基于向量夹角余弦(cosine)和格鲁布斯(Grubbs)法对各成分的平衡溶解度和油水分配系数进行相似性分析,评价其相似程度。
结果:丹参二萜醌组分内代表性成分二氢丹参酮Ⅰ、丹参酮Ⅰ、隐丹参酮、丹参酮ⅡA在不同pH缓冲液中的平衡溶解度和油水分配系数均相似,这种相似不仅表现在变化趋势上,还表现在数值上。
结论:相似性评价反映了组分内代表性成分性质值间相互偏离和分散的程度,适用于组分的研究;相似性评价能够增加组分性质评价和表征的科学性和合理性,同时能优化组分的结构。
标签:中药组分;相似性分析;cosine法;Grubbs法;丹参二萜醌;平衡溶解度;油水分配系数中药组分是多成分的集合体,笔者结合组分性质的离散度关系,同时基于生物药剂学性质初步建立了中药组分相似性分析的方法。
本文以丹参二萜醌组分为模型药物,围绕中药组分的平衡溶解度和油水分配系数这一主题[1],进行代表性成分性质相似性评价研究,进而为后期组分整体水溶性和脂溶性的表征提供一定的依据。
具体的研究方法是首先挑选n个可代表组分整体性质的成分,以这些成分为指标,研究n个成分在组分内所表现出的水溶性和脂溶性;其次对n个成分的溶解度曲线和油水分配系数曲线进行相似性分析,考察各代表性成分个体性质之间的差异程度。
本研究前期对丹参二萜醌组分内多个成分进行配伍组成不同的组合,利用体外药效实验,快速从众多组合中初步筛选出药理作用与丹参二萜醌组分的药理作用无显著性差异的组合;再从体内的角度,结合心肌缺血模型,多角度验证比较,结果表明,二氢丹参酮I、丹参酮I、隐丹参酮、丹参酮IIA配伍后药理作用与组分整体的药理作用无显著性差异,能够代表丹参二萜醌组分整体性质,因此选择这4个成分作为指标性成分进行平衡溶解度和油水分配系数研究。
基于线粒体coi与核糖体its序列分析的中国尼氏真绥螨自然种群遗传多样性分析
第一章文献综述者新的栖息地进行生存和繁殖,有利于迁徙和扩张,扩大其生存环境和增加种群数量(LeietaL,2007)。
遗传多样性对生态系统的功能有决定性的作用(Chapin甜at,1992),遗传多样性的减少对物种总量有极显著的影响,对于一定数目的物种来说,多样性低的生物群落其生物总量也显著地降低(Naeemeta1.,1994)。
群体数量越大,越具丰富的遗传多样性,种群自身发展和适应环境的能力也就越强。
因此,研究物种和种群的遗传多样性,能够揭示种群的进化历程,探讨该物种及种群的生存繁殖、分布趋势和扩散范围,有利于更好的保持生态系统的平衡和稳定。
尤其是是珍稀物种遗传多样性的研究,对于阐明濒危物种的遗传结构并提出挽救和保护策略具有重要的意义(Naeem,1998)。
随着生物学尤其是遗传学和分子生物学的发展,检测遗传多样性的方法得到不断完善和提高。
其从形态学水平、细胞学水平和生理生化水平、逐渐发展到了分子水平。
然而不管研究发展到什么样的水平,其目的都在于揭示各种生物个体或生物不同种群的遗传物质的变异。
目前,任何检测遗传多样性的方法,无论在理论上还是在实际研究中都存在各自的优点和局限,还不能找到一种能完全取代的方法和技术。
因此,包括传统的形态学、细胞学、同工酶以及DNA技术在内的各种方法都能提供有价值的资料,都有助于人们认识遗传多样性及其生物学意义。
1.2.2遗传多样性产生的基础细胞内的遗传物质是生物遗传信息的载体,它的变异就导致了遗传多样性的产生,使物种具备进化适应的可能性。
遗传物质的变异有三种来源:基因突变,基因重组,染色体变异(胡志昂等,1997)。
基因突变也叫点突变,是由于DNA分子中发生碱基对的替换、插入或缺失,而引起的基因结构的改变。
碱基替换包括转换和颠换,转换(transition)就是嘌呤间或嘧啶间的替换,而颠换(transversion)就是嘧啶与嘌呤间的替换。
插入或缺失突变是一个或几个碱基对的增加或丢失,可造成DNA序列发生较大的变化,从而使蛋白质的氨基酸序列发生较大的变化。
血管性痴呆小鼠海马NOS活力和nNOS蛋白表达的改变
血管性痴呆小鼠海马NOS活力和nNOS蛋白表达的改变王鹏;李积胜
【期刊名称】《第四军医大学学报》
【年(卷),期】2006(027)002
【摘要】目的:观察血管性痴呆(VD)小鼠海马内一氧化氮合酶(NOS)的活性和神经元型一氧化氮合酶(nNOS)阳性神经元的表达,探讨VD的发生机制. 方法:复制小鼠VD模型,利用Y-迷宫检测VD模型小鼠学习记忆能力,采用NADPH-d组织化学和nNOS免疫组织化学方法,研究VD小鼠与正常小鼠海马NOS和nNOS阳性神经元数量的变化. 结果:VD小鼠比正常小鼠Y-迷宫学习记忆训练次数明显增多,差异有显著性(P<0.01);海马CA1区NOS和 nNOS阳性神经元的数量明显增多,差异有统计学意义(P<0.05). 结论:VD的发生可能与海马NOS和 nNOS阳性神经元的数量增多有关.
【总页数】3页(P105-107)
【作者】王鹏;李积胜
【作者单位】武警医学院基础部人体解剖学教研室,天津,300162;武警医学院卫生勤务学系军事预防医学研究所,天津,300162
【正文语种】中文
【中图分类】R361.1
【相关文献】
1.血管性痴呆小鼠海马结构SS及CCK蛋白表达的改变 [J], 王鹏;李积胜;单云官
2.急性缺氧小鼠海马CA1区NOS活力和nNOS蛋白表达的时程变化 [J], 王华仁;李积胜
3.血管性痴呆小鼠大脑皮质NOS活性及nNOS蛋白表达的改变 [J], 王鹏;李积胜
4.醒脑合剂对急性CO中毒模型小鼠海马nNOS蛋白表达的影响 [J], 胡向阳
5.枸杞多糖对染铅小鼠海马nNOS蛋白表达的影响 [J], 区炳雄;蔡宇
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Analysis of Heuristic SynergiesRichard J.WallaceCork Constraint Computation Centre and Department of Computer ScienceUniversity College Cork,Cork,Irelandemail:r.wallace@4c.ucc.ieAbstract.“Heuristic synergy”refers to improvements in search performancewhen the decisions made by two or more heuristics are combined.This paperconsiders combinations based on products and quotients,and a less familiar formof combination based on weighted sums of ratings from a set of base heuristics,some of which result in definite improvements in performance.Then,using recentresults from a factor analytic study of heuristic performance,which had demon-strated two main effects of heuristics involving either buildup of contention orlook-ahead-induced failure,it is shown that heuristic combinations are effectivewhen they are able to balance these two actions.In addition to elucidating thebasis for heuristic synergy(or lack thereof),this work suggests that the task ofunderstanding heuristic search depends on the analysis of these two basic actions.1IntroductionCombining variable ordering heuristics that are based on different features sometimes results in better performance that can be obtained by either heuristic working in iso-lation.Perhaps the best-known instance of this is the domain/degree heuristic of[1]. Recently,further examples have been found based on weighted sums of rated selections produced by a set of heuristics[2].As yet,we do not have a good understanding of the basis for such heuristic syner-gies.Nor can we predict in general which heuristics will synergise.In fact,until now there has been no proper study of this phenomena,and perhaps not even a proper recog-nition that it is a phenomenon.The present paper initiates a study of heuristic synergies.A secondary purpose is to test the weighted sum strategy in a setting that is independent of its original machine learning context.The failure to consider this phenomenon stems in part from our inability to classify heuristic strategies beyond citing the problem features used by a heuristic.However, recent work has begun to shown how to delineate basic strategies,and with this work we can begin to understand how heuristics work in combination.Although the work is still in its early stages,it is already possible to predict which heuristics will synergise in combination and to understand to some extent why this occurs.The analysis to be presented depends heavily on the factor analysis of heuristic performance,i.e.of the efficiency of search when a given heuristic is used to order the variables.This approach is based on inter-problem variation.If the action of two heuristics is due to a common strategy,then the pattern of variation should be similar. Using this method,it has been possible to show that,for certain simple problem classes,such variation can be ascribed to only two factors,which can in turn be interpreted as basic heuristic actions[3].The next section describes the basic methodology.Section3gives results for heuris-tic combinations involving products and quotients.Section4gives results for weighted sums of heuristic ratings.Section5gives a brief overview of factor analysis as well as methodological details for the present work and gives the basic results of a factor analy-sis of variable ordering heuristics and their interpretation.Section6uses these results to predict successes and failures of heuristic combinations.Section7considers extensions using more advanced heuristics.Section8gives conclusions.2Description of MethodsThe basic analyses in this paper used a set of well-known variable ordering heuristics that could be combined in various ways.These are listed below together with the ab-breviations used in the rest of the paper.Minimum domain size(dom,dm).Choose a variable with the smallest current do-main size.Maximum forward degree(fd).Choose a variable with the largest number of neigh-bors(variables whose nodes are adjacent to the chosen variable in the constraint graph)within the set of uninstantiated variables.Maximum backward degree(bkd).Choose the variable with largest number of neighbors in the set of instantiated variables.Maximum static degree(stdeg,dg).Choose a variable with the largest number neighbors(i.e.the variable of highest degree).In most cases,ties were broken according to the lexical order of the variable labels.In such cases,max forward and max backward degree are bothfixed-order heuristics,as is max static degree.The initial tests were done with homogeneous random CSPs because these are easy to generate according to different parameter patterns.Problems were generated ac-cording to a probability-of-inclusion model for adding constraints,domain elements and constraint tuples,but where selection was repeated until the number of elements matched the expected value for the given probability.In all cases generation began with a spanning tree to ensure that the constraint graph was connected;however,densities given in this paper are simple graph densities.Typically,there were100problems in a set,although similar results were found in some cases for sets of500problems.Prob-lem parameters were chosen so that problems were in a critical complexity region of the parameter space.Some further tests were based on geometric problems,which are random prob-lems with small-world characteristics.Geometric problems are generated by choosing points at random within the unit square to represent the variables,and then connect-ing all pairs of variables whose points lie within a threshold distance.In this case,con-nectivity was ensured by checking for connected components,and if there were more than one,adding an edge between the two variables in different components separated by the shortest distance.Unless otherwise noted,the tests in this paper were based on the MAC-3algorithm. The basic measures of performance were,(i)nodes visited during search,(ii)constraint checks.In these experiments,both measures produced similar patterns of differences, so for brevity the results in this paper are restricted to search nodes.Synergy was evaluated for two kinds of strategy.Thefirst type of strategy was to take products and quotients of the basic heuristics,as is done in the well-known do-main/degree heuristics.(For quotients and products involving backward degree,when this component was zero,a value of one was used instead.)The second was to com-bine evaluations of individual heuristics into weighted sums.This strategy was derived from one used in a contemporary learning system[2];to my knowledge there has been no examination of its efficacy outside this context.In addition to being an alternative strategy for obtaining improved heuristics,this method is useful in the present context because it may allow more quantitative assessment of synergistic effects.1forward degree,the weighted sums for Variables1and2are32and31,respectively;in this case,therefore,Variable1would be chosen over Variable2.3Heuristic Combinations Based on Quotients and ProductsThe next two sections present a number of empirical results,some of which are fairly striking,that constitute a body offindings that must be accounted for by any explanation of heuristic synergies.At the same time,these results provide a number of hints about the nature of the variables that may underlie synergistic and non-synergistic effects.Several examples of quotients and products based on the four simple heuristics described in the last section are presented in Table1.Among them only two exhibit synergistic effects,and the only marked effect is produced by the well-known do-main/forward degree heuristic.Interestingly,for this set of problems domain/static de-gree did not give better performance than static degree alone,in contrast to domain/ forward degree.Table1.Results for Products and Quotientssimple heuristic nodes combination nodesmin dom/stdeg2076fd2625min dom/bkwd15081stdeg2000max stdeg*fd2417Mean nodes per problem.50,10,0.184,0.37problems.Bold entries show results superior to either heuristic alone.4Heuristic Combinations Based on Weighted SumsTable2gives results,in terms of nodes searched,for six“individual”heuristics and for combinations of these heuristics using the technique of weighted sums described in Section2.For these tests,heuristics were given equal weights.These data include examples of heuristic synergy as well as non-synergy.Note that in these tests the domain/degree quotients were used as components with respect to the weighted sums in addition to the four simple heuristics,and that this form of combination sometimes gave better results than the quotient alone.At the same time, such combinations were not superior to the best weighted sums based on the simpler heuristics.There are a number of significantfindings in this table:Some combinations do better,in terms of number of search nodes,than any heuris-tic used by itself.Some do even better than the best heuristic-quotient tested,which was min domain/forward-degree.Simply combining heuristics is not sufficient to obtain synergy;only certain com-binations are effective.The effectiveness of heuristic combinations does not correlate well with the effec-tiveness of the individual components.The effectiveness of heuristic combinations is not related to the inclusion of any particular component in and of itself.The best results for combinations of two heuristics were as good as the best results for combinations of more than two heuristics.Table2.Selected Results for Weighted Sumsheuristic nodes combination nodes combination nodesdm/dg+dm/fd1800dm/fd+fd1304dom+dm/fd1890dom+fd1317fd+stdeg2344bkwd+stdeg1876dom+dm/dg+stdeg1654dom+fd+stdeg1374Mean nodes per problem.50,10,0.184,0.37problems.Bold entries showresults that are better than any individual heuristic.In these tests componentheuristics were given equal weights.It is important to note in this connection that weighted sums gave better results than tie-breaking strategies based on the same heuristics.For comparison,here are results on the same set of problems with four tie-breaking strategies:min domain,ties broken by max forward degree:3101min domain,ties broken by max static degree:3155forward degree,ties broken by min domain:2239static degree,ties broken by min domain:1606Naturally,tie-breaking does reduce the size of the search tree in comparison with the primary heuristic when used alone,but not as much as some heuristic combinations.Another significant result is that,when combinations of two heuristics showed a high degree of synergy,equal weights gave better results than unequal weights,and in these cases performance deteriorated as a function of the difference in weights.This is shown in Table3.In cases in which weight combinations did not synergise or synergised weakly in comparison with the best individual heuristic in the combination,unequal weights sometimes gave some improvement,although the effect was never marked.An additionalfinding is that when weights were unequal,there were sometimes marked asymmetries or biases in the effect of weighting one heuristic more than the other. Evidence of this can be seen in each of the three columns of data to the right in the table.In the other pair(dom+fd),the effects of weights were highly symmetric,so that the increase in search effort rose in concert with the degree of difference in the weights regardless of which heuristic was more highly weighted.Table3.Two-Heuristic Combinations with Different Weights wt ratio dom+fd dom+stdeg stdeg+bkwd fd+stdeg14272344 1:214331420247124552:114051620185222351:316521454305424583:116511885181222231:520331557396024585:12368250418162223duction in average time.Evidently,then,for some problems the effects can scale up,so if efficient means can be found for computing weighted sums(or even approximations), this technique may be of practical importance.Table4.Three Heuristics with Different Weightswt ratio dom+stdeg+fd dom+stdeg+dm/dg dom+stdeg+bkwdMean nodes per problem.50,10,0.184,0.37problems.Otherconventions as in Table3.Table5.Five Heuristics with Different Weightswt ratio nodesdom stdeg dm/dg fd bkwd50,10,0.184,0.37problems.Other conventionsas in Table3.5Factor Analysis of Heuristic PerformanceWe turn now to the task of determining why search performance is sometimes improved (and sometimes worsened)by combining heuristics.To this end,a statistical technique called“factor analysis”was employed.Factor analysis is a technique for determining whether a set of measurements can be accounted for by a smaller number of“factors”.Strictly speaking,the notion of a factoris solely statistical and refers either to a repackaging of the original patterns of variation (variance)across individuals and measurements or to a set of linear relations that can account for the original statistical results.However,since variation must have causes, this technique if used carefully can yield considerable insight into the causes underly-ing the measurements obtained.In other words,the factors may be closely related to underlying variables that are sufficient to account for much of the variance.Table6.Results for Weighted Sums with Geometric Problemscombinationsheuristic nodes dom+fd fd+stdegdom11,2221:13991:1570dm/dg3681:35411:3554dm/fd3723:13373:1586fd6421:55521:5555stdeg5505:13375:1592problems,and each measurement is an efficiency measure,such as search nodes orconstraint checks,for a given heuristic.A factor extraction process is applied,basedon a standard method of approximation.The present work uses the method of maxi-mum likelihood,which starts from a hypothesis of common factors and determines maximum-likelihood estimates of them using the original correlation matrix[5].Factor analysis methods such as the maximum likelihood method obtain factorsthat are uncorrelated with each other.In this case,each above is identical to thecorrelation coefficient holding between and[4].Once obtained,the factors(which constitute a basis for a space of dimensions) can be rotated according to various criteria.Here the varimax rotation was used;this method tries to eliminate negative loadings while producing maximal loadings on the smallest possible set of measures.The interpretation of patterns of differences cannot assume that causal factors be-have additively,only that patterns of variation can be derived from additive combina-tions.Factor analysis,therefore,can only identify common sources of variation whose interpretation requires further investigation.5.2MethodologyThe software used in these analyses was System R,which was downloaded from.In this package,the factanal function was used for the factor analysis.As already noted,maximum likelihood methods require the number of factors as input.Since the number of significant factors was not known beforehand,various num-bers of factors were tested,first,to determine at what point factor extraction ceased to account for any significant part of the variance,second,to determine which of these fac-tors gave strong,reliable results.Thefirst kind of test can be taken as setting an upper bound on the number of useful factors.If there are other sources of variation than the ones emphasized here,since they are less important in their effects and less reliable across experiments,they are likely to be related to features of specific problem sets interacting with vagaries of the search process.In addition,the possible existence of further factors does not necessarily di-minish the importance of the ones demonstrated here.(In other words,the explanatory process may have to be extended,but it will not need to backtrack if the arguments for the factors described here are cogent.)5.3Factor Patterns for CSP Heuristics and Their InterpretationTable7shows selected results for an analysis based on12heuristics(described more fully in[3]).(The heuristics not included in the table were mainly diagnostic pseudo-heuristics:the FFx series of[6]and a variable ordering heuristic based on maximizing the summed“promise”across the values of a domain,derived from[7].)On the left are results from the basic experiment with the same set of random problems used in the present work.In this case,the analysis indicated that there were two major factors,but that min domain and max backward degree had idiosyncratic patterns of variation, reflected in their high uniqueness.Further experiments showed that the latter were due to random choices made at the top of the search tree;this occurs because for these heuristics there is no distinction among variables at the start of search.The results of one of these experiments are shown on the right hand side of the table.In this test,for each measurement thefirst three choices were in lexical order;thereafter,a particular heuristic was used.In this experiment,therefore,the effect of initial random selections was equalized.As a result,all heuristics had moderate to high loadings on two major factors,and the proportion of the total variance accounted for by these two factors was 0.95.Table7.Factor Analysis for CSP heuristicsheuristic heuristic alone3lexical,heuristicnodes factor1factor2unique nodes factor1factor2unique195870.8040.5650.034fd26250.4430.8730.042375360.7080.4880.261stdeg20000.4860.8350.06777120.7520.6520.010dm/fd16210.9090.4040.01085670.6260.7750.008weights,this rule was verified for allfifteen pairings of the original set of six heuristics (Table8).Table8.Predicted and Actual Synergies for Equal-Weight Pairsheuristicsfirst second compound11,334262511,33427,39111,334200011,334207611,3341621262527,39126252000262520762625162127,391200027,391207627,3911621200020762000162120761621Mean nodes per problem.50,10,0.184,0.37problems.Italicisedentries are predicted synergy based on factor loadings.Bold entriesshow actual synergistic effects.This rule is also consistent with the two cases of synergy among the products and quotients(cf.Table2).However,for quotients there appears to be a further(reason-able)condition:that both the numerator and denominator favor selections consistent with those favored by the original heuristic.This consideration accounts for the failure tofind synergy with the max forward degree/backward degree heuristic,although the components load most heavily on different factors.In this case,choosing according to this heuristic will favor variables with larger forward degrees,which accords with this component heuristic,but it will also favor variables with smaller backward degrees, which is counter to this component heuristic.Evidence that the balance between the two factors is important can be found in Tables3-5.This,in fact,seems to explain both the decline in quality for the two-heuristic combinations when the weights are made unequal(Table3)and the distin-guished heuristic phenomenon that was noted in the data shown in Table4.In each case,the single heuristic that loaded on a different factor from the other two heuristics was the one that needed to be weighted more strongly.A similar phenomenon seems to be involved in the pattern of results shown in Table5.6.2Synergies with FCStriking instances of synergy can be obtained by using forward checking instead of MAC.For forward checking with random CSPs,it has been found that look-ahead heuristics show a marked fall-off in efficiency.Naturally,there is an increase in numberof search nodes for all heuristics in comparison with the results for MAC,but while the increase is by an order of magnitude for the contention heuristics,it is by three to four orders of magnitude for the look-ahead heuristics,as shown in Table9.Table9.Performance of Forward Checkingheuristic nodesNotes.Basic heuristics and selected quotients.Means for50,10,0.184,0.37problems.Despite this drastic loss in efficiency for one class of heuristics,the rule of combina-tion presented above continues to hold,as shown in Table10.Thus,despite the fact that for these problems forward checking with max forward degree required more than nodes on average,when this heuristic was combined with min domain,it sometimes produced an order-of-magnitude improvement with respect to the latter,which was the best individual heuristic in this combination.In this case synergy based on weighted sums of paired heuristics is most marked when the weights are unequal so as to favor the contention heuristic.Table10.Two-Heuristic Combinations withForward Checkingwt ratio dom+fd dom+stdeg dm/dg+fdNotes.Mean nodes per problem.50,10,0.184,0.37problems.6.3Assessment of weighted-sum strategies in terms of heuristic policiesA more detailed analysis of heuristic quality can be made by assessing heuristic per-formance in terms of adherence to optimal policies.In addition to the overall policy of minimizing effort,there are two basic sub-policies,depending on whether search is currently on a solution path or in an insoluble subtree.In the former case,the optimal policy is to maximize the likelihood of remaining on the solution path(“promise”pol-icy);in the latter,the optimal policy is tofind a refutation of the original mistake as quickly as possible(“fail-first”policy).Although the two policies cannot be realized in practice(nor can the policy offind-ing a solution after a minimum number of search nodes),we can still measure adherenceto these policies and thereby compare heuristics in these terms.For the promise policy, we have an absolute measure when probabilities can be reasonably assigned to alter-native assignments,obtained by summing probability products at each level of search (described in[9]);for the fail-first policy,we can obtain a relative measure by averag-ing the sizes of all the insoluble subtrees(cf.[10]).The latter measure can be obtained for either the entire search tree or the part of the tree explored beforefinding thefirst solution.Although the promise measure necessarily involves the entire search tree,a rough measure can be obtained for the part of the tree explored by counting the number of“mistakes”(the number of times an insoluble subtree was entered).For measures of overall efficiency we use,as before,the number of search nodes.We also include the number of failures,which has been suggested recently as an alternative measure of overall performance[11].Table11gives data for promise and fail-first measures,together with measures of overall efficiency,and some descriptive measures of heuristic performance.This anal-ysis involved max forward degree,min domain and the weighted sum of the two(with equal weights;cf.Table2).These data indicate that this heuristic combination shows better adherence to both the fail-first and promise policies than the component heuristics acting alone.The descriptive measures suggest that the heuristic combination tends to compro-mise on the beneficial effects of the two components,since the measures for the former always fall between those for the latter.This is particularly interesting in connection with the consistent superiority demonstrated in the quality measures.7Limits to Synergy?Now that some understanding of heuristic combination has been obtained,an important question is whether this knowledge can be used to even greater effect than in the tests reported in earlier sections.Two kinds of strategies have been tried,using weighted sums.Thefirst is based on thefinding that if results for weighted sums are added to the factor analysis,they are usually found to load more heavily on one factor than the other. Hence,according to the rule for combining heuristics to produce synergies,it should be possible by appropriate weighting to combine a given weighted sum that loads most heavily on one factor with a basic heuristic(or weighted sum)that loads most heavily on the other.The second strategy was to combine more powerful heuristics that show differences in loadings,to see if synergistic effects can be obtained that are greater than those found by combining simpler heuristics.Although heuristic combinations tend to load more heavily on one factor than an-other(in most cases on the contention factor),it was not possible to combine them with other heuristics to obtain greater synergy.Thisfinding was,in fact,anticipated in the results shown in Tables2-5.The work with more advanced heuristics is still in its preliminary stages.To date, only one such combination has been tested that involved the min domain/weighted-degree heuristic of[12]and the min kappa heuristic of[13].These were chosen for combination because for the50-variable problems the former loaded more heavily on the contention factor while the latter was more heavily correlated with the look-aheadfactor.When used individually,the mean nodes searched was1575for min kappa and 1517for min domain/weighted-degree.Both are superior to the best single heuristic or quotient in the previous tests.When these were combined into a weighted sum,with equal weight for each heuristic,the mean nodes was1309.Therefore,synergy did occur as predicted,but the result was no better than the best results in the earlier experiments.Table11.Policy-Adherence and Descriptive Measuresfor Heuristics and Weighted Summeasure max forward degree min domain dom+fdNote.Means for50,10,0.184,0.37problems.8ConclusionsThis paper presents a study of the effects of combining heuristics.It begins by present-ing a collection of data showing significant cases of synergy,as well as striking patterns of synergistic and non-synergistic effects.Some of these effects are counter-intuitive, since the heuristics in a synergistic combination may result in mediocre or even dread-ful performance when used alone.The work also shows that weighted sums are in fact quite good at improving search performance by reducing the amount of search;this must be because this strategy improves the quality of variable selection.Some insight was gained into the basis for this improvement,using the recent dis-covery that there are two basic types of heuristic action:here labeled“contention”and “look-ahead”[3].This,in turn,led to the formulation of a simple rule for predicting success on the basis of the factor loadings of component heuristics.The success of this rule suggests that heuristic combinations work to improve search performance by bal-ancing the two basic actions.Conversely,when the two are not well-balanced,as in some of the cases in Tables1-6,performance is not improved and can even deteriorate in comparison with the component heuristics.Preliminary analysis of the features of search based on effective combinations supports the idea these hypotheses.This work raises a number of important questions to address in further research: How general are the present synergistic principles with respect to problem classes?(So far they seem quite general with respect to algorithms.)To what degree are more advanced heuristics managing to balance the two basic heuristic factors?Is this why they are effective?Are there other principles underlying improvements in heuristic performance,such as the degree to which alternative choices can be discriminated based on different amounts of information?How does the kind of balancing in evidence here serve to restrict search?Acknowledgment.This work was supported by Science Foundation Ireland under Grant00/PI.1/C075.References1.Bessi`e re,C.,R´e gin,J.C.:MAC and combined heuristics:Two reasons to forsake FC(andCBJ?)on hard problems.In Freuder,E.C.,ed.:Principles and Practice of Constraint Pro-gramming-CP’96.LNCS.No.1118,Berlin,Springer(1996)61–752.Epstein,S.L.,Freuder,E.C.,Wallace,R.,Morozov,A.,Samuels,B.:The adaptive constraintengine.In van Hentenryck,P.,ed.:Principles and Practice of Constraint Programming-CP2002.LNCS.No.2470,Berlin,Springer(2002)525–5403.Wallace,R.J.:Factor analytic studies of CSP heuristics.In van Beek,P.,ed.:Principlesand Practice of Constraint Programming-CP’05.LNCS No.3709,Berlin,Springer(2005) 712–7264.Harman,H.H.:Modern Factor Analysis.2nd edn.University of Chicago,Chicago andLondon(1967)wley,D.N.,Maxwell,A.E.:Factor Analysis as a Statistical Method.2nd edn.Butter-worths,London(1971)6.Smith,B.M.,Grant,S.A.:Trying harder to failfirst.In:Proc.Thirteenth European Confer-ence on Artificial Intelligence-ECAI’98,John Wiley&Sons(1998)249–2537.Geelen,P.A.:Dual viewpoint heuristics for binary constraint satisfaction problems.In:Proc.Tenth European Conference on Artificial Intelligence-ECAI’92.(1992)31–358.Wallace,R.J.:CSP heuristics categorized with factor analytic.In Creaney,N.,ed.:Proc.Sixteenth Irish Conference on Artificial Intelligence and Cognitive Science,Coleraine,NI, University of Ulster(2005)213–2229.Beck,J.C.,Prosser,P.,Wallace,R.J.:Variable ordering heuristics show promise.In:Princi-ples and Practice of Constraint Programming-CP’04.LNCS No.3258.(2004)711–715 10.Beck,J.C.,Prosser,P.,Wallace,R.J.:Trying again to fail-first.In:Recent Advances inConstraints.Papers from the2004ERCIM/CologNet Workshop-CSCLP2004.LNAI No.3419,Berlin,Springer(2005)41–5511.Bessi`e re,C.,Zanuttini,B.,Fern´a ndez,C.:Measuring search trees.In:ECAI2004Workshopon Modelling and Solving Problems with Constraints.(2004)31–4012.Boussemart,F.,Hemery,F.,Lecoutre,C.,Sais,L.:Boosting systematic search by weightingconstraints.In:Proc.Sixteenth European Conference on Artificial Intelligence-ECAI’04.(2004)146–15013.Gent,I.,MacIntyre,E.,Prosser,P.,Smith,B.,Walsh,T.:An empirical study of dynamic vari-able ordering heuristics for the constraint satisfaction problem.In:Principles and Practice of Constraint Programming-CP’96.LNCS No.1118.(1996)179–193。