方差分析80992
方差分析_精品文档
方差分析_精品文档方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或更多个群体均值是否存在显著差异的统计方法。
它是一种非参数统计方法,适用于正态分布的数据,可以帮助我们理解不同因素对于观测变量的影响程度以及它们之间是否存在交互作用。
方差分析的基本原理是将总体方差拆分为组内方差和组间方差。
组间方差表示了不同群体之间的差异,组内方差则表示了同一群体内的个体差异。
通过比较组间方差与组内方差的大小,判断不同群体均值是否存在显著差异。
方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差分析主要用于比较一个因素(或处理)对观测变量的影响,例如比较不同药物对于治疗效果的影响;而多因素方差分析则可以同时考虑多个因素的影响,并探究它们之间是否存在交互作用。
方差分析的基本步骤如下:1.建立假设:根据实际问题,建立相应的原假设(H0)和备择假设(H1)。
原假设通常是认为各组均值相等,备择假设则是认为各组均值不全相等。
2.收集数据:根据实验设计,对不同处理组进行观测,获取相应的数据。
3.计算统计量:计算组间方差和组内方差,进行方差分析,得到统计量(F值)。
4.判断显著性:根据计算出的F值和自由度,查找F分布表,计算出P值(显著性水平)。
5.做出结论:根据P值,结合原假设和备择假设,判断不同群体均值是否存在显著差异。
方差分析的优点在于可以同时比较多个群体均值,减少了多次独立t 检验的错误率。
此外,方差分析也可以用于研究不同因素的交互作用,帮助我们更全面地理解数据。
然而,方差分析也有一些限制。
首先,方差分析要求数据满足正态分布假设,如果数据不满足正态分布,则结果可能不准确。
其次,方差分析对样本量要求较高,特别是对于多因素方差分析,需要足够的样本量才能得到可靠的结果。
最后,方差分析只能告诉我们群体均值是否存在显著差异,而不能确定具体差异的大小,这需要通过其他统计方法进行进一步分析。
方差分析
n 打开数据文件grocery_1month.sav。 n 选择【分析】→【一般线性模型】→【单变量】
绘制选项
把style选入水平轴,gender选入单图,然后点击 “添加”。再把style和gender互相交换,选入不同 的框中,单击“添加”。
结果及其解释(1)
结果及其解释(2)
结果及其解释(3)
数据。
方差分析的前提条件
n 方差分析的自变量是“因子”或者“因素”, 它是分类变量;其因变量则为尺度变量,需要 满足以下两个基本前提条件:
n 每个处理的因变量为正态分布(正态性) n 每个处理的因变量具有相同的方差(方差齐性)
单因素的方差分析
n 用于研究一个影响因素对试验结果的影响,它 用于比较两个或者两个以上的总体之间是否有 显著的差异
结果解释
两两比较结果及解释
由于Levene检验没有证据说明三种培训方式的方差相等,参照两种不 同的两两比较的结果是必要的。 Bonferroni和Tamhane多重比较的结果是一致的。即培训2天和培训3天 没有显著的区别,而培训1天与另外两种培训都有显著区别。
同质子集
Tukey B两两比较输出的结果,它把在5%的显著性水 平下没有区别的总体放在同一列,作为同类子集。 这里,培训2天和培训3天没有显著区别,它们作为 一类。而培训1天单独作为1类。
协方差分析的数学模型
n 协方差分析的数学模型为 yij = ¹ + ai +¯ zij+ ²ij
这里yij表示在控制因素的i水平下的第j次试 验的因变量观测值;¹为因变量总体均值;ai表 示控制因素的水平下对因变量产生的效应;¯ 为协变量的回归系数;zij表示在控制因素的水 平i下的第j次试验的协变量观测值;²ij为抽样 误差,假设它是服从方差相等的正态分布变量。
方差分析的基本原理是什么
方差分析的基本原理是什么
方差分析是一种统计方法,用于比较两个或多个不同组之间的平均值是否存在显著差异。
其基本原理是通过对数据的方差进行分解,将总平方和分解为组内平方和和组间平方和,从而判断不同组之间的差异是否超过了由随机因素引起的差异。
具体步骤如下:
1. 假设组间和组内的观测值都来自于正态分布的总体,并且方差相等(方差齐性)。
2. 计算组内平方和(误差平方和),即每个组内观测值与该组的平均值之差的平方和。
3. 计算组间平方和(效应平方和),即每组平均值与总体均值之差的平方和乘以每组样本量。
4. 比较组间和组内的方差大小,通过计算F统计量来衡量两
者之间的差异。
5. 根据显著性水平(如α=0.05),比较计算得到的F值与临
界F值进行比较,判断差异是否显著。
6. 若差异显著,则可以得出结论:不同组之间的平均值存在显著差异。
方差分析能够帮助研究者确定实验结果的可靠性和效应的大小,以及不同因素对结果的影响程度。
它广泛应用于各个领域的实验设计和数据分析中。
方差分析方法
方差分析方法方差分析是统计分析方法中,最重要、最常用的方法之一。
本文应用多个实例来阐明方差分析的应用。
在实际操作中,可采用相应的统计分析软件来进行计算。
1. 方差分析的意义、用途及适用条件1.1 方差分析的意义方差分析又称为变异数分析或F检验,其基本思想是把全部观察值之间的变异(总变异),按设计和需要分为二个或多个组成部分,再作分析。
即把全部资料的总的离均差平方和(SS)分为二个或多个组成部分,其自由度也分为相应的部分,每部分表示一定的意义,其中至少有一个部分表示各组均数之间的变异情况,称为组间变异(MS组间);另一部分表示同一组内个体之间的变异,称为组内变异(MS组内),也叫误差。
SS除以相应的自由度(υ),得均方(MS)。
如MS组间>MS组内若干倍(此倍数即F值)以上,则表示各组的均数之间有显著性差异。
方差分析在环境科学研究中,常用于分析试验数据和监测数据。
在环境科学研究中,各种因素的改变都可能对试验和监测结果产生不同程度的影响,因此,可以通过方差分析来弄清与研究对象有关的各个因素对该对象是否存在影响及影响的程度和性质。
1.2 方差分析的用途1.2.1 两个或多个样本均数的比较。
1.2.2 分离各有关因素,分别估计其对变异的影响。
1.2.3 分析两因素或多因素的交叉作用。
1.2.4 方差齐性检验。
1.3 方差分析的适用条件1.3.1 各组数据均应服从正态分布,即均为来自正态总体的随机样本(小样本)。
1.3.2 各抽样总体的方差齐。
1.3.3 影响数据的各个因素的效应是可以相加的。
1.3.4 对不符合上述条件的资料,可用秩和检验法、近似F值检验法,也可以经过变量变换,使之基本符合后再按其变换值进行方差分析。
一般属Poisson分布的计数资料常用平方根变换法;属于二项分布的百分数可用反正弦函数变换法;当标准差与均数之间呈正比关系,用平方根变换法又不易校正时,也可用对数变换法。
2. 单因素方差分析(单因素多个样本均数的比较)根据某一试验因素,将试验对象按完全随机设计分为若干个处理组(各组的样本含量可相等或不等),分别求出各组试验结果的均数,即为单因素多个样本均数。
方差分析——精选推荐
方差分析方差分析是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用于:1、均数差别的显著性检验2、分离各有关因素并估计其对总变异的作用3、分析因素间的交互作用4、方差齐性检验。
1.单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量的各因素水平分组的均值之间的差异是否具有统计意义。
它检验由单一因素影响的几个(两个以上)彼此独立的组是否来自均值相同的总体。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA 过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态不能使用该过程而应该使用非参分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measures 命令调用GLM 过程。
1.1 单因素方差分析的示例下表为某职业病防治院对31 名石棉矿工中的石棉肺患者、可疑患者和非患者进行了用力肺活量(L)测定的数据,问三组石棉矿工的用力肺活量有无差别?新建变量g 标识三种患者,数值1 标识石棉肺患者,2 标识可疑患者,3标识非患者,用变量X 存放测量值由上表建立数据文件如图所示从Analyze —〉Compare Means —〉One-Way ANOVA 激活One-Way ANOVA 单因素方差分析对话框。
将变量肺活量[x] 移入Dependent List 独立列表栏将变量组别[g] 移入Factor 栏如图所示由上表可知方差来源于两部分,即组间Between Groups 和组内Within Groups 。
方差分析(精品)
---------------------------------------------------------------最新资料推荐------------------------------------------------------方差分析(精品)方差分析第一节方差分析的基本原理概念:方差分析:K 个样本平均数(K 大于等于三)的假设测验方法。
【方差分析就是将总变异剖分为各个变异来源的相应部分,从而发现各变异来源在总变异中相对重要程度的一种统计分析方法。
】【u 测验和 t 测验可以判断两组数据平均数之间的差异的显著性。
】一:自由度和平方和的分解二:F 分布与 F 测验第二节多重比较【为了了解那些处理间存在真实差异,而进行处理平均数之间的比较】一:最小差异显著法【LSD 法】二:q 法(要求精确度高的时候才使用,一般田间试验不使用)三:新复极差法【SSR 法】四:多重比较结果的表示方法①:列梯形表法②:划线法③:标记字母法五:多重比较方法的选择第三节方差分析的线性模型与期望均方第四节单项分组资料的方差分析一:1/ 13组内观察值数目相等的单向分组资料的方差分析【p111】二:组内观察值数目不等时的单向分组资料的方差分析三:组内又分亚组的单向分组资料的方差分析【p115】第五节两项分组资料的方差分析【p118】两项分组资料:两因素试验中若因素a的各个水平与因素b的各个水平均衡相遇(或称正交),则所测的试验数据按两个因素交叉分组称为两项分组资料。
一:组合内只有单个观察值的两向分组资料的方差分析【p119】二:组合内有重复观察值的两向分组资料的方差分析【p120】第六节:方差分析的基本假定和数据转换一:方差分析的基本假定:可加性,正态性,误差同质性二:数据转换:平方根转换,对数转换,反正弦转换,采用几个平均数做方差分析第7章卡平方(X2)测验第 1 节卡平方的定义和意义一:卡平方的算法O 为实际观察频数E=理论频数 K=组数E1 由公式可知卡平方度量具有几个重要性质:---------------------------------------------------------------最新资料推荐------------------------------------------------------ ①:当两个(O-E)的数值相同时,则数值与 E 的大小为反比,即(O-E)一定时, E 大,(O-E)的比重愈小②:当两个(O-E)与 E 成相同比例时, 则的数值与(O-E)的大小成正比,例(700-500) /500 与(7-5) /5 的比例相同,但两个差异的重要性,则显然不同。
方差分析原理
方差分析原理方差分析(ANOVA)是一种统计学方法,用于比较三个或三个以上组的平均值是否存在显著差异。
它是通过比较组内变异和组间变异的大小来判断组间差异是否显著。
方差分析可以用于不同实验设计和数据类型,是许多统计分析的基础。
首先,我们来了解一下方差分析的基本原理。
方差分析的核心思想是将总体的方差分解为组内变异和组间变异两部分。
组内变异是指同一组内个体之间的差异,而组间变异是指不同组之间的差异。
通过比较组内变异和组间变异的大小,我们可以判断组间差异是否显著。
在进行方差分析时,我们需要计算F值来判断组间差异是否显著。
F值是组间均方与组内均方的比值,它反映了组间变异与组内变异的相对大小。
当F值大于1时,表示组间差异较大,我们可以拒绝原假设,认为组间差异显著。
方差分析有不同的类型,包括单因素方差分析、双因素方差分析和多因素方差分析。
在单因素方差分析中,我们只考虑一个自变量对因变量的影响;在双因素方差分析中,我们考虑两个自变量对因变量的影响;而在多因素方差分析中,我们考虑多个自变量对因变量的影响。
除了了解方差分析的基本原理,我们还需要注意方差分析的假设条件。
方差分析的假设包括正态性假设、方差齐性假设和独立性假设。
正态性假设是指因变量在各组内呈正态分布;方差齐性假设是指各组的方差相等;独立性假设是指各组之间相互独立。
在进行方差分析前,我们需要对这些假设进行检验,以确保分析结果的可靠性。
在实际应用中,方差分析常常与其他统计方法结合使用,如回归分析、协方差分析等。
通过综合运用不同的统计方法,我们可以更全面地分析数据,得出更可靠的结论。
总之,方差分析是一种重要的统计方法,它可以用于比较多个组的平均值是否存在显著差异。
通过了解方差分析的基本原理、假设条件和应用范围,我们可以更好地应用这一方法,从而更准确地分析数据,得出科学的结论。
方差分析(ANOVA)简介
方差分析(ANOVA)简介方差分析(AnalysisofVariance,简称ANOVA)是统计学中常用的一种方法,用于比较两个或两个以上样本均值之间是否存在显著性差异。
通过ANOVA可以帮助我们判断不同因素对于数据的影响程度,进而做出科学的决策。
为什么需要方差分析在现实生活和科研领域中,我们经常会遇到需要比较多个组别或处理之间差异的情况。
例如,我们想知道不同教学方法对学生成绩的影响是否显著,或者不同药物治疗方法在疾病治疗中的效果是否存在差异。
此时,方差分析就是一种非常有效的工具。
ANOVA的基本原理方差分析通过比较组内变异和组间变异的大小来判断各组之间均值是否存在显著性差异。
如果组间差异显著大于组内差异,我们就可以认为因素之间的差异是显著的。
单因素方差分析与多因素方差分析在实际应用中,方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差分析是指只考虑一个因素对结果的影响,而多因素方差分析则同时考虑多个因素之间的相互作用。
方差分析的假设进行方差分析时需要满足一些基本假设,如样本的正态性、方差齐性和独立性等。
只有在这些基本假设成立的情况下,我们才能对方差分析结果进行合理解释。
如何进行方差分析在实际应用中,进行方差分析通常需要借助统计软件进行计算和分析。
我们需要输入不同组别的数据,然后进行方差分析的步骤和计算,最终得出结果并进行统计推断。
方差分析作为一种强大的统计工具,能够帮助我们解决许多实际问题,提供科学依据和数据支持。
通过对数据的比较和分析,我们可以更清晰地了解不同因素之间的关系,有效地做出决策和优化方案。
在实际应用中,我们应当谨慎分析数据、合理选择模型,才能得出准确可靠的。
希望本文对您理解方差分析有所帮助,欢迎深入学习和实践应用!在统计分析中,方差分析(ANOVA)是一种重要的方法,可以有效比较不同组别或处理之间的均值差异。
通过合理的数据分析和实际应用,我们能够更好地理解数据背后的意义,为决策提供可靠的支持。
课件方差分析
例子2
五个商店以各自的销售方式卖出新型健身器, 连续五天各商店健身器的销售量如下表所示。销 售量服从正态分布,且具有方差齐性,试考察销 售方式对销售量有无显著影响,并对销售量作两 两比较。
双因素方差分析假设
双因素方差分析数据结构表
双因素方差分析表
双因素方差分析SPSS界面
例子1
例子2
西方国家有一种说法,认为精神病与月亮有关,月 圆时,人盯着州亮看,看得太久,就会得精神病。中医 也有一种说法,认为精神病与季节有关,特别是春季, 人最容易得精神病。为了检验这两种说法是否有道理, 对某地平均每日精神病发病人数统计如下:
SSR与MSR
组间差异(组间平方和,简称SSR): 各组平均值与总平均值离差的平方和, 反映了各水平之间的差异程度或不同 的处理造成的差异。
组间均方: MSR= SSR /(自由度k-l)
SSE与MSE
组内差异(组内平方和、残差平方和, 简称SSE): 每个样本数据与其组平均值离差的平方和, 反映了随机误差造成差异的大小。
例子2
Байду номын сангаас
单因素练习1
某饮料生产企业研制出一种新型饮料。饮料的颜色共 有四种,分别为桔黄色、粉色、绿色和无色透明。随机从 五家超级市场上收集了前一期该种饮料的销售量。
问:饮料的颜色是否对销售量产生影响。
超市 1 2 3 4 5
无色 26.5 28.7 25.1 29.1 27.2
粉色 桔黄色 绿色 31.2 27.9 30.8 28.3 25.1 29.6 30.8 28.5 32.4 27.9 24.2 31.7 29.6 26.5 32.8
概述 方差分析的分类
方差分析按所涉及因素的多少可分为: 单因素方差分析 双因素方差分析 多因素方差分析
(整理)第7章 方差分析
第7章方差分析摘要:多组资料均数比较一般采用方差分析的方法,SAS中方差分析的功能非常全面,能实现方差分析功能的过程有ANOV A过程和GLM过程。
对于两个平均数的假设测验,一般采用t测验来完成,对于多个平均数的假设测验,若采用t测验两两进行,不仅非常麻烦,而且容易犯第一类错误。
方差或称均方,即标准差的平方,它是一个表示变异程度的量。
在一项试验或调查中往往存在着许多种影响生物性状变异的因素,这些因素有较重要的,也有较次要的。
方差分析就是将总变异分裂为各个因素的相应变异,作出其数量估计,从而发现各个因素在变异中所占的重要程度;而且除了可控制因素所引起的变异后,其剩余变异又可提供试验误差的准确而无偏的估计,作为统计假设测验的依据。
当试验结果受到多个因素的影响,而且也受到每个因素的各水平的影响时,为从数量上反映各因素以及各因素诸水平对试验结果的影响,可使用方差分析的方法。
SAS系统用于进行方差分析的过程主要有ANOV A过程和GLM过程,对于均衡数据的分析一般采用ANOV A过程,对于非均衡数据的分析一般采用GLM过程。
方差分析和协方差分析在SAS系统中由SAS/STAT模块来完成,其中我们常用的有ANOV A过程和GLM过程。
前者运算速度较快,但功能较为有限;后者运算速度较慢,但功能强大,我们做协方差分析时就要用到GLM过程。
本章将首先介绍方差分析所用数据集的建立技巧,然后重点介绍这两个程序步。
§7.1 方差分析概述一、方差分析的应用场合、基本思想和前提条件1.应用场合当影响因素是定性变量(一般称为分组变量或原因变量),观测结果是定量变量(一般称为结果变量或反应变量),常用的数据处理方法是对均数或均值向量进行假设检验。
若只有一个原因变量,而且其水平数k≤2,一元时常用U检验、t检验、秩和检验,多元时用多元检验(T2检验或wilks’^检验);若原因变量的水平数k≥3或原因变量的个数≥2,一元时常用下检验,也叫一元方差分析(简写成ANOV A)或非参数检验,多元时用多元方差分析(简写成MANOV A,其中最常用的是Wilks’^检验)。
方差分析介绍
1. 方差分析的概念 .方差分析(ANOVA)又称变异数分析或 F 检验, 其目的是推断两组或多组资料的总体均值是否显著性差异. 2. 方差分析的应用条件.具体包括三项, (1)可比性,资料中各组均数本身不具可比性,则不适用方差分析, 其次,资料中的数据之间还应相互独立. (2)正态性,即参与方差分析的数据应该符合正态分布.对偏态分布 的资料应考虑用平方根变换、对数变换、倒数变换等变换方法使其变为正 态或接近正态后再进行方差分析. (3)方差齐性,即若组间方差不具齐性则不适用方差分析.多个方差 的齐性检验可用 Bartlett 法,它用卡方值作为检验统计量,结果判断需查 阅卡方界值表. 3.方差分析统计量的构造.方差分析实际上是一种假设检验,原假设为 各水平之间没有显著性的差异.检验统计量为
F
S S A / a 1 S S 1, n a
对于给定的显著性水平 ,若 F Fa 1, n 1 ( ) ,则拒绝原假设,认为各水 平之间有差异.其中
SST
i 1
a
ni
( y ij y i . )
2
j 1
(y
i 1 j 1
a
ni
i.
y ) SS E SS A
2
S S A 表示误差平方和, S S 表示组间平方和, a 表示水平的种类的个数, n 为数据总个数. E
4.多个总体均值的两两比较.经过方差分析如果拒绝了检验假设,只能 说明多个 总体 之间 均值不相等或不 全相等 .若要得到各组均 值间更详细的 信息,应在方差分析的基础上对多个总体均值进行两两比较.
方差分析的概念与其研究内容
方差分析的概念与其研究内容
1、方差分析又称变异数分析或F检验,其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析和两因素方差分析即配伍组设计的方差分析。
2、根据资料设计类型的不同,有以下两种方差分析的方法:(1)、对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。
(2)、对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。
两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异,整个方差分析的基本步骤如下:
①建立检验假设;
H0:多个样本总体均数相等;
H1:多个样本总体均数不全相等。
②列表进行计算分析。
③计算检验统计量F值,进行分析总结。
(整理)第11章 方差分析
第一节 方差分析的概述一、方差分析的由来t 检验法(z 检验法也是如此)适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在公共管理的研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。
这时,若仍采用t 检验法就不适宜了。
这是因为:①检验过程烦琐。
例如,一实验包含5个处理,采用t 检验法要进行25C =10次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。
②无统一的实验误差,误差估计的精确性和检验的灵敏性低。
对同一实验的多个处理进行比较时,应该有一个统一的实验误差的估计值。
若用t 检验法作两两比较,由于每次比较需计算一个21x x S ,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。
例如,实验有5个处理,每个处理重复6次,共有30个观测值。
进行t 检验时,每次只能利用两个处理共12个观测值估计实验误差,误差自由度为2(6-1)=10;若利用整个实验的30个观测值估计实验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。
可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。
③推断的可靠性低,检验的I 型错误率大。
即使利用资料所提供的全部信息估计了实验误差,若用t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。
由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。
方差分析(analysis of variance)是由英国统计学家R.A.Fisher 于1923年提出的。
这种方法是将k 个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。
方差分析
方差分析目录[隐藏]什么是方差分析方差分析的基本思想方差分析的分类及举例方差分析的主要内容(1.1)方差分析(Analysis of Variance,简称ANOVA)[编辑本段]什么是方差分析方差分析(ANOVA)又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状。
造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
一个复杂的事物,其中往往有许多因素互相制约又互相依存。
方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。
方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。
对变差的度量,采用离差平方和。
方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。
经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。
若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。
1、多个样本均数间两两比较多个样本均数间两两比较常用q检验的方法,即Newman-kueuls法,其基本步骤为:建立检验假设-->样本均数排序-->计算q值-->查q界值表判断结果。
2、多个实验组与一个对照组均数间两两比较多个实验组与一个对照组均数间两两比较,若目的是减小第II类错误,最好选用最小显著差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。
[编辑本段]方差分析的基本思想基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
下面我们用一个简单的例子来说明方差分析的基本思想:如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87问该地克山病患者与健康人的血磷值是否不同?从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。