转向器的结构型式选择及其设计计算
汽车转向器选型设计
汽车转向器选型设计发表时间:2018-10-09T21:18:00.417Z 来源:《防护工程》2018年第16期作者:陈海滨王少华[导读] 介绍了某车型的转向器选型设计,从整车转向设计要求出发,分别从输出扭矩和输出行程两方面进行校核计算,确定合适的转向器性能参数长城汽车股份有限公司技术中心河北保定 071000摘要:介绍了某车型的转向器选型设计,从整车转向设计要求出发,分别从输出扭矩和输出行程两方面进行校核计算,确定合适的转向器性能参数,进而选用整体循环球式动力转向器,5000km可靠性试验结果表明该转向器满足整车转向要求。
关键词:汽车转向器;选型设计引言某车型是在现有4760轴距底盘的基础上匹配宽体2050排半驾驶室,同时加大货厢提高载重量的大轻卡车。
该车型作为一个全新的平台,其载质量提升较大,对转向系统提出了更高的要求。
转向器是整个转向系统的关键部件,设计过程中需对转向系统进行校核计算,为转向器的选型设计及后续转向系零部件的开发设计提供可靠的数据支持。
1汽车转向系统汽车转向系统是汽车主要的安全部分,它的发展趋势主要分为两个不同阶段,就是传统的机械转向系统与现代的助力转向系统。
1.1机械转向系统传统的机械式转向系统所主要讲的为通过操作者通过作用于转向盘上的作用力就是它的转向动力,然后没有给它别的外部助力,接着利用转向轴和转向器,其次它的传动机构就马上传给转向轮,所以得到了它的变动车轮转角用意,这样去变动车轮滚动的不同位置[1]。
不过最老式的汽车转向系统就为没有助力的纯机械式的转向系统。
机械转向系统这样的系统不但加强了操作者停车和低速的行驶情况下的转向操纵的压力,尤其它的转向灵敏性与它的轻便性都是不同相对的,根本不能从基础上处理汽车在各个不同的路感和工况下的转向相冲突。
1.2助力转向系统助力转向就是在纯机械转向系统中加上了助力泵,利用发动机来使助力泵的工作它给单纯的人力的转向供给的助力,有助力的转向它会变得更加的轻松。
汽车转向设计与计算
转向系统的计算设计:这次设计的电动车用的是麦弗逊式独立悬架,采用分段式转向梯形机构。
对于采用独立悬架的汽车转向车轮,转向梯形中的横拉杆应是分段式的,以避免运动干涉,防止一个车轮的上下跳动影响另一个车轮的跳动。
(图一)这种转向系统的结构大多如图1所示。
转向轴1的末端与转向器的齿轮轴2直接相连或通过万向节轴相连;齿轮图2与同装于一壳体内的齿条3啮合。
外壳则固定于车身或车架上。
齿条通过两端的球铰接头与两根分开的横拉杆4相连,两横拉杆又通过球头销与左右车轮上的梯形臂5、6相连。
这里齿条3既是转向器的传动件又是转向梯形机构中三段式横拉杆的一部分。
齿轮—齿条式转向器具有结构简单紧凑,制造工艺简便等优点,不仅适用于整体式前轴也适用于前轮采用独立悬架的断开式前轴,目前广泛地被采用于轿车、轻型客货车、微型汽车等车辆上。
但与之相配的转向梯形机构与传统的整体式转向梯形机构相比有其特殊之处。
故有必要加以研究和探讨。
绝大多数齿轮一齿条式转向器都布置在前轴后方,这样既可避让发动机的下部,又便于与转向轴下端连接。
安装时齿条中心线应与汽车纵向对称轴垂直;并且当转向器处于中立位置时,齿条两端球铰中心应对称地处于汽车纵向对称轴的两侧。
对于给定的汽车,其轴距L、主销后倾角口以及左右两主销轴线延长线与地面交点间距离K均为已知定值。
对于选定的转向器,其齿条两端中心距M也为已知定值.故在设计中需确定的参数为梯形底角、梯形臂长l以及齿条中心线到梯形底边的安装距1离,而横拉杆长度l可由上述参数确定其表达式为。
2转动转向盘时,齿条便向左或向右移动,使左右两边的杆系产生不同的运动,从而使左右车轮分别获得一个转角。
以汽车左转弯为例,此时右轮为外轮,外轮一侧的杆系运动如图2所示。
设齿条向右移过某一行程S,通过右横拉杆推动右梯形臂,使之转过。
(图二)取梯形右底角顶点O为坐标原点,X、Y轴方向如图2所示,则可导出齿条行程S与外轮转角的关系:另外,有图像可知:而+arctan-(图三)为坐标原点,X、Y轴方向如图3所示,则同样可导出齿条行程取梯形左底角顶点O1S与内轮转角的关系,即:众所周知,在不计轮胎侧偏时,实现转向轮纯滚动、无侧滑转向的条件是内、外轮转角具有如图4所示的理想的关系,即(图四)(6)式中T—计及主销后倾角夕时的计算轴距主销后倾角3°计算得T=2800+693/2tan3=2818L—汽车轴距2800mmr—车轮滚动半径346.5mm由(6)式可将理想的内轮转角民,表示为设计变量:、底角y和安装距对于给定的汽车和选定的转向器,转向梯形机构尚有梯形臂长11离h三个设计变量。
机械式转向器的设计与计算
机械式转向器的设计与计算机械式转向器是一种经典的机械装置,可以完成物体的旋转转移、扭转和角度校准等任务,常用于车辆转向系统、机械臂控制系统以及工业生产线等场合中。
在这篇文档中,我们将探讨机械式转向器的设计与计算方法。
一、机械式转向器的概述机械式转向器通常由两个主要部分组成:驱动轴和输出轴。
驱动轴是负责输入旋转力矩的轴,可以是手动或电动的。
输出轴则是负责传递旋转力矩的轴,可以是直线或曲线的。
通过曲柄、齿轮、滑块等机械元件的配合和变换,将输入转矩转化为输出转矩,实现物体的旋转和扭转。
机械式转向器具有以下特点:1. 结构简单,稳定性好;2. 能够承受较大的输出力矩;3. 可以与其他机械装置相结合,实现更复杂的动作。
二、机械式转向器的设计方法设计一个机械式转向器需要考虑以下几个方面:1. 设计输入和输出轴的位置和方向,以适应所需传动动作;2. 设计曲柄、齿轮、滑块等机械元件的形状、大小和配合方式,以实现输入和输出转矩的转化;3. 确定机械式转向器的尺寸和重量,以满足预定的设计要求。
具体的设计步骤如下:1. 确定动作要求和传动方式。
根据所需完成的动作要求和转动方向,设计输入和输出轴的位置和方向,确定驱动轴和输出轴间的夹角和轴向距离。
2. 选择合适的机械元件。
根据所需传动动作和力矩大小,选择适当的曲柄、齿轮、滑块等机械元件,并确定它们之间的配合方式和转动比。
3. 进行结构分析。
对机械式转向器的整体结构进行分析,验证各部件的尺寸和强度是否能够满足设计要求。
根据实际计算结果进行适当的调整。
4. 进行力学分析。
对机械式转向器的运动状态进行力学分析,确定输出力矩大小和方向,并进一步评估各部件的强度。
5. 进行制造和组装工作。
根据所设计的参数和尺寸,制造所需机械元件,并按照图纸要求进行组装。
三、机械式转向器的计算方法机械式转向器的计算方法与其他机械装置类似,可以采用以下几种常用的计算方法:1. 扭矩计算法。
通过计算输入和输出端的扭矩大小和方向,判断机械式转向器的传动能力是否满足要求。
机械式转向器方案分析及设计
三.机械式转向器方案分析及设计4.1齿轮齿条式转向器齿轮齿条式转向器由与转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。
与其他形式的转向器比较,齿轮齿条式转向器最主要的优点是:结构简单、紧凑;壳体采用铝合金或镁合金压铸而成,转向器的质量比较小;传动效率高达90%;齿轮与齿条之间因磨损出现间隙以后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧。
能自动消除齿间间隙,这不仅可以提高转向系统的刚度。
还可以防止工作时产生冲击和噪声;转向器占用的体积小;没有转向摇臂和直拉杆,所以转向轮转角可以增大;制造成本低。
齿轮齿条式转向器的主要缺点是:因逆效率高,货车在不平路面上行驶时,发生在转向轮与路面之间冲击力的大部分能传至转向盘,称之为反冲。
反冲现象会使驾驶员精神紧张,并难以准确控制货车行驶方向,转向盘突然转动又会造成打手,同时对驾驶员造成伤害。
根据输入齿轮位置和输出特点不同,齿轮齿条式转向起有四种形式,如图4-1所示:中间输入,两端输出(a);侧面输入,两端输出(b);侧面输入,中间输出(c);侧面输入,一端输出(d)。
图4-1 齿轮齿条式转向起有四种形式采用侧面输入,中间输出方案时,与齿条连的左,右拉杆延伸到接近货车纵向对称平面附近。
由于拉杆长度增加,车轮上、下跳动时拉杆摆角减小,有利于减少车轮上、下跳动时转向系与悬架系的运动干涉。
拉杆与齿条用螺栓固定连接,因此,两拉杆会与齿条同时向左或右移动,为此在转向器壳体上开有轴向的长槽,从而降低了它的强度。
采用两端输出方案时,由于转向拉杆长度受到限制,容易与悬架系统导向机构产生运动干涉。
侧面输入,一端输出的齿轮齿条式转向器,常用在平头货车上。
采用齿轮齿条式转向器采用直齿圆柱齿轮与直齿齿条啮合,则运转平稳降低,冲击大,工作噪声增加。
此外,齿轮轴线与齿条轴线之间的夹角只能是直角,为此因与总体布置不适应而遭淘汰。
采用斜齿圆柱齿轮与斜齿齿条啮合的齿轮齿条式转向器,重合度增加,运转平稳,冲击与工作噪声均下降,而且齿轮轴线与齿条轴线之间的夹角易于满足总体设计的要求。
机械式转向器的设计和计算
机械式转向器的设计和计算引言机械式转向器是一种用于转动或控制物体方向的装置。
它被广泛应用于汽车、航空器、工业设备等领域。
在本文档中,我们将探讨机械式转向器的设计和计算方法。
设计过程机械式转向器的设计过程可以分为以下几个步骤:步骤1: 确定需求和规格在设计机械式转向器之前,首先需要明确转向器的需求和具体规格。
这包括转向角度范围、转向速度、承载能力等。
步骤2: 选择适当的转向机构类型根据设计要求选择适当的转向机构类型。
常见的转向机构类型包括齿轮传动、滑块传动、曲柄杆机构等。
根据应用场景和性能要求选择合适的机构类型。
步骤3: 计算和优化在选择了合适的转向机构类型后,需要进行计算和优化。
这包括计算转向角度和转向速度的传递比例、计算承载能力和寿命等。
步骤4: 材料选择和制造确定了转向机构的设计参数后,需要选择合适的材料,并进行制造。
机械式转向器通常需要具备较高的强度和耐磨性能。
步骤5: 装配和调试制造完成后,进行转向器的装配和调试。
确保转向器能够正常工作,并进行必要的调整和修正。
计算方法在机械式转向器的设计中,有一些常用的计算方法可以帮助我们确定转向机构的参数和性能。
齿轮传动的计算如果选择了齿轮传动作为转向机构类型,可以使用以下公式进行计算:1.计算传动比例:传动比例公式传动比例公式其中,i为传动比例,z1和z2分别为输入齿轮和输出齿轮的齿数。
2.计算转矩传递比例:转矩传递比例公式转矩传递比例公式其中,τ为转矩传递比例,τ1和τ2分别为输入齿轮和输出齿轮的转矩,η为传动效率。
3.计算齿轮轴的弯曲应力:齿轮轴弯曲应力公式齿轮轴弯曲应力公式其中,σb为齿轮轴的弯曲应力,M为转矩,d为齿轮轴的直径。
这些计算方法可以帮助我们确定齿轮传动的参数和性能。
滑块传动的计算如果选择了滑块传动作为转向机构类型,可以使用以下公式进行计算:1.计算滑块的速度比例:滑块速度比例公式滑块速度比例公式其中,v1和v2分别为输入和输出滑块的速度,X1和X2为输入和输出滑块的行程。
汽车循环球式转向器的参数化设计
汽车循环球式转向器的参数化设计汽车循环球式转向器是一种常见的车辆控制部件,也被称为拉杆
和球头。
它是一种能够帮助车辆转向的关键部件,连接转向盘和车轮,从而实现转向功能。
在车辆行驶过程中,转向器起到了关键的作用,
因此其参数化设计非常重要。
汽车循环球式转向器的参数化设计需要考虑以下因素:
1.适用车型:转向器的设计需要考虑适用的车型,例如小型车、
中型车、大型车等。
由于车型不同,车轮的转向力度和灵敏度也会有
所不同,因此需要根据车型的特点设计转向器。
2.转向角度:转向器的设计还需要考虑转向角度,也就是车轮能
够转向的角度。
例如,越野车需要具备更大的转向角度,这样才能应
对更加崎岖和不平的路面。
3.承受力度:转向器需要承受车轮的转向力度和震动,因此需要
确定承受力度。
根据车辆的使用环境和道路条件,需要设定合适的承
受力度。
4.耐久性:汽车循环球式转向器的设计需要具备良好的耐久性,
能够承受数年甚至十年以上的使用。
因此需要选用合适的材料和加工
工艺。
5.稳定性:转向器需要具备良好的稳定性,能够确保车辆在高速
行驶时转向的平稳和可靠。
总的来说,汽车循环球式转向器的参数化设计需要考虑多个因素,包括适用车型、转向角度、承受力度、耐久性和稳定性等。
设计师需
要在这些因素之间进行平衡,并最终设计出符合要求的产品。
转向器结构型式选择及其方案计算
5.2转向器的结构型式选择及其设计计算根据所采用的转向传动副的不同,转向器的结构型式有多种。
常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。
对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。
中、小型轿车以及前轴负荷小于1.2t的客车、货车,多采用齿轮齿条式转向器。
球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于2 .5t且无动力转向和不大于4t带动力转向的汽车均可选用这种结构型式。
循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。
轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。
矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。
关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。
对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。
因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。
这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。
对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。
下面分别介绍几种常见的转向器。
5.2.1循环球式转向器循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-曲柄销式。
它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。
汽车转向器毕业设计说明书
摘要汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。
随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。
而在机械式转向器中,循环球齿条-齿扇式转向器由于其自身的特点被广泛应用于各级各类汽车上。
本文选择GX1608A型循环球齿条-齿扇式转向器作为研究课题,其主要内容有:汽车转向器的组成分类;转向器总成方案分析及其数据确定和转向器的设计过程。
这种转向器的优点是,操纵轻便,磨损小,寿命长。
缺点是结构复杂,成本高,转向灵敏度不如齿轮齿条式。
因此逐渐被齿轮齿条式取代。
但随着动力转向的应用,循环球式转向器近年来又得到广泛使用。
关键词;转向器操纵稳定性循环球齿条-齿扇式转向器AbstractGear cars an important component of the initiative is decided automobile safety of the key assembly, It seriously affected the quality of the vehicle handling and stability. Along with the development of the auto industry, automobile steering gear is continuously improved, although the electronic steering gear has begun to use But mechanical steering gear is still widely been world motor vehicles and parts manufacturers adopted. And the mechanical steering gear, Rack cycle ball-type steering gear tooth fans as its own characteristics has been widely used in various types vehicles. The graduation design options GX1608A cycle gear ball-type steering gear rack as a research topic, Its main contents are : automotive steering gear components classification; assembly was to program analysis and data to identify and steering gear design process.The advantage of such steering gear, and manipulating light, wear and tear, long life. The disadvantage is that the structure is complicated and costly, than steering rack and pinion sensitivity. Therefore gradually being replaced by rack and pinion. However, with the power steering applications, the ball-type steering gear cycle and are widely used in recent years.Keywords;Diverter Ball handling and stability Cycle rack-type steering gear diverter目录摘要 (I)Abstract (II)1绪论 (1)2汽车转向系的组成及分类 (3)2.1汽车转向系的类型和组成 (3)2.1.1 机械式转向系 (6)2.1.2 动力转向器 (7)2.2 转向系主要性能参数 (8)2.2.1转向器的效率 (8)2.2.2传动比的变化特性 (10)2.2.3转向盘自由行程 (13)2.3 转向操纵机构及转向传动机构 (13)2.3.1转向操纵机构 (13)2.3.2转向传动机构 (14)3转向器总成方案分析 (15)3.1转向器设计要求 (15)3.2转向器总成方案设计 (16)4循环球式转向器主要尺寸参数的选择 (19)5 转向器输出力矩的确定 (23)6 轴的设计计算及校核 (24)6.1 转向摇臂轴(即齿形齿扇轴)的设计计算 (24)6.1.1材料的选择 (24)6.1.2结构设计 (24)6.1.3轴的设计计算 (24)6.2 螺杆轴设计计算及主要零件的校核 (28)6.2.1材料选择 (28)6.2.2结构设计 (28)6.2.3轴的设计计算 (29)6.2.4钢球与滚道之间的接触应力校核 (31)参考文献 (33)致谢 (34)附录 (36)1绪论循环球式转向器的英文名称是Recirculating Ball Steering Gear。
机械式转向器的设计和计算
机械式转向器的设计和计算-----------------------作者:-----------------------日期:第四节 机械式转向器的设计与计算一、转向系计算载荷的确定为了保证行驶安全,组成转向系的各零件应有.足够的强度。
欲验算转向系零件的强度,需首先确定作用在各零件上的力。
影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。
为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。
精确地计算出这些力是困难的。
为此推荐用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩R M (mm N •)p G f M R 313= (7-9)式中,f 为轮胎和路面间的滑动摩擦因数,一般取O.7;1G 为转向轴负荷(N);p 为轮胎气压(a MP )。
作用在转向盘上的手力为+ωη=i D L M L F sw Rh 212 (7-10)式中,1L 为转向摇臂长;2L 为转向节臂长;sw D 为转向盘直径;ωi 为转向器角传动比;+η为转向器正效率。
对给定的汽车,用式(7-10)计算出来的作用力是最大值。
因此,可以用此值作为计算载荷。
然而,对于前轴负荷大的重型货车,用上式计算的力往往超过驾驶员生理上的可能,在此情况下对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘上的最大瞬时力,此力为700N 。
二、齿轮齿条式转向器的设计齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。
齿轮模数取值范围多在2~3mm 之间。
主动小齿轮齿数多数在5~7个齿范围变化,压力角取20º,齿轮螺旋角取值范围多为9º~1 5º。
齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。
变速比的齿条压力角,对现有结构在12º~35º范围内变化。
此外,设计时应验算齿轮的抗弯强度和接触强度。
汽车转向器选型设计
汽车转向器选型设计郑莉(江西交通职业技术学院汽车系,江西南昌 330013)摘要:介绍了某车型的转向器选型设计,从整车转向设计要求出发,分别从输出扭矩和输出行程两方面进行校核计算,确定合适的转向器性能参数,进而选用整体循环球式动力转向器,5000km可靠性试验结果表明该转向器满足整车转向要求。
关键词:汽车;转向器;选型设计中图分类号:U463.43 文献标志码:A 文章编号:1671-2668(2017)06-0009-041 车型简介某车型是在现有4760轴距底盘的基础上匹配宽体2050排半驾驶室,同时加大货厢提高载重量的大轻卡车,其主要参数见表1。
该车型作为一个全新的平台,其载质量提升较大,对转向系统提出了更高的要求。
转向器是整个转向系统的关键部件,设计过程中需对转向系统进行校核计算,为转向器的选型设计及后续转向系零部件的开发设计提供可靠的数据支持。
表1 某大轻卡车型的主要技术参数该车型开发设计中,转向操作机构随驾驶室总成一起采购配套使用,转向传动机构除直拉杆外都随前轴总成一起采购配套使用,转向器选型设计中涉及的转向操作机构和传动机构相关计算参数都已确定,该文主要论述转向器选型设计中性能参数的确定。
2 转向器选型设计原则转向器选型设计,即为了达到整车所要求的转向性能,通过计算选择合适的转向器对整车进行匹配。
如何为整车匹配好转向器是整个转向系统开发的关键。
为节约开发和采购成本,一般选用现有成熟的转向器资源。
该车型转向器选型中需考虑以下几点:1)通过计算,确定转向器所要到达的输出扭矩和工作行程。
转向器输出的扭矩应足以克服转向时的转向阻力矩,否则会出现转向沉重问题,严重时甚至驾驶员用尽全身之力都不能使转向轮偏转。
汽车转向沉重,将增加驾驶员的疲劳强度,降低汽车的机动性能,并且难以保证汽车的行驶安全。
整体循环球式动力转向器的工作行程是转向器摇臂轴摆角,为满足整车要求,需通过计算整车转向时所需最大摆动角度来确定。
常见转向器的结构及原理
常见转向器的结构及原理转向器是一种机械设备,用于改变物体的转向。
它在诸多领域广泛应用,如机械工程、汽车工业、航空航天等。
常见的转向器有齿轮转向器、摆线转向器和弹簧转向器等。
以下将对这些转向器的结构和工作原理进行详细介绍。
1. 齿轮转向器:齿轮转向器是最常见的一种转向器,它基于齿轮的运动传递来改变物体的转向。
齿轮转向器通常由两个或多个齿轮组成,其结构相对简单。
齿轮转向器的工作原理如下:当一个齿轮转动时,其齿与第二个齿轮的齿咬合,使第二个齿轮开始转动。
通过不同齿轮的组合,可以实现不同的转向效果。
例如,当两个齿轮相同,它们具有相同的齿数和同样的模数,则它们的转速和转向是一样的。
而当齿轮的齿数或模数不同,它们的转速和转向则不同。
2. 摆线转向器:摆线转向器是一种利用直线运动来改变物体转向的器件。
它由一个旋转的摆线轮和一个直线齿轮组成。
摆线转向器的工作原理如下:当摆线轮旋转时,其牙槽会推动直线齿轮进行直线运动。
通过不同的牙槽设计和直线齿轮的位置,可以实现不同的转向效果。
例如,当摆线轮旋转180度时,直线齿轮会从一个方向转向另一个方向。
3. 弹簧转向器:弹簧转向器是一种利用弹簧的压缩和释放来改变物体转向的器件。
它由一个转向杆和一个弹簧组成。
弹簧转向器的工作原理如下:当转向杆施加力量时,弹簧会被压缩。
当力量释放时,弹簧会回弹。
通过调整弹簧的强度和转向杆的作用力,可以实现不同的转向效果。
例如,当力量施加到转向杆的一侧时,转向杆会向另一侧转向。
以上是常见转向器的结构和工作原理的简要介绍。
齿轮转向器利用齿轮的咬合来改变物体转向,摆线转向器利用直线运动来改变物体转向,而弹簧转向器利用弹簧的压缩和释放来改变物体转向。
这些转向器在不同的应用场景中起着重要的作用,提高了机械设备的灵活性和多功能性。
重型载货汽车转向器设计
重型载货汽车转向器设计摘要汽车转向系统分为机械式转向系统和动力力式式转向系。
其中动力式的是在机械转向器基础上发展的。
动力转向系统是一套兼用驾驶员体力和发动机动力为转向能源的转向系统。
在正常情况下,汽车转向所需的能量只有一小部分由驾驶员提供,而大部分能量由发动机通过转向加力装置提供。
但在转向加力装置失效时,一般还应当能由驾驶员独立承担汽车转向任务。
本文阐述了针对重型载货汽车转向器方案的确定,转向传动机构,转向操纵机构的选择,转向器的设计,转向器壳体设计,在给定前轴满载轴载质量、最高车速、轮胎规格、最小转弯半径等条件下,着重对整体循环球转向器的齿扇轴,转向螺杆,滑阀式常流液压助力转向助力系统的结构设计计算。
关键词:重型货车;整体转向器;传动机构;操纵机构;结构设计ABSTRACTAutomotive steering system is divided into the mechanical steering system and power steering system for automobile steering force. The dynamic type is based on the development of mechanical steering gear. Power steering system is a set of compatible driver physical and engine power steering system for energy. Under normal circumstances, the automobile steering required only a small fraction of the energy provided by the driver, and most of the energy from the engine through the steering device. But in the steering device failure, the general should also can by the driver steering task independently.This paper expounds the heavy truck steering determiner scheme, steering gear, steering mechanism selection, the design of steering device casing design, steering, front axle load in agiven quality of axial load, the maximum speed, tire specifications, minimum turning radius under the same conditions, the whole recirculating ball steering sector shaft, steering screw, valve type constant flow hydraulic power steering system structure design and calculation of powerKey words:Heavy goods vehicles; The steering gear; Transmission mechanism; Operating mechanism; Structural design第1章绪论1.1 概述汽车在行驶过程中,为了适应各种道路情况和行驶条件,经常需要改变行驶方向或修正行驶方向,如转向、超车和避让等。
齿轮齿条式转向器设计
3.3齿轮齿条式转向器的设计与计算3.3.1 转向系计算载荷的确定为了保证行驶安全,组成转向系的各零件应有足够的强度。
欲验算转向系零件的强度,需首先确定作用在各零件上的力。
影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。
为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。
精确地计算出这些力是困难的。
为此用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩M R (N·mm)。
表3-1 原地转向阻力矩M R 的计算 设计计算和说明计算结果 mm 627826.2N 0.17910902.530.7p G 3f 331⋅===R M式中 f ——轮胎和路面间的滑动摩擦因数;1G ——转向轴负荷,单位为N ;P ——轮胎气压,单位为MPa 。
f=0.71G =10902.5Np=0.179MPaR M =627826.2mm N ⋅作用在转向盘上的手力F h 为:表3-2 转向盘手力F h 的计算设计计算和说明计算结果N F iD L M L WSWRh 7.290%90153202.6278262221=⨯⨯⨯=+=η式中 1L ——转向摇臂长, 单位为mm ;R M ——原地转向阻力矩, 单位为N·mm 2L ——转向节臂长, 单位为mm ; SW D ——为转向盘直径,单位为mm ;I w ——转向器角传动比;η+——转向器正效率。
因齿轮齿条式转向传动机构无转向摇臂和转向节臂,故1L 、2L 不代入数值。
R M =627826.2mm N ⋅SW D =400mmi w =15+η=90%h F =290.7N对给定的汽车,用上式计算出来的作用力是最大值。
因此,可以用此值作为计算载荷。
梯形臂长度的计算2L :表3-3 梯形臂长度L 2的计算设计计算和说明计算结果轮辋直径LW R = 16in=16×25.4=406.4mm 梯形臂长度2L =LW R ×0.8/2= 406.4×0.8/2=162.6mm,取2L =160mm2L =160mm轮胎直径的计算R T :表3-4 轮胎直径R T 的计算设计计算和说明计算结果 20555.0⨯+=LW T R R =406.4+0.55×205=518.75mm取T R =520mmT R =520mm转向横拉杆直径的确定:表3-5 转向横拉杆直径的计算设计计算和说明计算结果mm m a M d R811.41021616.083.6274][43=⨯⨯⨯⨯=≥-πσπa =2L ;m N M MPa R ⋅==83.627;216][σ取min d =15mm初步估算主动齿轮轴的直径:表3-6 主动齿轮轴的计算设计计算和说明计算结果mm m Mn d 9.111014016.07.29016][max 16233=⨯⨯⨯⨯=≥-πτπ][τ=140MPa取min d =18mm3.3.2 齿轮齿条式转向器的设计 1. EPS 系统齿轮齿条转向器的主要元件1) 齿条 齿条是在金属壳体内来回滑动的,加工有齿形的金属条。
72机械式转向器方案分析
蜗杆指销式转向器应用较少。 二、防伤安全机构方案分析与计算 根据交通事故统计资料和对汽车碰撞试验结果的分析表明:汽车正面碰撞时,转向盘、 转向管柱是使驾驶员受伤的主要元件。因此,要求汽车在以48km/h的速度正面同其它物体 碰撞的试验中,转向管柱和转向轴在水平方向的后移量不得大于127mm;在台架试验中,用 人体模型的躯干以6.7m/s的速度碰撞转向盘时,作用在转向盘上的水平力不得超过11123N, 见GBll557—1998。为此,需要在转向系中设计并安装能防止或者减轻驾驶员受伤的机构。 如在转向系中,使有关零件在撞击时产生塑性变形、弹性变形或是利用摩擦等来吸收冲击能 量。当转向传动轴中采用有万向节连接的结构时,只要布置合理,即可在汽车正面碰撞时防 止转向轴等向乘客舱或驾驶室内移动,如图7—9所示。这种结构虽然不能吸收碰撞能量,但 其结构简单,只要万向节连接的两轴之间存在夹角,正面撞车后转向传动轴和转向盘就处在 图中双点划线的位置,转向盘没有后移便不会危及驾驶员安全。
采用两端输出方案时,由于转向拉杆长度受到限制,容易与悬架系统导向机构产生运动干 涉。
侧面输入、一端输出的齿轮齿条式转向器,常用在乎头微型货车上。 如果齿轮齿条式转向器采用直齿圆柱齿轮与直齿齿条啮合,则运转平稳性降低,冲击大, 工作噪声增加。此外,齿轮轴线与齿条轴线之间的夹角只能是直角,为此因与总体布置不适 应而遭淘汰。采用斜齿圆柱齿轮与斜齿齿条啮合的齿轮齿条式转向器,重合度增加,运转平 稳,冲击与工作噪声均下降,而且齿轮轴线与齿条轴线之间的夹角易于满足总体设计的要求。 齿条断面形状有圆形(图7—1)、V形(图7—4)和Y形(图7—5)三种。圆形断面齿条制作工
机械式转向器的设计和计算
第四节 机械式转向器的设计与计算一、转向系计算载荷的确定为了保证行驶安全,组成转向系的各零件应有.足够的强度。
欲验算转向系零件的强度,需首先确定作用在各零件上的力。
影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。
为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。
精确地计算出这些力是困难的。
为此推荐用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩R M (mm N ∙)p G f M R 313= (7-9)式中,f 为轮胎和路面间的滑动摩擦因数,一般取O.7;1G 为转向轴负荷(N);p 为轮胎气压(a MP )。
作用在转向盘上的手力为+ωη=i D L M L F sw Rh 212 (7-10)式中,1L 为转向摇臂长;2L 为转向节臂长;sw D 为转向盘直径;ωi 为转向器角传动比;+η为转向器正效率。
对给定的汽车,用式(7-10)计算出来的作用力是最大值。
因此,可以用此值作为计算载荷。
然而,对于前轴负荷大的重型货车,用上式计算的力往往超过驾驶员生理上的可能,在此情况下对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘上的最大瞬时力,此力为700N 。
二、齿轮齿条式转向器的设计齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。
齿轮模数取值范围多在2~3mm 之间。
主动小齿轮齿数多数在5~7个齿范围变化,压力角取20º,齿轮螺旋角取值范围多为9º~1 5º。
齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。
变速比的齿条压力角,对现有结构在12º~35º范围内变化。
此外,设计时应验算齿轮的抗弯强度和接触强度。
主动小齿轮选用16MnCr5或15CrNi6材料制造,而齿条常采用45钢制造。
为减轻质量,壳体用铝合金压铸。
三、循环球式转向器设计(一)主要尺寸参数的选择1、螺杆、钢球、螺母传动副(1)钢球中心距D 、螺杆外径1D 、螺母内径2D 尺寸D 、1D 、2D 如图7-19所示。
汽车转向系结构设计
第五章 汽车转向系设计转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。
机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。
有些汽车还装有防伤机构和转向减振器。
采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。
对转向系提出的要求有:1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。
任何车轮不应有侧滑。
不满足2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。
3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。
4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。
5)保证汽车有较高的机动性6)操纵轻便。
具有迅速和小转弯行驶能力。
7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。
8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。
9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。
10)进行运动校核,保证转向盘与转向轮转动方向一致。
正确设计转向梯形机构,可以使第一项要求得到保证。
转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。
为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。
通常用转向时驾驶员作用在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。
没有装置动力转向的轿车,在行驶中转向,此力应为50~100N ;有动力转向时,此力在20~50N 。
当货车从直线行驶状态,以 10km /h 速度在柏油或水泥的水平路段上转入沿半径为12m 的圆周行驶,且路面干燥,若转向系内没有装动力转向器,上述切向力不得超过250N ;有动力转向器时,不得超过120N 。
循环球转向器设计
汽车课程设计计划一、题目: 货车总体设计及各总成选型设计二、要求:分别为给定基本设计参数的汽车,进行总体设计,计算并匹配合适功率的发动机,轴荷分配和轴数,选择并匹配各总成部件的结构型式,计算确定各总成部件的主要参数;详细计算指定总成的设计参数,绘出指定总成的装配图和部分零件图。
其余参数如表1:表1三、设计计算要求3.1.根据已知数据,选取汽车类型、确定轴数、驱动形式、布置形式。
注意国家道路交通法规规定和汽车设计规。
选择轴数:2根驱动形式:4×2 布置形式:平头式发动机前置后驱3.2.确定汽车主要参数:1)主要尺寸,可从参考资料中获取;平头式货车长4000mm 宽1500mm 高2000mm 轴距2500mm 轮距1500mm 前悬300mm 后悬1200mm 车头长度1400mm2)进行汽车轴荷分配;4×2后轮单胎满载时:前轴35%后轴65%空载时:前轴55%后轴45%3)百公里燃油消耗量;设计的货车百公里燃油消耗量:3L(100t·km)-14)最小转弯直径货车的最小转弯直径:10.0m5)通过性几何参数通过性几何参数:hmin 200mmγ1 50°γ2 30°ρ1 5m6)制动性参数表2 制动性参数3.3.选定发动机功率、转速、扭矩。
可以参考已有的车型。
发动机最大功率Pemax=(m a gf r v amax/3600+C D Av amax3/76140)/ηTηT为传动系效率,汽车可取90%,m a为汽车总质量;g为重力加速度;f r为滚动阻力系数,对货车取0.02;C D 为空气阻力系数,货车取1.00;A为汽车正面投影面积。
代入数值;得Pemax=115.7kw 转速n p取5000r/min 最大转矩转速:T emax=9549×α×P emax/n p α为转矩适应性系数,一般在1.1-1.3之间选取,此时取1.2,故T emax =265N·m 因n p/n T在1.4-2.0之间选取,故n T取2500 r/min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2转向器的结构型式选择及其设计计算根据所采用的转向传动副的不同,转向器的结构型式有多种。
常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。
对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。
中、小型轿车以及前轴负荷小于1.2t 的客车、货车,多采用齿轮齿条式转向器。
球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于2.5t 且无动力转向和不大于4t 带动力转向的汽车均可选用这种结构型式。
循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。
轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。
矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。
关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。
对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。
因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。
这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。
对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。
下面分别介绍几种常见的转向器。
5.2.1循环球式转向器循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-曲柄销式。
它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。
两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。
循环球式转向器的传动效率高、工作平稳、可靠,螺杆及螺母上的螺旋槽经渗碳、淬火及磨削加工,耐磨性好、寿命长。
齿扇与齿条啮合间隙的调整方便易行,这种结构与液力式动力转向液压装置的匹配布置也极为方便。
5.2.1.1循环球式转向器的角传动比w i由循环球式转向器的结构关系可知:当转向盘转动ϕ角时,转向螺母及其齿条的移动量应为t s )360/(ϕ= (5-21)式中t ——螺杆或螺母的螺距。
这时,齿扇转过β角。
设齿扇的啮合半径w r ,则β角所对应的啮合圆弧长应等于s ,即s r w =⋅πβ2)360/( (5-22)由以上两式可求得循环球式转向器的角传动比w i 为tr i w w ⋅==πβϕ2 (5-23) 5.2.1.2螺杆-钢球-螺母传动副螺杆-钢球-螺母传动副与通常的螺杆一螺母一传动副的区别在于前者是经过滚动的钢球将力由螺杆传至螺母,变滑动摩擦为滚动摩擦。
螺杆和螺母上的相互对应的螺旋槽构成钢球的螺旋滚道。
转向时转向盘经转向轴转动螺杆,使钢球沿螺母上的滚道循环地滚动。
为了形成螺母上的循环轨道,在螺母上与其齿条相反的一侧表面(通常为上表面)需钻孔与螺母的螺旋滚道打通以形成一个环路滚道的两个导孔,并分别插入钢球导管的两端导管。
钢球导管是由钢板冲压成具有半圆截面的滚道,然后对接成导管,并经氰化处理使之耐磨。
插入螺母螺旋滚道两个导孔的钢球的两个导管的中心线应与螺母螺旋滚道的中心线相切。
螺杆与螺母的螺旋滚道为单头(单螺旋线)的,且具有不变的螺距,通常螺距t 约在8~ 13mm 范围内可按式(5—23)初选,螺旋线导程角0α约为6º~ 11º。
转向盘与转向器左置时转向螺杆为左旋,右置时为右旋。
钢球直径b d 约为6~9mm 。
一般应参考同类型汽车的转向器选取钢球直径b d ,并应使之符合国家标准。
钢球直径尺寸差应不超过b d 510128-⨯。
显然,大直径的钢球其承载能力亦大,但也使转向器的尺寸增大。
钢球的数量n 也影响承载能力,增多钢球使承载能力增大,但也使钢球的流动性变差,从而要降低传动效率。
经验表明在每个环路中n 以不大于60为好。
钢球数目(不包括钢球导管中的)可由下式确定:bb d W d d W d n 000cos παπ≈= (5-24) 式中0d ——钢球中心距,(见图5—2);W ——一个环路中的钢球工作圈数,为了使载荷在各钢球间分布均匀,一般W =1.5~2.5,当转向器的钢球工作圈数需大于2.5时,则应采用两个独立的环路;b d ——钢球直径;0α——螺线导程角。
钢球中心距0d 是指钢球滚动时其中心所在的圆柱表面的横截面的圆的直径。
它是一个基本尺寸参数,将影响循环球转向器的结构尺寸及强度。
设计时可参考同类车进行初选,经强度验算后再进行修正。
显然,在保证强度的前提下应尽量取小些。
在已知螺线导程角0α和螺距t 的情况下,0d 亦可由下式求得:0tan απt d = (5-25) 式中t ——螺杆与螺母滚道的螺距;0α——螺线导程角。
螺杆螺旋滚道的内径1d ,外径d ,以及螺母的尺寸 1D ,D (见图5—2),在确定钢球中心距0d 后即可由下式确定:图5—2 螺杆与螺母的螺旋滚道截面(a) 四点接触的滚道截面;(b)两点接触的滚道截面(b) B 、D ——钢球与滚道的接触点;0d ——钢球中心距;c r ——滚道截面的圆弧半径。
⎪⎪⎭⎪⎪⎬⎫-=-+=+=--=h D D x r d D h d d x r d d c c 2)(22)(2101101 (5-26) 式中0d ——钢球中心距;c r ——螺杆与螺母的滚道截面的圆弧半径,(见图5-2);x ——滚道截面圆弧中心相对于钢球中心线的偏移距(见图5-2);θsin 2⎪⎭⎫ ⎝⎛-=b c d r x (5-27) b d ——钢球直径;θ——钢球与滚道的接触角,通常取θ=45º;h ——滚道截面的深度,(见图5-2),可取h =(0.30~0.35)b d (5-28)D 应大于d ,一般也可取D =d +(0.05h ~0.10)b d 。
滚道截面有四点接触式、两点接触式(见图5-2)和椭圆滚道截面等。
四点接触式滚道截面由四段圆弧组成,螺杆和螺母的滚道截面各为两段圆弧。
四点接触滚道截面可获得最小的轴向间隙,以避免轴向定位的不稳定,受载后基本上可消除轴向位移,但滚道与钢球间仍应有间隙以贮存磨屑、减小磨损。
虽然其制造工艺较复杂,但仍得到广泛应用。
两点接触式滚道截面由两段圆弧组成,其螺杆和螺母滚道均为单圆弧,形状简单。
当螺杆受有轴向载荷时,螺杆与螺母间产生轴向相对位移使轴向定位不稳定,增加了转向盘的自由行程,这对装动力转向的转向系特别不利,因为它降低了分配阀的灵敏度,从而影响转向性能。
椭圆滚道的螺杆部分为椭圆截面、螺母部分为圆弧截面。
钢球以三点与滚道接触,被精确地定位于滚道中心,轴向定位精确,但加工较复杂。
螺杆滚道应倒角以避免尖角划伤钢球。
接触角θ是指钢球与螺杆滚道接触点的正压力方向与螺杆滚道法面轴线间的夹 (见图)。
增大"将使径向力增大而轴向力减小;反之则相反。
通常θ多取45º,以使径向力与轴向力的分配均匀。
螺距t 和螺旋线导程角0α:前者影响转向器的角传动比(见式(5—23));后者影响动效率(见式(5—6)、式(5—7))。
选择时应满足角传动比的要求和保证有较高的正效率而反行程时不发生自锁现象。
工作钢球的总圈数∑W :决定于接触强度。
总圈数增多钢球亦增多,则可降低接触应力、提高承载能力。
一般有2.5、3和5圈的,当∑W >2.5时则应采用两个独立的环路。
螺杆和螺母一般采用20CrMnTi 、22CrMnMo 、20CrNi 3A 钢制造,表面渗碳,渗碳层深度为0.8~1.2mm ,重型汽车和前轴负荷大的汽车的转向器,渗碳层深度可达1.05~1.45mm 。
淬火后表面硬度为HRC58~64。
螺杆—钢球—螺母传动副的高可靠性、长寿命、小的摩擦损失以及达到实际上的无隙配合(螺杆的轴向间隙不应大于0.002~0.003mm),是通过对滚道的高精度加工,使滚道表面具有高光洁度,采用标准的高精度的钢球(可用二、三级精度的),并对螺杆、钢球及螺母的尺寸进行选配来达到的。
5.2.1.3齿条、齿扇传动副齿扇通常有5个齿,它与摇臂轴为一体。
齿扇的齿厚沿齿长方向是变化的,这样即可通过轴向移动摇臂轴来调节齿扇与齿条的啮合间隙。
由于转向器经常处于中间位置工作,因此齿扇与齿条的中间齿磨损最厉害。
为了消除中间齿磨损后产生的间隙而又不致在转弯时使两端齿卡住,则应增大两端齿啮合时的齿侧间隙。
这种必要的齿侧间隙的改变可通过使齿扇各齿具有不同的齿厚来达到。
即齿扇由中间齿向两端齿的齿厚是逐渐减小的。
为此可在齿扇的切齿过程中使毛坯绕工艺中心1O 转动,如图5-3所示,1O 相对于摇臂轴的中心O 有距离为n 的偏心。
这样加工的齿扇在齿条的啮合中由中间齿转向两端的齿时,齿侧间隙s ∆也逐渐加大,s ∆可表达为]cos cos [tan 2tan 22222n r n n r r s w w -+±-=∆=∆ββαα (5-29)式中r ∆——径向间隙;α——啮合角;r——齿扇的分度圆半径;wβ——摇臂轴的转角。
图5-3 为获得变化的齿侧间隙齿扇的加工原理和计算简图图5-4 用于选择偏心n的线图当α,w r确定后,根据上式可绘制如图5—4所示的线图,用于选择适当的n值,以便∆能够适应消除中间齿最大磨损量所形成的使齿条、齿扇传动副两端齿啮合时,齿侧间隙s间隙的需要。
∆的改变也可以用改变齿条各齿槽宽而不改变齿条、齿扇传动副各对啮合齿齿侧间隙s齿扇各轮齿齿厚的办法来实现。
一般是将齿条(一般有4个齿)两侧的齿槽宽制成比中间齿槽大0.20~0.30mm即可。
齿扇的齿厚沿齿宽方向变化,故称为变厚齿扇。
其齿形外观与普通的直齿圆锥齿轮相似。
用滚刀加工变厚齿扇的切齿进给运动是滚刀相对工件作垂向进给的同时,还以一定的比例作径向进给,两者合成为斜向进给。
这样即可得到变厚齿扇。
变厚齿扇的齿顶及齿根的轮廓面为圆锥面,其分度圆上的齿厚是成比例变化的,形成变厚齿扇,如图5—5所示。
图5-5变厚齿扇的截面在该图中若0-0截面原始齿形的变位系数ξ=0,则位于其两侧的截面I—I和Ⅱ一Ⅱ分别具有ξ>0和车ξ<0,即截面I—I的齿轮为正变位齿轮,而截面Ⅱ一Ⅱ的齿轮为负变位齿轮。
即变厚齿扇在其整个齿宽方向上是由无穷多的原始齿形变位系数逐渐变化的圆柱齿轮所形成。