六旋翼无人机系统定稿版

合集下载

六旋翼无人机飞行控制系统设计

六旋翼无人机飞行控制系统设计

六旋翼无人机飞行控制系统设计
旋翼机以其灵活的机动性,低廉的成本,简单可靠的机械结构、出色的悬停特性在商业和军事领域发挥着重要作用。

未来,旋翼机将在快递、测绘、抢险救灾、公安、消防以及农业领域扮演越来越重要的角色,与此同时对旋翼机的稳定性和可靠性也提出更高的要求。

相比四旋翼,六旋翼在保证可靠性的同时能提供更好的鲁棒性,甚至可以在单个电机停机的情况下实现稳定降落。

六旋翼无人机本质上是一个不稳定的系统,因此六旋翼无人机上搭载的飞控系统的性能,很大程度决定着六旋翼无人机的稳定性。

本文针对六旋翼无人机,设计了一款飞控系统,实现了六旋翼无人机的稳定飞行。

主要做了以下几个方面的工作:首先针对六旋翼无人机进行数学建模。

根据叶素理论,对六旋翼无人机所用的定矩螺旋桨进行建模。

介绍六旋翼无人机所用的电机类型及工作原理,并对电机进行建模。

之后结合螺旋桨模型以及电机模型,对六旋翼无人机系统进行整体建模,搭建仿真模型,并在后文中进行了仿真和实验验证。

然后,在上述基础上设计了飞行控制器的底层硬件电路系统,利用MEMS传感器采集飞机的各个状态信息,根据各个传感器的特性进行数据融合,从而计算出旋翼机的各个状态。

根据旋翼机结构以及计算出的旋翼机状态,给出PID控制律,算出修正量,发送给电机进行动力修正,从而实现飞行器的稳定飞行。

最后,在硬件环境中实现上述内容,进行实验验证内外环PID参数对六旋翼飞行器稳定性的影响。

分别针对俯仰通道,偏航通道,横滚通道进行测试实验以及飞行实验,试验结果显示六旋翼飞行器表现出了很好的稳定性和可靠性。

无人机六旋翼设计

无人机六旋翼设计

摘要六旋翼无人机是一种具有可垂直起降能力的小型无人飞行器,它通过上下共轴放置的三组共六个电机提供升力,通过改变旋翼转速来调整姿态,通过调整姿态进一步实现位置控制,具有悬停性能优异、移动灵活、机械结构紧凑、零部件可靠性高等优点。

论文首先对六旋翼无人飞行器的调姿原理进行了介绍,分析了其飞行姿态的调整方式。

并建立了六旋翼无人机的数学模型,根据实际情况对其数学模型进行了必要的简化。

接着,论文完成了对于六旋翼无人机控制系统硬件平台的组建,组建了高精度的传感器系统,并完成了飞行控制器硬件的设计与实现,完成了硬件调试工作以及驱动的编写工作。

然后,论文建立了六旋翼无人机的完整控制系统,其中包含位置控制部分、高度控制部分以及姿态控制部分,建立了一套完整的对姿态传感器进行机械防震与数字滤波的方法;提出了一种新颖的气压计、超声波传感器和加速度计的融合方法,通过实验验证了滤波效果;提出了一种优化的拉力分配方法使得控制系统的可靠性得到增强。

接着,论文设计实现了飞行控制软件的主要功能,从技术层面上对于实时性与可靠性进行了大幅的提升。

最后,论文通过悬停试验验证了姿态控制器的控制精度;通过抗干扰能力试验验证了姿态控制器的稳定性;通过信号跟踪试验验证了姿态控制器的跟踪性能;通过高度控制实验验证了高度控制器的控制性能;通过视频跟踪实验验证了六旋翼无人机整体控制架构的合理性与有效性。

关键词:六旋翼无人机;PID;多环路控制;数据融合VI哈尔滨工业大学本科毕业设计(论文)AbstractHex-rotor is one kind of small unmanned aerial vehicles (SUAV) which have theability of vertical take-off and landing (VTOL). It gets thrust by controlling six rotorswith propellers which are divided into 3 groups of coax ial rotors. Its attitude is controlledby regulating the spinning speed of the rotors which in turn makes its positioncontrollable .The hex-rotor has multiple advantages such as the ability of vertical take-off and landing, good mobility and high reliability. Therefore, thehex-rotor has broadapplication prospects and enormous value of research.Firstly, the flying principle was divided into four main modes of motion and analyzedseparately. The dynamic model of the hex-rotor SUAV was deduced with some necessarysimplifications.Then, the control system hardware was built using high-precision sensors.The workof debugging the hardware and programming th e drivers was also done.In the following, the main control scheme was proposed which composed of threemain controllers: position controller, height controller and attitude controller. A completesolution to reduce the noise in the g yroscope and accelerometer caused by vibration wasproposed including mechanical anti-vibration method and a digital filter called alpha-betafilter. A new method of fusing the data f rom ultrasonic sensor, barometer andaccelerometer was prop osed in the paper. Experiment was conducted to prove theeffectiveness of the fusion method. An optimized thrust distribution method was alsointroduced to maintain the robustness of the system. Some technology was alsointroduced to keep the real-time performance and reliability of the control software.Finally, some flight experiments were introduced to prove theperformance of thecontroller: hovering test for the controller accuracy,anti-interference for controllerstability, signal-tracking experiment for controller tracking capability and vision-basedtarget tracking for the overall system performance.Keywords: Hex-rotor, PID, Multi-loop, Data-fusion哈尔滨工业大学本科毕业设计(论文)目录摘要 (VI)Abstract (VII)第1章绪论 (1)1.1 论文研究的目的与意义 ...................................................................... .. (1)1.2 国内外研究现状 ...................................................................... .. (2)1.2.1 四旋翼无人机的研究现状 .................................................................... (3)1.2.2 六旋翼无人机的研究现状 .................................................................... (4)1.2.3 六旋翼控制理论研究现状 .................................................................... (6)1.3 本文主要研究内容 ...................................................................... . (6)第2章六旋翼无人机数学模型的建立 (8)2.1 六旋翼无人机飞行机理分析 ...................................................................... (8)2.1.1 坐标系定义 .................................................................... (8)2.1.2 四种基本运动 .................................................................... (9)2.2 六旋翼无人机机体结构设计 ...................................................................... . (10)2.2.1 机架选型 .................................................................... (10)2.2.2 动力系统设计 .................................................................... (11)2.3 运动方程的推导 ...................................................................... (11)2.4 本章小结 ...................................................................... (16)第3章六旋翼无人机硬件设计 (17)3.1 总体方案 ...................................................................... (17)3.1.1 无线通讯链路 .................................................................... .. (17)3.1.2 传感器系统 .................................................................... (18)3.1.3 执行器与数据保存 .................................................................... (18)3.2 传感器系统 ...................................................................... .. (19)3.2.1 姿态传感器 .................................................................... (19)3.2.2 高度传感器 .................................................................... (19)3.2.3 位置传感器 .................................................................... (20)3.3 飞行控制硬件设计 ...................................................................... .. (20)3.3.1 主控制器选型 .................................................................... .. (20)3.3.2 电源、通讯接口设计 .................................................................... .. (21)3.3.3 数据存储设计 .................................................................... .. (21)VIII3.4 第 4 章4.1 4.2 哈尔滨工业大学本科毕业设计(论文)本章小结 (22)六旋翼无人机控制算法设计.................................. 23 总体控制结构 ................................................................. (23)姿态控制 ................................................................. (24)4.2.1 4.2.2 4.2.3 姿态传感器的减震与滤波 (24)姿态控制器结构 ............................................................. (28)转速分配策略 ............................................................. (28)4.3 高度控制 ................................................................. (31)4.3.1 4.3.2 4.3.3 超声传感器的滤波 (31)高度传感器与加速度计的融合算法 (34)高度控制器结构 ............................................................. (37)4.4 4.5 第 5 章5.1 位置控制 (37)本章小结 ................................................................. (38)六旋翼无人机飞控软件设计与飞行试验........................ 39 飞控软件设计 ................................................................. (39)5.1.1 5.1.2 5.1.3 飞控软件功能设计 (39)飞控软件总体架构 ............................................................. (40)实时性与可靠性设计 ............................................................. (40)5.2 飞行试验 ................................................................. (41)5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 悬停测试 (42)抗干扰能力测试 (43)信号跟踪实验 ............................................................. (43)高度控制实验 ............................................................. (44)视觉跟踪实验 ............................................................. (45)5.3 本章小结 ................................................................. (45)结 论.......................................................... 47 参考文献.......................................................... 48 哈尔滨工业大学本科毕业设计(论文)原创性声明 ....................... 51 致 谢.......................................................... 52 附 录 (53)IX第1章 绪 论1.1 论文研究的目的与意义近年来,在民用领域,无人机技术在救灾、航拍、农业、侦查等各个领域内取 得了广泛的关注与研究。

六旋翼控制

六旋翼控制
控制科学与工程专业选修课
无人机控制系统
六旋翼无人机控制
哈尔滨工业大学 空间控制与惯性技术研究中心
伊国兴
六旋翼无人机控制假设
假定飞行器机体具有足够的机械强 度,视为绝对刚体,不考虑机体变 形所产生的影响; 假定飞行器的机体质量与机体转动 惯量不变,保持为一常量; 假定旋翼亦为绝对刚体,忽略旋翼 运动时候所产生的摆动与扭转; M1 忽略上下旋翼之间的气动干扰且假 M2 定机体为左右对称的结构,不存在 机体质量偏置,两个旋翼在相同转 速下提供相同的升力。
z
M1 M5 M6 M2
x
M3 M4 y
六旋翼飞行器的主要运动
左飞、右飞
增大3、4号旋翼的转速并减小5、6号 旋翼的转速,可以在x轴上产生一个 正力矩,该力矩会导致机体的横滚 角 为正,即机体向右倾斜。这会导 致旋翼所产生的总拉力在y轴上有一 个负分量,该分力拉动机体向右飞 行。 减小3、4号旋翼的转速并增大5、6号 旋翼的转速,可以在x轴上产生一个 负力矩,该力矩会导致机体的横滚 角 为负,即机体向左倾斜。这会导 致旋翼所产生的总拉力在y轴上有一 个正分量,该分力拉动机体向左飞 行。
u f 1 2 3 4 5 6
x1 , x2 , x3 , x4 , x5 , x6 x7 z, x8 z, x9 x, x10 x, x11 y, x12 y
运动方程
x2 J J j l y z r ( ) x4 x6 u f x4 u2 Jx Jx Jx x4 J Jx j l ( z ) x2 x6 r u f x2 u3 Jy Jy Jy x6 Jx J y C ( ) x2 x4 u4 Jz Jz x f ( x, u ) x8 1 1 2 g u cos x cos x D x 1 3 1 z 8 m m x10 1 1 2 u1 (sin x3 cos x5 cos x1 sin x5 sin x1 ) Dx x10 m m x12 1 1 2 u1 (sin x3 sin x5 cos x1 cos x5 sin x1 ) Dy x12 m m

浅谈系留六旋翼无人机

浅谈系留六旋翼无人机

技术平台浅谈系留六旋翼无人机曾文元,张瀚成,张 菲,李昊天,周祥辰(西北工业大学自动化学院,陕西 西安 710072)摘 要:近年来,随着现代航空技术、微处理技术、机器人技术及网络技术的发展,多旋翼无人机在众多领域都得到了广泛的应用。

本文对系留六旋翼无人机的机身主体、动力系统、控制系统、系留缆绳的构成等知识进行了简要介绍,通过制定的方案制作实物,使得系留无人机实现了长航时滞空执行任务。

关键词:系留缆绳;六旋翼无人机;飞行控制0 引言随着MEMS技术、无刷电机技术、微处理技术的发展,多旋翼无人机被广泛应用于影视航拍,救生医疗,监测侦查等领域。

多旋翼具有垂直起降,机械结构简单,易维护等优点,同时存在着续航时间短的缺点。

针对于系留六旋翼无人机而言,增加一根提供动力的系留缆绳,解决了续航时间短的问题。

1 机身主体简介系留六旋翼无人机机身由机架、起落架、云台组成。

机架作为六旋翼设备的承载平台,是实现功能的基础。

我们应当在机架能提供足够的有效载荷的情况下,尽可能减轻机身质量。

我们使用的是飞越T960机架,轴距为960mm,碳纤维材料,质量较轻,架构牢固,预留的空间多,自身可以进行器件布局。

从使用材料上说,市面上使用的机架材料较多的是碳纤维。

起落架的作用是支撑多旋翼的重力,避免螺旋桨与地面接触,减小起飞或者降落时地面产生的影响。

我们使用的是机体配套的飞越机架。

云台的作用是减小在飞行过程中因外部影响造成的相机抖动,同时也可以平稳转动,有利于目标侦查及图像稳定传输。

云台由电机和控制电路组成,由电机旋转完成摄像头的转动,可以根据拍照需求让摄像头从不同角度进行拍摄。

2 动力系统简介动力系统由螺旋桨、电池、电机、电调构成。

螺旋桨是产生推力的部件,有正桨和反桨之分。

桨叶一般用四个数字表示,前两位为直径,后两位是螺距。

桨叶的材料对桨叶的性能有很大的影响,我们采用的是碳纤维1855桨,这个桨具有噪音小、适用于高KV值电机、硬度大、刚性好等优点。

六轴旋翼碟形飞行器控制系统设计

六轴旋翼碟形飞行器控制系统设计

六轴旋翼碟形飞行器控制系统设计刘羽峰,宁媛(贵州大学电气工程学院,贵州贵阳550003)作者简介:刘羽峰(1984-),男,内蒙古赤峰市人,硕士研究生,主要从事电力电子信息技术及控制理论的研究。

收稿日期:2010-4-22摘要:本文介绍了一种以6个无刷直流电机作为动力装置的六轴旋翼碟形旋翼飞行器。

通过电机的转速来控制飞行器的飞行状态,为了实现六轴旋翼碟形飞行器的飞行控制,对飞行器的控制系统进行了初步设计,并且给出了以ATMEGA8535单片机为计算控制单元,给出了其控制系统的硬件设计,由于元器件采用了贴片封装和低功耗的C MOS 器件,使飞行器具有重量轻、功耗低、体积小等优点;本文也论述了硬件系统设计各单元模块的功能及可靠性,从而能够满足飞行器起飞、悬停及降落等控制姿态的要求。

关键词:六轴旋翼碟形飞行器 飞行控制系统 AVR 单片机 P WM 中图分类号:V249.1;TP391.8 文献标识码:A 文章编号:1002-6886(2010)04-0004-03Design of F lightContr o l Syste m f or a Si x axis Rot or Saucer S hape d R ot orcraftLI U Yufe ng,N I NG Yua nAbstract :The si x axi s rot or saucer s haped rotorcraft i s i ntroduced i n this paper,which is powered by si xmotors and fli es state by adj us ti ng the speed of themot ors.In order to reali ze t he fli ght control for the si x axis rotor saucer shaped rot orcraft,the fli ght control syste m is de si gned prelm i i naril y and t he hard w are of fli ght control syst e m i s designed based on si ngl e ch i p m icrocontrollerAT MEGA8535.Because of in troduci ng the patch package and t he l ow po w er consu mption ofC MOS f or themost el e m ents ,consequently t he drones has t he characteri stics of the littlewei ght,the l ow po w er cons u mpti on and the s m all vol u m e as s o on.The paper also descri bes eachmodular unit function and reli able so t hat can m eet control state requirement of taking off,hoveri ng and l andi ng and s o on .Key words :si x axi s rotor saucer shaped rotorcraf;t fli ght control s yste m ;AVR si ngle chi p m i crocontroll er ;P WM0 引言由于碟形飞行器的研发在民用和军事领域中具有广阔的应用前景,众多的航模爱好者、科学家致力于微型飞行器的研究。

六轴旋翼碟形飞行器控制系统设计

六轴旋翼碟形飞行器控制系统设计
LI Yufn ,NI U eg NG a Yu n
A src : h xai rt u e a e t c fi it d cdi ti p p r w i o ee ys o r adfe a ya j — b t t T e i x o s c r h p d o rr t s n o u e s a , h h s w r b xm t s n i s t b u a s — so ra s r o a r nh e c ip d i o l st e d s
1 设计 和功 能
1 1控制 系统设计 . 传统的双轴或串列式 直升机 、 同轴直升机 等都是通过控 制舵机来改变螺旋 桨的浆距 角来 实现 直升机 的姿态 和位置
中图分 类号 :29 1T 318 V 4  ̄;P9.
飞行控制乐统
A R单片祝 。肼 射 V
文 章编 号 : 0  ̄68 ( 1 )4 05 0 1 2- 86 2 0 o — 06— 3 0 0
文献 标识码 : A
De i n o i h n r lS se o i -x s Ro o a c r S a e t r r f sg fFl t Co t o y t m f r a S x a i t r S u e h p d Ro o c a t g
s n rl n r y a d t eh r w r f ih o t lsse i d s n a e n s gec i i rc n rl rA ME A8 3 .B c u eo — i e p ei ai n ad a eo g tc n r y tm s e i e b s o i l— hp m co o t l T G 5 5 e a s f n gd mi l h l f o gd d n oe i

六旋翼无人机系统

六旋翼无人机系统

图像输出:一路模拟PAL/NTSC自适应,Full D1画质,720×576像素语音输出:一路立体声,左右两个声道
接收门限: -105dBm(10-6 BER @2 MHz信道宽度);
-104dBm(10-6 BER @4MHz信道宽度)
供电电源: AC220V,功耗小于8W
单位名称:深圳市*科技有限公司文档编号20160631
文档文名称:★★★★★★★★
★★文档密级
★★★★

文档制订陈先生
分享资料,共同进度文档审核周小姐
5机载无线数字视频传输系统
产品特点:
1、端到端超低延时(小于300ms)
2、具有体积小特点(最轻170g),适合在对体积有要求的设备中安装,如无人机,机器人等
3、具有ABS发射加密功能
9无人机专用运输箱X-61单位名称:深圳市*科技有限公司文档编号20160631
文档文名称:★★★★★★★★
★★文档密级
★★★★

文档制订陈先生
分享资料,共同进度文档审核周小姐单位名称:深圳市*科技有限公司文档编号20160631
文档文名称:★★★★★★★★
★★文档密级
★★★★

文档制订陈先生
分享资料,共同进度文档审核周小姐
结束。

六轴旋翼碟形飞行器控制系统设计

六轴旋翼碟形飞行器控制系统设计

六轴旋翼碟形飞行器控制系统设计六轴旋翼碟形飞行器控制系统设计六轴旋翼碟形飞行器是一种新型的飞行器,因其具有灵活性、稳定性和高空机动性而备受关注。

在本文中,我们将介绍六轴旋翼碟形飞行器的控制系统设计。

六轴旋翼碟形飞行器由一个圆形盘面和六个旋翼组成。

每个旋翼由一个电动机驱动,其旋转方向以及旋转速度可以通过相应的控制器进行调整。

控制器由传感器、处理器和执行器组成,其主要功能为接受来自传感器的反馈数据,经过处理后控制执行器的工作。

传感器包括加速度计、陀螺仪、磁力计和气压计。

加速度计用于测量飞行器的加速度,陀螺仪用于测量飞行器的角速度,磁力计用于测量飞行器的方向和位置,气压计用于测量飞行器的高度和气压。

传感器的数据将传输到处理器进行处理。

处理器主要由微控制器和存储器组成。

微控制器处理传感器数据,并计算出六个旋翼的工作参数。

存储器用于存储处理器的程序和数据。

处理器计算完成后,将送到执行器控制器进行执行器控制。

执行器控制器由电调和旋翼马达组成。

电调用于控制马达的电流和电压,从而控制旋翼的转速。

旋翼的转速和旋转方向将影响飞行器的方向和姿态,因此执行器控制器的工作非常重要。

飞行器控制系统的设计主要考虑到三个方面:飞行器的稳定性、高度控制和方向控制。

稳定性是指飞行器在飞行时的保持平衡和稳定。

高度控制是指飞行器在垂直方向上的稳定性和高度控制。

方向控制是指飞行器在水平方向上的稳定性和方向控制。

为了保持稳定性,飞行器需要根据传感器数据调整旋翼的转速和转向。

例如,如果飞行器向左倾斜,则需要增加右侧的旋翼的转速或减少左侧的旋翼的转速。

这将使飞行器保持平衡和稳定。

高度控制是通过控制旋翼的转速和方向实现的。

例如,如果飞行器下降,则需要增加旋翼的转速,如果飞行器上升,则需要减少旋翼的转速。

这将使飞行器在垂直方向上稳定和控制高度。

方向控制是通过调整飞行器的方向来实现的。

例如,如果飞行器需要向右转,则需要增加左侧旋翼的转速或减少右侧旋翼的转速。

六轴无人机研究与设计 毕业设计

六轴无人机研究与设计 毕业设计

六轴无人机研究与设计毕业设计一、什么是六轴无人机六轴无人机是一种飞行器,由六个电动机和对应的旋翼组成。

每个旋翼都可以独立控制,以实现飞行器的平衡和姿态控制。

六轴无人机通常采用多旋翼结构,通过电机带动旋翼产生升力,从而实现垂直起降、悬停和飞行。

二、为什么选择六轴无人机作为研究对象选择六轴无人机作为研究对象的原因有多个方面。

首先,相比于其他类型的无人机,六轴无人机具有更好的操控性和稳定性。

其独立控制的六个旋翼可以提供更灵活的姿态控制能力,使得飞行器在复杂环境中能够更好地适应和执行任务。

其次,六轴无人机广泛应用于各个领域,包括航拍摄影、农业植保、物流配送等,因此对其性能和设计的研究具有实际应用价值。

三、六轴无人机的研究内容和设计要求有哪些在六轴无人机的研究中,主要关注以下几个方面的内容:姿态控制、飞行控制、传感器集成和通信系统设计等。

姿态控制包括确定无人机的姿态和控制其稳定飞行,需要设计合适的控制算法和传感器集成方案。

飞行控制涉及无人机的起飞、降落、悬停和导航等功能,需要设计相应的飞行控制系统和路径规划算法。

传感器集成涉及将各种传感器(如加速度计、陀螺仪、气压计等)与飞控系统进行集成和优化。

通信系统设计关乎无人机与地面控制站之间的通信,需要设计可靠和高效的通信协议和数据传输方案。

设计六轴无人机需要满足以下要求:首先,飞行器的结构设计要合理,旋翼的安装位置和角度需要精确计算和调整,以保证飞行器的稳定性和姿态控制能力。

其次,飞行控制系统需要具备高精度和高可靠性,能够实现准确的飞行控制和路径规划。

再次,传感器集成需要确保传感器的准确度和灵敏度,以提供准确的姿态信息和环境感知数据。

最后,通信系统需要具备高速率和稳定的通信能力,以实现与地面控制站的可靠通信。

四、六轴无人机毕业设计的实施步骤和关键技术有哪些六轴无人机毕业设计的实施步骤主要包括以下几个方面:首先,进行问题分析和需求分析,明确设计目标和要求。

其次,进行相关技术研究和文献综述,了解当前六轴无人机的研究进展和存在的问题。

六旋翼控制

六旋翼控制
M gyro Hi
0 Hi 0 J ri
陀螺力矩
作用在无人机上的外部力矩
M M B Hi M M
d ( J ) J J M B dt
转动方程
转动方程
z
M1 M5 M6 M2
x
M3 M4 y
六旋翼飞行器的主要运动
左飞、右飞
增大3、4号旋翼的转速并减小5、6号 旋翼的转速,可以在x轴上产生一个 正力矩,该力矩会导致机体的横滚 角 为正,即机体向右倾斜。这会导 致旋翼所产生的总拉力在y轴上有一 个负分量,该分力拉动机体向右飞 行。 减小3、4号旋翼的转速并增大5、6号 旋翼的转速,可以在x轴上产生一个 负力矩,该力矩会导致机体的横滚 角 为负,即机体向左倾斜。这会导 致旋翼所产生的总拉力在y轴上有一 个正分量,该分力拉动机体向左飞 行。
T
Jy
俯仰方向上的力矩为 横滚方向上的力矩为 偏航方向上的力矩为
1 M l[ F1 F2 ( F3 F4 F5 F6 )] 2
M 3 l ( F3 F4 F5 F6 ) 2
M C ( F1 F2 F3 F4 F5 F6 )
转动方程
F3 F4 , F5 F6 u4 F1 F2
转速(拉力)分配
M1
M5
M6 M2M5 M6 NhomakorabeaM1M2
M3 M4
M3 M4
初始拉力分配条件
改进拉力分配条件
F1 F2 F3 F4 F5 F6
F1 1/ 6 0 F 0 2 1/ 6 F3 1/ 6 0.2887 F4 1/ 6 0.2887 F 1/ 6 0.2887 5 F6 1/ 6 0.2887 1/ 3 1/ 3 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 3 u1 u 1/ 6 1/ 6 1/ 3 2 1/ 6 1/ 3 1/ 6 u3 1/ 6 1/ 3 1/ 6 u4 1/ 6 1/ 6 1/ 6 0 1/ 6 1/ 6 1/ 6 0

六旋翼农用无人机设计

六旋翼农用无人机设计

目录目录 (1)一、绪论 (2)多旋翼农用无人机的发展简史 (2)多旋翼农用无人机的发展现状与展望 (3)二、六旋翼农用无人机的机体与喷施结构设计 (5)1、六旋翼农用无人机整体基本构造设计 (5)2、六旋翼农用无人机喷施设备的基本构造设计与工作原理 (6)3、六旋翼农用无人机的自平衡原理 (6)三、六旋翼农用无人机的动力系统与工作原理 (8)动力系统基本组成 (8)驱动电动机与电子调速器: (9)1、驱动电机参数的确定以及巡航时间的计算 (10)1.1 无人机电机的选择 (10)1.2 无人机的工作时间 (11)1.3 螺旋桨的设计 (12)1.4 螺旋升力的计算: (13)2、电调的使用 (13)3、PCB电子集合板、陀螺仪、摄像及遥控传感器设备应用 (14)四、六旋翼农用无人机的保养与保管 (19)致谢 (20)一、绪论随着社会生产力的进一步提高,农用航空飞机,是利用微型飞机和喷施设备进行农业作业的机械,它除了用来喷洒农药和化学除草剂、作物激素及脱叶剂等药液外,还可以进行观察农情等作业。

而多旋翼农用无人机,作为一种有动力、可控制、能携带完成农用任务的设备,近几年已倍受农业科技人员的青睐。

它没有驾驶舱,但安装了自驾仪、航拍摄像、飞行姿态控制等设备,以辅助无人机水平移动、垂直起降等方式运动,通过超低空飞行完成农用任务和降落,便于多次作业。

多旋翼农用无人机的发展简史多旋翼农用无人机是飞机的一种,其发展历史可以追溯到1903年,世界上第一架飞机的发明创造为其发展奠定基础。

而此后数十年间,该飞行设备分别在德国、美国、苏联等国的植保农业中广泛推广使用,截止1978年,全世界拥有航空植保飞机25000余架,近几年以每年递增约2000架的幅度上升。

同时,各国的农用飞机有60余种,其中定翼型飞机40多种、旋翼型(直升)飞机20多种,有数据显示世界上主要国家植保飞机数量和作业面积,如下(其中,1ha等于1公顷):表1 世界上主要国家植保飞机数量和作业面积(1990年统计)也相继出现,并迅速发展起来了。

六旋翼无人机的设计

六旋翼无人机的设计
Firstly, the flying principle was divided into four main modes of motion and analyzed separately. The dynamic model of the hex-rotor SUAV was deduced with some necessary simplifications.
无人直升机具备垂直升降、悬停等灵活飞行性能优势,因此在某些环境下比 固定翼无人机具有更好地适用性。六旋翼无人机将更加适用于在危险和恶劣的 环境下工作。在军事和民用领域都将具有广阔的应用前景。如今,它将成为新的 受关注的研究方向。这种关注既来自于应用需求的带动,也源于这项技术的挑战 性。
技术要求与主要内容: (1)尺寸、结构与续航 不带桨尺寸:长 562mm 宽 487mm 高 150mm 带桨尺寸:长 592mm 宽 517mm 高 150mm 具有可折叠机构,折叠后可以放入箱子内,便于携带运输 具有可拆卸的旋翼护罩,保证特殊应用场景下的安全性问题 机体重量:小于 1.5kg 续航时间:25min (2)视频部分 机载相机 通过 WiFi 将视频传回至 PC、视频眼镜,保证 500m 的图像传输距离。 通过视频的识别,控制 UAV 跟踪单一颜色背景下某一物体的移动。 (3)控制部分 传感器包括陀螺仪、加速度计、磁强计、气压计、GPS、超声波测距、摄像
动端的控制。完善 PC 端的人机界面 4 月 21 日~4 月 30 日 完成系统的完善。提高遥控系统的集成度与通讯系
统的集成度。 5 月 1 日~~5 月 10 日 完成整套系统的便携性设计,便于外出携带 5 月 11 日~5 月 20 日 收尾工作 5 月 21 日~6 月 1 日 准备毕业论文、Demo 等资料 6 月 2 日 结题

六旋翼飞行器的控制系统和自动驾驶仪开发说明书

六旋翼飞行器的控制系统和自动驾驶仪开发说明书

DEVELOPMENT OF THE CONTROL SYSTEM AND AUTOPILOT OFA HEXAROTOR AERIAL VEHICLETARIK VELI MUMCU1Department of Control and Automation Engineering, Yildiz Technical University, Istanbul, TurkeyE-mail:Abstract—Multi-rotor aerial vehicles are used for various military and non-military tasks due to their distinct advantages such as vertical take-off and landing, high payload, simple mechanics and reduced gyroscopic effects. Though remote control systems are the common way to control mini/micro sized multi-rotor aerial vehicles, autonomous flying offer several advantages over the remote control systems. In this study, we investigate the design and development of an autopilot system and its control systems for multi-rotor aerial vehicles, and implement the proposed systems on a prototype hexarotor aerial vehicle. The design of the proposed autopilot system, hexapilot, is explained in two aspects: hardware components and software components. The system has been tested in lab environment and field tests at the university campus are in progress. Index Terms—Hexarotor, Control system, Autopilot, Performance evaluations.I.INTRODUCTIONMulti-rotor mini/micro unmanned aerial vehicles (UAVs) are used for civilian and military tasks. Their advantages are simple mechanics, reduced gyroscopic effects compared to helicopters, high payload and vertical take-off and landing [1]. On the other hand, they consume more energy than single rotor vehicles and their sizes are larger.Generally, multi-rotor UAVs are remotely controlled during tasks. But remotely control may not be possible in some cases due to limited communication range and controllability issues such as line of sight of the operator. Therefore, full autonomous or semi-autonomous operation is desirable for almost all unmanned vehicle applications.The ability to follow a specifiedtrajectory is an important part of many autonomous UAV navigation systems [2], [3]. An autonomousvehicle trajectory tracking algorithm for a quadrotor helicopter is proposed in [2]. The algorithm was demonstrated to track a path indoors with 10 cm accuracy and outdoors with 50 cm accuracy [2].A trajectory tracking system for UAVs is proposed in [3]. This system is proposed for an UAV which is equipped with longitudinal and lateral autopilots and accounts for heading rate and velocity input constraints [3]. In order to enable UAVs to follow a predetermined trajectory, a path planning system is required. A complete path planning system for micro UAVs for reconnaissance operations in wind is proposed in [4]. An autopilot is amicro electromechanicalsystem (MEMS) used to guide an UAV without assistancefrom operators. Typical off-the-shelf autopilot systems for micro/mini UAVs are given in [5]. An autopilot system for a micro UAV is proposed in [6]. The proposed system consists of fuzzy logic controllers,low-level feedbackcontrollers, a speed controller and a wind disturbance attenuation block. During its experimental tests, though the UAV did not follow its desired trajectory perfectly, it traversed the waypoints by utilizing a fail-safe waypoint updating rule [6]. A lightweight navigation, guidance and control system to make advancedautonomous behaviors found in the autopilot systems of airplanes available to mini/micro UAVs is proposed in [7]. In this study, a model-based nonlinear controller was developed to deal with the drawbacks of the low-cost equipments of the prototype quadrotor aerial vehicle. Different from the studies in the literature which handle theoretical aspects of autopilot systems, in this study, we specifically address the hardware and software components of an autopilot system and the relation between these components in order to help researchers to develop low-cost autopilot systems. In this study, we explain the design of an autopilot system for multi-rotor UAVs. The autopilot system we propose consists of several hardware and software components which carry out low level and high level control of the proposed system. The system has already been tested in our lab environment with highly satisfactory results and field tests at our university campus are in progress.The remainder of this paper is organized as follows. Section II introduces the control system of the prototype hexarotor system. Section III describes the details of the proposed autopilot system called “hexapilot”. Finally, the paper is concluded in Section IV.II.HEXAROTOR CONTROL SYSTEMIn the proposed system, two different subsystems exist in order to perform real time tasks and non-real time tasks.A.High Level ControlAll systems which perform complex tasks require a high level control mechanism to do high level and non-real time tasks and to run algorithms. A mini PC with a 1.6 GHz ATOM processor is used for high level critical algorithms. The mini PC has no harddisk drive for storage and uses a flash disk to store the operating system (OS) and application codes it runs. Ubuntu, a free open source Linux based OS, is the OS of the mini PC.In order to develop the applications executed by the hexarotor shown in Fig. 1, Robot Operating System (ROS) has been preferred. ROS runs on Linux distributions and provides tools and libraries used by robotic software developers to create applications [8]. Besides its several advantages such as libraries, device drivers, hardware abstraction layers, visualization tools, message passing interfaces and package management over similar development platforms, it allows using several components as a single platform without the need for a specific communication interface. In this way, several robots and a control application can work together over a single TCP/IP based wireless network and data provided by the robots can be used by the control application at the same time.Fig. 1.Prototype hexarotor aerial vehicle.In the proposed system, sensor data is provided through the serial communication between the mini PC and real time system. On the other hand, laser scanner measurements and camera images taken by a research grade PointGrey brand 1.3 Mega Pixels (MP)camera [9] are received directly by the mini PC. Processing of the camera images is done by using the existing device drivers of ROS. A ROS library is utilized to transfer and manage camera images. To convert black white images taken by the camera to colour images, Bayer filter is used [10]. A Hokuyo URG-04LX-UG01 laser scanner [11] mounted on the prototype hexarotor calculates horizontal distances and angles to obstacles and has a measuring range of 20 to 5600mm with a scanning range of240°. Measurements provided by this scanner are the base information for enabling the hexarotor to work autonomously. ROS libraries are utilized to read and process laser scanner measurements.In order to monitor control and flight data during flights, a cockpit software shown in Fig. 1 has been developed. The cockpit software has been programmed in C++ using well-known Qt cross platform application development framework [12]. By integration Qt and ROS, information exchange between ROS kernel and the cockpit software has been done. Thissoftware also allows swapping between autopilot and manual control during flights. Saitek X-65F joystick [13] is used to remotely control the hexarotor.Fig. 2. Cockpit software developed to control the hexarotor.B.Low Level ControlLow level control of the hexarotor is carried out by the autopilot. The hardware of the autopilot is comprised of aSTMicroelectronics STM32F4 Discovery microcontroller unit (MCU) [14], a SparkFunnine degrees of freedom (9DOF) Razor inertial measurement unit (IMU) [15], a Devantech SRF08 ultrasonic range finder (URF) [16] and a XBee Pro communication module [17]. The hexarotor is controlled by electronic speed controller units (ESCUs) which are communicated through I2C protocol [18]. In the prototype system, ESCUs drive brushless motors. Fig. 3 shows the details of the low level control system.Fig. 3. Low level control system of the hexarotor.III.THE DETAILS OF HEXAPILOTHexapilot consists of a group of hardware and software components. In this section, these components are briefly explained.A.Hardware ComponentsThe core of the hardware is a STM32F4 MCU shown in Fig. 4. The MCU manages the overall coordination of low level control operations of the hexarotor with its real time OS and receives data from the following sensors and modules:∙Mini PC∙IMU∙Receiver of the remote controller∙URFFig. 4.STM32F4 MCU [14].The MCU has a STM32F407 168 MHz microcontroller which is based on ARM Cortex - M4 architecture and includes a programming unit in addition to a floating point unit (FPU). The microcontroller performs low level control operations of the hexarotor by using a controller application developed for this project. On the other hand, high level control operations and algorithmic operations are performed at the mini PC and related commands are sent to the MCU. Data related to low level control operations are sent to both the mini PC module and the PC acting as the control center through wireless links.The IMU incorporates a single-axis gyro, a dual-axis gyro, a triple-axis accelerometer and a triple-axis magnetometer and gives 9-DOF measurement. The outputs of its sensors are processed by an onboard ATmega328 and output over a serial interface [15]. These features make it become a powerful control mechanism for unmanned aerial and road vehicle. It communicates with the autopilot module through universal asynchronous receiver/transmitter (UART) units using a new communication protocol developed for this project.Fig. 5.SparkFun 9DOF IMU [15]. The communication module of the hexarotor is an XBee Pro communication module developed by Digi [17]. This 2.4GHz XBee module has an output power of 60mW with 250kbps Max data rate and takes the IEEE 802.15.4 stack and wraps it into a simple to use serial command ing this module, 2-way communication at 115200 bps in a 1500m range between the hexarotor and the control was enabled.Fig. 6.XBee Pro communication module [17].The URF of the hexarotor shown in Fig. 7 can measure obstacles at distances from 3 cm to 6 m and is communicated using I2C protocol.Fig. 7.SRF08 URF [16].The converter module, FT232R, shown in Fig. 8 is a USB to serial UART interface. A virtual communication port is created by an interface driver. In this way, communication with PCs which do not have serial interfaces through USB ports is enabled.Fig. 8.FT232R converter [19].For manual control of the hexarotor, a Futaba 7-Channel 2.4GHz remote controller (RC) [20] and a Futaba Robbe 2.4 GHz receiver [21] is used. Received Pulse Position Modulated (PPM) controller signals are converted to digital values and are used at the autopilot unit.Fig. 9.Futaba Robbe 2.4 GHz receiver.Fig. 10.Futaba 7-Channel 2.4GHz remote controller system[20].Mikrokopter ESCUs [22] shown in Fig. 11, one for each DC motor, drive six brushless DC motors of the hexarotor. Commands sent to the ESCUs are transmitted using I2C protocol and all the ESCUs share the same I2C bus.Fig. 11.MikrokopterESCU [22].B.Software ComponentsHexapilot, its architecture is shown in Fig. 12, was developed in C++. It is responsible for the following functions: ∙Managing communication,∙Receiving commands from the control center and carrying out the required operations,∙Gathering data from sensors and making them ready for use,∙Operating control cycles,∙Stabilizing the hexarotor.To carry out these functions, FreeRTOS [23] real-time OS is used.Communication flow between hexapilot and the control center is shown in Fig. 13. Interpreting communication packets and updating related information, and sending data packets from hexapilot to the control center are the main functions of the communication module of hexapilot. Communication between hexapilot and the control center occurs at every 100ms.Fig. 12.The architecture of hexapilot.Fig. munication flow between the control center andhexapilot.A proprietary communication protocol designed for this study handles communication between the autopilot and cockpit software. Its packet structure, shown in Table I, is used for all data transmissions. The communication protocol is used for the following communication channels:∙Mini PC - hexapilot∙IMU - hexapilot∙Hexapilot – Cockpit softwareHexapilot communication drivers consist of two components: processor level serial communication unit-UART drivers and specific functions which interpret high level communication packets. Low level drivers are composed of the interrupt routines of serial communication and circular buffer. They define the parameters of the UART module and set communication speed. Data coming through serial communication line are stored in the circular buffers and are read from these buffers to update data structures after being interpreted. Fig. 14 shows the details of the communication system.TABLE I.THE STRUCTURE OF COMMUNICATIONPACKETS.PositionDescription Byte 0 Header 1 - 0x55 Byte 1 Header 2 0xAA Byte 2 SizeByte 3 Packet Type Byte 4 Data 0Byte ... …......Byte ... Data n-1Byte ... Data nByte n -1 CRC 1st Byte Byte n CRC 2nd ByteFig. 14.Hexapilot communication system.A timer module of the MCU is run at the input capture mode to measure the length of signal pulses of the RC receiver. PB0 pin is used for this function. In this way, pulse durations for six channels are calculated and stored in associated data structures.Fig. 15.PPM signal read from the RC receiver.Fig. 16.GUI interface which shows signals received from the RC. Hexapilot stabilizes the hexarotor in x, y and z-axis by using the data provided by the sensors and Proportional Integral Derivative (PID) control cycles shown in Fig. 17. Roll, pitch and yaw angles, and attitude commands sent from the mini PC or the control center are applied to the PID control functions in order to obtain speed commands to be delivered to the motors. Finally, speed commands obtained for each motor are sent to the ESCUs.Fig. 17. PID cycles in the systemHexapilot gathers data from the URF, the IMU and the remote controller unit and makes the data ready for the use of different tasks after limit checking and filtering. If a sensor fails, hexapilot implements emergency case procedures defined by the operator. By default, if the IMU fails, the hexarotor immediately makes an emergency landing. Hexapilot constantly checks the irregularities of its internal tasks. If an irregularity is detected in a task, it restarts the task.Hexapilot and its graphical user interface, cockpit software, were developed in C++. Cockpit software enables the interaction between hexapilot and a user. Using this software, the user can see several parameters related to the state of the hexarotor. This software shows IMU data, remote controller values, PID parameters and PWM values sent to the motors as shown in Fig. 18 and Fig. 19. In addition, it shows attitude angles, sensor outputs, altitude, commands sent to the motors.Fig. 18. GUI interface – motor test section.Fig. 19. GUI interface– parameters section.IV.CONCLUSIONS AND FUTURE RESEARCH DIRECTIONSThis paper presents the design considerations of the control system and autopilot system of a prototype hexarotor aerial vehicle. The design of these systems has been completed and field tests with the hexarotor are in progress.The main drawback of the overall system is the use of the processors with different specifications for low and high level control operations. Though this is not a major problem for overall success of the hexarotor, it constitutes some specific issues which need to be handled. Target platforms for the autopilot system we developed are micro/mini unmanned aerial vehicles such as the one used in this study. Source codes of the designed autopilot software will be publicly available at after the completion of the field tests.REFERENCES[1]S. Bouabdallah, “Design and Control of Quadrotors withApplication to Autonomous Flying”, Ph.D. dissertation,EcolePolytechniqueFederale De Lausanne, Lausanne,Switzerland, 2007.[2]G. M. Hoffmann, S. L. Waslander, C. J. Tomlin,“Quadrotor Helicopter Trajectory Tracking Control”,In Proceedings of the AIAA Guidance, Navigation, andControl Conference, Honolulu, HI, pp. 2008-7410, August2008.[3]W. Ren, R. W. Beard, “Trajectory Tracking for UnmannedAir Vehicles With Velocity and Heading Rate Constraints”,IEEE Transactions on Control Systems Technology, vol. 12,no. 5,pp. 706-716, 2004.[4]N. Ceccarelli, J. J. Enright, E. Frazzoli, S. J. Rasmussen, C.J. Schumacher, “Micro UAV Path Planning forReconnaissance in Wind”, In Proceedings of the 2007American Control Conference, New York, USA, July 11-13, 2007, pp. 5310-5315.[5]H. Chao, Y. Cao, Y. Chen, “Autopilots for SmallUnmanned Air Vehicles: A Survey”, International Journalof Control, Automation, and Systems, vol. 8, no. 1, pp. 36-44, 2010.[6]M. Kumon, Y. Udo, H. Michihira, M. Nagata, I. Mizumoto,Z. Iwai, “Autopilot System for Kiteplane”,IEEE/ASMETransactions on Mechatronics, vol. 11, no. 5, pp. 615-624, 2006.[7] F.Kendoul, Y.Zhenyu, K. Nonami, “Embedded Autopilotfor Accurate Waypoint Navigation and Trajectory: Application to Miniature Rotorcraft UAVs”, In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17, 2009, pp. 2884-2890.[8]Documentation – ROS Wiki [Online]. Available:/wiki/[9]Point Grey Research [Online]. Available:/[10]Bayer filter [Online]. Available:/wiki/Bayer_filter[11]Scanning range finder URG-O4LX-UG01 [Online].Available: http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html[12]Qt (framework) [Online]. Available:/wiki/Qt_%28framework%29 [13]X-65F Combat Control System [Online]. Available:/uk/prod/x65f.html[14]STM32F4DISCOVERY – STMicroelectronics [Online].Available:/internet/evalboard/product/252419.jsp [15]9 Degrees of Freedom – Razor IMU – SparkFun Electronics[Online]. Available: https:///products/10736[16]Ultrasonic Rangers [Online]. Available: http://www.robot-/acatalog/Ultrasonic_Rangers.html[17]XBee Pro 60mW Wire Antenna – Series 1 (802.15.4) –SparkFun Electronics [Online]. Available: https:///products/8742[18]I2C-Bus [Online]. Available: /[19]FT232R [Online]. Available:/Products/ICs/FT232R.htm[20]Futaba 7C 7-Channel 2.4GHz System [Online]. Available:/systems/futk7000.html[21]Futaba Air System Receivers [Online]. Available:/receivers/air.html[22]En/BrushlessCtrl – Wiki: MikroKopter.de [Online].Available:http://www.mikrokopter.de/ucwiki/en/BrushlessCtrl[23]FreeRTOS – Market leading RTOS [Online]. Available:/。

六旋翼物流无人机造型设计方案

六旋翼物流无人机造型设计方案

六旋翼物流无人机造型设计方案
六旋翼物流无人机的设计方案可以考虑以下几个方面:
1. 六旋翼结构:可以采用具有良好稳定性和操控性的六旋翼结构,以确保无人机在各种气象条件下都能平稳飞行。

2. 机身材质:选择轻量化的材质,如碳纤维复合材料,以提高无人机的载重能力和飞行效率。

3. 机身外观设计:可以采用流线型外观设计,减少飞行时的空气阻力,提高飞行速度和稳定性。

4. 机身尺寸:根据物流需求,设计合适尺寸的无人机,以容纳不同大小的货物。

5. 抗风能力:考虑到物流无人机需要在各种复杂气象条件下飞行,设计方案应考虑提高无人机的抗风能力,以保证飞行的稳定性和安全性。

6. 动力系统:选择高效的电动动力系统,以提供足够的动力和长飞行时间。

7. 载重系统:设计合理的载重系统,包括承载货物的舱室、固定装置和安全锁定装置,以保证货物在飞行过程中的安全性。

8. 操控系统:配置先进的操控系统,包括自动驾驶和遥控操控功能,以确保无人机可以安全地飞行和交付货物。

总之,六旋翼物流无人机的设计方案应兼顾飞行性能、载重能力、稳定性和安全性,以满足物流需求并提高无人机的工作效率。

六旋翼无人机系统管理

六旋翼无人机系统管理
通视距离
0.9km
输出功率
1W可调
调制方式
COFDM
无线视频发射部分
输出频率范围MHz
285-900MHZ可选择
射频带宽MHz
2.5MHz
输出功率
1W
载噪比C/N
≥25dB @ 27dBm
调制方式
COFDM
星座调制
QPSK/16QAM @ 1.25/2.5MHz, QPSK/16QAM/64QAM @ 6/7/8MHz
文档编号
文档文名称:★★★★★★★★★★
文档密级
★★★★★
文档制订
陈先生
分享资料,共同进度
文档审核
周小姐
15、音频左右声道、立体声非平衡输入,支持一路语音信号输出
16、视频输入PAL/NTSC可选
17、发射机输出功率可调
技术参数:
无线数字发射部分
输出频率范围
900-928MHZ
射频带宽
6/7/8MHz或1.25/2.5MHz
分享资料,共同进度
文档审核
周小姐
1.3机体结构
机体结构采用新型复合材料,材质选用美国DuPont公司高强度碳纤维合成材料和7075航空铝合金材料,7075航空铝合金抗拉强度≥560MPa 。
机体结构拟采用框架式结构,保证了机体结构稳固。
在材料实验室对无人机机体制造材料进行力学、耐腐蚀和抗拉强度等方面测试。
11、9个可转换通道;?
12、8个特色飞行环境;
13、失控保护 / 通道功能/EPA/微调;
14、双向舵量比率设定与EXP??;?
15、舵机反转开关;?
16、舵机速度设定 (每个方向可达25s);
17、舵机监测;

自写-六旋翼无人机发明实用新型专利撰写范例汇总

自写-六旋翼无人机发明实用新型专利撰写范例汇总

说明书摘要本实用新型公开一种六旋翼飞行系统,包括控制器和飞行器,所述控制器包括微处理器及分别与微处理器电连接的位置锁定装置、航姿测量装置、油门和航向以及高度调节装置,所述飞行器包括处理器、无刷电机及分别与处理器电连接的定高装置和电机调速装置,所述飞行器的无刷电机与电机调速装置电连接,所述控制器和飞行器上设有相互电连接的无线通信装置,所述控制器的无线通信装置与微处理器电连接,所述飞行器的无线通信装置与处理器电连接。

本实用新型通过控制器和飞行器的相互配合工作,在一定程度上提高了六旋翼飞行系统的运行效率,为其它更多功能的拓展提供了基础。

相比其它的飞行系统,此系统结构更简单,更容易实现,降低了普通用户对飞行器的控制难度。

图1权利要求书1.一种六旋翼飞行系统,包括控制器和飞行器,所述控制器包括微处理器及分别与微处理器电连接的位置锁定装置、航姿测量装置、油门和航向以及高度调节装置,所述飞行器包括处理器、无刷电机及分别与处理器电连接的定高装置和电机调速装置,其特征在于,所述控制器和飞行器上设有相互电连接的无线通信装置,所述控制器的无线通信装置与微处理器电连接,所述飞行器的无线通信装置与处理器电连接,所述飞行器的无刷电机与电机调速装置电连接。

2.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述位置锁定装置包括陀螺仪、加速度计和全球卫星定位系统(GPS)电路模块。

3.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述航姿测量装置包括陀螺仪、加速度计、电子磁场计和温度传感器。

4.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述航姿测量装置为三轴加速度陀螺仪传感器。

5.根据权利要求1所述的一种六旋翼飞行系统,其特征在于,所述定高装置包括超声波传感器和气压计传感器。

说明书一种六旋翼飞行系统技术领域本实用新型涉及飞行器控制技术领域,具体涉及一种六旋翼飞行系统。

背景技术在二十世纪初就出现的多旋翼飞行器拥有体积小、结构紧凑和可垂直起降的特点,被广泛应用于军事、警备和工农业生产等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六旋翼无人机系统
HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
无线视频接收系统
产品特性
图像输出:一路模拟PAL/NTSC自适应,Full D1画质,720×576像素
语音输出:一路立体声,左右两个声道
接收门限: -105dBm(10-6 BER @2 MHz信道宽度);
-104dBm(10-6 BER @4MHz信道宽度)
供电电源: AC220V,功耗小于8W
单位名称:深圳市*科技有限公

文档编号20160631
文档文名称:★★★★★★★★
★★文档密级
★★★★

文档制订陈先生
分享资料,共同进度文档审核周小姐5机载无线数字视频传输系统
产品特点:
1、端到端超低延时(小于300ms)
分享资料,共同进度文档审核周小姐
单位名称:深圳市*科技有限公

文档编号20160631
文档文名称:★★★★★★★★
★★
文档密级
★★★★

文档制订陈先生分享资料,共同进度文档审核周小姐
结束
单位名称:深圳市*科技有限公

文档编号20160631
文档文名称:★★★★★★★★
★★
文档密级
★★★★
★。

相关文档
最新文档