A Comparative Pharmacokinetic Study of Recombinant Human Serum Albumin With Human Serum Albumin
沈阳工业大学简介
第50卷第1期 卢华烨,等:毛细管电泳法测定水飞蓟宾的含量 2434 结 论本文建立了水飞蓟宾含量测定的高效毛细管电泳分析方法,分析时间在4 min内。
对建立的方法进行了方法学验证,并应用于5批实际样品的分析。
该方法操作简便,样品和试剂消耗量少,适用于水飞蓟宾常规药物的含量测定和生产过程中质量控制。
参考文献:[1]HA E S,HAN D G, SEO S W, et al. A simple HPLC method for the quantitative determination of silybin in rat plasma: application to a comparative pharmacokinetic study on commercial silymarin products[J]. Molecules, 2019, 24(11): 2180.[2]刘宏.水飞蓟种子活性成分的提取、分离及初步活性研究[D]. 北京:北京化工大学,2009.[3]曾伟民,陶超,范晓旭,等.水飞蓟秸秆中水飞蓟素成分分析[J].黑龙江畜牧兽医,2014(13):168-170.[4]李伟.水飞蓟宾卵磷脂复合物的生物药剂学研究[D]. 天津:天津大学,2008.[5]明全,刘亚,黄娟丽.复合磷酸酯酶肠溶片联合水飞蓟素治疗酒精性肝病疗效观察[J].中西医结合肝病杂志,2014,24(5):309-310. [6]杨崎恩,蒋亦明,孙彤,等.水飞蓟宾联合二甲双胍与熊去氧胆酸治疗非酒精性脂肪性肝炎的对比[J].中国临床医学,2010,17(6):839-840.[7]刘凯南,徐文军,陈军.水飞蓟宾胶囊联合常规治疗对酒精性肝病伴早期肝纤维化病变患者血清氧化损伤和肝功能的影响[J].中国药房,2018,29(5):686-689.[8]定天明,田颂九,张正行,等.胶束电动毛细管色谱法测定水飞蓟素及其制剂中主要有效成分含量[J].药学学报,2000(10):778-781. [9]高洁丽.反相高效液相色谱法测定水飞蓟宾的有关物质[J].北方药学,2014,11(6):8-9.[10]段瑞玲,孙逊,刘洁,等.RP-HPLC测定大鼠血浆中的水飞蓟宾[J].华西药学杂志,2010,25(1):52-54.[11]王伟,黄伟静,曾韶辉.水飞蓟宾非对映异构体的HPLC分离测定[J].药品评价,2005(4):280-282. [12]贾献慧,刘汉清.HPLC法测定蓟贞滴丸中水飞蓟宾的含量[J].南京中医药大学学报,2008(3):200-201.[13]罗域城. 高效液相色谱法测定复方益肝灵胶囊中水飞蓟宾含量的条件探索[J].海峡药学,2018,30(5):81-84.[14]梅康康,胡容峰. HPLC测定水飞蓟宾缓释纳米球的体外释放度[J].食品与药品,2019,21(5):366-371.[15]刘开敏,王文坤,吴丽云.毛细管电泳法测定动物肝脏中的谷胱甘肽[J].当代化工,2012,41(9):1003-1005.[16]张政,孙志艺,王涵琪,等.高效毛细管电泳指纹图谱法检测全蝎酶解液中蛋白类成分(>10 kDa)的实验研究[J].当代化工,2019,48(6):1144-1148.[17]关瑾,牛秋玲,何传昌等.毛细管电泳法测定对乙酰氨基酚的含量[J].华西药学杂志,2013,28(6):615-616.[18]关瑾,王慧泽,任丽艳,等.乙醛酸和草酸的毛细管区带电泳分析[J].色谱,2012,30(1):107-110.[19]阎峰,关瑾,陈星,等.高效毛细管电泳法测定乳氟禾草灵的含量[J].农药,2010,49(9):662-663.[20]陈琴华,李鹏,张进峰,等.非水毛细管电泳法同时测定苦参栓中苦参碱和氧化苦参碱的含量[J].中国医院药学杂志,2012,32(14):1152-1154.[21]李东靖,关瑾,阎峰,等.反相高效液相色谱法分离分析花青醛和巴豆醛[J].香料香精化妆品,2019(2):14-16.[22]闫新豪.不同产地冬虫夏草HPCE的指纹图谱分析[J].当代化工,2017,46(5):814-816.[23]张鹏,林阳,赵昕,等.场放大进样法在毛细管电泳样品富集方面的应用[J].当代化工,2013,42(12):1768-1772.[24]关瑾,董西鑫,丁爽,等.毛细管电泳法分离分析乙酰半胱氨酸及四种相关杂质[J].分析试验室,2014,33(4):412-415.[25]刘静. 高效液相色谱法分离3个抗溃疡药物[D].沈阳化工大学,2018.[26]李喜凤,邱天宝,郝哲,等.蒲公英药材CZE-DAD指纹图谱研究[J].中药材,2010,33(11):1712-1714.[27]林萍.毛细管电泳在某些植物和动物细胞miRNA分析中的应用研究[D].福州:福州大学,2018.[28]焦钰婷. 阿司匹林丁香酚酯咀嚼片的制备及质量控制[D].兰州:甘肃农业大学,2019.沈阳工业大学简介沈阳工业大学是一所以工为主,涵盖工、理、经、管、文、法、哲、艺术等八大学科门类的多科性教学研究型大学。
雷贝拉唑钠肠溶片处方筛选及评价
雷贝拉唑钠肠溶片处方筛选及评价卢会芬;任军乐;温占勇;王瑞强【摘要】为优化雷贝拉唑钠肠溶片的处方,以释放曲线和稳定性结果为考察指标,考察了不同碱化剂及肠溶层增重对处方的影响.结果表明:以氢氧化钠和氧化镁作为碱化剂,肠溶层增量为11%时,制备的肠溶片在pH值为8.0的溶出介质中的释放曲线与原研制剂相似,加速稳定性试验结果也符合《中华人民共和国药典》要求.试验结果表明,筛选的雷贝拉唑钠肠溶片处方合理稳定.【期刊名称】《河北工业科技》【年(卷),期】2016(033)004【总页数】5页(P314-318)【关键词】药剂学;雷贝拉唑钠;肠溶片;处方;稳定性;释放曲线【作者】卢会芬;任军乐;温占勇;王瑞强【作者单位】石家庄以岭药业股份有限公司,河北石家庄050035;石家庄以岭药业股份有限公司,河北石家庄050035;石家庄以岭药业股份有限公司,河北石家庄050035;石家庄以岭药业股份有限公司,河北石家庄050035【正文语种】中文【中图分类】R944.4雷贝拉唑是一种苯并咪唑类质子泵抑制剂,可以选择性地抑制H+/K+-ATP酶的活性。
与其他同类产品相比,雷贝拉唑对质子泵的作用效果更快,作用时间更持久,抑酸效果也更好[1-3],临床上主要用于治疗活动性十二指肠溃疡、活动性良性胃溃疡、弥散性或溃疡性胃-食管反流[4-5]。
雷贝拉唑钠是雷贝拉唑的钠盐,稳定性较差,在酸性条件下易降解,在碱性条件下较稳定,人体胃液中的酸性环境会导致雷贝拉唑钠的快速降解[6]。
口服雷贝拉唑钠的绝对生物利用度在52%左右[7],如果再受到胃酸的影响,生物利用度会更低。
肠溶制剂可以说是雷贝拉唑钠的最佳剂型,凭借延迟药物的释放,可使药物分子到达小肠后才被较快释放,从而提高生物利用度。
利用碱化剂提高质子泵抑制剂类药物的稳定性是药物开发中常用且有效的方法[8-12]。
本研究主要以碱化剂为处方筛选对象,以稳定性和释放曲线为考察指标,以期获得一个合理稳定的处方,用于规模生产。
举例说明老年人药动学与药效学的特点
举例说明老年人药动学与药效学的特点举例说明老年人药动学与药效学的特点一、引言老年人是指芳龄在65岁及以上的人群。
随着人口老龄化的加剧,老年人的健康问题越来越受到关注。
药物治疗在老年人中的应用也变得日益普遍。
然而,老年人的生理特点与年轻人存在很大差异,这导致老年人在药物代谢、药物效果以及药物副作用方面表现出独特的特点。
本文将就老年人药动学与药效学的特点进行深入探讨,并以几个常见药物为例进行说明。
二、老年人药动学的特点1. 药物代谢减慢:老年人的肝脏和肾脏功能退化,药物的代谢和排泄能力也随之下降。
老年人药物的半衰期通常比年轻人更长,药物在体内的停留时间更多,对于慢性使用药物的老年人来说,需要降低剂量或延长给药间隔。
阿司匹林是一种常用的抗血小板药物,用于预防心血管疾病。
在老年人中,阿司匹林的血浆药物浓度增加,可能导致出血风险增加。
老年人使用阿司匹林时需要调整剂量。
2. 药物分布变化:老年人的体内脂肪组织增多,而肌肉组织减少,这导致药物在体内的分布发生变化。
药物在脂肪组织中的蓄积增加,而在肌肉组织中的蓄积减少。
对于脂溶性药物来说,老年人可能需要减少剂量以避免药物在体内过度蓄积。
举个例子,地西泮是一种广泛应用于镇静和安抚的药物。
在老年人中,地西泮的体外分布容积较小,推测可能与老年人体内脂肪含量增加相关。
为了避免地西泮的过度蓄积,老年人使用地西泮时需要降低剂量。
三、老年人药效学的特点1. 敏感性增加:老年人对药物的敏感性增加,可能是因为老年人的药物受体数目或亲和力增加,或者是因为老年人的代谢能力下降,药物作用的生物利用度增加。
举个例子,贝塞那普酮是一种抗心律失常药物。
研究表明,老年人对贝塞那普酮的敏感性更高,这可能与老年人的药物受体数目的增加有关。
老年人使用贝塞那普酮时需要降低剂量。
2. 不良反应增加:老年人由于药物代谢能力下降以及多重慢性病存在,容易出现药物不良反应。
老年人往往需要同时使用多种药物,增加了药物相互作用的风险。
药学通识英语试题及答案
药学通识英语试题及答案一、选择题(每题2分,共20分)1. Which of the following is not a primary function of drugs?A. DiagnosisB. TreatmentC. PreventionD. Rehabilitation答案:A2. The term "pharmacology" refers to the study of:A. The effects of drugs on living organismsB. The synthesis of new drugsC. The distribution of drugs in the marketD. The legal regulations of drugs答案:A3. The most common route of drug administration is:A. OralB. IntravenousC. IntramuscularD. Topical答案:A4. Which of the following is a side effect of a drug?A. The intended therapeutic effectB. An effect that is harmful and unintendedC. The effect of the drug on a different organD. The effect of the drug on a different disease答案:B5. The half-life of a drug refers to:A. The time it takes for the drug to be completely eliminated from the bodyB. The time it takes for the drug's concentration to decrease by halfC. The time it takes for the drug to reach its maximum concentrationD. The time it takes for the drug to be absorbed into the bloodstream答案:B6. The bioavailability of a drug is:A. The percentage of the drug that is absorbed into the bloodstreamB. The percentage of the drug that is excreted unchangedC. The percentage of the drug that is metabolized by theliverD. The percentage of the drug that is stored in the fat tissues答案:A7. The therapeutic index of a drug is an indicator of:A. The drug's effectivenessB. The drug's safetyC. The drug's cost-effectivenessD. The drug's duration of action答案:B8. A drug's pharmacokinetics involves the study of:A. How the body affects the drugB. How the drug affects the bodyC. How the drug is synthesizedD. How the drug is regulated by the government答案:A9. The first-pass metabolism refers to:A. The metabolism of a drug after it is absorbed into the bloodstreamB. The metabolism of a drug before it enters the bloodstreamC. The metabolism of a drug after it is excreted from the bodyD. The metabolism of a drug after it is distributed to the tissues答案:B10. The term "drug interaction" refers to:A. The combined effect of two or more drugsB. The effect of one drug on the action of another drugC. The effect of a drug on the patient's behaviorD. The effect of a drug on the patient's diet答案:B二、填空题(每题2分,共20分)1. The study of the effects of drugs on living organisms is called __________.答案:pharmacology2. The intended therapeutic effect of a drug is known as its __________.答案:pharmacological effect3. The process by which a drug is absorbed into the bloodstream is called __________.答案:absorption4. A drug that is taken orally and then undergoes metabolism in the liver before entering the bloodstream is subject to__________.答案:first-pass metabolism5. The time it takes for the drug's concentration to decrease by half is known as the drug's __________.答案:half-life6. The percentage of the drug that is absorbed into the bloodstream is referred to as the drug's __________.答案:bioavailability7. The study of how the body affects the drug is known as the pharmacokinetics of the drug, while the study of how the drug affects the body is known as the __________.答案:pharmacodynamics8. A drug's safety is indicated by its __________.答案:therapeutic index9. The combined effect of two or more drugs is known as a__________.答案:drug interaction10. The unintended harmful effect of a drug is called a(n)__________.答案:side effect三、简答题(每题10分,共40分)1. Explain the difference between the pharmacokinetics and pharmacodynamics of a drug.答案:Pharmacokinetics is the study of how the body affects the drug, including absorption, distribution, metabolism, and excretion. Pharmacodynamics, on the other hand, is the study of how the drug affects the body, including the drug's mechanism of action and its effects on physiological functions.2. Describe the significance of a drug's half-life inclinical practice.答案:The half-life of a drug is significant in clinical practice as it determines the frequency of drug administration. A shorter half-life may require more frequent dosing, while a longer half-life allows for less frequent dosing. It also。
药理学概括英文作文
药理学概括英文作文英文回答:Pharmacology is the study of drugs and their effects on living organisms. It encompasses various aspects, including the interactions between drugs and the body, the mechanisms of drug action, and the development and use of new drugs.One of the fundamental principles of pharmacology is pharmacokinetics, which describes the absorption, distribution, metabolism, and excretion of drugs. These processes determine the concentration of a drug in the body and its duration of action.Another key concept is pharmacodynamics, which investigates the molecular mechanisms by which drugs exert their effects on target cells. Drugs can interact with specific receptors, enzymes, or ion channels, leading to changes in cellular function.Pharmacology plays a crucial role in healthcare by enabling the development and rational use of medications to treat diseases and alleviate suffering. It has led to the discovery of numerous life-saving drugs, including antibiotics, analgesics, and cardiovascular medications.The field of pharmacology continues to advance rapidly, driven by ongoing research and technological advancements. This progress holds immense promise for developing new and more effective therapies for a wide range of health conditions.中文回答:药理学是研究药物及其对生物体作用的一门科学。
IVM
一段关于伊维菌素对不同类型寄生虫有效给药剂量和有效血液浓度的文字,并注明相应参考文献。
《Plumb';s兽药手册++第5版》中关于伊维菌素的具体信息见于附加文件夹,伊维菌素对不同种属动物不同寄生虫的剂量简要总结如下:用于犬时,预防犬心丝虫病的剂量为6μg/kg,每月口服1次;用作微丝蚴杀虫剂时,50~200 μg/kg;用作外用杀虫剂,疥螨耳螨为300 μg/kg,重复给药14天,毛囊虫为400~600 μg/(kg·d);用作体内杀虫药时,肺部寄生虫为200 μg/kg(口服),奥氏奥斯勒丝虫为400 μg/kg (皮下注射),Eucoleusboehmi为200 μg/kg(口服),犬类肺刺螨为200 μg/kg(皮下注射)。
用于猫时,预防心丝虫的最小有效剂量为24 μg/kg(口服),杀灭莫名猫圆线虫剂量为400 μg/kg(皮下注射)。
此外,伊维菌素还可以用作治疗马、牛、绵羊、美洲驼的敏感寄生虫药物,一般剂量为200 μg/kg;用作猪敏感寄生虫时,一般剂量为300 μg/kg;用作雪貂预防心丝虫时为20 μg/kg;用于禽时,稍有区别;用作爬行动物、兔、啮齿类、袖珍宠物寄生虫治疗药物时,一般剂量在200~500 μg/kg之间,皮下或口服给药。
百度百科中关于伊维菌素的介绍:1.药效学:适用于盘尾丝虫病和类圆线虫病及钩虫、蛔虫、鞭虫、蛲虫感染。
由于吸虫和绦虫不以GABA为传递递质,并且缺少受谷氨酸控制的Cl通道,故本类药物对其无效。
2.药动学:伊维菌素的药代动力学因畜种、剂型和给药途径不同而有明显差异。
以血浆半衰期为例,给牛、绵羊静脉注射300μg/kg量,t1/2虽然差别不大(分别为2.8天和2.7天),但羊的血浆浓度较低是由于表观分布容积大于牛所致。
伊维菌素在犬体内排泄较快(t1/2=1.6~1.8天)。
猪的半衰期长达4天。
用美国专用的商品制剂给牛皮下注射(200μg/kg),由于从注射局部缓慢吸收,而半衰期延长(t1/2=8天),.48h血药达峰值,据临床驱虫效果观察,药效能维持2周。
药物BCS分类系统的查询方式
|
Slide 3 of 25
Dr Rä go
28 April – 2 May 2008
What is the key for multisource (generic) pharmaceutical products?
New medicines – applicant has to prove quality, safety and efficacy Multisource (generic) pharmaceutical products – applicant has to prove quality, in case of safety and efficacy it refers to the originator product The key is THERAPEUTIC INTERCHANGEABILITY
|
Slide 5 of 25
Dr Rä go
28 April – 2 May 2008
Options to show therapeutic interchangeability of multisource pharmaceutical products (MPP)
Sensitivity/use
Drug substance classification according to the BCS. Active pharmaceutical ingredients (APIs) are classified into classes based on their aqueous solubility and permeability characteristics BCS classification BCS class I BCS class II BCS class III BCS class IV Solubility High Low High Low Permeability High High Low Low
有限采样法用于肾移植受者霉酚酸酯血药浓度监测的分析
有限采样法用于肾移植受者霉酚酸酯血药浓度监测的分析张丽娟;陈璐;朱宇轩;涂翠萍【摘要】目的观察肾移植受者采用霉酚酸酯(mycophenolate mofetil,MMF)进行免疫抑制的临床应用及其血药浓度监测情况,为临床合理用药提供参考.方法采用回顾性分析方法,收集2012年8月~ 2015年12月在四川省人民医院移植中心接受同种异体肾移植术并服用MMF患者23例,所有患者均采用三联免疫抑制方案他克莫司(tacrolimus,FK506)+MMF+泼尼松(prednisone,PRED)治疗,并于2015年5月~2016年4月进行霉酚酸(mycophenolic acid,MPA)监测;根据口服MMF剂量,将患者分为MMF剂量组A(MMF =0.25 g/12 h,n=2),MMF剂量组B(MMF =0.5 g/12h,n=11),MMF剂量组C(MMF =0.75 g/12h,n=10).本试验采用有限采样法(Co,Co.5h,C2h)估算MPA AUC暴露值,根据MPA AUC暴露值,将患者分为MPA低暴露组(<30 μg·h/mL),MPA目标暴露组(30 ~60 μg·h/mL),MPA高暴露组(>60 μg·h/mL);并分析3组暴露组患者的基本资料、MMF用量、合并用药、肝肾功能等指标.结果 23例患者的平均体质量为(54.58±16.22)kg,血肌酐浓度平均为(172.73±166.84) mol/L,肾小球滤过率平均为(67.72±38.2) mL/min,MPA低暴露组l例(4.3%),MPA目标暴露组14例(60.9%),MPA高暴露组8例(34.7%);对目标暴露组和高暴露组进行独立样本t检验,发现目标组和高暴露组间他克莫司(tacrolimus,FK506)、MMF和泼尼松(prednisone,PRED)间用量并无显著性差异;对3组数据进行非参数检验,发现3组间肝肾功主要指标间是无显著差异.结论服用MMF进行免疫抑制的肾移植受者间具有较大的个体差异,因此应对其进行治疗药物监测,根据MPA AUC值进行剂量的调整,达到更好的免疫抑制状态.【期刊名称】《中国生化药物杂志》【年(卷),期】2016(000)007【总页数】4页(P187-190)【关键词】霉酚酸酯;有限采样法;血药浓度监测;药时曲线下面积【作者】张丽娟;陈璐;朱宇轩;涂翠萍【作者单位】四川省医学科学院·四川省人民医院药学部,四川成都610072;四川省医学科学院·四川省人民医院药学部,四川成都610072;四川省医学科学院·四川省人民医院药学部,四川成都610072;四川省医学科学院·四川省人民医院药学部,四川成都610072【正文语种】中文【中图分类】R969.3霉酚酸酯(麦考酚酸酯,mycophenolate mofetil,MMF)是免疫抑制剂霉酚酸(麦考酚酸,mycophenolic acid,MPA)的前体药物。
紫杉醇腹腔灌注化疗治疗胃癌恶性腹腔积液的临床研究
紫杉醇腹腔灌注化疗治疗胃癌恶性腹腔积液的临床研究李翔【摘要】目的:观察紫杉醇(PTX)腹腔灌注化疗联合亚叶酸钙(LV)/5-氟尿嘧啶(5-Fu)/奥沙利铂(OXA)治疗胃癌恶性腹腔积液的疗效及安全性。
方法23例晚期胃癌合并癌性腹水患者接受PTX 60mg/m2腹腔灌注,第1,5,8d;LV 200mg/m2静脉滴注2h,第1-4d;5-Fu 750mg/m2持续静滴24h,每天1次,第1-4d;OXA 130mg/m2静滴2h,第1d。
每21d为1个周期,每2个周期评价疗效。
结果所有患者均可评价;有效率(RR)为69.6%,疾病控制率(DCR)为86.9%,中位肿瘤进展时间(TTP)为6.6个月,1年生存率为71%。
主要不良反应有骨髓抑制、恶心呕吐、腹痛、腹泻、肌肉关节痛、口腔黏膜炎等,未见过敏反应及明显的肝肾功能损害,无治疗相关性死亡。
结论紫杉醇腹腔灌注化疗治疗胃癌恶性腹腔积液疗效较好,且不良反应较轻,可以耐受,值得临床进一步推广应用。
%Objective To observe the efficacy and safety of Paclitaxel (PTX) peritoneal perfusion chemotherapy combined with leucovorin(LV)/5-fluorouracil(5-Fu)/Oxaliplatin (OXA) in treating malignant ascites of gastric cancer. Methods Twenty-three cas-es of advanced gastric cancer with malignant ascites were treated with PTX 60mg/m2 via intraperitoneal on day 1,5,8;LV 200mg/m2 intravenous infusion for 2 hours on day 1 to 4;5-Fu 750mg/m2 intravenous infusion for 24 hours everyday on day 1 to 4;OXA 130mg/m2 intravenous infusion for 2 hours on day 1. The treatments were repeated every three weeks,the therapeutic effects were evaluated once every two weeks. Results All patients could be evaluated;The response rate (RR) was 69.6%,the disease control rate (DCR) was 86.9%,the median timeto progression (TTP) was 6.6 months,one year survival rate was 71%. Major adverse reac-tions included bone marrow restraint,nausea and vomiting,abdominal pain,diarrhea,joint and muscle pain,oral inflammation;no allergic reaction and the obvious function of liver and kidney damage,there was no therapy-related death in all patients. Conclu-sion Intraabdominal infusion of Paclitaxel was effective in treating malignant ascites of gastric cancer,and the toxicity was rela-tively mild and tolerable;These results indicate that further clinical study is worthy.【期刊名称】《江西医药》【年(卷),期】2015(000)005【总页数】4页(P390-393)【关键词】胃癌;腹腔积液;紫杉醇;腹腔灌注化疗【作者】李翔【作者单位】江西省肿瘤医院内三科,南昌 330029【正文语种】中文【中图分类】R735.2胃癌是我国最常见的消化道恶性肿瘤之一,死亡率居恶性肿瘤之首[1]。
从目前可获得的循证医学证据评价鬼臼毒素的临床应用
循证医学作业临床995班马媛990155081、题目:从目前可获得的循证医学证据评价鬼臼毒素的临床应用2、临床底线:对鬼臼毒素有效性、安全性和经济性进行评价。
根据近年来国外、国内发表的研究资料,按照循证医学的原则进行归纳综合。
3、临床问题:早在1880年podwyssotzki从美洲鬼臼树脂中首次得到白色晶状物质,即鬼臼毒(Podophyllotoxin,1.1)。
1942年,Kaplan记述了局部应用鬼臼树脂治疗尖锐湿疣获得满意效果,后来King等发现它可以引起正常人体的外皮肤明显的细胞学改变,后证实它对微管和肿瘤细胞具有抑制作用,但毒性较大。
50年代初,国外开始对鬼臼毒素进行结构改造,合成并筛选了大量的衍生物。
目前在抗癌方面应用的主要是鬼臼毒素的衍生物,如鬼臼衍生物疣鬼臼酰乙基肼(SP-1),依托泊苷(Etoposide,VP-16)和替尼泊苷(Teniposide,VM-26),而对鬼臼毒素的临床应用的研究主要集中在治疗尖锐湿疣上。
尖锐湿疣由人类乳头瘤病毒感染引起。
目前常用的治疗方法有药物、激光、高频电刀、手术和冷冻等。
药物中以0.5%鬼臼毒素最为常用,能阻遏细胞的有丝分裂,促进巨噬细胞的增殖,阻抑线粒体的代谢,是临床上治疗尖锐湿疣的首选药。
4、检索词:鬼臼毒素临床应用5、研究:根据近年来国外、国内发表的研究资料,按照循证医学的原则进行归纳综合。
本次检索文献,较为全面的检索了CBM(1987-2002)、MEDLINE(1980-2002)、EMBASE (1989-2002)以及Cochrane图书馆(Issue 3, 2003),共得随机对照试验89篇, meta 分析2篇,经筛选仅有19篇[1-19]随机对照实验符合纳入的标准(见鬼臼毒素的RCT 检索结果汇总)。
其中有10个RCT以安慰剂为对照组,双盲试验有11组,单盲试验有2组,未设盲的有2组,盲法未提及的有4组。
病例总数有2185,其中有一个试验未说明病例数。
中药血药浓度法
中药药动学——血药浓度法在方剂配伍合理性研究中的应用费金钰赵泽宇中药药动学在中医药理论指导下,借助于动力学原理和现代分析手段,研究中药活性成分、有效部位、单味药及复方在体内吸收、分布、代谢、排泄(ADME)的动态变化规律及时量-时效关系,并用数学函数加以定量描述的一门学科中药血药浓度法与化学药物的药动学研究原理方法相似,通过测定中药及复方中一个或几个已知成分在体液中的浓度,使用相关软件计算各种药动学参数,拟合药-时曲线,确定药动学模型,以此来反映中药及复方中成分的体内行为与规律的方法方剂中医在辨证论治的基础上,按照组方原则,通过选择合适药物、酌定适当剂量、规定适宜剂型及用法等一系列过程而拟定的治疗处方方剂组方配伍合理性的研究是关键问题方剂配伍合理性的研究集中在药物间的相互作用体外:方剂的煎制过程可能导致药物之间的相互作用而发生复杂的成分变化体内:组方药物成分的吸收、分布、代谢等转运环节也会因为成分之间的相互作用而发生变化仅在体外寻求配伍导致的化学物质结构与量的变化难以深入阐明方剂配伍的原理和合理性血药浓度法:提供科学客观的药动学参数,揭示配伍的合理性,为方剂配伍的优化和临床应用提供科学依据吸收速率血药浓度法吸收程度 吸收速率 问题与展望消除速率01配伍对吸收速率的影响一些中药制剂需发挥急救作用,客观要求其有效成分短时间内吸收入血从而发挥疗效如用于治疗心绞痛的复方丹参滴丸和复方丹参片药动学生物利用度丹参三种活性物质:丹酚酸A(SAA)丹酚酸B(SAB)迷迭香酸A(RA)i.v. 丹参提取物ig.丹参提取物ig.丹参提取物&冰片5, 10, 20, 30, 45, 60, 90, 120, 180,240, 300,360 分钟后眼球取血HPLC测定血药浓度小鼠迷迭香酸A(RA) 丹酚酸B(SAB) 丹酚酸A(SAA)•双峰:肝肠循环;多位点吸收•与冰片配伍后,迷迭香酸和丹酚酸A的达峰浓度增加,丹酚酸B 的第一个达峰时间由原来的 30 min 缩短到 5 min,吸收速率明显加快,并且使得丹酚酸 A、B 的 AUC、t1/2 和 MRT 增加•可能机制:冰片抑制了 CYP3A 酶的代谢;抑制了 P-糖蛋白的外排•药动学参数的改变充分说明,在治疗心绞痛方面,丹参与冰片配伍合理,使得复方制剂能够更快、更好地发挥疗效02配伍对吸收程度的影响配伍对吸收程度的影响方剂配伍后使有效成分在体内的吸收程度增加为常见现象,臣药、使药与君药之间体内和体外的相互作用,增加了君药有效成分在体内的吸收程度,提高了有效成分的生物利用度,使组方达到协同作用的目的君药:芍药臣药:甘草芍药苷甘草次酸芍药苷SD大鼠0, 5,10, 20, 30, 60, 90, 180, 240,360 和480分钟取血HPLC测定血药浓度甘草次酸芍药甘草汤芍药苷 •与单味药相比,给予芍药甘草汤后大鼠血浆中芍药苷达峰浓度升高2倍,AUC 增加4倍 •甘草次酸的达峰时间提前,达峰浓度增加2倍•同时两成分均出现半衰期缩短现象•臣药甘草促进了君药芍药中芍药苷的吸收,提高了其体内浓度•君药芍药加快了臣药甘草中甘草次酸在体内出现的时间,并增加了其体内的数量甘草次酸03配伍对消除的影响配伍对消除速率的影响•消除速率加快:方剂减毒•消除速率减慢:延长药效消除速率加快小柴胡汤黄芩根提取液汉黄芩苷消除速率加快SD大鼠0.083, 0.167, 0.333, 0.5, 1, 2, 4,6, 8, 10, 12,14, 16 和24 小时取血LC-MS测定血药浓度小柴胡汤黄芩根提取液oraloral消除速率减慢天麻素天麻消除速率加快Wistar 大鼠0.083, 0.167, 0.333, 0.5, 1, 2, 4,6, 8, 10, 12,14, 16 和24 小时取血LC-MS测定血药浓度低、中、高剂量复方天麻颗粒提取物天麻提取物(相对剂量同中剂量组)oraloral缺少天麻的阴性对照提取物oral05存在的问题与发展存在的问题指标成分难以确定指标成分难以检测模型的选择、参数计算与评价发展多组分复方药物动力学的研究:总量统计矩法。
铂类药物的新进展
江苏省肿瘤医院内科 朱梁军
内容提要
1)顺铂 2)卡铂 3)奥沙利铂 4) 奈达铂 5)络铂及其它铂类化合物
序言
20世纪60年代,美国科学家Rosenberg在研 究电场对细菌生长的影响的实验中,首次观 察到铂化合物能抑制细胞生长的现象,从而 揭开了此类独特构型的抗肿瘤药物发展的序 幕。
一、顺氯氨铂
结构特点:简单的平面四方形 无 机化合物,反式无抗瘤活性。 药代动力学特点:DDP在人体内 药动学主要符合二室模型,主要 经尿排出,24hrs排出18~34%,给药后5天仅排出27~ 54%,胆道也有少部分排出。DDP注射后以结合形式存 于血浆,24hrs结合率超过90%,是不可逆性结合,结 合铂无抗瘤活性,有抗瘤活性的非结合铂在体内半衰期 短。
国内正在进行的多中心临床研究
管忠震等,奈达铂+PTX治疗初/复治III/IV期非小细胞肺癌;(随 机对照)
廖美琳等,奈达铂+NVB治疗初/复治晚期不能手术的非小细胞肺 癌;(随机对照)
王瑞林等,奈达铂+5-FU治疗晚期食管癌;(开放)
正在筹划的多中心研究: 石远凯:捷佰舒(奈达铂)治疗食管癌、头颈部肿瘤、妇科肿瘤的
临床研究现况:
临床研究现况(3):
日本进行的III期临床试验以Nedaplatin 对比 DDP 分别联合 CPT-11、VDS、Taxol、 Gemcitabine(分别在不同中心进行)治疗非 小细胞肺癌,显示 Nedaplatin联合方案具有 不低于DDP联合方案的疗效。 还有部分小样本试验:Nedaplatin+5-Fu治疗 头颈 癌、食管癌,Nedaplatin分别与VP-16、 CTX、 CPT-11、Taxol联合治疗妇科恶性肿瘤 表现出较好疗效;对头颈部癌、食管癌,疗 效似优于顺铂。
氟喹诺酮类药物的药动学和药效学
氟喹诺酮类药物的药动学和药效学陈雪华何礼贤自第一个在1962年应用临床以来,新的喹诺酮类药物不断被开发和应用于临床,特别是在C-6位引进氟的氟喹诺酮类药物诺氟沙星的问世,氟喹诺酮类的抗菌活性和抗菌谱有了很大提高,早期的氟喹诺酮类药物如环丙沙星主要对革兰阴性均有强大的抗菌活性,对阳性球菌则作用较差。
但近5年来发现的新氟喹诺酮类药物如左氧氟沙星(levofloxacin)、吉米沙星(gemifloxacin)、加替沙星(gatifloxacin)和莫西沙星(moxifloxacin)显示出强大的抗革兰阳性球菌和厌氧菌的活性,对肺炎链球菌包括青霉素耐药肺炎链球菌和不典型病原体如肺炎衣原体和肺炎支原体有强大的抗菌作用,同时保持了其良好的抗革兰阴性菌活性,这些优良特性使新氟喹诺酮类几乎成为呼吸道感染的理想治疗药物。
抗感染化疗药物的药动学(pharmacokinetics,PK)和药效学(pharmacodynamics,PD)研究的深入,认识到预测抗感染药物的疗效已不仅仅单纯从既往的药动学参数和体外细菌的MIC来判断,而是必须结合药动学和药效学的特性综合判断。
即通过抗菌药物的PK/PD参数来评价抗菌药物的体内疗效。
而且新氟喹诺酮类药物具有良好的药动学特性,口服或静脉给药在组织中达到很高的浓度甚至超过血清浓度,一系列的研究也显示新氟喹诺酮类具有很好的PK/PD指标,下面详细介绍新氟喹诺酮类药物加替沙星、吉米沙星、左氧氟沙星和莫西沙星和老的氟喹诺类药物环丙沙星的药动学和药效学特点。
另外一些老的氟喹诺酮类和有毒性问题的新氟喹诺酮类如克林沙星(clinafloxacin)、格雷沙星(grepafloxacin)、司帕沙星(sparfloxacin)、和曲伐沙星(trovafloxacin)不做讨论范围。
一、基本概念1. 药动学和药效学抗菌药物的药物动力学亦称药动学,指用动力学(kinetics)的原理与数学模式,定量描述与概括抗菌药物通过各种途径(如静脉注射、静脉滴注、口服给药等)进入体内的吸收(Absorption)、分布(Distribution)、代谢(Metabolism)和排泄(Elimination),即研究A.D.M.E.过程中血21药浓度随时间动态变化规律的学科。
亚胺培南西司他丁药物研究的进展
亚胺培南西司他丁药物研究的进展【摘要】亚胺培南为碳青霉烯类抗生素,该药对PBPs亲和力强,抗菌谱广、抗菌作用强、耐酶,毒性低且稳定。
临床常用的是与脱氢肽酶抑制剂西司他丁等量配比的混合制剂亚胺培南西司他丁(Imipenem and Cilastatin)。
针对于G+(革兰氏阳性杆菌)和G-(革兰氏阴性杆菌)需氧和厌氧菌,以及严重感染和败血症效果较好。
但对耐甲氧西林的金黄色葡萄球菌(MRSA)、凝固酶阴性的葡萄球菌、嗜麦芽窄食假单胞菌、分支杆菌、衣原体、支原体等常耐药。
亚胺培南为时间依赖性抗菌药,抗菌作用与给药时间密切相关,本文主要通过药代学、药效学、临床给药时间、目前研究中面临的主要问题及未来的研究方向来阐述。
【关键词】亚胺培南西司他丁;药代学;药效学;疗效亚胺培南为碳青霉烯类抗生素,是一种广谱的β内酰胺类抗生素,该药对PBPs亲和力强,抗菌谱广、抗菌作用强、耐酶,毒性低且稳定。
尤其在多重耐药所致的感染中具有举足轻重的作用[1]。
1 亚胺培南西司他丁的药动学和药效学研究1.1 亚胺培南西司他丁的特点(1)亚胺培南作为碳青霉烯类抗生素,抗菌谱广,主要针对于G+和G-需氧和厌氧菌,以及严重感染和败血症效果较好。
但对耐甲氧西林的金黄色葡萄球菌(MRSA)、凝固酶阴性的葡萄球菌、嗜麦芽窄食假单胞菌、分支杆菌、衣原体、支原体等常耐药,真菌感染也无效。
(2)对细菌的杀灭作强,作用机制是通过抑制细菌细胞壁青霉素结合蛋白质的合成,抑制细菌细胞壁的合成,使菌体失去渗透屏障而膨胀、裂解,同时借助细菌的自溶酶溶解而产生抗菌作用。
哺乳动物无细胞壁,不受此类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。
亚胺培南抗菌活性极强,8 μg/ml的亚胺培南可抑制98%以上的主要临床致病菌,其MIC(最低抑菌浓度)与MBC(最低杀菌浓度)相当,与第三代头孢相比,对G-有很好的抗菌活性,对厌氧菌特别有效。
(3)本药体内分布广泛,能通过胎盘,各组织中的浓度较高,但在脑脊液中质量浓度最低[2]。
药物取代基参数构建及应用
m EY S.Ru Y.Jadhav P K Cyclic HIV protease inhibitors:synthesis,conformational
44.徐文方药物化学 2000
45.Purcell W P.George E.Clayton M Strategy of drug:a guide to biological activity 1973
46.林治华.刘树深.李志良以基团为基准借电负性修正的分子距边矢量对N,N-二甲基-2-溴苯乙胺类衍生物进行结
analysis,P2/P2'structure-activity relationship,and molecular recognition of cyclicureas 1996
43.Garg R.Gupta P S.Gao H Comparative Quantitative Structure-Activity Relationship Studies on Anti-HIV Drugs[外文期刊] 1999
学位授予单位:重庆大学
1.马丁原.王尔华定量药物设计 1983
2.陈凯先.蒋华良.嵇汝运计算机辅助蓟物设计-原理、方法及应用 2000
3.徐筱杰.侯廷军.乔学斌计算机辅助药物分子设计 2004
4.叶德泳计算机辅助药物设计导论 2004
5.郭宗儒药物分子设计 2005
6.李仁利药物构效关系 2004
7.Hubinyi H The Quantitative Analysis of Structure-Activity Relationships 1995
2种伊维菌素浇泼剂在牛体内的药动学比较试验
2菌体内的药动学比较试验陆静1,袁慧平2,李荣顺2,呼和巴特尔s黄显会3(1.内蒙古农业大学兽医学院农业部动物疾病技术重点实验室,内蒙古呼和浩特010018;2.金河生物科技股份有限公司,内蒙古010200;3.华南农业大学兽医学院,广东广州510642)摘要:为了评价新研制的伊维菌素浇泼剂在牛体内的药代动力学过程,本试验采用双周期交叉试验设计方案,通过浇泼给药的,了研制的伊维浇泼剂和美国某公司的(Ivermectin)POURPNfor Cat U e(0.5%)在体内的药代动力学过程。
,药代动力学参数证明2种药物均可经皮,峰浓度(C”/)、达峰时间(T”y)、留时间(+1T)等主要药代动力学参数差异不显著%关键词:牛;维;药代动力学;双周期交叉中图分类号:S823文献标志码:A文章编号:0529—6005(2020)10—0093—04 Comparative Study on Pharmacokinetics of Two Kinds of Ivermectin Casters in Bovine LU Jing1,YUAN Hui-ping2,LI Rong-shun2,HUHE Bateev1,HUANG Xian-huU(1.Co e geoeVeeeeinaeyMedicine,InneeMongoeiaAgeicueeueaeUnieeesiey,KeyLaboeaeoeyoeCeinicaeDiagnosisandTreatment Technology in Animal Disease,Ministry of Agriculture,Hohhot010018,China;2.Jinhe Biotechnology Co.,Led.,Tokeo010200,China; 3.Soueh ChinaAgeicueeueaeUnieeesiey,Co e geoeVeeeeinaeyMedicine,Guangzhou510642,China)Abstract:In ordev to evaluate the pharmacokinetic process of the developed ivermectin pouring agent in cattle,we used dual cycle cross-test.The pharmacokinetic processes in cattle produced by ivermectin pouring agent and by ivermectin POUR-ON fov Cattle (0.5%)wascompaeed.Thephaemacokineeicpaeameeeespeoeed ehaeeheewodeugsweeeabsoebed byeheskin,and ehemain phaema-cokinetie parameters such as C m/,几/and MRT were no-significanUy dUference.Key words:cattle;ivermectin;pharmacokinetics;double cycle c/ssovevCorressonding auttors:HUHE Bateev:E-mail:*************;HUANG Xian-hui,E-mail:****************.cn伊维菌素(Ivermectin,IDM)是大环内酯类抗寄生虫药,维菌素(Avermectins,AVMs)中的一员,具广谱、、和的[2],种寄生性线虫、体外具有较好的⑶,其他抗 药无交叉耐药性⑷,常治、羊、骆驼、种禽的病,是国内外公认的一种新型、广、、低毒、的抗寄药维浇泼剂是一种新型透皮剂,该药经背部皮肤施药后,使伊维通过皮进血系挥全身疗效,能够地体收稿日期:2018—12—05基:内蒙古农业大学和内蒙古金河动物药业有限公司合(2010JH001)作者简介:陆静(1981-),女,实验师,硕士,研究方向为兽医寄生虫学,E-mail:nnd/@通讯作者:呼和巴特尔,E-mail:*************&黄显会,E-maie:ihhuang@scau.% 内外,该剂型具“可,对动物的惊扰少,在国外许多国家得到了广泛的%然,时在我国还的商品化伊维菌素浇泼剂,为了验证研制的伊维菌素浇泼剂与国外同类品在药代动力学方面的差异,本试验采用双周期交叉试验案,通过浇药的,对研制的伊维浇泼剂(0.5%)和美国某公司的(Ivev matin)POUR-ON fas Cattla(0-5%)进行了牛体内的药动学对比研究,旨在对研制的伊维浇泼剂进行客观、科学地评价%1材料与方法1.1药品和试剂伊维菌素标准品:10mg/安甑,含量96%,批号:CA14488000,德国Dv Eh/nstoVer 公司。
药效学英语
药效学英语Pharmacodynamics in English is "pharmacodynamics" or "pharmacodynamics".Pharmacodynamics is a branch of pharmacology that studies the effects of drugs on living systems. It involves the study of how drugs act on the body and how the body responds to drugs. The term "pharmacodynamics" is derived from the Greek words "pharmakon" meaning drug and "dynamis" meaning power or ability.Pharmacodynamics is concerned with the following aspects of drug action:1. Pharmacological effects: These are the direct effects of a drug on the body, such as its ability to block a specific receptor or to stimulate a particular enzyme.2. Pharmacokinetics: This refers to the way drugs are absorbed, distributed, metabolized, and excreted by the body. Pharmacokinetics is important because it helps to determine the optimal dosage and duration of treatment for a particular drug.3. Dose-response relationship: This refers to the relationship between the dose of a drug and its effect on the body. The dose-response relationship is important because it helps to determinethe maximum safe dose of a drug and to optimize its therapeutic effect.Pharmacodynamics is an important area of study in medicine and pharmacy, as it helps to ensure that drugs are used safely and effectively in the treatment of diseases and conditions.。
白蛋白结合型紫杉醇单药作为二线及以上方案治疗晚期乳腺癌的临床观察
白蛋白结合型紫杉醇单药作为二线及以上方案治疗晚期乳腺癌的临床观察王丽莉;黄伟炜;吴凡;陈侃;洪熠;李重颖;刘健【摘要】目的探讨白蛋白结合型紫杉醇单药作为二线及以上方案治疗晚期乳腺癌的临床资料,探讨白蛋白结合型紫杉醇在晚期乳腺癌多线治疗中的疗效和安全性.方法将2013年1月~ 2016年1月在我院已接受过一线治疗的46例晚期乳腺癌患者作为研究对象,所有患者均给予白蛋白结合型紫杉醇治疗,对患者临床治疗有效率、中位无进展生存时间(PFS)及不良反应发生情况进行综合评价.结果 46例晚期乳腺癌患者中无完全缓解者,部分缓解(PR)为15例,疾病稳定(SD)者19例,疾病进展12例,有效率(RR)为32.6%,疾病控制率达到73.9%,PFS为5.0个月;且患者不良反应主要以白细胞减少、血小板减少、脱发等为主,经过治疗患者均耐受.结论白蛋白结合型紫杉醇单药作为二线及以上方案治疗晚期乳腺癌,操作简单,疗效显著,毒副作用低,值得推广应用.【期刊名称】《中国医药科学》【年(卷),期】2017(007)021【总页数】4页(P9-11,23)【关键词】白蛋白结合型紫杉醇;单药;多线方案;晚期乳腺癌;毒副作用【作者】王丽莉;黄伟炜;吴凡;陈侃;洪熠;李重颖;刘健【作者单位】福建省肿瘤医院内科福建医科大学附属肿瘤医院,福建福州350014;福建省肿瘤医院内科福建医科大学附属肿瘤医院,福建福州350014;福建省肿瘤医院内科福建医科大学附属肿瘤医院,福建福州350014;福建省肿瘤医院内科福建医科大学附属肿瘤医院,福建福州350014;福建省肿瘤医院内科福建医科大学附属肿瘤医院,福建福州350014;福建省肿瘤医院内科福建医科大学附属肿瘤医院,福建福州350014;福建省肿瘤医院内科福建医科大学附属肿瘤医院,福建福州350014【正文语种】中文【中图分类】R734.2作为临床中一种极为常见的恶性肿瘤疾病,乳腺癌具有较高的发病率与病死率,通常当患者确诊时已发展到晚期,错失了手术治疗最佳时期[1],二线及以上治疗失败后化疗方案的选择成为临床工作的难点[2]。
利福霉素类药物对酶诱导作用的区别
利福霉素类药物的肝药酶(CYP)诱导作用——临床药学室利福霉素类药物是通过在利福霉素母核上经过结构改造而成的一类抗结核药物,包括利福平、利福喷丁、利福布汀等。
其中,在利福霉素母核的C-3位上进行改造,即得到利福平及利福喷丁;在C-4位上进行改造,即得到利福布汀【1】。
因此,从结构及合成方法上,利福平与利福喷丁更加相似。
利福平对CYP450酶系统具有强诱导作用,可以增加通过CYP450酶系统代谢的药物清除。
利福平对CYP3A及CYP2C具有强诱导作用,这两种酶占整个CYP酶家族的80%以上。
体外研究发现,利福平对CYP2B6及CYP3A4两种酶的诱导作用分别为8.8倍及55.1倍【2】。
利福平对CYP酶家族的诱导作用呈浓度依赖性,在日剂量450mg的时候既能达到很强的诱导作用【3,4】。
通过利福平对维拉帕米药代动力学影响的研究,在使用利福平1周后,可以全面诱导维拉帕米的代谢酶CYP3A4及CYP2C9【4】。
在Magnusson等的一项研究中,利福平诱导50%CYP3A4的时间为70h,然而要达到90%的诱导则需要10~14d【5,6】。
利福喷丁与其他利福霉素类药物一样,也是CYP3A4、CYP2C8及CYP2C9的诱导剂【7】。
一项研究表明,在开始使用利福喷丁4d后,酶的诱导效应达到最大化;在停用利福喷丁14d后,酶的作用回到基线水平【8】。
尽管研究数据有限,没有任何理由支持利福喷丁的酶诱导作用比利福平更快。
利福布汀的酶诱导作用比较温和,可以降低通过这些酶代谢的药物的血浆浓度。
不同于利福平,利福布汀可以通过CYP3A代谢。
因此,具有诱导或抑制CYP酶的药物可以减少或增加利福布汀的血浆浓度。
有研究表明,作为诱导剂的相对效力,利福平1 :利福喷丁0.85:利福布汀0.4【9】。
参考文献:【1】王欣瑜等.利福霉素类衍生物的研究进展[J].国外医药(抗生素分册),2008, 29(6):255-261.【2】Rae JM, Johnson MD, Lippman ME, Flockhart DA. Rifampicin is a selective, pleiotropic inducer of drug metabolism: studies with cDNA and oligonucleotide expression assays. J Pharmacol Exp Ther. 2001;299:849–57.【3】Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochromeP4503A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother.2013;57:6366–9.【4】Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto ¨KT. Pharmacokinetic interactions with rifampicin: clinical relevance.Clin Pharmacokinet. 2003;42:819–50.【5】Magnusson MO. Pharmacodynamics of enzyme induction and its consequences for substrate elimination [thesis]. Uppsala:Uppsala Universitet; 2007. Distribution:publications.uu.seurn:nbn:se:uu:diva-7812.【6】Magnusson MO, Karlsson MO, Sandstro ¨m R. A mechanism based integrated pharmacokinetic enzyme model describing the time course and magnitude of phenobarbital-mediated enzyme induction in the rat. Pharm Res. 2006;23:521–32.【7】Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40:327–41.【8】Keung A, Reith K, Eller MG, McKenzie KA, Cheng L, Weir SJ.Enzyme induction observed in healthy volunteers after repeated administration of rifapentine and its lack of effect on steadystate rifapentine pharmacokinetics: part I. Int J Tuberc Lung Dis.1999;3:426–36.【9】Mario Regazzi,et al.Treatment Optimization in Patients Co-Infected with HIV and Mycobacterium tuberculosis Infections: Focus on Drug–Drug Interactions with Rifamycins.Clin Pharmacokinet,2014,53 (6) :489-507.2017.05。
胰岛素舌下膜剂的研究的开题报告
胰岛素舌下膜剂的研究的开题报告一、选题背景及意义糖尿病是一种常见的代谢性疾病,目前全球已有数亿人患有糖尿病。
其中,高血糖是糖尿病的主要症状,而胰岛素是调节血糖的重要荷尔蒙。
一般来说,糖尿病患者需要通过胰岛素注射来控制血糖,但这种方式容易导致胰岛素耐受性和低血糖。
近年来,口腔给药领域的突破和发展使得舌下膜剂成为一种有望替代注射的途径。
因此,研究胰岛素舌下膜剂在糖尿病治疗中的应用具有重要意义。
二、研究目的本文旨在深入研究胰岛素舌下膜剂在糖尿病治疗中的应用,探讨其优劣之处以及可行性,为糖尿病患者提供更为便利和有效的治疗方案。
三、研究内容1. 胰岛素舌下膜剂的制备方法、药物分子结构和药效学特点;2. 研究比较胰岛素舌下膜剂和注射胰岛素的治疗效果和安全性;3. 探讨胰岛素舌下膜剂在临床应用中可能遇到的问题以及解决方案;4. 分析胰岛素舌下膜剂在未来糖尿病治疗中的应用前景。
四、研究方法1. 文献研究法:收集相关文献并进行综合分析;2. 临床试验法:开展胰岛素舌下膜剂的临床试验并记录治疗效果和不良反应;3. 统计分析法:对试验结果进行统计学分析,评估胰岛素舌下膜剂的自身优势和不足;4. 形式逻辑法:从糖尿病治疗的本质和逻辑上,分析和推断胰岛素舌下膜剂的适用范围和未来发展趋势。
五、预期成果1. 确认胰岛素舌下膜剂在糖尿病治疗中的可行性与优势;2. 评估胰岛素舌下膜剂的治疗效果、安全性和不良反应;3. 提出胰岛素舌下膜剂在糖尿病治疗中应用的注意事项和解决方案;4. 探讨胰岛素舌下膜剂未来在糖尿病治疗中的发展前景。
六、可行性分析舌下膜剂已经被广泛研究和应用于其他领域。
胰岛素作为一种生长类激素,其分子结构和功能与其他荷尔蒙有很高的相似度,因此从理论上来说,胰岛素舌下膜剂在注射胰岛素的替代方面具有较好的可行性。
另外,胰岛素舌下膜剂可以避免注射对患者的心理压力和痛苦,并减少因操作不当导致的注射风险。
此外,有关胰岛素舌下膜剂的研究已经取得一定成果,更多的研究成果有望为胰岛素舌下膜剂在临床应用中提供支持和保证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PharmacologyThe Journal of ClinicalDOI: 10.1177/00912700073105492008; 48; 203 J. Clin. Pharmacol.Kunihiko Ohnishi, Atsuhiro Kawaguchi, Shunji Nakajima, Hiroyuki Mori and Takahiro UeshimaPlasma-derived Human Serum Albumin in Patients With Liver Cirrhosis A Comparative Pharmacokinetic Study of Recombinant Human Serum Albumin With/cgi/content/abstract/48/2/203The online version of this article can be found at:Published by:On behalf of:American College of Clinical Pharmacologycan be found at:The Journal of Clinical Pharmacology Additional services and information for /cgi/alerts Email Alerts: /subscriptions Subscriptions: /journalsReprints.nav Reprints: /journalsPermissions.nav Permissions:/cgi/content/abstract/48/2/203#BIBL SAGE Journals Online and HighWire Press platforms): (this article cites 24 articles hosted on the Citations© 2008 American College of Clinical Pharmacology. All rights reserved. Not for commercial use or unauthorized distribution. at MCMASTER UNIV LIBRARY on February 2, 2008 Downloaded fromJ Clin Pharmacol 2008;48:203-208203© 2008 American College of Clinical Pharmacology. All rights reserved. Not for commercial use or unauthorized distribution. at MCMASTER UNIV LIBRARY on February 2, 2008 Downloaded from204•J Clin Pharmacol 2008;48:203-208methylotrophic Pichia pastoris , developed using recombinant DNA technology, employing a success-fully established high-producer strain and an origi-nally developed high-level purification system.10-12Structural and physicochemical properties revealed rHSA identical to pHSA,13-16and pharmacokinetic profiles were deemed similar in animal studies.17,18Clinically, rHSA demonstrated efficacy and safety equivalent to pHSA during a phase III study in patients with ascites due to liver cirrhosis.19Other clinical studies indicated efficacy and safety in hem-orrhagic shock, nephrosis, burns, acute abdomen,poor-risk before surgery, and post–open heart surgery patients.20In this study, we evaluated the pharmacokinetic profiles of rHSA in liver cirrhosis patients in compar-ison to pHSA using serum albumin concentrations.STUDY DESIGNThis study was conducted at Ohnishi Hospital and the protocol approved by the institutional review board in compliance with good clinical practice guidelines.PatientsPrior written informed consent was obtained from 22 patients with liver cirrhosis, who fulfilled the inclusion and exclusion criteria and enrolled into the study, which was conducted from September 2002 to March 2003.Liver cirrhosis patients without ascites or edema,aged 20 to 75 years inclusive, who could be admitted for the study period were eligible for participation.The following exclusion criteria were applied:patients who received blood transfusions or plasma protein products within 3 months before screening;a total bilirubin of 3.0 mg/dL or more; renal dys-function manifested by serum creatinine levels of 4.0 mg/dL or more; prothrombin time (PT) of less than 50%; hepatocellular carcinoma (HCC) verified by tumor embolism in the portal vein (main trunk or primary/secondary branch), inferior vena cava, or main trunk of the hepatic vein; cardiac functions rated class III or IV according to the New York Heart Association (NYHA) classification; history of shock or hypersensitivity to any ingredient of pHSA prod-ucts; patients scheduled to undergo invasive testing or treatment for underlying diseases or complica-tions (eg, HCC, gastric/esophageal varices) during the study period; hepatic encephalopathy (coma scale class II or more severe) at receipt of informed consent; a positive prick test result for rHSA; femalepatients who were pregnant, nursing, could be pregnant,or intended to become pregnant during the study period; and other patients deemed ineligible for par-ticipation by the investigators.MATERIALS AND METHODS Administration Method and DosageRecombinant human serum albumin (recombinant albumin 25%, Bipha Corporation, Chitose, Japan) or pHSA (HSA 25%, Benesis Corporation, Osaka, Japan)were administered intravenously at a dose of 25 g once daily via infusion pump at 12.5 g/hr (50 mL/hr during a 2-hr period) for 3 days, and examinations were performed until day 8.Assignment and Sample SizeTo minimize intergroup bias in baseline values of serum albumin concentrations, assignment was dynamically conducted, using only this factor, by the minimization method according to concentra-tions measured 1 day prior to administration (day –1) by a third party (Bellsystem24 Inc., Tokyo,Japan). Multiple factors were not incorporated, as the study population was small. Because serum albumin concentration is the only objective parame-ter used to assess the primary endpoint, an open-label design was selected.Half-life (t 1/2) of albumin is known to be long, 15 to 19 days,21-23thus parallel-group was chosen versus crossover as the study design. Sample size was esti-mated at 10 patients per group according to the Guidelines for Bioequivalence Testing of Generic Drugs 24and set at 11 patients, taking dropouts into con-sideration. Serum albumin concentrations observed in a previous phase III study in patients with ascites due to liver cirrhosis and the data collected until day 7were used to calculate the area under the curve (AUC)in each group. Based on the AUC (g·hr/dL) (497.5 ±62.1, 47 [mean ±SD, number of subjects] in the rHSA group, and 514.4 ±69.3, 45 in the pHSA group),power was calculated when 90% confidence interval (CI) fell within 80% to 125% of the AUC, and indi-cated 10 patients as sufficient to provide 90% power to detect bioequivalence.Prohibited Concomitant Medications and TherapiesConcomitant use of the following medications and thera-pies was prohibited: blood transfusion or administration© 2008 American College of Clinical Pharmacology. All rights reserved. Not for commercial use or unauthorized distribution. at MCMASTER UNIV LIBRARY on February 2, 2008 Downloaded fromof plasma protein products, other investigational products, invasive testing, or treatment for HCC (excision, percutaneous ethanol injection therapy [PEIT], transcatheter arterial embolization [TAE] ther-apy, transcatheter arterial injection [TAI] of carcinostat-ics, microwave coagulation therapy [MCT], high frequency coagulation therapy [radiofrequency wave],transcatheter contrast imaging, etc), sclerotherapy for gastric or esophageal varices, ligation of varices, or endoscopy from receipt of consent to day 8. Concomitant use of diuretics was permitted only at a stable dosage and dose regimen during the study period.Observation, Examination, and Assessment Items Patients were admitted on day –1, treated with rHSA or pHSA from days 1 to 3, and observed until dis-charge on day 8. Serum albumin concentrations were measured using the bromcresol green (BCG) method at Mitsubishi Chemical Medience Corporation (Tokyo, Japan), and concentrations monitored on day –1, immediately predose and postdose during the treatment phase (days 1-3), and daily for the observation period (days 4-8). To assess safety,patients were observed for any clinical signs and symptoms from days 1 to 8. In addition, laboratory tests (hematology and urinalysis) were conducted on days –1, 4, and 8, and vital signs recorded predose and postdose during the treatment phase and once daily during the observation period.Statistical AnalysisPrimary analysis was performed on AUC using the trapezoidal method from day 1 predose to day 8 (168 hr).Since C max of intravenous HSA administrations may not be evaluated, as with oral agents, AUC was the other major parameter that could be considered a primary endpoint for bioequivalence and C max another majorparameter calculated as reference data. If the 90% CI for the difference in mean log-transformed AUC fell within log (0.8) and log (1.25), both products were determined as bioequivalent.24Analyses were per-formed using the statistical software SAS Version 8.2(SAS Institute Inc., Cary, North Carolina).RESULTSDemographic and Baseline CharacteristicsIn both groups comprising 11 patients each, the inves-tigational product was administered as specified in the protocol, and all patients were included in the analyses.Serum albumin concentrations on day –1 were 3.34±0.43 g/dL (mean ±SD) in the rHSA group, and 3.31±0.43 g/dL in the pHSA group, suggesting patients were equally assigned to treatment groups by the min-imization method (Table I). Background characteris-tics, such as age and weight, excluding gender, were comparable between the 2 groups. An intergroup gender difference was found between the all-male rHSA group and the 7-male/4-female pHSA group.Analyses of Serum AlbuminConcentrations and BioequivalenceIn both groups, changes in plasma concentrations showed a similar pattern after each intravenous dose (repeated for 3 days) and after termination of admin-istration, with similar serum albumin concentration-time profiles (Figure 1).Geometric mean AUC 0-168hr (g·hr/dL) was 637.12 in the rHSA group, and 635.93 in the pHSA group. The difference in AUC 0-168hr was 0.0008 ±0.0191, and 90%CI ranged from –0.0321 to 0.0337 (92.9%-108.1%),falling within the acceptable bioequivalence range,PHARMACOKINETICS/SPECIAL POPULATIONS205© 2008 American College of Clinical Pharmacology. All rights reserved. Not for commercial use or unauthorized distribution. at MCMASTER UNIV LIBRARY on February 2, 2008 Downloaded from206•J Clin Pharmacol 2008;48:203-208–0.0969 to 0.0969 (log [0.8] to log [1.25]), indicating bioequivalence between rHSA and pHSA (Table II).Geometric mean C max (g/dL) was 4.16 in the rHSA group, and 4.19 in the pHSA group. The difference in C max was –0.0030 ±0.0174, and 90% CI ranged from –0.0330 to 0.0269 (92.7%-106.4%) (Table II).SafetyThree adverse events were observed in 2 patients from the pHSA group among the 22 patients exam-ined. No serious or allergic adverse events were observed in either group. A single event of insomnia was reported in a male patient from the pHSA group and was considered moderate, resolved by day 8with treatment using an antianxiety drug; it was regarded as being unrelated to the investigational product and caused by the environmental change from hospitalization. Two abnormal laboratory changes observed in 1 male patient from the pHSA group (increase in BUN and serum creatinine levels:BUN values on days –1, 4, and 8 were 19, 43, and 52mg/dL , respectively, and serum creatinine levels were 1.0, 2.4, and 1.9 mg/dL , respectively) being treated concomitantly with 2 diuretic agents were possibly related to the investigational product.Exogenous albumin increased total serum albumin Figure 1.Serum albumin concentration-time profile after repeated intravenous administration of 25 g rHSA or pHSA at 0, 24, and 48hours (mean ± SD).© 2008 American College of Clinical Pharmacology. All rights reserved. Not for commercial use or unauthorized distribution. at MCMASTER UNIV LIBRARY on February 2, 2008 Downloaded fromincreases in serum albumin concentration-time pro-files were observed in both the rHSA and pHSA groups after administration from days 1 to 3, and par-allel concentration-time profiles were maintained till day 8 with a small linear decrease (Figure 1). The dif-ference in mean log-transformed serum albumin AUC 0-168hr was 0.0008 ±0.0191 (90% CI: 92.9%-108.1%), indicating bioequivalence between rHSA and pHSA (Table II). C max was the other major para-meter used in the investigation of bioequivalence. In this study, C max was calculated as reference data since HSA was administered intravenously. The 90% CI for the difference, from 92.7% to 106.4%, lies within the bioequivalence range.On the other hand, it is difficult to estimate other pharmacokinetic parameters such as t 1/2 accurately in this study, as albumin is an endogenous protein with a long t 1/2, and a small rise of approximately 1.0 g/dL in concentration after multiple dosing is also insufficient. As reference data, we calculated the t 1/2using the least square method from day 3postdose to day 8. Since t 1/2of 2 subjects (77.5 and 209.2 days) was 3 times larger than the reference data (15 to 19 days 21-23), this data was excluded from this analysis. The t 1/2was 31.1 ±7.0 day (n =10) in the nHSA group, and 29.6 ±6.2 (n =10) in the rHSA group. We also estimated t 1/2from day 3 postdose to day 7. It is better to calculate t 1/2excluding data on day 8 because serum albumin concentration between day 7 and day 8 are close and plateaued (Figure 1). The t 1/2was 23.8 ±8.3 day (n =11) in the nHSA group, and 23.9 ±7.2 (n =10) in the rHSA group. One t 1/2value in the rHSA group was excluded because the calculated t 1/2was negative.The differences between these values were not remarkable. To evaluate the t 1/2of albumin accu-rately, a long-term radioisotope study would be needed to assess the elimination phase of albumin.Patient demographics and baseline characteristics generally showed no remarkable bias, including baseline serum albumin concentrations, except for gender. Although this difference existed between the rHSA (11 male) and pHSA (7 male; 4 female) groups,in post-hoc analysis (P =.0902, Fisher), intergroup analysis exclusively among male patients provided a similar 90% CI (93.3%-111.9%) compared to pri-mary analysis results. Since weight differs by gender,exploratory bioequivalence analysis using adjusted weight as a covariate showed no significant differ-ences between the groups (90% CI: 92.7%-108.4%).In addition, baseline adjustments were made for the AUC 0-168hr and C max as serum albumin is an endogenous protein. The following parameters were calculated after subtracting immediately predose (baseline) values. Baseline-adjusted geometric mean AUC 0-168hr (g·hr/dL ) was 99.96 and 106.74 in the rHSA and pHSA groups, respectively, while differ-ence in mean AUC 0-168hr was –0.0285 ±0.0333 (90%CI: 82.0%-106.9%). Baseline adjusted geometric mean C max (g/dL) was 0.96 and 1.04 in the rHSA and pHSA groups, respectively, and difference in mean C max was –0.0383 ±0.0276 (90% CI: 82.0%-102.2%).These differences do not contradict bioequivalence.Overall, both rHSA and pHSA were safe and well tolerated in the study. In the pHSA group, insomnia (unrelated) was reported in 1 patient, and increases in BUN and serum creatinine levels (possibly related) were observed in 1 patient. No adverse events of clinical concern were observed in eithertreatment group. Examination of safety data obtainedPHARMACOKINETICS/SPECIAL POPULATIONS207© 2008 American College of Clinical Pharmacology. All rights reserved. Not for commercial use or unauthorized distribution. at MCMASTER UNIV LIBRARY on February 2, 2008 Downloaded from208•J Clin Pharmacol 2008;48:203-208from a previous phase III study resulted in little adverse reaction.19Recombinant human serum albumin is a high purity, virus-free albumin product based on recombi-nant DNA technology without using blood-derived components in the manufacturing process.10-12It is successfully being mass produced on a commercial basis, suggesting a stable supply can be realized with-out using finite human blood, and that limitation on plasma procurement can be overcome.These results indicate bioequivalence between rHSA and pHSA, and can be considered a possible alternative in the clinical environment.Financial disclosure: This study was sponsored by Mitsubishi Tanabe Pharma Corporation.REFERENCES1.Tullis JL . Albumin. Guidelines for clinical use. JAMA.1977;237:460-463.2. Vermeulen LC, Ratko TA, Erstad BL, Brecher ME, Matuszewski KA. A paradigm for consensus. The university hospital consor-tium guidelines for the use of albumin, nonprotein colloid, and crystalloid solutions. Arch Intern Med.1995;155:373-379.3.Marth E, Kleinhappl B. Albumin is a necessary stabilizer of TBE-vaccine to avoid fever in children after vaccination. Vaccine.2002;20:532-537.4.Sebeka HK, Starkuviene B, Trepsiene OV, Pauliukonis AA,Bumelis VA. Comparative effects of stabilizing additives on the rates of heat inactivation of recombinant human interferon alpha-2b in solution. Antiviral Res.2001;50:117-127.5. Matejtschuk P , Dash CH, Gascoigne EW. Production of human albumin solution: a continually developing colloid. Br J Anaesth.2000;85:887-895.6.Saunders CW, Schmidt BJ, Mallonee RL, Guyer MS. Secretion of human serum albumin from Bacillus subtilis. J Bacteriol.1987;169:2917-2925.7.Sleep D, Belfield GP , Ballance DJ, et al. Saccharomyces cere-visiae strains that overexpress heterologous proteins. Biotechnol.1991;9:183-187.8.Bosse D, Praus M, Kiessling P , et al. Phase I comparability of recombinant human albumin and human serum albumin. J Clin Pharmacol.2005;45:57-67.9.Watanabe H, Yamasaki K, Kragh-Hansen U, Tanase S, Harada K,Suenaga A et al. In vitro and in vivo properties of recombinant human serum albumin from Pichia pastoris purified by a method of short processing time. Pharm Res . 2001;18:1775-1781.10.Kobayashi K, Kuwae S, Ohya T, et al. High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and acti-vation. J Biosci Bioeng.2000;89:55-61.11.Sumi A, Okuyama K, Kobayashi K, Ohtani W, Ohmura T,Yokoyama K. Purification of recombinant human serum albumin efficient purification using STREAML INE. Bioseparation.1999;8:195-200.12.Ohtani W, Ohda T, Sumi A, Kobayashi K, Ohmura T. Analysis of Pichia pastoris components in recombinant human serum albumin by immunological assays and by HPL C with pulsed amperometric detection. Anal Chem.1998;70:425-429.13.Ohtani W, Masaki A, Ikeda Y, et al. Structure of recombinant human serum albumin from Pichia pastoris. Yakugaku Zasshi.1997;117:220-232.14.Ikegaya K, Hirose M, Ohmura T, Nokihara K. Complete deter-mination of disulfide forms of purified recombinant human serum albumin, secreted by the yeast Pichia pastoris. Anal Chem.1997;69:1986-1991.15.Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K.Crystal structure of human serum albumin at 2.5 Å resolution.Protein Eng. 1999;12:439-446.16.Ohtani W, Nawa Y, Takeshima K, Kamuro H, Kobayashi K,Ohmura T. Physicochemical and immunochemical properties of recombinant human serum albumin from Pichia pastoris. Anal Biochem.1998;256:56-62.17.Okano K, Ohkubo M, Sogame Y, et al. Metabolic fate of recom-binant human serum albumin (rHSA)(1)–Plasma concentration after a single or repeated intravenous administration of 125I-rHSA to rats and dogs. Jpn Pharmacol Ther.1997;25(Suppl 8):197-205.18.Okano K, Sogame Y, Ohkubo M, Haruta T, Tsuda Y. Metabolic fate of recombinant human serum albumin (rHSA)(2)– Distribution,metabolism, and excretion of rHSA after a single or repeated intravenous administration of 125I-rHSA to rats and excretion after a single intravenous administration of 125I-rHSA to dogs. Jpn Pharmacol Ther.1997;25(Suppl 8):207-218.19. Kamata T, Toda G, Kasahara A, Uematsu M, Hanaoka K, Yuasa S. Multicenter group comparative study of GB-1057 [human serum albumin (recombinant)] and plasma-derived human serum albumin for the treatment of ascites due to liver cirrhosis [in Japanese]. The Japanese Journal of Clinical and Experimental Medicine.1997;74:2884-2899.20.Kobayashi K. Summary of recombinant human serum albu-min development. Biologicals.2006;34:55-59.21.Peters TJ. Metabolism: albumin in the body. In: Peters TJ (ed).All About Albumin: Biochemistry, Genetics, and Medical Applica-tions.San Diego, CA: Academic Press Inc.; 1996:188-250.22.Beeken WL, Volwiler W, Goldsworthy PD, et al. Studies of I 131-albumin catabolism and distribution in normal young male adults. J Clin Invest.1962;41:1312-1333.23.Dixon FJ, Maurer PH, Deichmiller MP . Half-lives of homolo-gous serum albumins in several species. Proc Soc Exp Biol Med.1953;83:287-288.24.Guidelines for Bioequivalence Testing of Generic Drugs.Notification No. 786 of the Evaluation and L icensing Division,Pharmaceutical and Medical Safety Bureau, The Ministry of Health, Labour and Welfare, Japan (May 31, 2001).25.Runyon BA. Practice Guidelines Committee, American Association for the Study of Liver Diseases (AASLD). Management of adult patients with ascites due to cirrhosis. Hepatology.2004;39:841-856.26.Kato M, Yoshida T, Moriwaki H, Muto Y. Effect of branched-chain amino acid (BCAA) enriched-nutrient mixture on albumin metabolism in cirrhotic patients [in Japanese]. Kanzou.1991;32:692-699.© 2008 American College of Clinical Pharmacology. All rights reserved. Not for commercial use or unauthorized distribution. at MCMASTER UNIV LIBRARY on February 2, 2008 Downloaded from。