集合1.1

合集下载

高中数学:1.1.1集合的概念

高中数学:1.1.1集合的概念

1.1 集合与集合的表示方法1.1.1 集合的概念1.了解集合的概念. 2.理解元素与集合的关系. 3.掌握集合中元素的特性的应用.1.集合的概念(1)集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).通常用英语大写字母A ,B ,C ,…表示.(2)元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a ,b ,c ,…表示.2.元素与集合的关系 知识点关系 概念记法 读法 元素与集合的关系属于如果a 是集合A 的元素,就说a 属于Aa ∈A“a 属于A ” 不属于 如果a 不是集合A 的元素,就说a 不属于Aa ∉A“a 不属于A ”元素 意义确定性元素与集合的关系是确定的,即给定元素a 和集合A ,a ∈A 与a ∉A 必居其一互异性 集合中的元素互不相同,即a ∈A 且b ∈A 时,必有a ≠b无序性集合中的元素可以任意排列顺序4集合⎩⎨⎧空集:不含任何元素,记作∅非空集合:按含有元素的个数分为⎩⎪⎨⎪⎧有限集:含有有限个元素无限集:含有无限个元素5.常用数集的意义及表示意义名称记法非负整数全体构成的集合自然数集N在自然数集内排除0的集合正整数集N+或N*整数全体构成的集合整数集Z有理数全体构成的集合有理数集Q实数全体构成的集合实数集R1.下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2016届本科生D.满足3x-2>x+3的全体实数答案:A2.设M是所有偶数组成的集合,下列选项正确的是()A.3∈M B.1∈MC.2∈M D.2∉M答案:C3.方程x2-2x+1=0的解集中有________个元素.答案:14.指出下列集合是有限集还是无限集.(1)满足2 011≤x≤2 013的整数构成的集合;(2)平面α内所有直线构成的集合.答案:(1)有限集(2)无限集集合概念的理解判断下列各组对象能否构成一个集合:(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)直角坐标平面内第一象限的一些点.【解】(1)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(2)类似于(1),也能构成集合.(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.判断一组对象构成集合的依据判断一组对象能否构成集合的关键是看是否有明确的判断标准,给定的对象是“确定无疑”的还是“模棱两可”的,如果是“确定无疑”的,就可构成集合;如果是“模棱两可”的,就不能构成集合.下列各组对象能构成集合的有________(填序号).①中国农业银行的所有员工; ②我国的大河流; ③不大于3的所有自然数;④在平面直角坐标系中,和原点距离等于1的点; ⑤未来世界的高科技产品; ⑥所有的好心人.解析:①能,①中的对象是确定的;②不能,“大”无明确标准;③能,不大于3的所有自然数有0、1、2、3,其对象是确定的;④能,在平面直角坐标系中任给一点,可明确地判断是不是“和原点的距离等于1”,故能组成一个集合;⑤不能,“高科技”的标准不能确定;⑥不能,没有一个确定的标准来判断某个人是否是“好心人”.答案:①③④元素与集合的关系(1)下列关系中,正确的有( ) ①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个B .2个C .3个D .4个(2)满足“a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ”,有且只有2个元素的集合A 的个数是( )A .0B .1C .2D .3扫一扫 进入91导学网(www .91daoxue .com )元素与集合的关系【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)因为a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,若a =0,则4-a =4,此时A 满足要求;若a =1,则4-a =3,此时A 满足要求;若a =2,则4-a =2,此时A 含1个元素不满足要求.故有且只有2个元素的集合A 有2个,故选C .【答案】 (1)C (2)C判断元素和集合关系的两种方法(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可. 此时应首先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2解析:选D .因为1∉A ,2∈A ,所以⎩⎪⎨⎪⎧2×1+a ≤0,2×2+a >0即-4<a ≤-2.集合中元素的特性已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 【解】 因为-3∈P ,a 2+4≥4, 所以a -3=-3或2a -1=-3, 解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性; a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性. 综上可知,a 的值为0或-1.由集合中元素的特性求解字母取值(范围)的步骤已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解:若1∈A ,则a =1或a 2=1, 即a =±1. 当a =1时,集合A 有重复元素,不符合互异性, 所以a ≠1; 当a =-1时,集合A 含有两个元素1,-1, 符合互异性. 所以a =-1.1.集合中的元素具有确定性、互异性、无序性三大特性.利用集合中元素的三个特性,一方面可以判断一些对象是否构成集合,另一方面可以解决与集合有关的问题.2.(1)符号“∈”“∉”是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系;(2)a ∈A 与a ∉A 取决于a 是不是集合A 中的元素.根据集合中元素的确定性,对任何a 与A ,在a ∈A 与a ∉A 这两种情况中必有一种且只有一种成立.初学者由于对集合中元素的特性把握不准,而容易忽视集合中元素的互异性致错.1.下列各组对象,能构成集合的是( ) A .平面直角坐标系内x 轴上方的y 轴附近的点 B .平面内两边之和小于第三边的三角形 C .新华书店中有意义的小说 D .π(π=3.141…)的近似值的全体解析:选B .选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为∅,故能构成集合.2.所给下列关系正确的个数是( ) ①-12∈R ;②2∉∅;③0∈N +;④-3∉N .A .1B .2C .3D .4解析:选C .①②④正确,③错误,故选C .3.由“book 中的字母”构成的集合中元素个数为( )A .1B .2C .3D .4解析:选C .“book 中的字母”构成的集合中有b ,o ,k 共3个元素.4.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________.解析:由题意知,m =2或m 2-3m +2=2, 解得m =2或m =0或m =3,经验证, 当m =0或m =2时, 不满足集合中元素的互异性, 当m =3时, 满足题意,故m =3. 答案:3[A 基础达标]1.下列各组对象中能构成集合的是( ) A .2017年中央电视台春节联欢晚会中好看的节目 B .某学校高一年级高个子的学生 C .2的近似值D .2016年全国经济百强县解析:选D .由于集合中的元素是确定的,所以D 中对象可构成集合.2.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的个数为( )A .1B .2C .3D .4解析:选B .13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数, (4)正确.故选B .3.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A .矩形 B .平行四边形 C .菱形D .梯形解析:选D .因为a ,b ,c ,d 为集合A 中的四个元素,故a ,b ,c ,d 均不相同,故选D .4.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A解析:选C .因为-1=3×0-1∈A ,故A 错; -11=3×(-4)+1=3×(-3)-2∉A ,故B 错; -34=3×(-11)-1∈A ,故D 错; 因为k ∈Z ,所以k 2∈Z , 所以3k 2-1∈A ,故C 正确.5.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有( ) A .2个元素 B .3个元素 C .4个元素D .5个元素解析:选A .x 2=|x |,-3x 3=-x . 当x =0时,它们均为0;当x >0时,它们分别为x ,-x ,x ,x ,-x ; 当x <0时,它们分别为x ,-x ,-x ,-x ,-x .通过以上分析,它们最多表示两个不同的数,故集合中元素最多含有2个.6.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 含有三个元素3,4,6,且当a ∈A ,有8-a ∈A ,那么a =________. 解析:若a =3,则8-a =5∉A ,故a ≠3; 若a =4,则8-4=4∈A ,故a =4合适; 若a =6,则8-6=2∉A ,故a ≠6. 答案:48.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a >0且b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2. 即元素的个数为3. 答案:39.由三个数a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,求a 2 017+b 2 017的值.解:由a ,ba ,1组成一个集合,可知a ≠0,且a ≠1.由题意可得⎩⎪⎨⎪⎧a 2=1,a =a +b ,b a =0或⎩⎪⎨⎪⎧a 2=a ,a +b =1,b a =0,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去), 所以a 2 017+b 2 017=(-1)2 017+0=-1.10.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时, 有0=-3,不成立; 当a =2a -1时,有a =1, 此时A 中有两个元素-2,1, 符合题意.综上知a =1.[B 能力提升]11.集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ).则下列选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C .集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,经验证,(3,10)∈B ,故选C .12.已知集合A 中的元素满足ax 2-bx +1=0,又集合A 中只有唯一的一个元素1,则实数a +b 的值为________.解析:当a ≠0时,由题意可知方程ax 2-bx +1=0有两个相等的实数根, 故⎩⎨⎧1+1=--ba,1×1=1a,解得a =1,b =2.故a +b =3.当a =0时,b =1,此时也满足条件, 所以a +b =1, 故a +b 的值为1或3. 答案:1或313.已知集合A 中含有1,0,x 这三个元素. (1)求实数x 的取值范围; (2)若x 2∈A ,求实数x 的值.解:(1)由集合中元素的互异性可知,x 的取值范围为x ≠1,x ≠0的实数.(2)若x 2=0,则x =0,此时三个元素为1,0,0,不符合集合中元素的互异性,舍去. 若x 2=1,则x =±1.当x =1时,集合中元素为1,0,1,舍去; 当x =-1时,集合中元素为1,0,-1,符合题意. 若x 2=x ,则x =0或x =1,不符合元素的互异性, 所以x =-1.14.(选做题)某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为:若x 号同学去,则8-x 号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M ,则有x ∈M ,8-x ∈M . 若只有一个名额,即M 中只有一个元素,必须满足x =8-x ,故x =4,所以应该派学号为4的同学去.(2)若有两个名额,即M 中有且仅有两个不同的元素x 和8-x ,从而全部含有两个元素的集合M 应含有1,7或2,6或3,5.也就是两个名额的分派方法有3种.。

1.1 集合的概念(课本同步课件)(高中数学人教A版2019必修第一册)

1.1 集合的概念(课本同步课件)(高中数学人教A版2019必修第一册)

我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b, c,…表示集合中的元素.
如果a是集合A中的元素, 就说a属于(belong to)集合A, 记作a A; 如果a不是集合A中的元素, 就说a不属于(not belong to)集合A, 记作a A.
例如, 若用A表示前面例(1)中“1 ~ 10之间的所有偶数”组成的集合, 则有4 A, 3 A, 等等.
(2) 设方程x2 x的所有实数根组成的集合为B,那么B {0, 1}
由于元素完全相同的两个集合相等,而与列举的顺序无关,因此一个集合可 以有不同的列举方法.例如,例 1(1)的集合还可以写成
A {9,8,7,6,5,4, 3, 2,1,0}
思考
(1) 你能用自然语言描述集合{0, 3, 6, 9}吗 ? (2) 你能用列举法表示不等式x 7 3的解集吗 ?
数学中一些常用的数集及其记法 全体非负整数组成的集合称为非负整数集, (或自然数集), 记作N; 全体正整数组成的集合称为正整数集, 记作N*或N ;
全体整数组成的集合称为整数集, 记作Z;
全体有理数组成的集合称为有理数集, 记作Q;
全体实数组成的集合称为实数集, 记作R.
例 : 用符号 或 填空
3.14___Q
π____Q 0 ____N*
2 3 ____Z 2 3 ____Q 2 3__R
练习:用符号 或 填空
1__N 0__N -3__N 0.5__N 1__Z 0__Z -3__Z 0.5__Z 1__Q 0__Q -3__Q 0.5__Q 1__R 0__R -3__R 0.5__R
的形式,这些数组成有理数集, 我们将它表示为
Q
xR
x

人教版高中数学必修一第一章知识点

人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

1.1-集合的基本概念(离散数学)

1.1-集合的基本概念(离散数学)

幂集的性质
1.
为有穷集, 若A为有穷集,|A|=n,则 为有穷集 , |2A | = Cn0 + Cn1 + … + Cnn =2n 。 x∈ρ 当且仅当 A。 ∈ρ(A)当且仅当 ∈ρ 当且仅当x 。 是两个集合, 当且仅当 设 A、 B是两个集合 , AB当且仅当 、 是两个集合 ρ(B); ρ(A)ρ ; ρ
多样性
集合中的元素可以是任意的对象, 集合中的元素可以是任意的对象,相 互独立, 互独立,不要求一定要具备明显的共 同特征。 同特征。 例如: 例如: A={a,{a},{{a},b},{{a}}, 1} A={1,a,*,-3,{a,b},{x|x是汽车 地球 是汽车},地球 是汽车 地球}
罗素悖论(Russell’ paradox) 罗素悖论(Russell’s paradox)
集合的表示法
列举法;将集合中的元素一一列举, 列举法;将集合中的元素一一列举, 或列出足够多的元素以反映集合中元 素的特征,例如: 素的特征,例如:V={a,e,i,o,u} 或 B={1,4,9,16,25,36……}。 。 描述法 ;通过描述集合中元素的共同 特征来表示集合,例如: 特征来表示集合,例如: V= {x|x是元 是元 音字母} 是自然数} 音字母 ,B= {x|x=a2 , a是自然数 是自然数
空集、 空集、全集
约定,存在一个没有任何元素的集合, 约定,存在一个没有任何元素的集合, 称为空集(empty set) ,记为φ,有时也用{} ) 记为φ 有时也用{} 来表示。 来表示。 约定, 约定,所讨论的对象的全体称为全集 (universal set),记作 或U,我们所讨论 ,记作E或 , 的集合都是全集的子集 全集是相对的。 的集合都是全集的子集 。全集是相对的。 全集

1.1.1集合的概念

1.1.1集合的概念
组成这个集合的对象叫做这个集合的元素. 集合常用大写英文字母表示,如:A,B,C…, 元素常用小写英文字母表示,如:a,b,c… .
问题1 判断下列对象能否组成集合 (1)某班所有的“帅哥” (2)某班身高高于175厘米的男生
答案 (1)“帅哥”无明确的标准,所以不能确定构成集合 (2)高于175厘米的男生标准确定,所以能构成一个集合. 集合中的元素必须是确定的
名称 符号
自然数集 N
正整数集 N*或N

整数集 Z
有理数集 实数集
Q
R
典例精析 例2 方程x2=4的所有实数解组成的集合为A,则-2_____A, 5_____A(用符号“∈ ”或“∉”填空).
例3 用符号“ ”或“ ”填空:
0
N; 0.6
Z; π
R;
1
3
Q; 0
.
随堂练习
1.下列各语句中的对象能否组成集合?如果能组成集合,写出它的 元素.如果不能组成集合, 请说明理由.
问题2 写出构成单词“banana”的字母形成的集合,其中的元素有多少个?
答案 3个. 集合中的元素互不相同,这叫元素的互异性.
问题3 “中国的直辖市”构成的集合中,元素包括哪些?甲同学说: 北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他 们的回答都正确吗?由此说明什么?
答案 说明集合中的元素是无先后顺序的,这就是元素的无序性,只 要构成两个集合的元素一样。
总结归纳 元素的性质:
确定性
集合中的元 素必须是确 定的
无序性
集合中的元 素都是互不 相同的
互异性
集合中的元 素与顺序 无

典1.例1.1精集析合的概念
例1 判断下列对象能否组成集合?

1.1集合的概念及表示

1.1集合的概念及表示

1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。

1.1集合

1.1集合

1.1 集合的概念【知识必备】一、集合的概念1. 对象:我们把各种各样的事物或一些抽象的符号都可以看作对象.2. 集合:一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).3. 元素:构成集合的每个对象叫做这个集合的元素.一般地,研究对象统称为元素(element ),一些元素组成的总体叫集合(set ),也简称集.二、元素与集合的关系1. 元素与集合的关系:集合通常用英语大写字母A ,B , C 来表示,它们的元素通常用英语小写字母a ,b , c 来表示.如果a 是集合A 的元素,就说a 属于A ,记作:A a ∈读作“a 属于A ”.如果a 不是集合A 的元素,就说a 不属于A ,记作:A a ∉读作“a 不属于A ”.2. 空集:我们考虑方程21+=+x x 的解的全体构成的集合,显然这个集合不含有任何元素. 一般的,我们把不含任何元素的集合叫做空集,记作φ.三、集合的性质1. 集合元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写.2. 常用数集及其记法非负整数全体构成的集合,叫做自然数集,记作N ;在自然数集内排除0的集合叫做正整数集,记作N *或N +;整数全体构成的集合,叫做整数集,记作Z ;有理数全体构成的集合,叫做有理数集,记作Q ;实数全体构成的集合,叫做实数集,记作R.另外,集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集.【题型分析】题型一:判断能否确定集合1. 下列语句是否能确定一个集合(1)你所在的班级中,体重超过75kg 的学生的全体;(2)大于五的自然数的全体;(3)某校高一(1)班性格开朗的女生全体;(4)质数的全体;(5)平方后值等于-1的实数的全体;(6)与1接近的实数的全体;(7)英语字母的全体;(8)小于99,且个位与十位上的数字之和是9的所有自然数;(9)平面直角坐标系内以原点为圆心,以1为半径的圆内所有的点(不包括圆上的点);(10)一元二次方程0432=-+x x 的根;(11)2,1,222++x x x ; (12)书店中有意思的小说的全体.2. 下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体. 其中能构成集合的组数是( )A. 2B. 3C. 4D. 5 题型二:确定集合的元素指出下列集合中的元素是什么?1. 方程12=x 的解的全体构成一个集合;2. 平行四边形的全体构成一个集合;3. 平面上与一个定点O 的距离等于定长r 的点的全体构成一个集合.题型三:判断元素与集合之间的关系用符号∈或∉填空:1. 设集合A 是正整数的集合,则0________A ,2________A ,()01- _______A ; 2. 设集合B 是小于11的所有实数的集合,则 23______B ,1+2______B ;-3_______N ; 3.14_______Q ;31_______Z ; 0_______φ; 3_______Q ; 21-_______R ; 1_______+N ; π_______R ; 题型四:判断有限集和无限集1. 判断下列语句是否正确:(1)1995年末世界上的人构成一个无限集;(2)某一时刻,地球的所有卫星构成的集合是无限集;(3)所有三角形构成的集合是无限集;(4)周长为20cm 的三角形构成的集合是有限集.2. 下列集合中,哪些是非空的有限集?哪些是无限集?哪些是空集?(1)小于10000的质数全体构成的集合;(2)⊙O 内点的全体构成的集合;(3)线段AB 内包含AB 中点M 的所有线段构成的集合;(4)大于0,并且小于1的自然数全体构成的集合;(5)中国古代四大发明的集合;(6)坐标平面上第二象限的点的集合.1.2 集合的表示方法【知识必备】集合的表示方法1. 列举法: .如:{1,2,3,4,5},2222{,32,5,}x x y x x y +-+,…;列举法使用条件:集合中元素个数是__________________.练习:由方程012=-x 的所有解组成的集合,可以表示为 .2. 特征性质描述法: . 如:{}{}22,,10,x R x n n N x R x ∈=∈∈-= 格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合.注:(1)不等式23>-x 的解集可以表示为:}23{>-∈x R x 或}23{>-x x .(2)在不混淆,不引起误解情况下,集合的代表元素也可省略.① 所有直角三角形的集合可以表示为:{x x 是直角三角形}⇒{直角三角形}. ② 所有整数的集合可以表示成:{}{}x R x ∈⇒是整数整数.③ 这里的{ }已包含“所有”的意思,所以不必写{全体整数}.实数集表示成R ,不可以表示成 {}{}R ,实数集。

1.1 集合的概念

1.1  集合的概念
一样,因为集合的元具有无序性.
思考4:1,2,1,3,4这五个数组成的集合中有几个元素?
4个,因为集合的元素具有互异性.
探索新知
集合中元素的三个特性:确定性、无序性、互异性.
只要构成集合的元素是一样的,我们就称这两个集合是相等的.
常用数集的记法:
:自然数集(非负整数集)
∗ 或+:正整数集
示为 = { ∈ |10 < < 20}.
大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为
= {11,12,13,14,15,16,17,18,19}.
例析
我们约定,如果从上下文的关系看, ∈ , ∈ 是明确的,那么 ∈ , ∈
1.1 集合的概念
复习引入
我们知道方程 2 = 2在有理数范围内无解,但在实数范围内有解.在平面内,所
有到定点距离等于定长的点组成了一个圆;而在空间中,所有到定点的距离等
于定长的点组成了一个球面.因此,明确研究对象、确定研究范围是研究数学问
题的基础.为了简洁、准确地表述数学对象及研究范围,我们需要使用集合的语
言和工具.
在小学和初中,我们已经接触过一些集合.例如,自然数(0,1,2,3,……)
的集合,同一平面内到定点的距离等于定长的点(圆)的集合等.为了有效地使
用集合语言,我们需要进一步了解集合的有关知识.下面从集合的含义开始.
探索新知
思考1:看下面的例1——例6,哪些例子可以组成集合?集合里面的元素分别
:整数集
:有理数集
:实数集
我们可以用自然语言描述一个
集合.除此之外,还可以用什
么方式来表示集合呢?
探索新知

高一数学集合 1.1总结(附带练习及答案)

高一数学集合 1.1总结(附带练习及答案)

第一章集合与简单逻辑1.1集合二、基本概念1、如何理解集合的概念集合的定义“某些指定的对象集在一起就成为一个集合”只是一种描述性的说明,集合是数学中最原始的,不加定义的概念,这和我们在初中时学过的点、直线、平面等数学名词一样,都是不给出定义的概念。

例如:①正数的集合;②我校篮球队的队员组成一个集合;③太平洋、大西洋、印度洋、北冰洋组成一个集合。

由以上例子可知,我们所研究的集合,应该是“把某些具有共同特征的对象集在一起”而其中的“共同特征”就是我们判定研究对象是否在集合内的依据。

2、元素及元素的性质集合中的元素具有三个特性:确定性、互异性、无序性。

第一条性质:确定性,对于集合A 和给定的某一个对象a ,要么a A ∈,要么a A ∉。

两者必居其一,也就是说:集合中的元素必须是明确而确定的,例如“我们班级高个子的同学”就不能组成一个集合,因为组成它的对象既不明确,也不确定。

即没有确定标准。

第二条性质:互异性,也就是说,同一个集合中的元素必须是互不相同的,例如:23与9,只能表示同一个元素。

第三条性质:无序性,即:集合中的元素是没有先后顺序的。

例如,{}5,4,6与{}4,5,6是同一个集合。

3、关于集合表示方法集合有三种表示方法,但在具体的解题过程中,应该具体问题具体分析,灵活使用三种表示方法,一般地,对于有限集常采用列举法,而对于无限集则最好用描述法,当需要显示两个集合之间关系时,结合图示法使用。

在使用列举法时还应注意: (1)元素间用分隔号“,”; (2)元素不重复; (3)不考虑元素顺序;(4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律显示清楚后方能用省略号。

使用描述法时,应注意:(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号); (2)说明该集合中元素的性质; (3)不能出现未被说明的字母;(4)多层描述时,应当准确使用“或”、“且”、“非”; (5)所有描述的内容都要写在集合括号内; (6)用于描述的语句力求简明、确切。

高考数学《1.1集合与常用逻辑用语》

高考数学《1.1集合与常用逻辑用语》
C
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-13-
知识梳理 双基自测 自测点评
12345
5.(教材例题改编P8例5)设集合A={x|(x+1)·(x-2)<0},集合 B={x|1<x<3},则A∩B=( )
A.(-1,3) B.(-1,0) C.(1,2) D.(2,3)
A.{1,2,3} B.{1,2,4}
C.{1,3,4} D.{2,3,4}
解析 ∵A={1,4},B={2,4}, ∴A∩B={4}. 又U={x∈N*|x≤4}={1,2,3,4}, A∴∁U(A∩B)={1,2,3}
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-12-
12345
2.集合间的基本关系
关系 自然语言
符号语言
集合 A 中所有元素都在 子集 集合 B 中(即若 x∈A,则 x A⊆B(或B⊇A)
∈B)
真子 集
相等
集合 A 是集合 B 的子集, 且集合 B 中至少有一个 元素不在集合 A 中
集合 A,B 中元素相同或 集合 A,B 互为子集
A⫋B(或B⫌A) A=B
-5-
Venn 图 或
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-6-
知识梳理 双基自测 自测点评
12345
3.集合的运算
集合的并集
集合的交集
集合的补集
图形
符号
A∪B
={x|x∈A或x∈B}

第一章_集合

第一章_集合

第一章 集合与函数概念1.1集合 1.1.1 集合的含义及其表示. 教学目的:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程:一、问题引入:我家有爸爸、妈妈和我; 我来泉州市第九中学; 五中高一(1)班; 我国的直辖市。

分析、归纳上述各个实例的共同特征,归纳出集合的含义。

二、建构数学:属于1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。

集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市; (2)五中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于100的数; (6)小于0的正数。

2.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3.集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (“∈”的开口方向,不能把a ∈A 颠倒过来写)4.有限集、无限集和空集的概念:5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {},3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N *或N +。

第一章 集合

第一章 集合



3、空集 、 一般地,我们把不含任何元素的集合叫做空集, 一般地,我们把不含任何元素的集合叫做空集,记作Φ.
思考与讨论:
• 你能否确定,你所在班集体中高个子 你能否确定, 同学构成的集合? 同学构成的集合? • 你能否确定,你所在班集体中,最高 你能否确定,你所在班集体中, 位同学构成的集合? 的3位同学构成的集合? 位同学构成的集合
快速判断
下列各组对象能确定一个集合吗? 下列各组对象能确定一个集合吗? (1)所有很大的实数 ) (2)好心的人 ) (3)1,2,2,3,4,5. ) , , , , , .
不确定
不确定
重复
思考与讨论:
1.你能否写出,你所在班集体中,各科 你能否写出,你所在班集体中, 你能否写出 科代表构成的集合? 科代表构成的集合? 2.你能否写出,所有自然数的集合? 你能否写出,所有自然数的集合? 你能否写出
练习A
1.下列语句是否能确定一个集合? 下列语句是否能确定一个集合? 下列语句是否能确定一个集合 ⑴你所在的班,体重超过75kg的学生的全体; 你所在的班,体重超过 的学生的全体; 的学生的全体 的自然数的全体; ⑵大于5的自然数的全体; 大于 的自然数的全体 ⑶某校高一⑴班性格开朗的女生全体 某校高一⑴ ⑷质数的全体; 质数的全体; 的实数的全体; ⑸平方值等于-1的实数的全体; 平方值等于 的实数的全体 ⑹英语字母的全体; 英语字母的全体; 的所有自然数; ⑺小于99,且各位与十位上的数字之和是 的所有自然数; 小于 ,且各位与十位上的数字之和是9的所有自然数 上的点的全体构成的集合。 ⑻线段AB上的点的全体构成的集合。 线段 上的点的全体构成的集合 2.上题中的集合,哪些是有限集?哪些是无限集?哪些是空集? 上题中的集合,哪些是有限集?哪些是无限集?哪些是空集? 上题中的集合

1.1集合的概念及表示

1.1集合的概念及表示

3.无序性:集合中的元素是没有先后顺序的. 也就是说,集合中元素的排列次序与顺序无关.
“3,2,1”组成的集合. “2,3,1”组成的集合.
“1,3,2”组成的集合.
它们表示同一个集合.
数集的分类:
根据集合中元素个数的多少,我们将集合分为以下两 大类: 1.有限集
含有有限个元素的集合称为有限集. 2.无限集 若一个集合不是有限集,则该集合称为无限集.
例4 判断下列说法是否正确: (1){x2,3x+2,5x3-x}即{5x3x,x2,3x+2}; (2)若4x=3,则x N; (3)若x Q,则x R; (4)若x ∈N,则x∈N+.
√ √ × ×
集合的表示方法
1.列举法
就是将集合中的元素一一列举出来并放在大括号内表 示集合的方法.

答案:D
练一练

例2 给出下面几个关系式:
1 2 R,0.3 Q,0 N ,0 N , N * , 2 Z ,5 Z
*
其中正确关系式的个数是( ) A.4 B.5 C.6 D.7 答案:A
练一练

2 k 例3 集合A中含有两个元素 k 和 2 k , 求实数 k 的取值范围。
有些集合的元素较多,元素的排列又呈现一 定的规律,在不致于发生误解的情况下,也 可列出几个元素作为代表,其他元素用省略 号表示。 例:不大于100的自然数的全体构成的集合, 可以表示为: {0,1,2,3,…,100}
无限集有时也可以用上述的列举法表示。 例:自然数集N可以表示为: {0,1,2,3,…,n,…}
例题展示
例1 下列对象能构成集合吗?为什么? 1.著名的科学家; 2.1,2,2,3这四个数字;

1.1集合的概念

1.1集合的概念
注:组成集合的元素可以是物,数,图,点等
看下列的例子: (1)1~10之间的所有偶数; (2)立德中学今年入学的全体高一学生; (3)所有的正方形; (4)到直线l的距离等于定长d的所有点; (5)方程x2-3x+2=0的所有实数根; (6)地球上的四大洋。
思考1:(3)到(6)能组成集合吗?它们
思考题 结合此例,试比较用自然语言、列举 法和描述法表示集合时各自的特点和适用的对 象。
1.x R x 1不能写成x 1
2.集合与它的代表元素所采用的字母无关,
如:x R x 1也可写成y R y 1
3.集合中不能出现未说明的符号,
如:x Z x 2k
4.所有描述的内容都要写在花括号内
自变量组成的集合为 x y x2 1
⑷函数的函数值组成的集合:如函数y x2 1的
函数值组成的集合为 y y x2 1
⑸函数图象上的点组成的集合:
如函数y x2 1图象上的点的集合为 (x, y) y x2 1
⑹多元方程的解的集合:如方程组
x x
y y
2 0
的解集为(
只要构成两个集合的元素是一样的, 我们就称这两个集合是相等的。
判断下列例子能否构成集合
中国的直辖市

身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
重要数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+或N﹡ : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
如:x Z x 2k, k Z,不能写成x Z x 2k, k Z

1.1集合的概念

1.1集合的概念

§1.1 集合的概念
【教学目标】
知识目标:
(1)理解集合、元素的定义,会判断元素与集合的关系,理解元素的三特征(确定性、无序性、互异性),记住常用数集的字母(R、Q、Z、N);
(2)掌握集合的列举法与描述法,会用适当的方法表示集合。

能力目标:
通过集合语言的学习与运用,培养学生的数学思维能力。

情感目标:
通过表演,积极参与,获得成功感。

【教学重点】
元素与集合的关系,元素的三特征,集合的表示方法。

【教学难点】
集合表示法的选择与规范书写集合。

【教学设计结构】
(1)通过生活中的实例导入集合与元素的概念;
(2)引导学生自然地认识元素与集合的关系;
(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;
(4)通过练习,巩固知识;
(5)依照学生的认知规律,顺应学生学习思路展开,自然地层层推进教学。

【课时安排】
集合的概念:2课时;集合的表示方法:2课时。

【教学过程】。

1.1集合的概念.ppt

1.1集合的概念.ppt
如果CSA={0},则这样的实数x是否存在? 若存在,求出x的值; 若不存在,说明理由.
解法一:因为CSA={0},所以0∈S
且0 A,
所以x3-x2-2x=0,解得x=0或x=-1或x=2. 当x=0时,|2x-1|=1,不满足A中元素的 互异性;
当x=-1时,|2x-1|=3∈S; 当x=2时,|2x-1|=3∈S. 所以这样的实数x存在,且x=-1或x=2.
第一章 集合与简易逻辑
第1 讲
集合的概念

●集合元素的三个特征:确定性、互异

性、无序性

●集合的表示方法:列举法、描述法、

区间表示法和图示法
●集合的子集、全集高

高考对集合概念考查主要有两种方式:
考 一是直接以选择题和填空题形式考查;二
猜 是以集合作为工具考查集合语言和集合思
想 想的运用.
1. 集合中的元素具有三个特性,分别是 (1) 确定性 ,(2) 互异性, (3) 无序性.
2.已知M={x|x>1},N={x|x>a},且M N,
则( )B A.a≤1 B. a<1 C. a≥1 D. a>1 画图即得B.
3.已知全集U=Z, A={x|x=4k-1,k∈Z}, B={x|x=4k+1,k∈Z}. 指出A与CUB,B与 CUA的关系.
U=Z,A={x|x=4k-1,k∈Z}={x|x=4(k1)+3,k∈Z}={x|x=4k+3,k∈Z},
5. a是集合A的元素可表示为(14) a∈A ,a
不是集合A的元素可表示为(15) a A ;集合A
是集合B的子集可表示为(16) A B ,集合A是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 用列举法表示下列集合: (1)由大于-4且小于12的所有偶数组成的集 合; (2)方程 x²-5x-6=0 的解集.
分析
这两个集合都是有限集。 (1)题的元素可以直接列举出来; (2)题的元素需要解方程 x²-5x-6=0 才能得到.
解 (1)集合表示为{-2,0,2,4,6,8,10} (2)解方程得,x1=-1,x2=6。故方程解集为 {-1,6} .
① 互异性:一个给定的集合中的元素都是互不相同的; ② 无序性:一个给定的集合中的元素排列无顺序; ③ 确定性:一个给定的集合中的元素必须是确定的.
不能确定的对象,不能组成集合.例如,某 班跑得快的同学,就不能组成集合.
(1)所有小于10的自然数; (2)某班个子高的同学; (3)方程 x²-1=0 的所有解; (4)不等式 x-2>0 的所有解.
由数组成的集合叫做数集.方程的解集与不等式的解
集都是数集. 所有自然数组成的集合叫做自然数集,记作 . 所有正整数组成的集合叫做正整数集,记作 或 . 所有整数组成的集合叫做整数集,记作 . 所有有理数组成的集合叫做有理数集,记作 . 所有实数组成的集合叫做实数集,记作 . 不含任何元素的集合叫做空集,记作∅.例如,方程 x2+1=0的实数解的集合里不含有任何元素,所以这个 解集就是空集。
2.指出下列各集合中,哪个集合是空集? (1)方程x²+1=0 的解集; (2)方程x+2=2 的解集.
问题: 不大于5的自然数所组成的集合中有哪些元素? 小于5的实数所组成的集合中有哪些元素? 解决: 不大于5的自然数所组成的集合中只有0、1、2、3、 4、5这6个元素,这些元素是可以一一列举的. 而小于5的实数有无穷多个,而且无法一一列举出 来,但元素的特征是明显的:(1) 集合的元素都 是实数;(2)集合的元素都小于5.
1. 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、
9十个数,它们是确定的对象,所以它们可以组成集合. 2. 由于个子高没有具体的标准,对象是不确定的,因此不 能组成集合. 3. 方程x²-1=0的解是−1和1,它们是确定的对象,所以可以 组成集合. 4. 解不等式x-2>0 ,得x>2 ,它们是确定的对象,所以 可以组成集合.
食品
文具
食品
面包、饼干、汉堡、果冻、薯片
文具
彩笔、水笔、橡皮、裁纸刀、尺子
由某些确定的对象组成的整体叫做集合,简称集. 组成集合的对象叫做这个集合的元素.
表示: 一般采用大写英文字母 A、B、C…表示集合,小 写英文字母 a、b、c…表示集合的元素.
例如: 大于2并且小于5的自然数组成的集合是由哪些 元素组成?
本次课重点学习了集合的表示法:列举 法、描述法,用列举法表示集合,元素清晰 明了;用描述法表示集合,元素特征性质直 观明确. 因此表示集合时,要针对实际情况,选用合 适的方法.例如,不等式(组)的解集,一 般采用描述法来表示,方程(组)的解集, 一般采用列举法来表示.
例4: 用适当的方法表示下列集合: (1)方程x+5=0的解集; (2)不等式3x-7>5的解集; (3)大于3且小于11的偶数组成的集合; (4)不大于5的所有实数组成的集合; 解: (1) {−5}; (2){x| x>4} ; (3) {4,6,8,10}; (4) {x| x≤5} .
例3 用描述法表示下列各集合: (1)不等式2x+1≥0 的解集; (2)所有奇数组成的集合; (3)由第一象限所有的点组成的集合.
分析
用描述法表示集合关键是找出元素的特征性质。 (1)题解不等式就可以得到不等式解集元素的特征性质; (2)题奇数的特征性质是“元素都能写成2k+1(k∈Z) 的 形式”。 (3)题元素的特征性质是“为第一象限的点”,即横坐标 与纵坐标都为正数。
(1)阅读理解: 教材1.1,学习与训练1.1; (2)书面作业: 教材习题1.1,学习与训练1.1训练题; (3)实践调查: 探究生活中集合知识的应用
同学们:
下课啦!
元素a是集合A的元素,记作a∈A(读作“a属 于A”)。 若b不是集合A的元素,记作 b∉A(读作“ 不 属于A”)。 集合中的对象(元素)必须是确定的.对于 任何的一个对象,或者属于这个集合,或者 不属于这个集合,二者必居其一。

练习1.1.1 1.用符号“∈ ”或“∉ ”填空: (1)−3 N,0.5 N,3 N; (2)1.5 Z,−5 Z,3 Z; (3)−0.2 Q, π Q,7.21 Q; (4)1.5 R,−1.2 R,π R.
【教学难点】 集合表示法的选择与规范书写. 【课时安排】 2课时
缤纷多彩的世界,众多繁杂的现象, 需要我们去认识.将对象进行分类和归类, 加强对其属性的认识,是解决复杂问题的 重要手段之一.例如,按照使用功能分类 存放物品,在取用时就十分方便. 这就是我们将要研究学习的1.1集合.
某商店进了一批货,包括: 面包、饼干、汉堡、彩笔、水笔、橡皮、 果冻、薯片、裁纸刀、尺子. 那么如何将这些商品放在指定的篮筐里?
解:
(1)解不等式2x+1≥0 得x ≥ -1/2 ,所以解集为
{x︱x≥-1/2}; (2)奇数集合{x︱x=2k+1,k∈Z};
(3)第一象限所有的点组成的集合为
{(x,y)︱x>0,y>0}。
1.用列举法表示下列各集合:
(1)方程 x²-3x-4=0 的解集; (2)方程 4x+3=0 的解集; (3)由数1,4,9,16,25组成的集合; (4)所有正奇数组成的集合. 2.用描述法表示下列各集合: (1)大于3的实数所组成的集合; (2)方程 x²-4=0 的解集; (3)大于5的所有偶数所组成的集合; (4)不等式 2x-5>3 的解集.
选用适当的方法表示出下列各集合:
(1)由大于10的所有自然数组成的集合; (2)方程 x²-9=0 的解集; (3)不等式 4x+6<5 的解集; (4)平面直角坐标系中第二象限所有的点组成 的集合; (5)方程 x²+4=3的解集;
本次课学了哪些内容?重点和难点各是什么?
(1)本次课学了哪些内容? (2)通过本次课的学习,你会解决哪些新问 题了? (3)在学习方法上有哪些体会?
由方程的所有解组成的集合叫做这个方程的解集. 由不等式的所有解组成的集合叫做这个不等式的解
集. 像方程 的解组成的集合那样,由有限个元素组成的 集合叫做有限集.像不等式x-2>0的解组成的集合那 样,由无限个元素组成的集合叫做无限集. 像平面上与点O的距离为2 cm的所有点组成的集合那 样,由平面内的点组成的集合叫做平面点集.
当集合中元素可以一一列举时,可以用列举 的方法表示集合;当集合中元素无法一一列 举但元素特征是明显时,可以分析出集合的 元素所具有的特征性质,通过对元素特征性 质的描述来表示集合.
集合的表示有两种方法: (1)列举法.
把集合的元素一一列举出来,写在花括号内,元素 之间用逗号隔开.如不大于5的自然数所组成的集合 可以表示为{0,1,2,3,4,5} . 当集合为无限集或为元素很多的有限集时,在不发 生误解的情况下可以采用省略的写法.例如,小于 100的自然数集可以表示为{0,1,2,3„,99},正 偶数集可以表示为{2,4,6,8„}.
(2)描述法.
在花括号内画一条竖线,竖线的左侧写出集合的代 表元素,竖线的右侧写出元素所具有的特征性质. 如小于5的实数所组成的集合可表示为{x︱x<5, x∈R}.
如果从上下文能明显看出集合的元素为实数,那么可以将 x∈R省略不写.如不等式3x-6>0 的解集可以表示为{x︱x >2}。
为了简便起见,有些集合在使用描述法表示时,可以省略竖 线及其左边的代表元素,直接用中文来表示集合的特征性 质.例如所有正奇数组成的集合可以表示为{正奇数}.
1.1 集合的概念
1.2 集合之间的关系 1.3集合的运算(1、2) 1.4 充要条件
【教学目标】 知识目标:
(1)理解集合、元素及其关系; (2)掌握集合的列举法与描述法,会用 适当的方法表示集合. 能力目标: 通过集合语言的学习与运用,培养学生 的数学思维能力.
【教学重点】 集合的表示法.
相关文档
最新文档