高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试万有引力定律的应用
1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;
(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .
【答案】(1)22h g t =月 (2)2
2
2hR M Gt
=;2hR
v t
= 【解析】 【分析】
(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;
(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】
(1)月球表面附近的物体做自由落体运动 h =1
2
g 月t 2 月球表面的自由落体加速度大小 g 月=2
2h t (2)若不考虑月球自转的影响 G 2
Mm
R =mg 月 月球的质量 2
2
2hR M Gt
= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2
v R
月球的“第一宇宙速度”大小 2hR
v g R t
月== 【点睛】
结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .
2.在不久的将来,我国科学家乘坐“嫦娥N 号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。已知月球的半径为R ,求: (1)月球的质量; (2)月球的自转周期。
【答案】(1) (2)
【解析】 【分析】
本题考查考虑天体自转时,天体两极处和赤道处重力加速度间差异与天体自转的关系。 【详解】
(1)科学家在“两极”处竖直上抛物体时,由匀变速直线运动的公式
解得月球“两极”处的重力加速度
同理可得月球“赤道”处的重力加速度
在“两极”没有月球自转的影响下,万有引力等于重力,
解得月球的质量
(2)由于月球自转的影响,在“赤道”上,有
解得:
。
3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.
(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?
【答案】(1)2324r M GT π=(2)22
400r
g T
π= 【解析】
(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则
有:2224Mm G m r r T π=,可得23
2
4r M GT
π= (2)由
21()10
Mm
G
mg r =,则得:222400100GM r g r T π==
4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:
(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.
【答案】(1) R=m M M +L, r=m M m
+L,(2)2π()
3L G M m +
【解析】
(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+
两星做圆周运动时的向心力由万有引力提供,则有:22
22244mM G mR Mr L T T
ππ==
可得 R
M
r m
=
,又因为L R r =+ 所以可以解得:M R L M m =
+,m
r L M m
=+; (2)根据(1)可以得到:2222244mM M
G m R m L L T T M m ππ==⋅+
则:()()233
42L L T M m G
G m M ππ=
=++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.
5.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:
(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;
(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)
02tan v t α;(2)03tan 2v GRt απ;02tana
v R t
;(4)02tan Rt v α
【解析】 【分析】 【详解】
(1) 小球落在斜面上,根据平抛运动的规律可得:
200
12tan α2gt y gt x v t v ===
解得该星球表面的重力加速度:
02tan α
v g t
=
(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:
2
GMm
mg R
= 则该星球的质量:
G
gR M 2
= 该星球的密度:
33tan α34423
v M g
GR GRt R ρπππ=
=
=
(3)根据万有引力提供向心力得:
22Mm v G m R R
= 该星球的第一宙速度为:
v =
==
(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:
2R
T v
π=
所以:
22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.
6.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。若该星球半径为4000km ,引力常量G =6.67×10﹣11N•m 2•kg ﹣
2
.试求: