福建省福州市文博中学2015-2016学年高一上学期期末数学试卷
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
福建省福州市_学年高一数学上学期期末考试试题
福建省福州市2016-2017 学年高一数学上学期期末考试试题(满分:150 分,完卷时间:120 分钟)一、选择题( 本大题为单选题,共12 个小题,每小题 5 分,共60 分)1.直线y 3 = 0 的倾斜角是()(A)0°(B)45°(C)90°(D)不存在2.过点(3,1)且与直线x﹣2y﹣3=0 垂直的直线方程是()A.2x+y ﹣7=0 B .x+2y ﹣5=0 C .x﹣2y﹣1=0 D .2x﹣y﹣5=03.水平放置的ABC 的斜二测直观图 A B C 如图所示,已知 A C3, B C 2 则ABC 的面积为()A. 6B. 3C. 3 2D. 3 2 24.若点N在直线 a 上,直线 a 又在平面α内,则点N,直线 a 与平面α之间的关系可记作()A.N∈a∈α B .N∈a? α C .N? a? α D .N? a∈α5.若m,n 表示两条不同直线,表示平面,下列说法正确的是()A.若m / / , n / / , 则m / / n B .若m ,n ,则m nC.若m ,m n ,则n / / D .若m / / ,m n ,则n6.几何体三视图如图所示,则该几何体的体积为()32 2 40 8A.3 B .163C .D .163 37.在正方体ABCD - A1B1C1 D1 中,求直线A1B 和平面A1B1CD 所成的角为()2A .B .C .D .12 6 4 38.在直线 2x -3 y +5=0 上求点 P , 使 P 点到 A(2,3) 的距离为, 则 P 点坐标是 ()A.(5,5)B.(-1,1)C.(5,5) 或(-1,1)D.(5,5) 或(1,-1)9.方程 x 2y22ax 2ay 0(a 0) 表示的圆( )A. 关于 x 轴对称B. 关于 y 轴对称C. 关于直线 x y0 对称D. 关于直线 xy0 对称10.圆 x2y21 和 x2y26 y 5 0 的位置关系为()A . 外切B.内切C.外离 D.内含11.圆 x2y250 与圆 x 2y 212 x 6y 40 0 的公共弦长为()A . 5B. 6 C. 2 5D.2 612.一直三棱柱的每条棱长都是 3 ,且每个顶点都在球 O 的表面上,则球 O 的半径为()A .212B. 6C . 7D . 3二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分).13.在 x 轴上的截距为 2 且斜率为 1 的直线方程为 .14.经过 3,4 ,且与圆 x2y25 相切的直线的方程为.15 . 已 知 直 线.l 1 : ( k 3) x (4 k) y 1 0, 与l 2 : 2( k 3) x 2 y 3 0, 平 行 , 则 k 的 值 是16.在正方体 ABCDA 1B 1C 1D 1 中,点 P 在面对角线 AC 上运动,给出下列四个命题:① D 1 P ∥平面 A 1BC 1 ;② D 1P BD ;③平面 PDB 1 ⊥平面 A 1 BC 1 ;④三棱锥 A 1BPC 1 的体积不变 .则其中所有正确的命题的序号是 .方程;若不存在,说明理由 .21.(本小题满分 12 分)如图所示,在四棱锥P — ABCD 中,底面 ABCD 是边长为 2 的正方形,侧棱PD ⊥底面 ABCD , PD = DC , E 是 PC 的中点,过 E 点作 EF ⊥ PB 交 PB 于点 F .三、解答题 ( 本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤 ) .17.(本小题满分 10 分)已知三角形 ABC 的顶点坐标为 A (﹣ 1, 5)、B (﹣ 2,﹣ 1)、C ( 4, 3), M 是 BC 边上的中点. ( 1)求 AB 边所在的直线方程; ( 2)求中线 AM 的长. 18..( 本题满分 12 分) 已知直线 l 过直线 x y 1 0 和 2x y 4 0 的交点,(1)若 l 与直线 x 2y 1 0 平行,求直线 l 的方程 ;(2)若 l 与圆 x24 x y221 0 相交弦长为 2 21 ,求直线 l 的方程 .19.(本小题满分 12 分)正方体 ABCD-A 1 B 1C 1 D 1 , AA 1=2 , E 为棱 CC 1 的中点.( Ⅰ) 求证: B 1D 1AE( Ⅱ) 求证: AC // 平面 B 1 DE ; ( Ⅲ)求三棱锥 A-BDE 的体积. 20.(本小题满分 12 分) 已知圆 C : x 2y2Dx Ey 3 0 关于直线 x y 1 0 对称, 圆心 C在第四象限,半径为2 .(Ⅰ)求圆 C 的方程;(Ⅱ)是否存在直线 l 与圆 C 相切,且在 x 轴上的截距是 y 轴上的截距的 2 倍?若存在,求直线 l 的求证:(1)PA∥平面EDB;(2)PB⊥平面EFD;(3)求三棱锥E-BCD的体积.22(本小题满分12 分).已知圆 C : ( x3)2( y 4) 2 4 ,直线l过定点A(1 ,0) .1(1)若l与圆相切,求l1 的方程;1(2)若l1 与圆相交于P,Q 两点,线段PQ的中点为M,又l1 与l2 : x 2 y 2 0 的交点为N,判断AM AN 是否为定值,若是,则求出定值;若不是,请说明理由.参考答案1 .A【解析】因为直线与y+3=0 平行,所以倾斜角为0 .2.A【解析】解:由两直线垂直的性质可知,所求的直线的斜率k=﹣2所求直线的方程为y﹣1=﹣2(x﹣3)即2x+y ﹣7=0故选:A.【点评】本题主要考查了直线方程的求解,解题的关键是利用垂直关系求解出直线的斜率.3.A【解析】试题分析:直观图三角形面积为S' 13 22 3 2S : S' 1:2S 6 2 2 2 4考点:斜二测画法4.B【解析】试题分析:点N 在直线 a 上,记作N∈a;直线 a 又在平面α内,记作a?α.解:∵点N 在直线 a 上,直线 a 又在平面α内,∴点N,直线 a 与平面α之间的关系可记作:N∈a?α.故选:B.考点:平面的基本性质及推论.5.B【解析】试题分析:本题以数学符号语言为载体,判断命题的真假.若m / / , n / / , 则m / / n 或m, n 相交或m , n 异面,故A 错;若m ,n ,由直线和平面垂直的定义知,m n ,故B 正确;若m ,m n ,则选B.n / / 或n ,故 C 错;若m / / ,m n ,则n与位置关系不确定,故 D 错.故考点:命题的判断.6.C.22试题分析: 该几何体可视为长方体挖去一个 四棱锥,∴其体积为 2 2 41 2 2 240 ,故选33C .考点:空间几何体体积计算.7.B【解析】试题分析:直接求A 1B 在平面 A 1B 1CD 的投影比较困难,但是可利用等体积法,求得点B 到平面A 1B 1CD 的距离,再利用三角函数求角. 在正方体 ABCD - A 1B 1C 1D 1 中,设棱长为 1 ,则正方体 V 1 ,V1 , V1V V 1 , 假 设 点 B 到 平 面 A B CD 的 距 离 为 h , 则A A 1 BD6B A 1 B 2CD2A A 1BD31 1V1S h , S2,所以 h2 ,又 A B2 ,则直线A B 和平面A B CD 所B A 1 B 2CD 3A 1B 2CDA 1B 2CD11 12成的角的正弦值为h 1 ,所以直线 A B 和平面 A B CD 所成的角为(只取锐角,舍去钝角) ,A 1 B21 1 16所以本题的正确选项为B .考点:等体积法求线面角. 8.C【解析】设 P ( x , y ), 则.由得,即( x -2) =9. 解 得 x =-1 或 x =5.当 x =-1 时, y =1, 当 x =5 时, y =5,∴ P (-1,1) 或 P (5,5). 9.D【解析】试题分析: 由题意得:(x a)( y a)2a ,圆心在直线 xy 0 上, 因此圆关于直线 xy 0 对称,选 D.考点:圆的对称性10.A1 22( ) ( 3) R【解析】试题分析: x 2y26 y 50 即 x2( y 3)24 ,圆心距等于两半径 之和,所以圆x2y21和 x2y 26y 5 0 的位置关系为外切,选 A 。
数学---福建省福州文博中学2016-2017学年高一上学期期末考试试题
福建省福州文博中学2016-2017学年高一上学期期末考试数学试题1、体积公式:sh V =圆柱, sh V 31=圆锥, 34π3V R =球2、表面积公式:2π()S r r l =+圆柱, π()V r r l =+圆锥 24πS R =球一、选择题:(本大题共12小题,每小题 5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、下图①是由哪个平面图形旋转得到的( )2、直线x =1的倾斜角为α,则α( )A .等于0°B .等于45°C .等于90°D .不存在 3、两平行线3x -4y -12=0与6x -8y +16=0间的距离是( ) A .285B .4C .145D .454、已知水平放置的△ABC 是按斜二测画法得到如图所示的直观图,其中1B O C O ''''==,A O ''=△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形5、一个正方体的顶点都在球面上,它的棱长为2 cm ,则球的表面积是( ) A .8π cm 2 B .12π cm 2 C .2π cm 2 D .20π cm 26、已知点M (a ,b )在圆O : x 2+y 2=1外,则直线 ax +by =1与圆O 的位置关系是( ) A .相离 B .相切C .相交D .不确定7、已知a 、b 、c 表示不同的直线,α、β、γ表示不同的平面,则下列判断正确的是( ) A.若a c ⊥, b c ⊥,则a ∥b B. 若α⊥γ,β⊥γ,则α∥β C.若α⊥a ,β⊥a 则α∥β D. 若a ⊥α,b ⊥a ,则b ∥α 8、过圆x 2+y 2=4上的一点(1,3)的圆的切线方程是( ) A .x +3y -4=0 B .3x -y =0 C .x +3y =0D .x -3y -4=09、已知两点A (-1,0),B (2,1),直线l 过点P (0,-1)且与线段AB 有公共点,则直线l 的斜率k 的取值范围是( )A. []1,1-B. (][)11+-∞-∞ ,,C. [)(]1,00,1-D. [)[)101+-∞ ,,10、如图,在正方体ABCD-A 1B 1C 1D 1中,直线A 1B 与直线AD 1所成的角为( )A. 30︒B. 45︒C. 60︒D. 90︒11、如图,P A ⊥⊙O 所在平面,AB 是⊙O 的直径,C 是⊙O 上一点,AE ⊥PC ,AF ⊥PB ,给出下列结论:①AE ⊥BC ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC ,其中正确的结论的个数是( )A .1B .2C .3D .412、如图3,在正方体 1111ABCD A BC D -中,E ,F 分别为棱 AA 1、CC 1 的中点,则在空间中与直线 A 1D 1、 EF 、BB 1都相交的直线有( )A .1条B .2条C .3条D .无数条 二、填空题(本题共4小题,每小题5 分,共20分)13、若直线10ax y ++=与直线10x ay ++=平行,则a =_________; 14、圆()221+=2x y -上的点到直线240x y -+=的最小距离是 ;15、已知圆x 2+y 2+4x -4y +4=0关于直线x -y +2=0对称的圆的方程 ; 16、已知圆x 2+y 2=9,直线L :y =x +b ,圆上至少有三个点到直线L 的距离等于1,则b 的取值范围是 ;三、解答题(本大题共6小题,17题10分,18-22每小题12分,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知一个几何体的三视图如图所示,(1)求此几何体的体积;(2)求此几何体的表面积。
2015-2016学年(福建省)高一上学期期末考试数学试题(解析版)8
高一上学期期末考试数学试题一、选择题1.若,,,则实数()A. B. C. D. 2或【答案】D【解析】由于两个向量平行,故.点睛:本题主要考查两个向量的位置关系.两个向量,两个向量平行时,有;若两个向量垂直,则有.本题中将题目所给的两个向量的坐标代入,即可求得的值.2.下列图形中可以是某个函数的图象的是()A. B.C. D.【答案】D【解析】对于函数来说,一个只有唯一一个和其对应,故错误,选.3.函数(且)的图象经过的定点是()A. B. C. D.【答案】B【解析】当时,函数值恒为,故定点为.4.函数的图象的一条对称轴方程是()A. B. C. D.【答案】D【解析】正弦函数对称轴为,令,求得对称轴为.5.若,则一定存在一个实数,使得当时,都有()A. B.C. D.【答案】A【解析】当时,的图像在的上方,故,排除选项.当时,,而是幂函数,增长速度比对数函数要快,故当时,.故选选项.6.若,,则()A. B. C. D.【答案】C【解析】由于两个向量垂直,根据向量加法的几何性质可知,平行四边形为矩形,对角线相等,即.7.若集合,集合,则()A. B. C. D.【答案】A【解析】依题意,故.8.若,,则在方向上的投影是()A. B. C. D.【答案】C【解析】依题意有投影为.9.若一扇形的周长为4,面积为1,则该扇形的圆心角的弧度数是()A. B. C. D.【答案】B【解析】依题意,解得,所以弧度数为.10.若函数在上的最大值与最小值之和为,则实数的值是( )A.B.C.D.【答案】A【解析】依题意函数在上单调,故,解得.11.( )A. B. C. D.【答案】C【解析】由于,即.点睛:本题主要考查两角和的正切公式的变形,考查了化归与转化的数学思想方法.首先注意到题目所给的两个角度的特殊关系,即.而题目涉及到正切的公式,我们就联想到两角和的正切公式,变形为.12.已知向量与的夹角为,,,若与的夹角为锐角,则实数的取值范围是( )A. B.C.D. 【答案】D 【解析】根据夹角为锐角,有,即,也即,即,解得.点睛:本题主要考查平面向量的数量积运算与夹角公式,考查了锐角对应三角函数的取值范围,考查了两个向量的位置关系.题目一开始给定两个向量的模和夹角,那么它们的数量积可以通过公式求解出来.由于后面给定两个向量的夹角为锐角,则转化为数量积大于零,且不等于,就说明两个向量不能共线,由此得到.二、填空题13.,,,则与的夹角是__________.【答案】【解析】,所以夹角为.14.若函数是偶函数,则__________.【答案】【解析】由于函数为偶函数,故需要符合诱导公式中的奇变偶不变,故,由于,所以.15.若,则__________.【答案】【解析】,化简得.所以.16.若定义在上的函数满足,是奇函数,现给出下列4个论断:①是周期为4的周期函数;②的图象关于点对称;③是偶函数;④的图象经过点.其中正确论断的序号是__________(请填上所有正确论断的序号).【答案】①②③【解析】由可知函数周期为.由是奇函数关于原点对称,可知关于对称,即.,所以函数为偶函数,无法判断其值.综上,正确的序号是①②③.点睛:本题主要考查函数的奇偶性与周期性,考查函数平移变换等知识.在阅读题目的时候,采用逐句转化的方法,即读到“”时,将其转化为函数的周期为,这个要记住小结论,即若,,则函数为周期函数,且周期为.向左平移个单位后得到,这是函数变换的知识.三、解答题17.已知函数.(Ⅰ)求函数的定义域与零点;(Ⅱ)判断函数的奇偶性.【答案】(I)定义域为,零点为;(II)奇函数.【解析】试题分析:(I)定义域为.令,即.(II)利用奇偶性的定义,判断,所以函数为奇函数.试题解析:解:(Ⅰ)∵∴,∴的定义域为.由,得,∴,解得,∴的零点为.(Ⅱ)∵对任意的实数,都有,∴是奇函数.18.已知函数.(Ⅰ)求函数的最小正周期和递增区间;(Ⅱ)求函数的图象的对称中心的坐标.【答案】(I)最小正周期,单调递增区间是,;(II)对称中心的坐标是,.【解析】试题分析:(I)利用降次公式和二倍角公式,化简,由此得到最小正周期.令,解出的范围即是函数的增区间.(II)令,解出的值即是对称中心的横坐标,由此得到对称中心的坐标.试题解析:解:.(Ⅰ)函数的最小正周期.由,,得,.∴函数的单调递增区间是,.(Ⅱ)由,,得,,∴函数的图象的对称中心的坐标是,.19.已知某海滨浴场的海浪高度(单位:米)是时间(单位:小时,)的函数,记作.如表是某日各时的浪高数据:(时)(米)(Ⅰ)在如图的网格中描出所给的点;(Ⅱ)观察图,从,,中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)依据规定,当海浪高度高于1.25米时才对冲浪爱好者开放,请依据(Ⅱ)的结论判断一天内的8:00到20:00之间有多长时间可供冲浪爱好者进行活动.【答案】(I)详见解析;(II),(III)小时.【解析】试题分析:(I)根据题目所给数据进行描点.(II)根据图象,应该选择,利用可求得的值,利用周期可求得的值,最后代入图像上一个最高点或最低点,求得的值.(III)由(II)令,解这个三角不等式可求得的取值范围.试题解析:解:(Ⅰ)(Ⅱ)根据图,应选择.不妨设,,由图可知,,,.∴,又当时,,∴,∴,∴,.∴,∴所求的解析式为.(Ⅲ)由,即,得,即,.又,∴.答:一天内的8:00到20:00之间有4个小时可供冲浪爱好者进行活动.20.已知,,,求的值.【答案】.【解析】试题分析:由于,故可以用诱导公式,将已知的表达式转化为.利用平方差公式,可将化简为.利用对数的运算公式,可将化简为.由此求得的值.试题解析:解:∵...∴.21.已知,,,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(I);(II).【解析】试题分析:(I)依题意有,利用正切的二倍角公式可求得.(II)利用,求出,由此求得,利用求得,所以.试题解析:解:(Ⅰ)∵,,∴,即.∵,∴,∴,∴,∴.(Ⅱ)∵,∴,又∵,∴,∴,.又,∴.点睛:本题主要考查向量模的概念,考查正切函数的二倍角公式,考查三角恒等变形.第一步是利用向量的模的概念,求得,然后利用正切的二倍角公式求得的值.第二问主要通过划归与转化的思想方法,将进行转化,利用其正切值求得相应的弧度数.22.已知函数的值域为,函数,的值域为.(Ⅰ)求集合和集合;(Ⅱ)若对任意的实数,都存在,使得,求实数的取值范围.【答案】(I)详见解析;(II).【解析】试题分析:(I)利用两角和与差的正弦、余弦公式,辅助角公式,化简.所以.对分成三类,利用配方法,分类讨论的取值.(II)由于,,根据题意,有.由(I)的讨论,列出不等式组,由此求得的取值范围.试题解析:解:(Ⅰ).∴..(1)若,则,;(2)若,则.∵,∴,当时,,①若,则,∴;②若,则,(i )若,即,则;(ii )若,即,则.综上,若,则;若,则;若,则;若,则.(Ⅱ)∵,∴的值域为,∴的值域.∴对任意的实数,都存在,使得,即,或或或第 11 页共 12 页或或或或或或或.∴所求的取值范围为.点睛:本题主要考查两角和与差的正弦、余弦公式,辅助角公式.考查恒成立问题的处理方法,考查三角函数的值域等知识,还考查了分类讨论的数学思想方法.第一问主要利用三角函数公式进行三角恒等变形,化为一个角且次数为一次的三角函数,由此求得值域.第二问需要对分类讨论,情况比较多,分类要做到不重不漏.第 12 页共 12 页。
福建省福州文博中学2015_2016学年高一化学上学期期末考试试题
福州文博中学2015-2016学年上学期高一年级期末考化学科考试(题目卷)(完卷时间:90分钟,总分:100分)可能用到的相对原子质量:H-1 C-12 O-16 Cl—35.5 Na-23C-12 N-14 K—39 Mn—55 Cu-64一、选择题(每小题只有..一个正确选项,每小题2分,共50分)1.下列各组混合物中,能用分液漏斗进行分离的是()A.酒精和水 B.碘和四氯化碳 C.水和四氯化碳 D.汽油和植物油2.将30mL 0.5mol/L NaCl溶液加水稀释到500mL,稀释后溶液中NaCl的物质的量浓度为() A. 0.03mol/L B. 0.3mol/L C. 0.05mol/L D. 0.04mol/L3.下列各组物质中,所含分子数相同的是()A. 10g H2和10g O2 B. 5.6L N2(标准状况下)和11gCO2C. 9克H2O和11.2L O2 D. 224mL H2(标准状况下)和0.1mol N24.当光束通过下列分散系时,能产生丁达尔效应的是()A. NaCl 溶液 B. Fe(OH)3胶体 C.盐酸 D.水5.下列各组物质中,按化合物、单质、混合物顺序排列的一组是() A.烧碱、液态氧、碘酒 B.生石灰、白磷、熟石灰C.干冰、铁、氯化氢 D.空气、氮气、明矾6.下列四种化学操作名称从左到右分别是()A.过滤、蒸发、蒸馏、分液 B.过滤、蒸馏、蒸发、分液C.蒸发、蒸馏、过滤、分液 D.分液、蒸馏、蒸发、过滤A. NaOH B. H2SO4 C.蔗糖 D. NaCl8.下列各组中的离子,能在溶液中共存的是()A. K+、H+、SO42﹣、OH﹣ B. Na+、Ca2+、CO32﹣、NO3﹣C. Na+、H+、Cl﹣、CO32﹣ D. Na+、Cu2+、Cl﹣、SO42﹣9.下列四种基本类型的反应中,一定不是氧化还原反应的是()A.化合反应 B.分解反应 C.置换反应 D.复分解反应10.下列有关氧化还原反应的叙述中,正确的是()A.一定有氧元素参加B.氧化剂本身发生氧化反应C.氧化反应一定先于还原反应发生D.一定有电子转移(得失或偏移)11.下列物质久置于空气中会发生相应的变化,其中发生了氧化还原反应的是() A.浓硫酸的体积增大 B.铝的表面生成致密的薄膜C.澄清的石灰水变浑浊 D.氢氧化钠的表面发生潮解12.下列关于钠的叙述中,不正确的是()A.钠燃烧时发出黄色的火焰B.钠燃烧时生成氧化钠C.钠有很强的还原性D.钠原子的最外层只有一个电子13.下列金属中,遇到盐酸或强碱溶液都能放出氢气的是()A. Cu B. Mg C. Fe D. Al14.向含有NaBr 、KI的混合溶液中通入过量的Cl2充分反应。
福建省福州市2016-2017学年高一数学上学期期末考试试题(1)
福建省福州市2016-2017学年高一数学上学期期末考试试题(满分:150分,完卷时间:120分钟)一、选择题(本大题为单选题,共12个小题,每小题5分,共60分)1.直线 y + 3 = 0的倾斜角是( )(A )0° (B )45° (C )90° (D )不存在2.过点(3,1)且与直线x ﹣2y ﹣3=0垂直的直线方程是( )A .2x+y ﹣7=0B .x+2y ﹣5=0C .x ﹣2y ﹣1=0D .2x ﹣y ﹣5=03.水平放置的ABC ∆的斜二测直观图A B C ∆'''如图所示,已知2,3=''=''C B C A 则ABC ∆的面积为( )A. 6B. 3C.4.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( )A .N ∈a ∈αB .N ∈a ⊆αC .N ⊆a ⊆αD .N ⊆a ∈α5.若m n ,表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥6.几何体三视图如图所示,则该几何体的体积为( )A 7.在正方体ABCD -1111D CB A 中,求直线B A 1和平面CD B A 11所成的角为( )A 8.在直线2x -3y +5=0上求点P ,使P 点到A(2,3)的距离为,则P 点坐标是( ) A.(5,5) B.(-1,1)C.(5,5)或(-1,1)D.(5,5)或(1,-1)9.方程)0(02222≠=-++a ay ax y x 表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线0=-y x 对称D .关于直线0=+y x 对称10.圆122=+y x 和05622=+-+y y x 的位置关系为( )A . 外切B .内切C .外离D .内含11.圆2250x y +=与圆22126400x y x y +--+=的公共弦长为( )A ..12.一直三棱柱的每条棱长都是3,且每个顶点都在球O 的表面上,则球O 的半径为( )A .3 二、填空题(本大题共4小题,每小题5分,共20分) .13.在x 轴上的截距为2且斜率为1的直线方程为 .14.经过()3,4,且与圆2225x y +=相切的直线的方程为 .15.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 的值是_______.16.在正方体1111ABCD A B C D -中,点P 在面对角线AC 上运动,给出下列四个命题:①1D P ∥平面11A BC ; ② 1D P BD ⊥; ③平面1PDB ⊥平面11A BC ;④三棱锥11A BPC -的体积不变.则其中所有正确的命题的序号是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) .17.(本小题满分10分)已知三角形ABC 的顶点坐标为A (﹣1,5)、B (﹣2,﹣1)、C (4,3),M 是BC 边上的中点.(1)求AB 边所在的直线方程;(2)求中线AM 的长.18..(本题满分12分) 已知直线l 过直线10x y +-=和240x y -+=的交点,(1)若l 与直线210x y +-=平行,求直线l 的方程;(2)若l 与圆224210x x y -+-=相交弦长为,求直线l 的方程.19.(本小题满分12分)正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.(Ⅰ) 求证:11B D AE ⊥(Ⅱ) 求证://AC 平面1B DE ;(Ⅲ)求三棱锥A-BDE 的体积.20.(本小题满分12分)已知圆C :0322=++++Ey Dx y x 关于直线01=-+y x 对称,圆心C(Ⅰ)求圆C 的方程; (Ⅱ)是否存在直线l 与圆C 相切,且在x 轴上的截距是y 轴上的截距的2倍?若存在,求直线l 的方程;若不存在,说明理由.21.(本小题满分12分)如图所示,在四棱锥P —ABCD 中,底面ABCD 是边长为2的正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,过E 点作EF ⊥PB 交PB 于点F .求证:(1)PA ∥平面EDB ;(2)PB ⊥平面EFD ; (3)求三棱锥E-BCD 的体积.22(本小题满分12分).已知圆22:(3)(4)4C x y -+-=,直线1l 过定点A(1,0).(1)若1l 与圆相切,求1l 的方程;(2)若1l 与圆相交于P ,Q 两点,线段PQ 的中点为M ,又1l 与2:220l x y ++=的交点为N ,判断AM AN ⋅是否为定值,若是,则求出定值;若不是,请说明理由.参考答案1.A【解析】因为直线与y+3=0平行,所以倾斜角为0.2.A【解析】解:由两直线垂直的性质可知,所求的直线的斜率k=﹣2所求直线的方程为y ﹣1=﹣2(x ﹣3)即2x+y ﹣7=0故选:A .【点评】本题主要考查了直线方程的求解,解题的关键是利用垂直关系求解出直线的斜率.3.A【解析】 '2:1:S S =考点:斜二测画法4.B【解析】试题分析:点N 在直线a 上,记作N ∈a ;直线a 又在平面α内,记作a ⊆α.解:∵点N 在直线a 上,直线a 又在平面α内, ∴点N ,直线a 与平面α之间的关系可记作:N ∈a ⊆α.故选:B .考点:平面的基本性质及推论.5.B【解析】试题分析:本题以数学符号语言为载体,判断命题的真假.若//,//,m n αα则//m n 或,m n 相交或,m n 异面,故A 错;若m α⊥,n α⊂,由直线和平面垂直的定义知,m n ⊥,故B 正确;若m α⊥,m n ⊥,则//n α或n α⊂,故C 错;若//m α,m n ⊥,则n 与α位置关系不确定,故D 错.故选B .考点:命题的判断.6.C .【解析】C .考点:空间几何体体积计算.7.B【解析】 试题分析:直接求B A 1在平面CD B A 11的投影比较困难,但是可利用等体积法,求得点B 到平面CD B A 11的距离,再利用三角函数求角.在正方体ABCD -1111D C B A 中,设棱长为1,则正方体1=V ,,,假设点B 到平面CD B A 11的距离为h ,则,则直线B A 1和平面CD B A 11所,所以直线B A 1和平面CD B A 11所成的角为,所以本题的正确选项为B .考点:等体积法求线面角.8.C【解析】设P (x ,y ),则. 由得, 即(x -2)2=9.解得x =-1或x =5.当x =-1时,y =1,当x =5时,y =5,∴P (-1,1)或P (5,5).9.D【解析】试题分析:由题意得:222()()2x a y a a ++-=,圆心在直线0=+y x 上,因此圆关于直线0=+y x 对称,选D.考点:圆的对称性10.A试题分析:05622=+-+y y x 即22(3)4x y +-=,圆心距等于两半径之和,所以圆122=+y x 和05622=+-+y y x 的位置关系为外切,选A 。
2015-2016年福建省福州八中高一上学期期末数学试卷与答案Word版
2015-2016学年福建省福州八中高一(上)期末数学试卷一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.(5.00分)直线x=1的倾斜角和斜率分别是()A.90°,不存在B.45°,1 C.135°,﹣1 D.180°,不存在2.(5.00分)直线y﹣2=mx+m经过一定点,则该点的坐标是()A.(﹣2,2)B.(2,﹣1)C.(﹣1,2)D.(2,1)3.(5.00分)对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥β B.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂α D.m∥n,m⊥α,n⊥β4.(5.00分)如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.B.C.D.5.(5.00分)与圆x2+y2+4x﹣4y+7=0和x2+y2﹣4x﹣10y+13=0都相切的直线共有()A.1条 B.2条 C.3条 D.4条6.(5.00分)正方体的内切球与其外接球的体积之比为()A.1:B.1:3 C.1:3D.1:97.(5.00分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直、与MN不垂直C.与MN垂直,与AC不垂直D.与AC、MN均不垂直8.(5.00分)设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4 C.y2=﹣2x D.(x﹣1)2+y2=2二、填空题(本大题共4小题,每小题5分,共20分)9.(5.00分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是.10.(5.00分)若点P(﹣4,﹣2,3)关于坐标平面xOy及y轴的对称点的坐标分别是(a,b,c),(e,f,d),则c+e=.11.(5.00分)已知圆锥的轴截面是一个边长为2的正三角形,则圆锥的侧面积等于.12.(5.00分)如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:①B,E,F,C四点共面;②直线BF与AE异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.其中正确的有.(请写出所有符合条件的序号)三、解答题(本大题共有4个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)13.(10.00分)如图,已知点A(2,3),B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x﹣2y+2=0上.(Ⅰ)求AB边上的高CE所在直线的方程;(Ⅱ)求△ABC的面积.14.(10.00分)如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.(1)请画出该几何体的三视图;(2)求四棱锥B﹣CEPD的体积.15.(10.00分)已知圆C经过点A(﹣1,0)和B(3,0),且圆心在直线x﹣y=0上.(1)求圆C的方程;(2)若点P(x,y)为圆C上任意一点,求点P到直线x+2y+4=0的距离的最大值和最小值.16.(10.00分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)17.(4.00分)已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是()A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内18.(4.00分)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)19.(4.00分)已知M={(x,y)|y=,y≠0},N={(x,y)|y=x+b}且M ∩N≠∅,则实数b的取值范围是()A.[﹣3,3]B.[﹣3.3]C.[﹣3,﹣3)D.(﹣3,3] 20.(4.00分)已知定义在R上的偶函数f(x)满足f(x﹣4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=log a x有三个不同的根,则a的范围为()A.(2,4) B.(2,2)C.(,2)D.(,)二、填空题(本大题共2小题,每小题4分,共8分)21.(4.00分)设点A(﹣3,5)和B(2,15),在直线l:3x﹣4y+4=0上找一点P,使|PA|+|PB|为最小,则这个最小值为.22.(4.00分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为.三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)23.(12.00分)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.24.(14.00分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.2015-2016学年福建省福州八中高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.(5.00分)直线x=1的倾斜角和斜率分别是()A.90°,不存在B.45°,1 C.135°,﹣1 D.180°,不存在【解答】解:∵直线x=1垂直于x轴,倾斜角为90°,而斜率不存在,故选:A.2.(5.00分)直线y﹣2=mx+m经过一定点,则该点的坐标是()A.(﹣2,2)B.(2,﹣1)C.(﹣1,2)D.(2,1)【解答】解:直线y﹣2=mx+m的方程可化为m(x+1)﹣y+2=0当x=﹣1,y=2时方程恒成立故直线y﹣2=mx+m恒过定点(﹣1,2),故选:C.3.(5.00分)对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥β B.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂α D.m∥n,m⊥α,n⊥β【解答】解:在A中,m⊥n,m∥α,n∥β,则α与β相交或相行,故A错误;在B中,m⊥n,α∩β=m,n⊂α,则α与β不一定垂直,故B错误;在C中,m∥n,n⊥β,m⊂α,由由面面垂直的判定定理得α⊥β,故C正确;在D中,m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故D错误.故选:C.4.(5.00分)如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.B.C.D.【解答】解:根据斜二侧画法可知,原图形为直角梯形,其中上底AD=1,高AB=2A'B'=2,下底为BC=1+,∴.故选:A.5.(5.00分)与圆x2+y2+4x﹣4y+7=0和x2+y2﹣4x﹣10y+13=0都相切的直线共有()A.1条 B.2条 C.3条 D.4条【解答】解:圆x2+y2+4x﹣4y+7=0的圆心为(﹣2,2),半径为1,x2+y2﹣4x﹣10y+13=0圆心是(2,5),半径为4故两圆相外切∴与圆x2+y2+4x﹣4y+7=0和x2+y2﹣4x﹣10y+13=0都相切的直线共有3条.故选:C.6.(5.00分)正方体的内切球与其外接球的体积之比为()A.1:B.1:3 C.1:3D.1:9【解答】解:设正方体的棱长为a,则它的内切球的半径为,它的外接球的半径为,故所求的比为1:3,选C7.(5.00分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直、与MN不垂直C.与MN垂直,与AC不垂直D.与AC、MN均不垂直【解答】解:以DA、DC、DD1所在的直线为x轴、y轴、z轴建立空间直角坐标系.如图因为正方体的棱长为2,则D(0,0,0)、D1(0,0,2)、M(0,0,1)、A(2,0,0)、C(0,2,0)、O(1,1,0)、N(0,1,2).∴=(﹣1,﹣1,1),=(0,1,1),=(﹣2,2,0).∴=0,=0,∴OM⊥AC,OM⊥MN.故选:A.8.(5.00分)设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4 C.y2=﹣2x D.(x﹣1)2+y2=2【解答】解:设P(x,y),则由题意,圆(x﹣1)2+y2=1的圆心为C(1,0),半径为1∵PA是圆的切线,且|PA|=1∴∴P点的轨迹方程为(x﹣1)2+y2=2故选:D.二、填空题(本大题共4小题,每小题5分,共20分)9.(5.00分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是0或.【解答】解:若a=0,则两直线方程为x﹣1=0,﹣x﹣1=0,满足两直线平行,当a≠0时,若两直线平行,则,得a=,故答案为:0或.10.(5.00分)若点P(﹣4,﹣2,3)关于坐标平面xOy及y轴的对称点的坐标分别是(a,b,c),(e,f,d),则c+e=1.【解答】解:∵点P(﹣4,﹣2,3)关于坐标平面xoy的对称点为(﹣4,﹣2,﹣3),点P(﹣4,﹣2,3)关于y轴的对称点的坐标(4,﹣2,﹣3),点P(﹣4,﹣2,3)关于坐标平面xoy及y轴的对称点的坐标分别是(a,b,c)、(e,f,d),∴c=﹣3,e=4,∴c+e=1,故答案为:1.11.(5.00分)已知圆锥的轴截面是一个边长为2的正三角形,则圆锥的侧面积等于2π.【解答】解:∵圆锥的轴截面是一个边长为2的等边三角形,∴底面半径=1,底面周长=2π,∴圆锥的侧面积=×2π×2=2π,故答案为:2π.12.(5.00分)如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:①B,E,F,C四点共面;②直线BF与AE异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.其中正确的有①②③.(请写出所有符合条件的序号)【解答】解:根据几何体的平面展开图,画出它的直观图如下:①根据已知,EF∥AD∥BC;∴EF∥BC;∴B,E,F,C四点共面;∴该结论正确;②由图可看出BF和AE异面;∴该结论正确;③由①EF∥BC,EF⊄平面PBC,BC⊂平面PBC;∴EF∥平面PBC;∴该结论正确;④分别取AD,EF,BC的中点G,H,M,并连接GH,HM,MG,则GH⊥EF,HM⊥EF;而EF是平面BCE和平面PAD的交线;∴∠GHM为平面BCE与平面PAD形成的二面角的平面角;若设该几何体的侧棱长为2,则:GH=,HM=,MG=2;显然GH2+HM2≠MG2;∴∠GHM≠90°;∴平面BCE与平面PAD不垂直;∴该结论错误;⑤把该正四棱锥沿底面各边及侧棱PD剪开,得到的展开图如下:BH⊥PA,∴B到侧棱PA的最短距离为BE,BE=;过E作EN⊥PD,则EN是点E到PD的最短距离,且EN=,NP=;而N到C的最短距离便是线段NC的长,NC=;∴从B点出发,绕过PAD面到达C点的最短距离为;而BE+EF+FC=;∴该结论错误;综上得正确的结论为①②③.故答案为:①②③.三、解答题(本大题共有4个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)13.(10.00分)如图,已知点A(2,3),B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x﹣2y+2=0上.(Ⅰ)求AB边上的高CE所在直线的方程;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)由题意可知,E为AB的中点,∴E(3,2),k AB==﹣1.且k CE=﹣=1,∴CE:y﹣2=x﹣3,即x﹣y﹣1=0.(Ⅱ)由得C(4,3),∴|AC|=|BC|=2,AC⊥BC,∴S==2.△ABC14.(10.00分)如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.(1)请画出该几何体的三视图;(2)求四棱锥B﹣CEPD的体积.【解答】解:(1)该组合体的主视图和侧视图如图示:(3分)(2)∵PD平面ABCD,PD⊂平面PDCE∴平面PDCE⊥平面ABCD∵BC⊥CD∴BC⊥平面PDCE(5分)∵S PCDE=(PD+EC)•DC=3(6分)∴四棱锥B﹣CEPD的体积V=•S PCDE•BC=2.(8分)15.(10.00分)已知圆C经过点A(﹣1,0)和B(3,0),且圆心在直线x﹣y=0上.(1)求圆C的方程;(2)若点P(x,y)为圆C上任意一点,求点P到直线x+2y+4=0的距离的最大值和最小值.【解答】解:(1)AB的中点坐标为(1,0),∴圆心在直线x=1上,…(1分)又知圆心在直线x﹣y=0上,∴圆心坐标是(1,1),圆心半径是,…(4分)∴圆方程是(x﹣1)2+(y﹣1)2=5;…(7分)(2)设圆心到直线x+2y+4=0的距离,∴直线x+2y+4=0与圆C相离,…(9分)∴点P到直线x+2y+4=0的距离的最大值是,…(12分)最小值是.…(15分)16.(10.00分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.【解答】解:(1)AB是圆O的直径,PA⊥圆所在的平面,可得PA⊥BC,C是圆O上的点,由直径对的圆周角等于90°,可得BC⊥AC.再由AC∩PA=A,利用直线和平面垂直的判定定理可得BC⊥平面PAC.(2)若Q为PA的中点,G为△AOC的重心,连接OG并延长交AC于点M,连接QM,则由重心的性质可得M为AC的中点.故OM是△ABC的中位线,QM是△PAC的中位线,故有OM∥BC,QM∥PC.而OM和QM是平面OQM内的两条相交直线,AC和BC是平面PBC内的两条相交直线,故平面OQM∥平面PBC.又QG⊂平面OQM,∴QG∥平面PBC.一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)17.(4.00分)已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是()A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内【解答】解:已知平面α外不共线的三点A、B、C到α的距离都相等,则可能三点在α的同侧,即.平面ABC平行于α,这时三条中位线都平行于平面α;也可能一个点A在平面一侧,另两点B、C在平面另一侧,则存在一条中位线DE∥BC,DE在α内,所以选D.18.(4.00分)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)【解答】解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选:C.19.(4.00分)已知M={(x,y)|y=,y≠0},N={(x,y)|y=x+b}且M ∩N≠∅,则实数b的取值范围是()A.[﹣3,3]B.[﹣3.3]C.[﹣3,﹣3)D.(﹣3,3]【解答】解:集合M={(x,y)|y=,y≠0}表示的图形是一个以原点为圆心,以3为半径的半圆(x轴以上部分),如图:N={(x,y)|y=x+b}表示一条直线.当直线和圆相切时,由r=3=,解得b=3,或b=﹣3(舍去).当直线过点(3,0)时,0=3+b,b=﹣3.当M∩N≠∅时,结合图形可得实数b的取值范围是(﹣3,3],故选:D.20.(4.00分)已知定义在R上的偶函数f(x)满足f(x﹣4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=log a x有三个不同的根,则a的范围为()A.(2,4) B.(2,2)C.(,2)D.(,)【解答】解::由f(x﹣4)=f(x)可得周期等于4,当x∈(0,10]时,函数的图象如图f(2)=f(6)=f(10)=2,再由关于x的方程f(x)=log a x有三个不同的根,可得,解得a∈,故选:D.二、填空题(本大题共2小题,每小题4分,共8分)21.(4.00分)设点A(﹣3,5)和B(2,15),在直线l:3x﹣4y+4=0上找一点P,使|PA|+|PB|为最小,则这个最小值为5.【解答】解:设点A(﹣3,5)关于直线l:3x﹣4y+4=0的对称点为A′(a,b),则,解得A′(3,﹣3).则|PA|+|PB|的最小值=|A′B|=5.故答案为:5.22.(4.00分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为π.【解答】解:由题意知,球心到四个顶点的距离相等,所以球心在对角线AC上,且其半径为AC长度的一半,=π×()3=π.则V球故答案为:π.三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)23.(12.00分)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.【解答】解:(1)∵C(﹣4,0)、D(0,4),∴直线CD方程为.化简得x﹣y+4=0.又∵△AOB的外接圆圆心为E(,),半径r=.∴由⊙E与直线CD相切,得圆心E到直线CD的距离等于半径,即=,即=,解之得a=4;(2)C(﹣4,0)、D(0,4),可得|CD|==4,设P到直线CD的距离为d,可得△PCD的面积S=|CD|×d=12,即,解之得d=3.因此,只须与CD平行且与CD距离为3的两条直线中的一条与⊙E相切,另一条与⊙E相交.∵由(1)的计算,可知圆心E到直线CD距离为2,∴圆E的半径为2+3=,即r==,解得a=10.即存在a=10,满足使△PCD的面积等于12的点P有且只有三个,⊙E的标准方程是(x﹣5)2+(y﹣5)2=50.24.(14.00分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.【解答】解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)<f(x.....2.).,那么就说f(x)在这个区间上是增函数....x1x2y=f(X)xyf(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法yxo第21页(共21页)函数的 性 质定义图象 判定方法函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x ...).,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
人教A版数学必修一福建省福州文博中学高中数学复习卷.docx
2014.10班级_____________姓名____________座号__________成绩_______一、选择题:(本大题共12小题,每小题 5分,共 60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.) 1. 下列判断正确的是 ( ) A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.已知集合{|2}M x x =≤,则( )A .0M ∈B .0M ∉C .0M ⊆D .0 M3.下列各组函数中,表示同一函数的是( )A. xxy y ==,1 B. 33,x y x y ==C. xy x y lg 2,lg 2== D. ()2,x y x y ==4.已知幂函数y =f (x )的图象过(36,6),则此函数的解析式是( ) A.y=5x B.y=4x C.y=3x D .y=x 5.下列函数是偶函数的是 ( )A. 322-=x y B. 3x y = C. ]1,0[,2∈=x x y D. x y = 某学校开展研究性学习活动,一组同学获得了下面的一组试验数据:x1.99 3 4 5.1 8 y0.991.582.012.353.00现有如下4个模拟函数:①2 3.02x y =-;②2 5.58y x x =-+;③2log y x =;④1() 1.742x y =+. 请从中选择一个模拟函数,使它比较近似地反应这些数据的规律,应选( ) A.① B.② C.③ D.④ 7.若3.0222,3.0log ,3.0===c b a ,则c b 、、a 的大小关系是( )A.b c a <<B. c b a <<C. c a b <<D. a c b <<8.若)12(log 1)(21+=x x f ,则)(x f 的定义域为( ))0,21(-、A ),21(B +∞-、 )(0,)0,21(C +∞⋃-、 )2,21(D -、9.已知集合{|14},{|}A x x B x x a =-<<=<,若A B ,则实数a 的取值范围是( )AC (,4)-∞B .(,4]-∞C .(4,)+∞D .[4,)+∞10.随着我国经济不断发展,人均GDP (国内生产总值)呈高速增长趋势,已知2008年年底我国人均GDP 为22640元,如果今后年平均增长率为9%,那么2020年年底我国人均GDP 为( )A .1222640 1.09⨯元B .1322640 1.09⨯元C .1222640(1 1.09)⨯+元D .1322640(1 1.09)⨯+元11.方程33l o gx x =-根的情况是( ) A.有两个正根 B.一个正根一个负根 C.有两个负根 D.仅有一个实数根12.定义在R 上的偶函数()f x ,当[1,2]x ∈时,()0f x <且()f x 为增函数,给出下列四个结论:①()f x 在[2,1]--上单调递增; ②当[2,1]x ∈--时,有()0f x <; ③()f x -在[2,1]--上单调递减; ④|()|f x 在[2,1]--上单调递减. 其中正确的结论是( ) A .①③B .②③C .②④D .③④二、填空题(本题共4小题,每小题4 分,共16分,请将正确答案填在答题纸上) 13. 已知集合{}012>-=x x A ,B {}12≤=xx ,则B A Y =14.已知214()log 4x x f x xx +<⎧=⎨≥⎩,则((3))f f = . 15.若函数1()2x f x a +=+(0a >且1a ≠),则函数()f x 的图象恒过定点 . 16. 给定函数xy x y x y x y 2)4(|;1|)3();1(log )2(;)1(2121-=-=+==,其中在区间(0,1)上单调递减的函数序号是______________三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分) 不用计算器计算下列各式的值:(Ⅰ)2123416()8+-281-+(); (Ⅱ)335log 36log 4log 25-+.18.(本小题满分12分)如图所示,设集合A B 、为全集U 的两个子集. (Ⅰ)求A B I ,并写出A B I 的所有子集; (Ⅱ)求()U C A B U .19.(本小题满分12分)(Ⅰ)画出函数2()23f x x x =--,[1,4]x ∈-图象,并写出其值域;(Ⅱ)当m 为何值时,函数()()g x f x m =+在[1,4]-上有两个零点?6,753,41,2UBA20.(本小题满分12分)已知函数()log (1),()log (3)a a f x x g x x =-=-(0a >且1a ≠) (Ⅰ)求函数()()()h x f x g x =-的定义域;(Ⅱ)利用对数函数的单调性,讨论不等式()()f x g x ≥中x 的取值范围. 21.(本小题满分12分)探究函数xx x f 4)(+=,x ∈(0,+∞)的最小值,并确定相应的x 的值,列表如下: x … 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7 …y …8.55 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57 …请观察表中y 值随x 值变化的特点,完成下列问题:(1)若函数xx x f 4)(+=(x>0)在区间(0,2)上递减,则在 上递增;(2)当x= 时,x x x f 4)(+=(x>0)的最小值为 ;(3)试用定义证明xx x f 4)(+=(x>0)在区间(0,2)上递减;(4)函数xx x f 4)(+=(x<0)有最值吗?是最大值还是最小值?此时x 为何值?(直接回答,不需证明) 22.(本小题满分14分)小张周末自驾游.早上八点从家出发,驾车3个小时后到达景区停车场,期间由于交通等原因,小张的车所走的路程s(单位:km)与离家的时间t(单位:h)的函数关系为s t t t=--.由于景区内不能驾车,小张把车停在景区停车场.在景区玩到16点,小()5(13)km h的速度沿原路返回.张开车从停车场以60/(Ⅰ)求这天小张的车所走的路程s(单位:km)与离家时间t(单位:h)的函数解析式;(Ⅱ)在距离小张家60km处有一加油站,求这天小张的车途经该加油站的时间.。
福建省福州文博中学2016-2017学年高一上学期期中考试数学试题 含答案
福州文博中学2016—2017学年第一学期高一年级期中考数学科考试(题目卷) 命题人:李平 审核人:张上松 吴湛瑜(完卷时间:120分钟,总分150分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.下列关系正确..的是( )A .{}10,1∈B .{}10,1∉C .{}10,1⊆D .{}{}10,1∈ 2.下列四组函数中,相等的两个函数是( )A .2(),()x f x x g x x==B .,0()||,(),0x x f x x g x x x ≥⎧==⎨-<⎩C .lg y x =,21lg 2y x = D .2()()f x x g x x ==3.函数()12log 21-=x y 的定义域为()A . (,+∞)B .( ,1C .[1,+∞D .()+∞,14.已知幂函数()αx x f =的图象经过点22⎛⎝⎭,则()4f 的值为( )A .116B . 16C .2D .125.下列函数中,既是奇函数又在区间(0,)+∞上单调递增的函数为( ) A1y x=B ln y x =C 3y x = D2y x =6.下列大小关系正确的是( )A3.0log 34.044.03<< B 4.04333.0log 4.0<<C4.03434.03.0log <<D34.044.033.0log <<7.若函数()xa x f =(0>a ,且1≠a )的图象如图,其中a 为常数.则函数()()0≥=x x x g a 的大致图象是()A .B .C .D .8.随着我国经济不断发展,人均GDP(国内生产总值)呈高速增长趋势,已知2008年年底我国人均GDP 为22640元,如果今后年平均增长率为%9,那么2020年年底我国人均GDP 为( ) A .1322640(1 1.09)⨯+元B .1222640(1 1.09)⨯+元C .1322640 1.09⨯元D .1222640 1.09⨯元9.根据表格中的数据,可以断定方程20xe x --=的一个根所在的区间是( )x-1 0 1 2 3 x e0.371 2.72 7.39 20.092x +123453)10.可推得函数2()21f x ax x =-+在区间[1,2]上为增函数的一个条件是( ) A .0a =B .011a a<⎧⎪⎨<⎪⎩ C .12a a>⎧⎪⎨>⎪⎩ D .11a a>⎧⎪⎨<⎪⎩ 11.已知函数()x x f x3log 21-⎪⎭⎫⎝⎛=,若实数0x 是方程()0=x f 的解,且010x x <<,则()1x f 的值( )A. 恒为正值 B 。
2015-2016学年福建省福州八中高一(上)期末数学试卷(解析版)
2015-2016学年福建省福州八中高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.直线x=1的倾斜角和斜率分别是()A.45°,1 B.135°,﹣1 C.90°,不存在D.180°,不存在【考点】直线的图象特征与倾斜角、斜率的关系.【专题】阅读型.【分析】利用直线x=1垂直于x轴,倾斜角为90°,选出答案.【解答】解:∵直线x=1垂直于x轴,倾斜角为90°,而斜率不存在,故选C.【点评】本题考查直线的倾斜角和斜率的关系,以及直线的图象特征与直线的倾斜角、斜率的关系.2.直线y﹣2=mx+m经过一定点,则该点的坐标是()A.(﹣2,2)B.(2,﹣1)C.(﹣1,2)D.(2,1)【考点】恒过定点的直线.【专题】直线与圆.【分析】直线y﹣2=mx+m的方程可化为m(x+1)﹣y+2=0,根据x=﹣1,y=2时方程恒成立,可直线过定点的坐标.【解答】解:直线y﹣2=mx+m的方程可化为m(x+1)﹣y+2=0当x=﹣1,y=2时方程恒成立故直线y﹣2=mx+m恒过定点(﹣1,2),故选:C.【点评】本题考查直线恒过定点,解题的关键是将方程中的参数分离,属于基础题.3.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β【考点】空间中直线与平面之间的位置关系.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】在A中,α与β相交或相行;在B中,α与β不一定垂直;在C中,由由面面垂直的判定定理得α⊥β;在D中,由面面平行的判定定理得α∥β.【解答】解:在A中,m⊥n,m∥α,n∥β,则α与β相交或相行,故A错误;在B中,m⊥n,α∩β=m,n⊂α,则α与β不一定垂直,故B错误;在C中,m∥n,n⊥β,m⊂α,由由面面垂直的判定定理得α⊥β,故C正确;在D中,m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故D错误.故选:C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.4.如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.B.C.D.【考点】平面图形的直观图.【专题】规律型.【分析】原图为直角梯形,上底为1,高为2,下底为1+,利用梯形面积公式求解即可.也可利用原图和直观图的面积关系求解.【解答】解:根据斜二侧画法可知,原图形为直角梯形,其中上底AD=1,高AB=2A'B'=2,下底为BC=1+,∴.故选:A.【点评】本题考查水平放置的平面图形的直观图斜二测画法,比较基础.5.与圆x2+y2+4x﹣4y+7=0和x2+y2﹣4x﹣10y+13=0都相切的直线共有()A.1条B.2条C.3条D.4条【考点】圆的切线方程.【专题】计算题;转化思想;综合法;直线与圆.【分析】确定两圆相外切,即可得出结论.【解答】解:圆x2+y2+4x﹣4y+7=0的圆心为(﹣2,2),半径为1,x2+y2﹣4x﹣10y+13=0圆心是(2,5),半径为4故两圆相外切∴与圆x2+y2+4x﹣4y+7=0和x2+y2﹣4x﹣10y+13=0都相切的直线共有3条.故选:C.【点评】本题考查圆与圆的位置关系,考查直线与圆的位置关系,属于中档题.6.正方体的内切球与其外接球的体积之比为()A.1:B.1:3 C.1:3D.1:9【考点】球内接多面体;球的体积和表面积.【专题】计算题.【分析】设出正方体的棱长,分别求出正方体的内切球与其外接球的半径,然后求出体积比.【解答】解:设正方体的棱长为a,则它的内切球的半径为,它的外接球的半径为,故所求的比为1:3,选C【点评】本题考查正方体的内切球和外接球的体积,是基础题.7.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直、与MN不垂直C.与MN垂直,与AC不垂直 D.与AC、MN均不垂直【考点】空间中直线与直线之间的位置关系.【专题】空间位置关系与距离.【分析】此题的条件使得建立空间坐标系方便,且选项中研究的位置关系也适合用空间向量来证明其垂直关系,故应先建立坐标系,设出边长,据几何特征,给出各点的坐标,验证向量内积是否为零【解答】解:以DA、DC、DD1所在的直线为x轴、y轴、z轴建立空间直角坐标系.如图因为正方体的棱长为2,则D(0,0,0)、D1(0,0,2)、M(0,0,1)、A(2,0,0)、C(0,2,0)、O(1,1,0)、N(0,1,2).∴=(﹣1,﹣1,1),=(0,1,1),=(﹣2,2,0).∴=0,=0,∴OM⊥AC,OM⊥MN.故选A.【点评】本题考查用空间向量的方法来判断线线垂直,解答本题的关键是正确建立坐标系,使所求坐标化,利用向量的坐标运算解答.8.设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4 C.y2=﹣2x D.(x﹣1)2+y2=2【考点】圆的切线方程;轨迹方程.【专题】计算题.【分析】圆(x﹣1)2+y2=1的圆心为C(1,0),半径为1,根据PA是圆的切线,且|PA|=1,可得,从而可求P点的轨迹方程【解答】解:设P(x,y),则由题意,圆(x﹣1)2+y2=1的圆心为C(1,0),半径为1∵PA是圆的切线,且|PA|=1∴∴P点的轨迹方程为(x﹣1)2+y2=2故选D.【点评】本题以圆的标准方程为载体,考查圆的切线性质,考查轨迹方程的求解,属于基础题.二、填空题(本大题共4小题,每小题5分,共20分)9.直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是0或.【考点】直线的一般式方程与直线的平行关系.【专题】分类讨论;转化法;直线与圆.【分析】根据直线平行的等价条件进行求解即可.【解答】解:若a=0,则两直线方程为x﹣1=0,﹣x﹣1=0,满足两直线平行,当a≠0时,若两直线平行,则,得a=,故答案为:0或.【点评】本题主要考查直线平行的求解和应用,根据条件建立比例关系是解决本题的关键.10.若点P(﹣4,﹣2,3)关于坐标平面xOy及y轴的对称点的坐标分别是(a,b,c),(e,f,d),则c+e=1.【考点】空间中的点的坐标.【专题】空间位置关系与距离.【分析】点P(﹣4,﹣2,3)关于坐标平面xoy的对称点为(﹣4,﹣2,﹣3),点P(﹣4,﹣2,3)关于y轴的对称点的坐标(4,﹣2,﹣3),求出c与e的值,即可求得c与e的和.【解答】解:∵点P(﹣4,﹣2,3)关于坐标平面xoy的对称点为(﹣4,﹣2,﹣3),点P(﹣4,﹣2,3)关于y轴的对称点的坐标(4,﹣2,﹣3),点P(﹣4,﹣2,3)关于坐标平面xoy及y轴的对称点的坐标分别是(a,b,c)、(e,f,d),∴c=﹣3,e=4,∴c+e=1,故答案为:1.【点评】本题主要考查求空间中的一个点关于坐标平面xoy及y轴的对称点的坐标的求法,属于基础题.11.已知圆锥的轴截面是一个边长为2的正三角形,则圆锥的侧面积等于2π.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】易得圆锥的底面半径及母线长,那么圆锥的侧面积=底面周长×母线长×.【解答】解:∵圆锥的轴截面是一个边长为2的等边三角形,∴底面半径=1,底面周长=2π,∴圆锥的侧面积=×2π×2=2π,故答案为:2π.【点评】本题利用了圆的周长公式和扇形面积公式、圆锥的轴截面等基础知识,考查运算求解能力、化归与转化思想.属于基础题.12.如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:①B,E,F,C四点共面;②直线BF与AE异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.其中正确的有①②③.(请写出所有符合条件的序号)【考点】棱锥的结构特征;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;空间角.【分析】首先可根据几何体的平面展开图画出其直观图,然后根据中位线的性质,两条平行直线可确定一个平面,异面直线的概念,线面平行的判定定理,二面角的平面角的定义及求法,即可判断每个结论的正误,而对于结论⑤,可画出该几何体沿底面正方形的边,及侧棱PD剪开后所得的平面展开图,由该展开图即可求出从B点出发,绕过平面PAD,到达点C的最短距离,从而判断出该结论的正误.【解答】解:根据几何体的平面展开图,画出它的直观图如下:①根据已知,EF∥AD∥BC;∴EF∥BC;∴B,E,F,C四点共面;∴该结论正确;②由图可看出BF和AE异面;∴该结论正确;③由①EF∥BC,EF⊄平面PBC,BC⊂平面PBC;∴EF∥平面PBC;∴该结论正确;④分别取AD,EF,BC的中点G,H,M,并连接GH,HM,MG,则GH⊥EF,HM⊥EF;而EF是平面BCE和平面PAD的交线;∴∠GHM为平面BCE与平面PAD形成的二面角的平面角;若设该几何体的侧棱长为2,则:GH=,HM=,MG=2;显然GH2+HM2≠MG2;∴∠GHM≠90°;∴平面BCE与平面PAD不垂直;∴该结论错误;⑤把该正四棱锥沿底面各边及侧棱PD剪开,得到的展开图如下:BH⊥PA,∴B到侧棱PA的最短距离为BE,BE=;过E作EN⊥PD,则EN是点E到PD的最短距离,且EN=,NP=;而N到C的最短距离便是线段NC的长,NC=;∴从B点出发,绕过PAD面到达C点的最短距离为;而BE+EF+FC=;∴该结论错误;综上得正确的结论为①②③.故答案为:①②③.【点评】考查中位线的性质,两平行直线可确定一个平面,能根据几何体的平面展开图画出它的直观图,线面平行的判定定理,以及二面角的平面角的概念及求法,将立体图形转变成平面图形解题的方法.三、解答题(本大题共有4个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)13.如图,已知点A(2,3),B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x﹣2y+2=0上.(Ⅰ)求AB边上的高CE所在直线的方程;(Ⅱ)求△ABC的面积.【考点】直线的一般式方程.【专题】直线与圆.【分析】(I)利用中点坐标公式、相互垂直的直线斜率之间的关系、点斜式即可得出.(II)联立直线方程可得交点,利用直角三角形的面积计算公式即可得出.【解答】解:(Ⅰ)由题意可知,E为AB的中点,∴E(3,2),k AB==﹣1.且k CE=﹣=1,∴CE:y﹣2=x﹣3,即x﹣y﹣1=0.(Ⅱ)由得C(4,3),∴|AC|=|BC|=2,AC⊥BC,∴S△ABC==2.【点评】本题考查了中点坐标公式、相互垂直的直线斜率之间的关系、点斜式、直线的交点、直角三角形的面积计算公式,考查了计算能力,属于基础题.14.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.(1)请画出该几何体的三视图;(2)求四棱锥B﹣CEPD的体积.【考点】棱柱、棱锥、棱台的体积;简单空间图形的三视图.【专题】空间位置关系与距离.【分析】(1)由已知中底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.根据三视图的定义,易得到该几何体的三视图;(2)由已知中PD⊥平面ABCD,且PD=AD=2EC=2,我们计算出棱锥的底面面积和高,代入棱体积公式,即可求出四棱锥B﹣CEPD的体积;【解答】解:(1)该组合体的主视图和侧视图如图示:(3分)(2)∵PD平面ABCD,PD⊂平面PDCE∴平面PDCE⊥平面ABCD∵BC⊥CD∴BC⊥平面PDCE(5分)∵S PCDE=(PD+EC)•DC=3(6分)∴四棱锥B﹣CEPD的体积V=•S PCDE•BC=2.(8分)【点评】本题考查的知识点是简单空间图形的三视图,棱锥的体积,熟练掌握空间几何图形的几何特征,三视图的定义及画法,棱锥的体积公式是解答本题的关键.15.已知圆C经过点A(﹣1,0)和B(3,0),且圆心在直线x﹣y=0上.(1)求圆C的方程;(2)若点P(x,y)为圆C上任意一点,求点P到直线x+2y+4=0的距离的最大值和最小值.【考点】直线与圆的位置关系.【专题】直线与圆.【分析】(1)确定圆心坐标与半径,可求圆C的方程;(2)点P到直线x+2y+4=0的距离转化为圆心到直线x+2y+4=0的距离问题.【解答】解:(1)AB的中点坐标为(1,0),∴圆心在直线x=1上,…(1分)又知圆心在直线x﹣y=0上,∴圆心坐标是(1,1),圆心半径是,…(4分)∴圆方程是(x﹣1)2+(y﹣1)2=5;…(7分)(2)设圆心到直线x+2y+4=0的距离,∴直线x+2y+4=0与圆C相离,…(9分)∴点P到直线x+2y+4=0的距离的最大值是,…(12分)最小值是.…(15分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的转化能力,正确转化是关键.16.如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)由PA⊥圆所在的平面,可得PA⊥BC,由直径对的圆周角等于90°,可得BC⊥AC,根据直线和平面垂直的判定定理可得结论.(2)连接OG并延长交AC于点M,则由重心的性质可得M为AC的中点.利用三角形的中位线性质,证明OM∥BC,QM∥PC,可得平面OQM∥平面PBC,从而证明QG∥平面PBC.【解答】解:(1)AB是圆O的直径,PA⊥圆所在的平面,可得PA⊥BC,C是圆O上的点,由直径对的圆周角等于90°,可得BC⊥AC.再由AC∩PA=A,利用直线和平面垂直的判定定理可得BC⊥平面PAC.(2)若Q为PA的中点,G为△AOC的重心,连接OG并延长交AC于点M,连接QM,则由重心的性质可得M为AC的中点.故OM是△ABC的中位线,QM是△PAC的中位线,故有OM∥BC,QM∥PC.而OM和QM是平面OQM内的两条相交直线,AC和BC是平面PBC内的两条相交直线,故平面OQM∥平面PBC.又QG⊂平面OQM,∴QG∥平面PBC.【点评】本题主要考查直线和平面垂直的判定定理、直线和平面平行的判定定理的应用,属于中档题.一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)17.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是()A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内【考点】空间中直线与平面之间的位置关系.【专题】压轴题.【分析】考虑三个点的位置,可能在平面同侧,也可能在两侧,不难判定结论的正确性.【解答】解:已知平面α外不共线的三点A、B、C到α的距离都相等,则可能三点在α的同侧,即.平面ABC平行于α,这时三条中位线都平行于平面α;也可能一个点A在平面一侧,另两点B、C在平面另一侧,则存在一条中位线DE∥BC,DE在α内,所以选D.【点评】本题考查空间直线与平面的位置关系,考虑仔细全面,找反例有时事半功倍,是基础题.18.函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】将选项中各区间两端点值代入f(x),满足f(a)•f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.19.已知M={(x,y)|y=,y≠0},N={(x,y)|y=x+b}且M∩N≠∅,则实数b的取值范围是()A.[﹣3,3]B.[﹣3.3]C.[﹣3,﹣3)D.(﹣3,3]【考点】直线和圆的方程的应用.【专题】计算题.【分析】集合M表示的图形是一个半圆.N}表示一条直线,当直线和圆相切时,求出b值.当直线过点(3,0)时,求出对应的b值,结合结合图形可得实数b的取值范围.【解答】解:集合M={(x,y)|y=,y≠0}表示的图形是一个以原点为圆心,以3为半径的半圆(x轴以上部分),如图:N={(x,y)|y=x+b}表示一条直线.当直线和圆相切时,由r=3=,解得b=3,或b=﹣3(舍去).当直线过点(3,0)时,0=3+b,b=﹣3.当M∩N≠∅时,结合图形可得实数b的取值范围是(﹣3,3],故选D.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,体现了数形结合的数学思想,属于中档题.20.已知定义在R上的偶函数f(x)满足f(x﹣4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=log a x有三个不同的根,则a的范围为()A.(2,4)B.(2,2)C.(,2)D.(,)【考点】函数的零点与方程根的关系;函数的图象;函数的周期性.【专题】函数的性质及应用.【分析】首先求出f(x)的周期是4,画出函数的图象,得到关于a的不等式,解得即可【解答】解::由f(x﹣4)=f(x)可得周期等于4,当x∈(0,10]时,函数的图象如图f(2)=f(6)=f(10)=2,再由关于x的方程f(x)=log a x有三个不同的根,可得,解得a∈,故选D.【点评】本题主要考查函数的图象特征,体现了数形结合的数学思想,属于基础题.二、填空题(本大题共2小题,每小题4分,共8分)21.设点A(﹣3,5)和B(2,15),在直线l:3x﹣4y+4=0上找一点P,使|PA|+|PB|为最小,则这个最小值为5.【考点】与直线关于点、直线对称的直线方程.【专题】计算题;方程思想;综合法;直线与圆.【分析】设点A(﹣3,5)关于直线l:3x﹣4y+4=0的对称点为A′(a,b),求出A′.可得|PA|+|PB|的最小值=|A′B|.【解答】解:设点A(﹣3,5)关于直线l:3x﹣4y+4=0的对称点为A′(a,b),则,解得A′(3,﹣3).则|PA|+|PB|的最小值=|A′B|=5.故答案为:5.【点评】本题考查了点关于直线对称点的求法、互相垂直的直线斜率之间的关系、中点坐标公式、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.22.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为π.【考点】球内接多面体;球的体积和表面积.【专题】计算题;方程思想;综合法;空间位置关系与距离.【分析】球心到球面各点的距离相等,即可知道外接球的半径,就可以求出其体积了.【解答】解:由题意知,球心到四个顶点的距离相等,所以球心在对角线AC上,且其半径为AC长度的一半,则V球=π×()3=π.故答案为:π.【点评】本题考查学生的思维意识,对球的结构和性质的运用,是基础题.三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)23.如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.【考点】圆的标准方程;点到直线的距离公式;圆的切线方程.【专题】计算题;直线与圆.【分析】(1)根据△AOB为等腰直角三角形,算出它的圆心为E(,),半径r=.求出直线CD的方程,根据⊙E与CD相切,利用点到直线的距离公式建立关于a的等式,解之即可得出实数a的值;(2)由|CD|=4与△PCD的面积等于12,算出P到直线CD的距离为d=3.若满足条件的点P有3个,说明与CD平行且与CD距离为3的两直线中的一条与⊙E相切且另一条与⊙E相交.由此算出⊙E的半径,进而算出实数a的值,得到满足条件的⊙E的标准方程.【解答】解:(1)∵C(﹣4,0)、D(0,4),∴直线CD方程为.化简得x﹣y+4=0.又∵△AOB的外接圆圆心为E(,),半径r=.∴由⊙E与直线CD相切,得圆心E到直线CD的距离等于半径,即=,即=,解之得a=4;(2)C(﹣4,0)、D(0,4),可得|CD|==4,设P到直线CD的距离为d,可得△PCD的面积S=|CD|×d=12,即,解之得d=3.因此,只须与CD平行且与CD距离为3的两条直线中的一条与⊙E相切,另一条与⊙E相交.∵由(1)的计算,可知圆心E到直线CD距离为2,∴圆E的半径为2+3=,即r==,解得a=10.即存在a=10,满足使△PCD的面积等于12的点P有且只有三个,⊙E的标准方程是(x﹣5)2+(y﹣5)2=50.【点评】本题给出三角形AOB的外接圆与直线CD,探究直线与圆的位置关系.着重考查了圆的标准方程、点到直线的距离公式和直线与圆的位置关系等知识,属于中档题.24.在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.【考点】直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.【专题】空间位置关系与距离.【分析】(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E 为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.【解答】解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.【点评】本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.。
【全国百强校】福建省福建师范大学附属中学2015-2016学年高一上学期期末考试数学试题解析(解析版)
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知直线方程34)y x --,则这条直线的倾斜角是( )A. 150︒B. 120︒C.60︒ D. 30︒【答案】C考点:直线的倾斜角.2.在空间直角坐标系中,点(1,3,6)P 关于x 轴对称的点的坐标是( )A. (1,3,6)-B. (1,3,6)--C. (1,3,6)--D. (1,3,6)--【答案】D【解析】试题分析:由题意得,根据空间直角坐标系,可得点(1,3,6)P 关于x 轴对称的点的坐标是(1,3,6)--,故选D .考点:空间直角坐标系.3.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是( ) A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β= n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,m Ìβ,则α⊥β【答案】B【解析】试题分析:由题意得,A 中,若//,m n m α⊥,则有直线与平面垂直的判定定理得n α⊥,所以是正确的;B 中,若//,m n ααβ= ,则m 与n 平行或异面,所以是不正确的;C 中,若,m m αβ⊥⊥,则由平面与平面平行的判定定理得//αβ,所以是正确的;D 中,,m m αβ⊥⊂,则由平面与平面垂直的判定定理得αβ⊥,所以是正确的.考点:空间中线面位置的判定.4.已知12:20,:(1)210,l mx y l m x my +-=+-+=若12l l ⊥ 则m =( )A .m=0B .m=1C .m=0或m=1D .m=0或m=1-【答案】C【解析】试题分析:由12l l ⊥,得(1)1(2)0m m m ⨯++⨯-=,解得0m =或1m =,故选C .考点:两直线垂直的应用.5.正方体''''ABCD A B C D -中,AB 的中点为M ,'DD 的中点为N ,异面直线M B '与CN 所 成的角是( )A . 0B . 90C . 45D . 60【答案】B考点:异面直线所成的角.6.若长方体的一个顶点上三条棱长分别是1、1、2,且它的八个顶点都在同一球面上,则这个球的 体积是( )A .6πBC .3πD .12π【答案】B【解析】试题分析:由题意得,此问题是球内接长方体,所以可得长方体的对角线长等于球的直径,即2R =R =,所以求得体积为334433V R ππ==⨯=. 考点:球的组合及球的体积的计算.7.圆(x ﹣1)2+(y ﹣2)2=1关于直线20x y --=对称的圆的方程为( )A .22(4)(1)1x y -++=B .22(4)(1)1x y +++=C .(x+2)2+(y+4)2=1D .22(2)(1)1x y -++=【答案】A【解析】试题分析:由题意得,圆心坐标为()1,2,设圆心()1,2关于直线20x y --=的对称点为(,)P x y ,则2111122022y x x y -⎧⨯=-⎪⎪-⎨++⎪--=⎪⎩,解得4,1x y ==-,所以对称圆方程为22(4)(1)1x y -++=. 考点:点关于直线的对称点;圆的标准方程.8.已知实数,x y满足22(5)(12)25,x y ++-=的最小值为( )A .5B . 8C . 13D .18【答案】B 考点:圆的标准方程及圆的最值.9.如图,在长方体1111D C B A ABCD -中,2==BC AB ,11=AA ,则1BC 与平面D D BB 11所 成角的正弦值为( )A .63 B .552 C .515 D .510【答案】D1A 1A考点:直线与平面所成角的求解.10.已知点()()4,0,0,2B A -,点P 在圆()()5=4+3-:22-y x C ,则使090=∠APB 的点P 的个数 为( )A .0B .1C .2D .3【答案】B【解析】试题分析:设(,)P x y ,要使90APB ∠= ,只需P 到AB 中点(1,2)-12AB ==,而圆上的所有点到AB 中点距离范围为,即,所以使090=∠APB 的点P 的个数只有一个,就是AB 中点与圆心连线与圆的交点. 考点:点与圆的位置关系.11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为6480π+,则r =( )A. 1B. 2C. 4D. 8【答案】 C考点:几何体的三视图;体积的计算.【方法点晴】本题主要考查了空间几何体的三视图的应用和几何体的体积的计算与应用,属于中档试题,同时着重考查了学生的空间想象能力和运算能力,求解三视图问题时,要牢记三是的规则“长对正,高平齐、宽相等”,得到原结合体的形状,再根据几何体的体积公式求解几何体的体积,本题的解答中通过给定的三视图可得该几何体为一个半球和半个圆锥拼接的几何体,通过计算半球的体积和半个圆柱的体积,从而得到给几何体的体积.12.已知点(,)M a b ,(0)ab ≠是圆222:O x y r +=内一点,直线m 是以点M 为中点的弦所在直 线,直线n 的方程是2ax by r +=,那么( )A.//m n 且n 与圆O 相离B. //m n 且n 与圆O 相交C.m 与n 重合且n 与圆O 相离D. m n ⊥且n 与圆O 相交【答案】A【解析】试题分析:直线m 是以点M 为中点的弦所在直线,所以m PO ⊥,所以m 的斜率为a b-,所以//n m ,圆心到直线n,因为M 在圆内,所以2ax by r +<r >,所以直线n 与圆相离,故选A . 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系及应用,属于中档试题,对于直线和圆的位置关系分为相交、相离、相切三种情形,常利用圆心到直线的距离与半径的大小关系来判断,本题解答中利用直线m 是以点M 为中点的弦所在直线可求得其斜率,进而根据直线n 的方程可判断出两直线平行,表示出点到直线n 的距离,根据点M 在园内判断出,a b 和r 的关系,进而判断长圆心到直线n 的距离大于半径,判断长二者的关系是相离.第Ⅱ卷(非选择题共90分)二、填空题(本大题共6小题,每题5分,满分30分.)13.不论k 为何值,直线(21)(2)(4)0k x k y k ----+=恒过的一个定点是__________.【答案】(2,3)考点:直线方程.14.在正方体1111ABCD A BC D -中,二面角1C BD C --的正切值为 .【解析】试题分析:设正方体1111ABCD A BC D -的棱长为a,则111,BD DC BC CD BC CC a =====,取BD 的中点O ,连接1,OC OC ,则1C O C ∠就是二面角1C BD C --的平面角,因为122CO BD ==,所以1tan 2COC ∠==.考点:二面角的求解.15.点P(4,-2)与圆224x y +=上任一点连线的中点的轨迹方程是 .【答案】22(2)(1)1x y -++=考点:轨迹方程的求解.【方法点晴】本题主要考查了与圆有关的轨迹方程的求解,属于基础题,着重考查了代入法求解轨迹方程,其中确定坐标之间的关系是解答此类问题的关键.本题解答中通过设圆上任意一点为11(,)A x y ,表示AP 中点为(),x y ,确定出A 与AP 中点坐标之间的关系112422x x y y =-⎧⎨=+⎩,再代入圆的方程,化简即可得到动点的轨迹方程.16.若直线x y k +=与曲线y =,则k 的取值范围是 .【答案】11k k -≤<=或【解析】试题分析:曲线y =(1,0)A -时,直线y x k =-+与半圆只有一个交点,此时1k =-;当直线过点(1,0),(0,1)B C 时,直线y x k =-+与半圆有两个交点,此时1k =;当直线y x k =-+与半圆相切时,只有一个公共点,k =因此当11k -≤<或k =直线x y k +=与曲线y =考点:直线与圆的方程的应用.17.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中 心,则1AB 与底面ABC 所成角的正弦值等于 .考点:直线与平面所成的角.18.若直线m 被两平行线12:0:0l x y l x y +=+=与所截得的线段的长为m 的倾斜角可以是①15 ② 45 ③60 ④ 105︒ ⑤120︒ ⑥165︒其中正确答案的序号是 .(写出所有正确答案的序号)【答案】④或⑥考点:两平行线之间的距离;直线的夹角.【方法点晴】本题主要考查了两条平行线之间的距离公式的应用及两直线的位置关系的应用,属于中档试题,解答的关键是根据两平行线之间的距离和被截得的线段的长,确定两条直线的位置关系(夹角的大小),本题的解答中,根据平行线之间的距离和被截得的线段长为m 与两平行线的夹角为45,从而得到直线m 的倾斜角. 三、解答题(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.)19.(本小题满分12分)如图,已知平行四边形ABCD 的三个顶点的坐标为(14)A ,-,(21)B ,--,(23)C ,.(1)求平行四边形ABCD 的顶点D 的坐标;(2)在∆ACD 中,求CD 边上的高线所在直线方程;(3)求ACD ∆的面积.【答案】(1)(3,8);(2)5190x y +-=;(3)8.【解析】考点:待定系数法求直线方程;点到直线的距离公式.20.(本小题满分13分)-中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且如图,在四棱锥P ABCDPA PD AD(1)求证:EF//平面PAD;(2)求证:面PAB⊥平面PDC;【答案】(1)证明见解析;(2)证明见解析;(3.⊥, (3) 解:设PD的中点为M,连结EM,MF,则EM PD 由(2)知EF⊥面PDC∴EF PD⊥,⊥∴PD⊥面EFM∴PD MF在Rt FEM ∆中,12EF PA == 1122EM CD a ==4tan 122EF EMF EM a ∠===故所求二面角的正切值为2 ………13分 考点:直线与平面平行的判定;平面与平面垂直的判定;二面角的求解.21.(本小题满分10分)一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱圈最高点距水面8m ,拱圈内水 面宽32m ,船只在水面以上部分高6.5m ,船顶部宽8m ,故通行无阻,如下图所示.(1)建立适当平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m ,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试 问:船身至少降低多少米才能通过桥洞?(精确到0.1m2.45≈)【答案】(1)400;(2)0.9.(2)当x=4时,求得y ≈7.6,即桥拱宽为8m 的地方距正常水位时的水面约7.60m,距涨水后的水面约5.6m,因为船高6.5m ,顶宽8m ,所以船身至少降低6.5-5.6=0.9(m )以上,船才能顺利通过桥洞.考点:圆的方程及其应用.22.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠= .(1)证明:1AB AC ⊥; (2)若2AB CB ==,1AC =求三棱柱111ABC A B C -的体积. C 1B 1AA 1BC 【答案】(1)证明见解析;(2)3.22111111,OC OA A C OA OC OA OC OA AB ===+⊥⊥ 又=A C ,故又111111111,--= 3.ABC ABC OC AB O OA ABC OA ABC A B C ABC S A B C V S OA =⊥∆=⨯= 因为所以平面,为棱柱的高,又的面积ABC 的体积考点:直线与平面垂直的判定与性质;棱柱、棱锥、棱台的体积. 【方法点晴】本题主要考查了直线与平面垂直的判定与性质和几何体的体积的计算,属于中档试题,着重考查了空间想象能力、运算能力和推理论证能力,解答此类问题的关键是把线线垂直的证明转化为线与面垂直,利用线面垂直的性质证明1AB AC ⊥;第2问中,利用线面垂直,确定几何体的高是解答三棱锥的体积的是求解几何体体积的一个难点.23.(本小题满分13分)在平面直角坐标系xOy 中,已知圆221:16C x y +=和圆222:(7)(4)4C x y -+-=.(1)求过点(4,6)的圆1C 的切线方程;(2)设P 为坐标平面上的点,且满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和 圆2C 相交,且直线1l 被圆1C 截得的弦长是直线2l 被圆2C 截得的弦长的2倍. 试求所有满足条件的点P 的坐标.【答案】(1)512520x y -+=或4x =;(2)1(4,6)P 或2362(,)55P.考点:直线与圆的位置关系;点到直线的距离公式和方程问题的综合应用.【方法点晴】本题主要考查了直线与圆的位置关系求解圆的切线方程及利用点到直线的距离公式和方程解问题的综合应用,属于难度较大的试题,并着重考查了转化的思想方法和计算能力.本题的解答中设出直线1l 的方程,根据垂直关系,确定2l 的方程,利用截得的弦长之间的关系转为圆心到两条直线的距离的关系,利用点到直线的距离求解列出方程,根据方程无穷多个解,是解答一个难点,平时应重视圆的转化思想在求解圆的方程中的应用.高考一轮复习:。
福建省福州文博中学2015-2016学年高一上学期期中考试数学试题Word版含答案
福州文博中学2015-2016学年第一学期 高一年级期中考数学考试(题目卷) (完卷时间:120分钟,总分:150分)一、 选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合{}{}1,0,1,1,2A B =-=,则AB 等于A .{}1,0,1-B .{}0,1C .1D . {}12. 若集合}4,3,1{},3,2,1{==B A ,则B A ⋃的子集个数为( )A .2B .3C .4D .163.下列各组函数中,表示同一函数的是 ( )A .y =1,xxy =B .y =lgx 2,y =2lgxC .y =x ,33x y=D .x=y ,2)(x y =4.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算得f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.以上横线上应填的内容分别为( )A .(0,0.5),f (0.25)B .(0.1),f (0.25)C .(0.5,1),f (0.25)D .(0,0.5),f (0.125)5.函数1()lg(1)1f x x x=++-的定义域是( )A.(-∞,1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞) 6.方程3lg =+x x 的解所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 7.已知322.5a -=, 23log 2.5b =, 22.5c -=,则a 、b 、c 的大小关系是( )A.a > b > cB.b> a > cC.c> a > bD..a > c > b8. 某种商品进货价为每件200元,售价为进货价的125%,因库存积压,若按9折出售,每件还可获利( )A 15B 25C 35D 459.已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g =x 的解集为 ( ) A.{1} B.{2} C.{3} D.∅10.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上( ) A .增函数且最小值是5- B .增函数且最大值是5- C .减函数且最大值是5- D .减函数且最小值是5-12. 若函数)(x f 满足)()(x f x f =-,且0>x 时,xx f 3)(=,则0<x 时,)(x f 等于( )A .x-3B .x 3C .-x-3D .-x3二、填空题:(本大题4小题,每小题4分,共16分,把答案填在题中横线上) 13、函数)(x f 是幂函数,其图象过点(2,8),则f(3)=14、已知函数()()()200x x f x x x ≥⎧⎪=⎨<⎪⎩, 则f 的值是 . 15、函数log a y x =在上的最大值比最小值大1,则 a 的值是 .16. 已知集合M 为点集,记性质P 为“对任意(,)x y M ∈,(0,1)k ∈,均有(,)kx ky M ∈”.给出下列集合:①2{(,)|}x y x y ≥,②22{(,)|21}x y x y +<,③22{(,)|+2+20}x y x y x y +=,④332{(,)|0}x y x y x y +-=,其中具备有性质P 的点集的有 .(请写出所有符合的选项)三、解答题:(本大题共6小题,共74分,解答题应写出文字说明、证明过程或演算步骤) 17. (12分)计算(1)log 2748+log 212-12log 242;(2)421033)21(25.0)31()2(--⨯+--18.(12分) 已知函数()f x 是定义在R 上的偶函数,且当x ≤0时,()f x 22x x =+.(1)现已画出函数()f x 在y 轴左侧的图像,如图所示,请补出完整函数()f x 的图像,并根据图像写出函数()f x 的增区间; (2)写出函数()f x 的解析式和值域19.(12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R .(1)求A ∪B ,(∁R A )∩B ; (2)求A ∩C .20. (12分)已知函数)3(log )(ax ax f -=(1)若)(x f 的图象经过点(4,1),求a 的值(2)是否存在实数a ,使得函数)(x f 在区间[]2,1上为减函数,并且最大值为1?如果存在,试求出a 的值,如果不存在,请说明理由。
2015-2016学年福建省福州八中高一(上)期末数学试卷
2015-2016学年福建省福州八中高一(上)期末数学试卷一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1. 直线x=1的倾斜角和斜率分别是()A.135∘,−1B.45∘,1C.90∘,不存在D.180∘,不存在2. 直线y−2=mx+m经过一定点,则该点的坐标是()A.(2, −1)B.(−2, 2)C.(−1, 2)D.(2, 1)3. 对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,α∩β=m,n⊂αB.m⊥n,m // α,n // βC.m // n,m⊥α,n⊥βD.m // n,n⊥β,m⊂α4. 如图所示,直观图四边形A′B′C′D′是一个底角为45∘,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.√2−1B.√2+2C.2√2D.√225. 与圆x2+y2+4x−4y+7=0和圆x2+y2−4x−10y+13=0都相切的直线共有( )A.2条B.1条C.4条D.3条6. 正方体的内切球与其外接球的体积之比为()A.1:3B.1:√3C.1:9D.1:3√37. 如图,在棱长为2的正方体ABCD−A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()A.与AC垂直、与MN不垂直B.与AC、MN均垂直相交C.与AC、MN均不垂直D.与MN垂直,与AC不垂直8. 设点A为圆(x−1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.(x−1)2+y2=4B.y2=2xC.(x−1)2+y2=2D.y2=−2x二、填空题(本大题共4小题,每小题5分,共20分)直线x+2ay−1=0与直线(a−1)x−ay−1=0平行,则a的值是________.若点P(−4, −2, 3)关于坐标平面xOy及y轴的对称点的坐标分别是(a, b, c),(e, f, d),则c+e=________.已知圆锥的轴截面是一个边长为2的正三角形,则圆锥的侧面积等于________.如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:①B,E,F,C四点共面;②直线BF与AE异面;③直线EF // 平面PBC;④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.其中正确的有________.(请写出所有符合条件的序号)三、解答题(本大题共有4个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)如图,已知点A(2, 3),B(4, 1),△ABC是以AB为底边的等腰三角形,点C在直线l:x−2y+2=0上.(1)求AB边上的高CE所在直线的方程;(2)求△ABC的面积.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC // PD,且PD=AD=2EC=2.(1)请画出该几何体的三视图;(2)求四棱锥B−CEPD的体积.已知圆C经过点A(−1, 0)和B(3, 0),且圆心在直线x−y=0上.(1)求圆C的方程;(2)若点P(x, y)为圆C上任意一点,求点P到直线x+2y+4=0的距离的最大值和最小值.如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG // 平面PBC.一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是()A.平面ABC必与α相交B.平面ABC必平行于αC.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内函数f(x)=e x+x−2的零点所在的一个区间是( )A.(−1, 0)B.(−2, −1)C.(0, 1)D.(1, 2)已知M={(x, y)|y=√9−x2, y≠0},N={(x, y)|y=x+b}且M∩N≠⌀,则实数b的取值范围是()A.[−3.3] B.[−3√3, 3√2] C.[−3√2, −3) D.(−3, 3√2]已知定义在R上的偶函数f(x)满足f(x−4)=f(x),且在区间[0, 2]上f(x)=x,若关于x的方程f(x)=log a x有三个不同的根,则a的范围为()A.(2, 2√2)B.(2, 4)C.(√6, √10)D.(√6, 2√2)二、填空题(本大题共2小题,每小题4分,共8分)设点A(−3, 5)和B(2, 15),在直线l:3x−4y+4=0上找一点P,使|PA|+|PB|为最小,则这个最小值为________.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B−AC−D,则四面体ABCD的外接球的体积为________.三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)如图,在平面直角坐标系xOy中,A(a, 0)(a>0),B(0, a),C(−4, 0),D(0, 4)设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.在四棱柱ABCD−A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60∘.(1)求证:A1C1⊥平面B1BDD1;(2)求证:AO // 平面BC1D;(3)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.参考答案与试题解析2015-2016学年福建省福州八中高一(上)期末数学试卷一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.【答案】此题暂无答案【考点】直线的使象特征原倾回角通斜率的关系【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】直正然方程【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】空间使如得与平度之间的位置关系【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】平面图射的直观初【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】圆的水射方程【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】球内较多面绕球的表体积决体积【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】空间表直线擦直英之说的位置关系【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】圆的水射方程轨表方擦【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共4小题,每小题5分,共20分)【答案】此题暂无答案【考点】直线的水根式方务式直线的平行关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】空间中水三的坐标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】旋转验(圆柱立圆锥碳藏台)【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】棱锥于结构虫征空间表直线擦直英之说的位置关系【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共有4个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)【答案】此题暂无答案【考点】直线的三般式方疫【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】柱体三锥州、台到的体建计算简单空间较形脱三视图【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直线与都连位置关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直线体平硫平行直线验周面垂直【解析】此题暂无解析【解答】此题暂无解答一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)【答案】此题暂无答案【考点】空间验置且与脱面之间的位置关系空间使如得与平度之间的位置关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数零都问判定定理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直线和圆体方硫的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数根助点与驶还根的关系函数表图层变换函数水因期性【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共2小题,每小题4分,共8分)【答案】此题暂无答案【考点】与直线表于抛制直线析称的直线方程基本常等式簧最母问赤中的应用基来雨等式两点间来距离循式中点较标公洗两条直因垂直滤倾斜汉措斜率的关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】球的表体积决体积球内较多面绕【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)【答案】此题暂无答案【考点】圆的射纳方程点到直使的距离之式圆的水射方程【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直线与平三平行定判定直线与平正垂直的判然直线与平水表直的性质【解析】此题暂无解析【解答】此题暂无解答。
福建省福州文博中学高一数学上学期期末考试试题
福州文博中学2015-2016学年第一学期高一年级期末考数学科考试(题目卷)(完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分) 1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.各棱长均为a 的三棱锥的表面积为( )A .234aB .233aC .232aD .23a3.若直线l 经过原点和点A (2,2),则它的倾斜角为( )A .-45°B .45°C .135°D .不存在4.长方体ABCD-A 1B 1C 1D 1中,已知A 1A=2,AD=1,AB=1.则对角线AC 1与平面ABCD 所成角为( )A.300B.450C.600D.9005.设m 、n 是两条不同直线,α、β、γ是三个不同平面,给出下列四个命题: ①若α⊥m ,α//n ,则n m ⊥ ②若βα//,γβ//,α⊥m ,则γ⊥m ③若α//m ,β//m ,则βα//④若γα⊥,γβ⊥,则βα//其中正确命题的序号是 ( )A .①和②B .②和③C .③和④D .①和④6.已知直线l :20x y ++=与圆C :22(1)(1)2x y -++=,则圆心C 到直线l 的距离( )A .22B .2C .2D .2 7.已知l 是过正方体ABCD —A 1B 1C 1D 1的顶点的平面AB 1D 1与下底面ABCD 所在平面的交线,下列结论错误的是( ). A. D 1B 1∥l B. BD //平面AD 1B 1 C. l ∥平面A 1D 1B 1 D. l ⊥B 1 C 18.在正方形S G 1G 2G 3中,E 、F 分别是G 1G 2、G 2G 3的中点,现沿S E 、S F 、EF 把这个正方形折成一个四面体,使G 1、G 2、G 3重合为点G ,则有( ).A. SG ⊥面EFGB. EG ⊥面SEFC. GF ⊥面SEFD. SG ⊥面SEF9.已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( ) A .12- B .1C .2D .1210. 过点P(1,2)且与原点O 距离最大的直线l 的方程( ).A. 052=-+y xB.042=-+y xC. 073=-+y xD.053=-+y x 11.直线x+y+a=0半圆与y=21x -有两个不同的交点,则a 的取值范围是( ) A .[)2,1 B . C . D . (]1,2--12.已知0≠ab ,点M (b a ,)是圆222r y x =+内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2r by ax =+,则下列结论正确的是( ) A .m ∥l 且l 与圆相交 B. m ⊥l 且l 与圆相切 C . m ∥l 且l 与圆相离 D. m ⊥l 且l 与圆相切离 二、填空题(每小题4分,共4小题,满分16分)13、点P (5,-2)关于直线x -y +5=0 对称的点Q 的坐标 。
福建省福州文博中学高一上学期期末考试数学试题(无答
一、选择题:(本大题共9小题,每小题 5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1、若点在直线上,直线在平面内,则( )A .B .C .D .2、下图是由哪个平面图形旋转得到的( )3、直线的倾斜角为( )A .B .C .D .4、圆心为,半径的圆的标准方程为( )A. B. 22(1)(2)16x y ++-=C. D. 22(1)(2)16x y -++=5、右图所示的直观图,其原来平面图形的面积是( )A. 4B. 4C. 2D. 86、如图,正方体中,异面直线与所成的角的大小是( )A .B .C .D .7、两平行直线与间的距离是( )A. B. C. D.8、设、是两条不同的直线,是一个平面,则下列命题正确的是( )A .若,,则B .若,,则C .若,,则D .若,,则9、已知圆C :25)2()1(22=-+-y x ,直线047)1()12(:=--+++m y m x m l ,若直线被圆C 截得的弦最长,则m 的值为( )A .B .C .2D .-3二、填空题(本题共2小题,每小题4 分,共8分,请将正确答案填在答题纸上)10、空间直角坐标系中,点与的距离等于________________;11、直线与直线的交点坐标是___________.三、解答题(本大题共4小题,12题11分,13-15每小题12分,共47分.解答应写出文字说明、证明过程或演算步骤.)12.(本小题满分11分)如图,在平行四边形中,,,,求:(1)直线的方程;(2)点C 到边所在直线的距离13.(本小题满分12分) 下图是一个几何体的三视图及其尺寸如下(单位:)14.(本小题满分12分)如图,在三棱柱中,侧棱与底面垂直,5,4,3===AB BC AC .(1)求证:;(2)若、分别为、的中点;求证:平面平面15.(本小题满分12分)设直线和圆相交于点、两点,(1)求弦的垂直平分线方程;(2)求弦的长第二卷(50分)一、选择题:(本大题共3小题,每小题 5分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)16、若直线(3)(21)70a x a y -+-+=与直线(21)(5)60a x a y +++-=互相垂直,则a 的值为( )A . B . C . D .117、苹果手机上的商标图案(如图所示)是在一个苹果图案中,以曲线AB 为分界线,截去一部分图形制作而成的。
福州文博中学数学高一上期末经典测试卷(培优)
一、选择题1.(0分)[ID :12117]设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<2.(0分)[ID :12090]若函数()f x =的定义域为R ,则实数m 取值范围是( ) A .[0,8) B .(8,)+∞ C .(0,8)D .(,0)(8,)-∞⋃+∞3.(0分)[ID :12089]已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( )A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.(0分)[ID :12105]已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>5.(0分)[ID :12104]若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .16.(0分)[ID :12102]已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c <<B .c b a <<C .c a b <<D .a b c <<7.(0分)[ID :12100]若函数()2log ,?0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1eB .eC .21e D .2e8.(0分)[ID :12076]若x 0=cosx 0,则( )A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 9.(0分)[ID :12033]若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭10.(0分)[ID :12032]函数y =的定义域是( ) A .(-1,2] B .[-1,2]C .(-1 ,2)D .[-1,2)11.(0分)[ID :12066]下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y12.(0分)[ID :12061]若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>13.(0分)[ID :12047]偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭14.(0分)[ID :12123]函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-1215.(0分)[ID :12098]下列函数中,既是偶函数又存在零点的是( ) A .y =cosxB .y =sinxC .y =lnxD .y =x 2+1二、填空题16.(0分)[ID :12176]若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.17.(0分)[ID :12175]若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.18.(0分)[ID :12171]对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________19.(0分)[ID :12169]已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2x f x g x x -=-,则(1)(1)f g +=__________.20.(0分)[ID :12155]2()2f x x x =+(0x ≥)的反函数1()fx -=________21.(0分)[ID :12146]已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a 的取值集合为______.22.(0分)[ID :12143]若函数()121xf x a =++是奇函数,则实数a 的值是_________. 23.(0分)[ID :12137]已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m 的取值范围为______. 24.(0分)[ID :12136]已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____25.(0分)[ID :12162]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :12299]已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t .27.(0分)[ID :12252]义域为R 的函数()f x 满足:对任意实数x,y 均有()()()2f x y f x f y +=++,且()22f =,又当1x >时,()0f x >.(1)求()()0.1f f -的值,并证明:当1x <时,()0f x <; (2)若不等式()()()222221240f aa x a x ----++<对任意[] 1,3x ∈恒成立,求实数a 的取值范围.28.(0分)[ID :12242]已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域;(2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.29.(0分)[ID :12232]已知函数()x f x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.30.(0分)[ID :12256]某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M 、养鸡的收益N 与投入a(单位:万元)满足25,1536,49,3657,a M a ⎧⎪=⎨<⎪⎩1202N a =+.设甲合作社的投入为x (单位:万元),两个合作社的总收益为()f x (单位:万元). (1)若两个合作社的投入相等,求总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.A 3.B 4.C 5.B 6.D 7.A 8.C9.A10.A11.D12.A13.D14.B15.A二、填空题16.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【17.【解析】根据题意当时为奇函数则故答案为18.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:19.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题20.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对21.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想22.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键23.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没24.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩>,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ;∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意;②m ≠0时,则280m m m ⎧⎨=-<⎩>; 解得0<m <8;综上得,实数m 的取值范围是[0,8)故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.5.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.6.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-. 令2()2log 10x x h x =-=,则22log 1x x =,21log 22x x x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可. 【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩,因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.8.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.3430662f ππ⎛⎫=-≈-=-<⎪⎝⎭,20.7850.7070.0780442f ππ⎛⎫=-≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫ ⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.9.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.10.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】由题意得:2010x x -≥⎧⎨+>⎩ 解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.11.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.12.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .13.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.14.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 15.A解析:A 【解析】由选项可知,B,C 项均不是偶函数,故排除B,C ,A,D 项是偶函数,但D 项与x 轴没有交点,即D 项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.二、填空题16.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1x xx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t -≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-.综上,256a ≥-.故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.17.【解析】根据题意当时为奇函数则故答案为 解析:15-【解析】根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则故答案为15-.18.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:解析:-1 【解析】由题意可得:21,1b a == ,结合集合元素的互异性,则:1b =- , 由21c b ==- 可得:c i = 或c i =- , 当c i = 时,bc i S =-∈ ,故d i =- , 当c i =- 时,bc i S =∈ ,故d i = , 综上可得:1b c d ++=- .19.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题解析:32【解析】 【分析】根据函数的奇偶性,令1x =-即可求解. 【详解】()f x 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=- ∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题.20.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对1(0x ≥) 【解析】 【分析】设()22f x y x x ==+(0x ≥),求出x =()1f x -.【详解】设()22f x y x x ==+(0x ≥),所以2+20,x x y x -=∴=±因为x≥0,所以x =()11f x -=.因为x≥0,所以y≥0,所以反函数()11f x -=,0x ()≥.1,0x ()≥ 【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】 【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值. 【详解】因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()af x x =函数,且在(0,)+∞上递减,a ∴是奇数,且0a <, 1a ∴=-.故答案为:1-. 【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.22.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键解析:12-【解析】 【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121xf x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212xf x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-. 【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.23.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-. 故答案为:{|2m m >或2}3m <-. 【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.24.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0 【解析】 【分析】根据分段函数的解析式,代入求值即可求解. 【详解】因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-,所以1111()()066f f -+=. 【点睛】本题主要考查了分段函数求值,属于中档题.25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题 26.(1)1,08⎡⎤-⎢⎥⎣⎦(2)()2442log 3log 1,2221,228t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩【解析】 【分析】(1)令4log m x =,则可利用换元法将题转化为二次函数值域问题求解; (2)根据二次函数的性质,分类讨论即可. 【详解】(1)令4log m x =,则[]2,4x ∈时,1,12m ⎡⎤∈⎢⎥⎣⎦,则()()22131()222312248f x h m m m m m m ⎛⎫⎛⎫==--=-+=-- ⎪ ⎪⎝⎭⎝⎭, 故当34m =时,()f x 有最小值为18-,当12m =或1时,()f x 有最大值为0, ∴该函数的值域为1,08⎡⎤-⎢⎥⎣⎦;(2)由(1)可知()2231()231248f x h m m m m ⎛⎫==-+=-- ⎪⎝⎭, []2,x t ∈,41,log 2m t ⎡⎤∴∈⎢⎥⎣⎦,当413log 24t <<,即222t <<时,函数()h m 在41,log 2t ⎡⎤⎢⎥⎣⎦单调递减, ()()()4min log g t h m h t ==2442log 3log 1t t =-+,当43log 4t ≥,即22t ≥时, 函数()h m 在13,24⎡⎤⎢⎥⎣⎦上单调递减,在43,log 4t ⎛⎤ ⎥⎝⎦上单调递增, ()()min 3148g t h m h ⎛⎫===- ⎪⎝⎭,综上所述:()2442log 3log 1,2221,228t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩. 【点睛】本题考查对数函数综合应用,需结合二次函数相关性质答题,属于中档题.27.(1)答案见解析;(2)0a <或1a >. 【解析】 试题分析:(1)利用赋值法计算可得()()02,14f f =--=-,设1x <,则21x ->, 利用()22f =拆项:()()22f f x x =-+即可证得:当1x <时,()0f x <; (2)结合(1)的结论可证得()f x 是增函数,据此脱去f 符号,原问题转化为()()2222122a a x a x ----+<-在[]1,3上恒成立,分离参数有:222234x x a a x x+-->-恒成立,结合基本不等式的结论可得实数a 的取值范围是0a <或1a >. 试题解析: (1)令,得,令, 得,令,得,设,则,因为,所以;(2)设,,因为所以,所以为增函数,所以,即,上式等价于对任意恒成立,因为,所以上式等价于对任意恒成立,设,(时取等),所以,解得或. 28.(1)()3,1.-(2)13-±3)22【解析】 【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值. 【详解】(1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.- (2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x ,得223=1x x --+,即222=0x x +-,解得13x =-±∵13(-3,1)-,∴函数()f x 的零点是1-(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦, ∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦, ∴()min log 44a f x ==-,∴144a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键. 29.(1)(,5)-∞;(2)()0,1.【解析】【分析】(1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围.【详解】(1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点,由图知:(0,1)t ∈【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.30.(1)87万元;(2)甲合作社投入16万元,乙合作社投入56万元【解析】【分析】(1)先求出36x =,再求总收益;(2)(2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元,再对x 分类讨论利用函数求出如何安排甲、乙两个合作社的投入,才能使总收益最大.【详解】(1)两个合作社的投入相等,则36x =,1(36)436253620872f =++⨯+=(万元) (2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元.当1536x ≤≤时,11()425(72)2048122f x x x x x =+-+=-+, 令t x =156t ≤≤,则总收益2211()481(4)8922g t t t t =-++=--+, 当4t =即16x =时,总收益取最大值为89;当3657x <≤时,11()49(72)2010522f x x x =+-+=-+, ()f x 在(36,57]上单调递减,所以()(36)87f x f <=.因为8987>,所以在甲合作社投入16万元,乙合作社投入56万元时,总收益最大,最大总收益为89万元.【点睛】本题主要考查函数的应用和最值的求法,意在考查学生对这些知识的理解掌握水平和应用能力.。
福州市文博中学数学高一上期末经典习题(课后培优)
一、选择题1.(0分)[ID :12117]设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<2.(0分)[ID :12094]设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>3.(0分)[ID :12128]设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>4.(0分)[ID :12127]在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦5.(0分)[ID :12126]设23a log =,3b =,23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<6.(0分)[ID :12125]函数y =a |x |(a >1)的图像是( ) A .B .C .D .7.(0分)[ID :12103]已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .a c b <<D .c a b <<8.(0分)[ID :12097]函数()2sin f x x x =的图象大致为( )A .B .C .D .9.(0分)[ID :12080]函数()()212log 2f x x x =-的单调递增区间为( ) A .(),1-∞ B .()2,+∞ C .(),0-∞D .()1,+∞10.(0分)[ID :12076]若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 11.(0分)[ID :12073]下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>12.(0分)[ID :12045]点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .13.(0分)[ID :12037]函数()()212ln 12f x x x =-+的图象大致是( )A .B .C .D .14.(0分)[ID :12029]对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值2,最小值1 C .有最大值1,无最小值D .有最大值2,无最小值15.(0分)[ID :12039]已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题16.(0分)[ID :12220]已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213x f f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.17.(0分)[ID :12214]如果函数()22279919mm y m m x--=-+是幂函数,且图像不经过原点,则实数m =___________.18.(0分)[ID :12202]已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______. 19.(0分)[ID :12196]已知函数12()log f x x a =+,2()2g x x x =-,对任意的11[,2]4x ∈,总存在2[1,2]x ∈-,使得12()()f x g x =,则实数a 的取值范围是______________.20.(0分)[ID :12186]若函数cos ()2||xf x x x=++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______. 21.(0分)[ID :12185]如图,矩形ABCD 的三个顶点,,A B C 分别在函数2logy x=,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.22.(0分)[ID :12178]函数()()4log 521x f x x =-+-________. 23.(0分)[ID :12169]已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2x f x g x x -=-,则(1)(1)f g +=__________.24.(0分)[ID :12153]若函数f(x)={−x 2+4x,x ≤4log 2x,x >4在区间(a,a +1) 单调递增,则实数a 的取值范围为__________.25.(0分)[ID :12212]设A,B 是两个非空集合,定义运算A ×B ={x|x ∈A ∪B,且x ∉A ∩B}.已知A ={x|y =√2x −x 2},B ={y|y =2x ,x >0},则A ×B =________.三、解答题26.(0分)[ID :12314]已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4. (1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.27.(0分)[ID :12304]已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围. 28.(0分)[ID :12300]设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .29.(0分)[ID :12273]已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82xtf x ≥+对x ∈R 恒成立,求t 的取值范围. 30.(0分)[ID :12268]设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.A 3.D 4.C 5.A 6.B 7.D 8.C 9.C 10.C 11.D12.C13.A14.D15.B二、填空题16.【解析】【分析】由已知可得=a恒成立且f(a)=求出a=1后将x=log25代入可得答案【详解】∵函数f(x)是R上的单调函数且对任意实数x都有f=∴=a恒成立且f (a)=即f(x)=﹣+af(a)17.3【解析】【分析】根据幂函数的概念列式解得或然后代入解析式看指数的符号负号就符合正号就不符合【详解】因为函数是幂函数所以即所以所以或当时其图象不过原点符合题意;当时其图象经过原点不合题意综上所述:故18.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图19.【解析】分析:对于多元变量任意存在的问题可转化为求值域问题首先求函数的值域然后利用函数的值域是函数值域的子集列出不等式求得结果详解:由条件可知函数的值域是函数值域的子集当时当时所以解得故填:点睛:本20.10【解析】【分析】由得由此即可得到本题答案【详解】由得所以则所以故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值21.【解析】【分析】先利用已知求出的值再求点D的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函22.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次23.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题24.(-∞1∪4+∞)【解析】由题意得a+1≤2或a≥4解得实数a的取值范围为(-∞1∪4+∞)点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间ab上单调则该函数在此区间的任意25.01∪2+∞【解析】【分析】分别确定集合AB然后求解A×B即可【详解】求解函数y=2x-x2的定义域可得:A=x|0≤x≤2求解函数y=2xx>0的值域可得B=x|x>1则A ∪B=x|x≥0A∩B=三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.3.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.4.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩, 易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增, 且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.5.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】 因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.6.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .7.D解析:D【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】 考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.8.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.9.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞.内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞.故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.10.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.3430662f ππ⎛⎫=-≈-=-<⎪⎝⎭,20.7850.7070.0780442f ππ⎛⎫=-≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫ ⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.11.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞; 对于D :0x >,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.12.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.13.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误;且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.14.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.15.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题16.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221xf x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.17.3【解析】【分析】根据幂函数的概念列式解得或然后代入解析式看指数的符号负号就符合正号就不符合【详解】因为函数是幂函数所以即所以所以或当时其图象不过原点符合题意;当时其图象经过原点不合题意综上所述:故解析:3 【解析】 【分析】根据幂函数的概念列式解得3m =,或6m =,然后代入解析式,看指数的符号,负号就符合,正号就不符合. 【详解】因为函数()22279919mm y m m x--=-+是幂函数,所以29191m m -+=,即29180m m -+=,所以(3)(6)0m m --=, 所以3m =或6m =-, 当3m =时,12()f x x-=,其图象不过原点,符合题意;当5m =时,21()f x x =,其图象经过原点,不合题意. 综上所述:3m =. 故答案为:3 【点睛】本题考查了幂函数的概念和性质,属于基础题.18.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e ee c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.19.【解析】分析:对于多元变量任意存在的问题可转化为求值域问题首先求函数的值域然后利用函数的值域是函数值域的子集列出不等式求得结果详解:由条件可知函数的值域是函数值域的子集当时当时所以解得故填:点睛:本 解析:[0,1]【解析】分析:对于多元变量任意存在的问题,可转化为求值域问题,首先求函数()(),f x g x 的值域,然后利用函数()f x 的值域是函数()g x 值域的子集,列出不等式,求得结果. 详解:由条件可知函数()f x 的值域是函数()g x 值域的子集,当11,24x ⎡⎤∈⎢⎥⎣⎦时,()[]1,2f x a a ∈-++,当[]21,2x ∈-时,()[]1,3g x ∈- ,所以1123a a -+≥-⎧⎨+≤⎩ ,解得01a ≤≤,故填:[]0,1. 点睛:本题考查函数中多元变量任意存在的问题,一般来说都转化为子集问题,若是任意1x D ∈,存在2x E ∈,满足()()12f x g x >,即转化为()()min min f x g x >,若是任意1x D ∈,任意2x E ∈,满足()()12f x g x >,即转化为()()min max f x g x >,本题意在考查转化与化归的能力.20.10【解析】【分析】由得由此即可得到本题答案【详解】由得所以则所以故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值解析:10 【解析】 【分析】 由cos ()2||xf x x x=++,得()()42||f x f x x +-=+,由此即可得到本题答案. 【详解】 由cos ()2||xf x x x =++,得cos()cos ()2||2||x x f x x x x x--=+-+=+--,所以()()42||f x f x x +-=+,则(lg 2)(lg 2)42|lg 2|42lg 2f f +-=+=+,(lg5)(lg5)42|lg5|42lg5f f +-=+=+,所以,11(lg 2)lg (lg 5)lg 42lg 242lg 51025f f f f ⎛⎫⎛⎫+++=+++= ⎪ ⎪⎝⎭⎝⎭. 故答案为:10 【点睛】本题主要考查利用函数的奇偶性化简求值.21.【解析】【分析】先利用已知求出的值再求点D 的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函解析:11,24⎛⎫⎪⎝⎭【解析】 【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x在函数y x=的图像上,所以2Ax =,即212A x ==⎝⎭.因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ⎛== ⎝⎭. 又因为12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.22.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210xx ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 5f x x =-+有意义, 需满足50210xx ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5, 故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.23.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题 解析:32【解析】 【分析】根据函数的奇偶性,令1x =-即可求解. 【详解】()f x 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=-∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题.24.(-∞1∪4+∞)【解析】由题意得a+1≤2或a≥4解得实数a 的取值范围为(-∞1∪4+∞)点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间ab 上单调则该函数在此区间的任意 解析:(−∞,1]∪[4,+∞)【解析】由题意得a +1≤2, 或a ≥4 ,解得实数a 的取值范围为(−∞,1]∪[4,+∞) 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量的取值范围.25.01∪2+∞【解析】【分析】分别确定集合AB 然后求解A×B 即可【详解】求解函数y=2x-x2的定义域可得:A=x|0≤x≤2求解函数y=2xx>0的值域可得B=x|x>1则A∪B=x|x≥0A∩B= 解析:[0,1]∪(2,+∞)【解析】 【分析】分别确定集合A ,B ,然后求解A ×B 即可. 【详解】求解函数y =√2x −x 2的定义域可得:A ={x|0≤x ≤2}, 求解函数y =2x ,x >0的值域可得B ={x|x >1}, 则A ∪B ={x|x ≥0},A ∩B ={x|1<x ≤2}结合新定义的运算可知:A ×B = {x|0≤x ≤1或x >2}, 表示为区间形式即[0,1]∪(2,+∞). 【点睛】本题主要考查集合的表示及其应用,新定义知识的应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题 26. (1)23()(2)14f x x =-+;(2)[1,4];(3)[2,)+∞. 【解析】 【分析】(1)由()()22f x f x +=-,得对称轴是2x =,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解. (3)求出()f x 在[0,3]的最大值4,对函数()2lg 1lg mg x x x=+- 换元lg t x =,得()21m g x y t t ==+-,[1,2]t ∈,由421mt t≤+-用分离参数法转化. 【详解】(1)∵()()22f x f x +=-,∴对称轴是2x =,又函数最小值是1,可设2()(2)1f x a x =-+(0a >),∴(0)414f a =+=,34a =. ∴23()(2)14f x x =-+. (2)若2a b ≤≤,则min ()1f x a ==,7(1)24f =<,∴3b ≥且23()(2)14f b b b =-+=,解得4b =.∴1,4a b ==,不变区间是[1,4];若02a b <<≤,则()f x 在[,]a b 上是减函数,∴223()(2)14433()(2)14f a a b a b f b b a⎧=-+=⎪⎪∴==⎨⎪=-+=⎪⎩或4,因为02a b <<≤,所以舍去;若2a b ≤<,则()f x 在[,]a b 上是增函数,∴223()(2)143()(2)14f a a a f b b b⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,∴,a b 是方程()f x x =的两根,由()f x x =得23(2)14x x -+=,124,43x x ==,不合题意. 综上1,4a b ==;(3)23()(2)14f x x =-+,[0,3]x ∈时,max ()(0)4f x f ==, 设2lg 1lg my x x=+-,令lg t x =,当[10,100]x ∈时,[1,2]t ∈. 21my t t=+-,由题意存在[1,2]t ∈,使421mt t≤+-成立,即225m t t ≥-+, [1,2]t ∈时,22525252()48t t t -+=--+的最小值是222522-⨯+⨯=,所以[2,)m ∈+∞.【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题.二次函数的解析式有三种形式:2()(),f x a x m h =-+12()()(),f x a x x x x =--2()f x ax bx c =++,解题时要根据具体的条件设相应的解析式.二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值.难点是不等式问题,对于任意的1[0,3]x ∈,说明不等式恒成立,而存在[10,100]x ∈,说明不等式“能”成立.一定要注意是转化为求函数的最大值还是最小值.27.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112*********(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++,12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题.28.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.29.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞- 【解析】 【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可. (3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可. 【详解】(1)因为()22x xf x k -=+⋅且(0)4f =,故:14k +=,解得3k =.(2)因为()()log ()2xa g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=,则log (32?)0x a ->,等价于:当1a >时,321x ->,解得()2,log 3x ∈-∞ 当01a <<时,321x -<,解得()2log 3,x ∈+∞. (3)()82xtf x ≥+在R 上恒成立,等价于: ()()228230xxt --+≥恒成立;令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立, 又()2283413m m m -+=--,故:2(83)m m -+的最小值为:-13,故:只需13t ≤-即可. 综上所述,(],13t ∈-∞-. 【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.30.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭ 【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,x xa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭ 考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年福建省福州市文博中学高一(上)期末数学试卷一、选择题:(本大题共12小题,每小题5分,共60分)1.有一个几何体的三视图如图所示,这个几何体应是一个()A.棱台 B.棱锥 C.棱柱 D.都不对2.各棱长均为a的三棱锥的表面积为()A.B.C.D.3.若直线l经过原点和点A(2,2),则它的倾斜角为()A.﹣45°B.45°C.135°D.不存在4.长方体ABCD﹣A1B1C1D1中,已知A1A=,AD=1,AB=1,则对角线AC1与平面ABCD所成角为()A.30°B.45°C.60°D.90°5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④6.已知直线l:x+y+2=0与圆C:(x﹣1)2+(y+1)2=2,则圆心C到直线l的距离()A. B.2 C.D.7.已知l是过正方体ABCD﹣A1B1C1D1的顶点的平面AB1D1与下底面ABCD所在平面的交线,下列结论错误的是()A.D1B1∥l B.BD∥平面AD1B1C.l∥平面A1D1B1D.l⊥B1C18.如图(1)在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1,G2,G3三点重合于G,下面结论成立的是()A.SG⊥平面EFG B.SD⊥平面EFG C.GF⊥平面SEF D.DG⊥平面SEF9.已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1 C.2 D.10.过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=011.直线x+y+a=0半圆与y=有两个不同的交点,则a的取值范围是()A.[1,)B.[1,]C.[﹣,1]D.(﹣,﹣1]12.已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是()A.m∥l,且l与圆相交B.l⊥m,且l与圆相切C.m∥l,且l与圆相离D.l⊥m,且l与圆相离二、填空题(每小题4分,共4小题,满分16分)13.点P(5,﹣2)关于直线x﹣y+5=0 对称的点Q的坐标.14.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为.15.已知C的圆心为(0,﹣1),直3x+4y﹣11=0与C相交A,B两点,并且弦|AB|=6,则C 的方程为.16.在棱长为4的正方体ABCD﹣A1B1C1D1中,E、F分别为棱AA1、D1C1上的动点,点G 为正方形B1BCC1的中心.则空间四边形AEFG在该正方体各个面上的正投影所构成的图形中,面积的最大值为.三、解答题:(本大题共6小题,共74分,解答题应写出文字说明、证明过程或演算步骤)17.已知一个几何体的三视图如下图,大致画出它的直观图,并求出它的表面积和体积.18.已知两直线l1:mx+8y+n=0和l2:2x+my﹣1=0.试确定m,n的值,使(1)l1∥l2;(2)l1⊥l2,且l1在y轴上的截距为﹣1.19.如图,在棱长都等于1的三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,D、E分别为AA1、B1C的中点.(Ⅰ)求证:DE∥平面ABC;(Ⅱ)求三棱锥B1﹣BDE的体积.20.如图,圆x2+y2=8内有一点P(﹣1,2),AB为过点P且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB被点P平分时,写出直线AB的方程.(3)求过点P的弦的中点的轨迹方程.21.在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE;(Ⅲ)若AB=CE,在线段EO上是否存在点G,使CG⊥平面BDE?若存在,求出的值,若不存在,请说明理由.22.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.附加题23.已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.(1)当切线PA的长度为时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.(3)求线段AB长度的最小值.2015-2016学年福建省福州市文博中学高一(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分)1.有一个几何体的三视图如图所示,这个几何体应是一个()A.棱台 B.棱锥 C.棱柱 D.都不对【考点】由三视图还原实物图.【分析】根据主视图、左视图、俯视图的形状,将它们相交得到几何体的形状.【解答】解:由三视图知,从正面和侧面看都是梯形,从上面看为正方形,下面看是正方形,并且可以想象到连接相应顶点的四条线段就是几何体的四条侧棱,故这个三视图是四棱台.故选A.2.各棱长均为a的三棱锥的表面积为()A.B.C.D.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.【解答】解:由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即:4×=故选D.3.若直线l经过原点和点A(2,2),则它的倾斜角为()A.﹣45°B.45°C.135°D.不存在【考点】直线的倾斜角.【分析】先由直线的斜率公式求出直线的斜率,再根据直线的斜率和倾斜角的关系及倾斜角的范围求出倾斜角的大小.【解答】解:设直线l的倾斜角为α,则0°≤α<180°,∵直线l经过原点和点(2,2),∴l的斜率为k==1,∴k=tanα=1,∴α=45°;故选:B.4.长方体ABCD﹣A1B1C1D1中,已知A1A=,AD=1,AB=1,则对角线AC1与平面ABCD所成角为()A.30°B.45°C.60°D.90°【考点】直线与平面所成的角.【分析】连接AC,则∠C1AC是对角线AC1与平面ABCD所成的角,根据三角形的边角关系进行求解即可.【解答】解:连接AC,则长方体中,C1C⊥平面ABCD,则∠C1AC是对角线AC1与平面ABCD所成的角,∵AD=1,AB=1,∴AC=,∵A1A=,∴tan∠C1AC===1,即∠C1AC=45°,故选:B.5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【解答】解:对于①,因为n∥α,所以经过n作平面β,使β∩α=l,可得n∥l,又因为m⊥α,l⊂α,所以m⊥l,结合n∥l得m⊥n.由此可得①是真命题;对于②,因为α∥β且β∥γ,所以α∥γ,结合m⊥α,可得m⊥γ,故②是真命题;对于③,设直线m、n是位于正方体上底面所在平面内的相交直线,而平面α是正方体下底面所在的平面,则有m∥α且n∥α成立,但不能推出m∥n,故③不正确;对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确.综上所述,其中正确命题的序号是①和②故选:A6.已知直线l:x+y+2=0与圆C:(x﹣1)2+(y+1)2=2,则圆心C到直线l的距离()A. B.2 C.D.【考点】直线与圆的位置关系.【分析】求出圆的圆心坐标,利用点到直线的距离公式求解即可.【解答】解:圆C:(x﹣1)2+(y+1)2=2的圆心(1,﹣1),圆心C到直线l的距离为:d==.故选:C.7.已知l是过正方体ABCD﹣A1B1C1D1的顶点的平面AB1D1与下底面ABCD所在平面的交线,下列结论错误的是()A.D1B1∥l B.BD∥平面AD1B1C.l∥平面A1D1B1D.l⊥B1C1【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】先根据题意画出图形,再证明由D1B1∥BD,证明D1B1∥平面ABCD,再由线面平行的性质定理证明D1B1∥l.再根据直线与平面平行的判定定理得l∥平面A1D1B1,和BD∥平面AD1B1,对于选项D,可通过反面进行论证.【解答】解:在正方体ABCD﹣A1B1C1D1中,D1B1∥BD,∵BD⊂平面ABCD,D1B1⊄平面ABCD∴D1B1∥平面ABCD.又∵平面ABCD∩平面AD1B1=l,∴D1B1∥l.故A正确;∵D1B1⊂平面A1D1B1,∴l∥平面A1D1B1,选项C正确;∵BD∥D1B1,D1B1⊂平面AD1B1,∴BD∥平面AD1B1,故B正确.从而选D.故选D.8.如图(1)在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1,G2,G3三点重合于G,下面结论成立的是()A.SG⊥平面EFG B.SD⊥平面EFG C.GF⊥平面SEF D.DG⊥平面SEF【考点】直线与平面垂直的判定;棱锥的结构特征.【分析】根据题意,在折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,由线面垂直的判定定理,易得SG⊥平面EFG,分析四个答案,即可给出正确的选择.【解答】证明:∵在折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,∴SG⊥平面EFG.故选A.9.已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1 C.2 D.【考点】直线与圆的位置关系;直线的一般式方程与直线的垂直关系.【分析】由题意判断点在圆上,求出P与圆心连线的斜率就是直线ax﹣y+1=0的斜率,然后求出a的值即可.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选C.10.过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=0【考点】两条直线垂直与倾斜角、斜率的关系.【分析】先根据垂直关系求出所求直线的斜率,由点斜式求直线方程,并化为一般式.【解答】解:设A(1,2),则OA的斜率等于2,故所求直线的斜率等于﹣,由点斜式求得所求直线的方程为y﹣2=﹣(x﹣1),化简可得x+2y﹣5=0,故选A.11.直线x+y+a=0半圆与y=有两个不同的交点,则a的取值范围是()A.[1,)B.[1,]C.[﹣,1]D.(﹣,﹣1]【考点】直线与圆的位置关系.【分析】数形结合来求,因为曲线y=表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分.只要把斜率是1的直线平行移动,看a为何时直线与曲线y=有两个交点即可.【解答】解;曲线y=表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分.作出曲线y=的图象,在统一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,求出相切时的a值为:﹣,最后有两个交点时的a值为﹣1,则﹣<a≤﹣1.故选:D.12.已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是()A.m∥l,且l与圆相交B.l⊥m,且l与圆相切C.m∥l,且l与圆相离D.l⊥m,且l与圆相离【考点】直线与圆的位置关系.【分析】求圆心到直线的距离,然后与a2+b2<r2比较,可以判断直线与圆的位置关系,易得两直线的关系.【解答】解:以点M为中点的弦所在的直线的斜率是,直线m∥l,点M(a,b)是圆x2+y2=r2内一点,所以a2+b2<r2,圆心到ax+by=r2,距离是>r,故相离.故选C.二、填空题(每小题4分,共4小题,满分16分)13.点P(5,﹣2)关于直线x﹣y+5=0 对称的点Q的坐标(﹣7,10).【考点】与直线关于点、直线对称的直线方程.【分析】由条件利用垂直、中点在对称轴上这2个条件,求得对称点Q的坐标.【解答】解:设点P(5,﹣2)关于直线x﹣y+5=0 对称的点Q的坐标为(a b),则由,求得,故点Q的坐标为(﹣7,10),故答案为:(﹣7,10).14.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为.【考点】斜二测法画直观图.【分析】由已知中直观图中线段的长,可分析出△ABC实际为一个直角边长分别为3,4的直角三角形,进而根据勾股定理求出斜边,结合直角三角形斜边上的中线等于斜边的一半可得答案.【解答】解:∵直观图中A′C′=3,B′C′=2,∴Rt△ABC中,AC=3,BC=4由勾股定理可得AB=5则AB边上的中线的实际长度为故答案为:15.已知C的圆心为(0,﹣1),直3x+4y﹣11=0与C相交A,B两点,并且弦|AB|=6,则C 的方程为x2+(y+1)2=18(或写成:x2+y2+2y﹣17=0).【考点】直线与圆相交的性质.【分析】先求出圆心到直线的距离,由弦长公式求得半径,进而得到圆的标准方程.【解答】解:圆心(0,﹣1)到直线3x+4y﹣11=0的距离为=3,再由弦长公式得6=2,∴半径r=3,故圆的方程为x2+(y+1)2=18,故答案为:x2+(y+1)2=18.16.在棱长为4的正方体ABCD﹣A1B1C1D1中,E、F分别为棱AA1、D1C1上的动点,点G 为正方形B1BCC1的中心.则空间四边形AEFG在该正方体各个面上的正投影所构成的图形中,面积的最大值为12.【考点】棱柱的结构特征;简单空间图形的三视图.【分析】通过作图,分析出空间四边形AEFG 在该正方体各个面上的正投影所构成的图形的形状,求出其面积,得到面积的最大值. 【解答】解:如图,若投影投在AA 1D 1D 或BB 1CC 1平面上,投影面积由E 点确定,最大面积为8,E 与A 1重合时取最大面积;若投影投在ABCD 或A 1B 1C 1D 1平面上,投影面积由F 点确定,最大面积为8,F 与D 1重合时取最大面积;若投影投在ABA 1B 1或DD 1CC 1平面上,投影面积由E 点与F 点确定,当E 与A 1,F 与C 1重合时,可得最大面积,G 投在BB 1的中点,是个直角梯形S==12.故答案为12.三、解答题:(本大题共6小题,共74分,解答题应写出文字说明、证明过程或演算步骤) 17.已知一个几何体的三视图如下图,大致画出它的直观图,并求出它的表面积和体积.【考点】由三视图求面积、体积.【分析】由三视图可以知道,此几何体是一个直四棱柱,其体积可以用梯形的面积乘以高来求,四个侧面都是矩形,其底面是一个直角梯形,故可以根据三视图求出相应的边长,利用面积公式与体积公式求值即可.【解答】解:几何体是一个以直角梯形为底面的直四棱柱.由三视图得:此棱柱的高是1,底面直角梯形的两个底边长分别为1与2,垂直于底边的腰长度是1,故与底边不垂直的腰的长度为,所以体积,表面积S 表面=2S 底+S 侧面=.18.已知两直线l1:mx+8y+n=0和l2:2x+my﹣1=0.试确定m,n的值,使(1)l1∥l2;(2)l1⊥l2,且l1在y轴上的截距为﹣1.【考点】直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】(1)当m=0时,显然l1与l2不平行.当m≠0时,由=≠求得m,n的值.(2)当且仅当m•2+8•m=0,即m=0时,l1⊥l2.再由﹣=﹣1,求得n的值.【解答】解:(1)当m=0时,显然l1与l2不平行.当m≠0时,由=≠得m•m﹣8×2=0,得m=±4,8×(﹣1)﹣n•m≠0,得n≠±2,故当m=4,n≠﹣2时,或m=﹣4,n≠2时,l1∥l2.(2)当且仅当m•2+8•m=0,即m=0时,l1⊥l2.又﹣=﹣1,∴n=8.即m=0,n=8时,l1⊥l2,且l1在y轴上的截距为﹣1.19.如图,在棱长都等于1的三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,D、E分别为AA1、B1C的中点.(Ⅰ)求证:DE∥平面ABC;(Ⅱ)求三棱锥B1﹣BDE的体积.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.【分析】(Ⅰ)根据线面平行的判定定理证明DE∥平面ABC;(Ⅱ)根据棱锥的体积公式求三棱锥B1﹣BDE的体积.【解答】解:(Ⅰ)证明:取BC中点G,连结AG,EG,∵G,E分别为CB,CB1的中点,∴EG∥BB1,…2 分∵三棱柱ABC﹣A1B1C1,AA1∥BB1,AA1=BB1,D为AA1中点∴AD∥BB1,AD=BB1,∴EG∥AD,EG=AD,∴四边形ADEG为平行四边形∴AG∥DE又∵AG⊂平面ABC,DE⊄平面ABC,∴DE∥平面ABC;(Ⅱ)∵BB1⊥平面ABC,AG⊂平面ABC,∴AG⊥BB1,∵AB=BC,G为BC中点,∴AG⊥BC∴AG⊥平面B1BE又DE∥AG,DE=AG,∴DE⊥平面B1BE且DE=AG=∵E为B1C中点,∴∴三棱锥B1﹣BDE的体积.20.如图,圆x2+y2=8内有一点P(﹣1,2),AB为过点P且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB被点P平分时,写出直线AB的方程.(3)求过点P的弦的中点的轨迹方程.【考点】直线和圆的方程的应用.【分析】(1)过点O做OG⊥AB于G,连接OA,依题意可知直线AB的斜率,求得AB的方程,利用点到直线的距离求得OG即圆的半径,进而求得OA的长,则OB可求得.(2)弦AB被P平分时,OP⊥AB,则OP的斜率可知,利用点斜式求得AB的方程.(3)设出AB的中点的坐标,依据题意联立方程组,消去k求得x和y的关系式,即P的轨迹方程.【解答】解:(1)过点O做OG⊥AB于G,连接OA,当α=1350时,直线AB的斜率为﹣1,故直线AB的方程x+y﹣1=0,∴OG=∵r=∴,∴(2)当弦AB被P平分时,OP⊥AB,此时K OP=﹣2,∴AB的点斜式方程为(x+1),即x﹣2y+5=0(3)设AB的中点为M(x,y),AB的斜率为K,OM⊥AB,则消去K,得x2+y2﹣2y+x=0,当AB的斜率K不存在时也成立,故过点P的弦的中点的轨迹方程为x2+y2﹣2y+x=021.在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE;(Ⅲ)若AB=CE,在线段EO上是否存在点G,使CG⊥平面BDE?若存在,求出的值,若不存在,请说明理由.【考点】直线与平面垂直的性质;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)利用线面平行的判定定理证明DE∥平面ACF;(Ⅱ)利用线面垂直的判定定理先证明BD⊥平面ACE,然后利用线面垂直的性质证明BD⊥AE;(Ⅲ)利用线面垂直的性质,先假设CG⊥平面BDE,然后利用线面垂直的性质,确定G的位置即可.【解答】解:(I)连接OF.由ABCD是正方形可知,点O为BD中点.又F为BE的中点,所以OF∥DE.又OF⊂面ACF,DE⊄面ACF,所以DE∥平面ACF….(II)证明:由EC⊥底面ABCD,BD⊂底面ABCD,∴EC⊥BD,由ABCD是正方形可知,AC⊥BD,又AC∩EC=C,AC、E⊂平面ACE,∴BD⊥平面ACE,又AE⊂平面ACE,∴BD⊥AE…(III):在线段EO上存在点G,使CG⊥平面BDE.理由如下:取EO中点G,连接CG,在四棱锥E﹣ABCD中,AB=CE,CO=AB=CE,∴CG⊥EO.由(Ⅱ)可知,BD⊥平面ACE,而BD⊂平面BDE,∴平面ACE⊥平面BDE,且平面ACE∩平面BDE=EO,∵CG⊥EO,CG⊂平面ACE,∴CG⊥平面BDE故在线段EO上存在点G,使CG⊥平面BDE.由G为EO中点,得.…22.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.【考点】直线和圆的方程的应用;直线的一般式方程.【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.【解答】解:(1)由于直线x=4与圆C1不相交;∴直线l的斜率存在,设l方程为:y=k(x﹣4)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)附加题23.已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.(1)当切线PA的长度为时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.(3)求线段AB长度的最小值.【考点】直线与圆的位置关系.【分析】(1)根据圆M的标准方程即可求出半径r=2和圆心M坐标(0,4),并可设P(2b,b),从而由条件便可求出|MP|=,这样便可求出b的值,即得出点P的坐标;(2)容易求出圆N的圆心坐标(b,),及半径,从而可得出圆N的标准方程,化简后可得到(2x+y﹣4)b﹣(x2+y2﹣4y)=0,从而可建立关于x,y的方程,解出x,y,便可得出圆N所过的定点坐标;(3)可写出圆N和圆M的一般方程,联立这两个一般方程即可求出相交弦AB的直线方程,进而求出圆心M到直线AB的距离,从而求出弦长,显然可看出b=时,AB取最小值,并求出该最小值.【解答】解:(1)由题意知,圆M的半径r=2,M(0,4),设P(2b,b),∵PA是圆M的一条切线,∴∠MAP=90°,∴,解得,∴P(0,0)或.(2)设P(2b,b),∵∠MAP=90°,∴经过A,P,M三点的圆N以MP为直径,其方程为,即(2x+y﹣4)b﹣(x2+y2﹣4y)=0,由,解得或,∴圆过定点(0,4),.(3)因为圆N方程为,即x2+y2﹣2bx﹣(b+4)y+4b=0,圆M:x2+(y﹣4)2=4,即x2+y2﹣8y+12=0,②﹣①得:圆M方程与圆N相交弦AB所在直线方程为:2bx+(b﹣4)y+12﹣4b=0,点M到直线AB的距离,相交弦长即:,当时,AB有最小值.2016年8月26日。