(精品)小学奥数7-3-2 加乘原理之数字问题(一).专项练习及答案解析

合集下载

小学奥数 加乘原理之数字问题(一) 精选例题练习习题(含知识点拨)

小学奥数  加乘原理之数字问题(一)  精选例题练习习题(含知识点拨)

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不...可的..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 由数字1,2,3 可以组成多少个没有重复数字的数?【考点】加乘原理之综合运用 【难度】2星 【题型】解答【解析】 因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有326⨯=个;⑶组成三位数:与组成二位数道理相同,有326⨯=个三位数;所以,根据加法原理,一共可组成36615++=个数.【答案】15【例 2】 用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是 。

山东省泰安市小学数学小学奥数系列7-3加乘原理综合应用(一)

山东省泰安市小学数学小学奥数系列7-3加乘原理综合应用(一)

山东省泰安市小学数学小学奥数系列7-3加乘原理综合应用(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共36题;共174分)1. (10分)请把从猴山到飞禽馆的所有路线写出来 .2. (5分)(1)由数字1、2可以组成多少个两位数?(2)由数字1、2可以组成多少个没有重复数字的两位数?3. (5分)直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?4. (5分)有一种用12位数表示时间的方法:前两位表示分,三四位表示时,五六位表示日,七八位表示月,后四位表示年.凡不足数时,前面补0.按照这种方法,2002年2月20日2点20分可以表示为200220022002.这个数的特点是:它是一个12位的反序数,即按数位顺序正着写反着写都是相同的自然数,称为反序数.例如171,23032等是反序数.而28与82不相同,所以28,82都不是反序数.问:从公元1000年到2002年12月,共有多少个这样的时刻?5. (5分)如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C 地有多少种不同的走法?6. (5分)有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?7. (5分)如图,有A,B,C,D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?8. (5分)假如电子计时器所显示的十个数字是“0126093028”这样一串数,它表示的是1月26日9时30分28秒.在这串数里,“0”出现了3次,“2”出现了2次,“1”、“3”、“6”、“8”、“9”各出现1次,而“4”、“5”、“7”没有出现.如果在电子计时器所显示的这串数里,“0”、“1”、“2”、“3”、“4”、“5”、“6”、“7”、“8”、“9”这十个数字都只能出现一次,称它所表示的时刻为“十全时”,那么2003年一共有多少个这样的“十全时”?9. (5分)右图中共有16个方格,要把A,B,C,D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?10. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?11. (5分)在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有多少种不同的取法?12. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?13. (5分)三条平行线上分别有2,4,3个点(下图),已知在不同直线上的任意三个点都不共线.问:以这些点为顶点可以画出多少个不同的三角形?14. (1分)配成一套衣服,有________种不同的搭配方法?15. (1分) (2018三上·罗湖期末) 文具店有2款不同的圆规,4款不同的尺子。

(精品)小学奥数7-2-2 较复杂的乘法原理.专项练习及答案解析

(精品)小学奥数7-2-2 较复杂的乘法原理.专项练习及答案解析

1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入 老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n 个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A 种不同的方法,第二步有B 种不同的方法,……,第n 步有N 种不同的方法.那么完成这件事情一共有A ×B ×……×N 种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N 个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字7-2-2较复杂的乘法原理知识要点教学目标有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.模块一、乘法原理之组数问题【例 1】⑴由数字1、2可以组成多少个两位数?⑵由数字1、2可以组成多少个没有重复数字的两位数?【考点】复杂乘法原理【难度】1星【题型】解答【解析】⑴组成两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,有2种方法.根据乘法原理,由数字1、2可以组成2×2=4个两位数,即11,12,21,22.⑵组成没有重复数字的两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,因为要组成没有重复数字的两位数,因此十位上用的数字个位上不能再用,因此第二步只有1种方法,由乘法原理,能组成2×1=2个两位数,即12,21.【答案】⑴4 ⑵2【巩固】⑴由3、6、9这3个数字可以组成多少个没有重复数字的三位数?⑵ 由3、6、9这3个数字可以组成多少个三位数?【考点】复杂乘法原理【难度】2星【题型】解答【解析】⑴分三步完成:第一步排百位上的数,有3种方法;第二步排十位上的数,有2种方法;第三步,排个位上的数,有1种方法,由乘法原理,3、6、9这3个数字可以组成3216⨯⨯=个没有重复数字的三位数.⑵分三步完成,即分别排百位、十位、个位上的数字,每步有3种方法,由乘法原理,由3、6、9这3个数字一共可以组成33327⨯⨯=个三位数.【答案】⑴6⑵27【例 2】用数字0,1,2,3,4可以组成多少个:⑴ 三位数?⑵ 没有重复数字的三位数?【考点】复杂乘法原理【难度】2星【题型】解答【解析】⑴ 组成三位数可分三步完成.第一步,确定百位上的数字,因为百位不能为0,所以只有4种选择.第二步确定十位,所有数字都可以,有5种选择;第三步确定个位,也是5种选择。

小学奥数- 加乘原理之数字问题(一)

小学奥数- 加乘原理之数字问题(一)
知识要点
一、加乘原理概念
生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中 的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加 法原理来解决.
还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方 法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.
【例 13】从 1 到 100 的所有自然数中,不含有数字 4 的自然数有多少个?
【巩固】 从 1 到 500 的所有自然数中,不含有数字 4 的自然数有多少个?
【巩固】 从 1 到 300 的所有自然数中,不含有数字 2 的自然数有多少个?
【例 14】 将各位数字的和是 10 的不同的三位数按从大到小的顺序排列,第 10 个数是
【例 19】自然数 8336,8545,8782 有一些共同特征,每个数都是以 8 开头的四位数,且每个数中恰好有两 个数字相同.这样的数共有多少个?
【巩固】 在 1000 到 1999 这 1000 个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?
【例 20】如果一个三位数 ABC 满足 A B , B C ,那么把这个三位数称为“凹数”,求所有“凹数”的个数.
二、加乘原理应用
应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的 不同方法数等于各类方法数之和. ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘 积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理, 综合分析,正确作出分类和分步. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问 题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互.不.影.响.的独.立.步.骤.来完成,这几步是完成这件任务缺.一.不. 可.的.,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.

(精品)小学奥数7-3-1 加乘原理之综合运用.专项练习及答案解析

(精品)小学奥数7-3-1 加乘原理之综合运用.专项练习及答案解析

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?教学目标例题精讲知识要点7-3-1.加乘原理之综合运用【考点】加乘原理之综合运用 【难度】1星 【题型】解答【解析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326⨯=种方法.【答案】⑴5 ⑵6【例 2】 从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。

安徽省淮北市小学奥数系列7-3加乘原理综合应用(一)

安徽省淮北市小学奥数系列7-3加乘原理综合应用(一)

安徽省淮北市小学奥数系列7-3加乘原理综合应用(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共36题;共174分)1. (10分)从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?2. (5分)请用你所学的“解决问题的策略”,解决下面的问题.数学信息(图1)问题(图2)3. (5分)从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?4. (5分)(1)由数字1、2可以组成多少个两位数?(2)由数字1、2可以组成多少个没有重复数字的两位数?5. (5分)有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?6. (5分)直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个四边形?7. (5分)从学校经过百鸟园到猴山,有哪几条路可以走,请列举出来.8. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?9. (5分)聪聪给同学们安排了4项秋游内容.10. (5分)用红、黄、蓝三种颜色对一个正方体进行染色使相邻面颜色不同一共有多少种方法?如果有红、黄、蓝、绿四种颜色对正方体进行染色使相邻面颜色不同一共有多少种方法?如果有五种颜色去染又有多少种?(注:正方体不能翻转和旋转)11. (5分)要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?12. (5分)(1)小丽上学共有几条路线?(2)算一算,小丽上学最近的路线有多少米?13. (5分)有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?14. (1分)用1~9可以组成________个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成________个满足要求的三位数?15. (1分)李欢国庆节到北京旅游,她带了白色和黄色2件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有________种可能。

安徽省滁州市数学小学奥数系列7-3加乘原理综合应用(一)

安徽省滁州市数学小学奥数系列7-3加乘原理综合应用(一)

安徽省滁州市数学小学奥数系列7-3加乘原理综合应用(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共36题;共174分)1. (10分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?2. (5分)文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)3. (5分)有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?4. (5分)(1)由数字1、2可以组成多少个两位数?(2)由数字1、2可以组成多少个没有重复数字的两位数?5. (5分)邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?6. (5分)有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?7. (5分)如图,有A,B,C,D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?8. (5分)在这10个自然数中,每次取出三个不同的数,使它们的和是3的倍数有多少种不同的取法?9. (5分)用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?10. (5分)小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?11. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?12. (5分)(1)小丽上学共有几条路线?(2)算一算,小丽上学最近的路线有多少米?13. (5分)直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?14. (1分)奥运吉祥物中的个“福娃”取“北京欢迎您”的谐音:贝贝、晶晶、欢欢、迎迎、妮妮.如果在盒子中从左向右放个不同的“福娃”,那么,有________种不同的放法.【第六届小学“希望杯”全国数学邀请赛15. (1分) (2018三上·盐田期末) 食堂有2种主食和4种炒菜,如果一种主食和一种炒菜作为一种配餐,共有________种不同的配餐方法。

小学奥数7 3 1 加乘原理之综合运用专项练习及答案解析

小学奥数7 3 1 加乘原理之综合运用专项练习及答案解析

加乘原理之综合运用7-3-1.教学目标1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.知识要点一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.例题精讲种水果糖:苹果味、梨味、橙味.小明想买一些种巧克力糖:牛奶味、榛仁味;有2【例 1】商店里有2糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?1⑵如果小明想买水果糖、巧克力糖各种,他有几种选法?【题型】解答【难度】1星【考点】加乘原理之综合运用【解析】⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从种巧克力糖中选一种2种选糖的方法.因此,小明有种办法.有种办法;第二类是从种水果糖中选一种,有5?2?3332种方法,因此有种方法.⑵小明完成这件事要分两步,每步分别有种、6323??2【答案】⑴⑵65这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数11,,从 2】2,35,7【例1ofpage7 教师版题库.加乘原理之综合应用-1.3-7.个。

小学奥数 加乘原理之图论 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  加乘原理之图论 精选练习例题 含答案解析(附知识点拨及考点)

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题. 在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 5条直线两两相交,没有两条直线平行,没有任何三条直线通过同一个点,以这5条直线的交点为顶点能构成几个三角形?【考点】加乘原理之图论 【难度】3星 【题型】解答 教学目标例题精讲知识要点7-3-3加乘原理之图论【解析】 方法一:5条直线一共形成54210⨯÷=个点,对于任何一个点,经过它有两条直线,每条直线上另外有3个点,此外还有三个不共线的点,以这个点为顶点的三角形就有33333332230⨯+⨯+⨯+⨯÷=个三角形,以10个点分别为定点的三角形一共有300个三角形,但每个三角形被重复计算3次,所以一共有100个三角形.方法二:只要三点不共线就能构成三角形,所以我们先求出10个点中取出3个点的种数,再减去3点共线的情况.这10个点是由5条直线互相相交得到的,在每条直线上都有4个点存在共线的情况,这4个点中任意三个都共线,所以一共有5[432(321)]20⨯⨯⨯÷⨯⨯=个三点共线的情况,除此以外再也没有3点共线的情况(用反证法可证明之),所以一共可以构成1098(321)20100⨯⨯÷⨯⨯-=种情况.【答案】100【例 2】 如图,有这样的两条线,请问从这5个点中任选三个点可以构成_____个不同的三角形.【考点】加乘原理之图论 【难度】2星 【题型】填空【关键词】学而思杯,3年级,第4题【解析】 只要三点不共线,就能构成三角形。

小学奥数7-3-3 加乘原理之数字问题(二).专项练习及答案解析

小学奥数7-3-3 加乘原理之数字问题(二).专项练习及答案解析

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一..不可..的.,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 用数字1,2组成一个八位数,其中至少连续四位都是1的有多少个?【考点】加乘原理之综合运用 【难度】3星 【题型】解答【解析】 将4个1看成一个整体,其余4个数有5种情况:4个2、3个2、2个2、1个2和没有2;①4个2时,4个1可以有5种插法;②3个2时,3个2和1个1共有4种排法,每一种排法有4种插法,共有4416⨯=种;③2个2时,2个2和2个1共有6种排法,每一种排法有3种插法,共有6318⨯=种;④1个2时,1个2和3个1共有4种排法,每一种排法有2种插法,共有428⨯=种;⑤没有2时,只有1种;所以,总共有:516188148++++=个.答:至少连续四位都是1的有48个.【答案】48教学目标 例题精讲 知识要点7-3-3.加乘原理之数字问题(二)【例 2】七位数的各位数字之和为60 ,这样的七位数一共有多少个?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】七位数数字之和最多可以为9763⨯=.63603-=.七位数的可能数字组合为:①9,9,9,9,9,9,6.第一种情况只需要确定6的位置即可.所以有6种情况.②9,9,9,9,9,8,7.第二种情况只需要确定8和7的位置,数字即确定.8有7个位置,7有6个位置.所以第二种情况可以组成的7位数有7642⨯=个.③9,9,9,9,8,8,8,第三种情况,3个8的位置确定即7位数也确定.三个8的位置放置共有765210⨯⨯=种.三个相同的8放置会产生3216⨯⨯=种重复的放置方式.所以3个8和4个9组成的不同的七位数共有210635÷=种.所以数字和为60的七位数共有3542784++=.【答案】84【例 3】从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】2个数的和能被4整除,可以根据被4除的余数分为两类:÷=(个),10个中选2个,有第一类:余数分别为0,0.1~40中能被4整除的数共有40410⨯÷=(种)取法;109245⨯=(种)取法;第二类:余数分别为1,3.1~40中被4除余1,余3的数也分别都有10个,有1010100第三类:余数分别为2,2.同第一类,有45种取法.根据加法原理,共有4510045190++=(种)取法.【答案】190【例 4】从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有个。

小学思维数学讲义:加乘原理之数字问题(一)-带答案解析

小学思维数学讲义:加乘原理之数字问题(一)-带答案解析

加乘原理之数字问题(一)1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题. 在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不...可的..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 由数字1,2,3 可以组成多少个没有重复数字的数?【考点】加乘原理之综合运用 【难度】2星 【题型】解答【解析】 因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有326⨯=个;⑶组成三位数:与组成二位数道理相同,有326⨯=个三位数;所以,根据加法原理,一共可组成36615++=个数.【答案】15【例 2】 用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是 。

江西省新余市小学数学小学奥数系列7-3加乘原理综合应用(一)

江西省新余市小学数学小学奥数系列7-3加乘原理综合应用(一)

江西省新余市小学数学小学奥数系列7-3加乘原理综合应用(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共36题;共174分)1. (10分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?2. (5分)从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?3. (5分)有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?4. (5分)小红家到书店有两条路,书店到少年宫有三条路。

小红从家经过书店到少年宫,有多少种不同的走法?5. (5分)请用你所学的“解决问题的策略”,解决下面的问题.数学信息(图1)问题(图2)6. (5分)如图列出甲、乙和丙之间的交通方法,现在由乙出发,再回乙,途中需经过甲但不可经过乙,又不准走重复的路线,问共有多少种不同的去法?7. (5分)有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?8. (5分)有一种用12位数表示时间的方法:前两位表示分,三四位表示时,五六位表示日,七八位表示月,后四位表示年.凡不足数时,前面补0.按照这种方法,2002年2月20日2点20分可以表示为200220022002.这个数的特点是:它是一个12位的反序数,即按数位顺序正着写反着写都是相同的自然数,称为反序数.例如171,23032等是反序数.而28与82不相同,所以28,82都不是反序数.问:从公元1000年到2002年12月,共有多少个这样的时刻?9. (5分)一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉.问:能吃掉678的三位数共有多少个?10. (5分)“数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?11. (5分)请把从猴山到飞禽馆的所有路线写出来 .12. (5分)三条平行线上分别有2,4,3个点(下图),已知在不同直线上的任意三个点都不共线.问:以这些点为顶点可以画出多少个不同的三角形?13. (5分)如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?14. (1分)给布娃娃穿衣服,一共有________种穿法?15. (1分) (2018三上·罗湖期末) 文具店有2款不同的圆规,4款不同的尺子。

小学奥数7-3-2 加乘原理之数字问题(一).专项练习及答案解析

小学奥数7-3-2 加乘原理之数字问题(一).专项练习及答案解析

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺.一不..可的..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 由数字1,2,3 可以组成多少个没有重复数字的数?【考点】加乘原理之综合运用 【难度】2星 【题型】解答【解析】 因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有326⨯=个;⑶组成三位数:与组成二位数道理相同,有326⨯=个三位数;所以,根据加法原理,一共可组成36615++=个数.【答案】15教学目标例题精讲 知识要点7-3-2.加乘原理之数字问题(一)【例 2】用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是。

人教版2021-2022年数学小学奥数系列7-3加乘原理综合应用(一)C卷

人教版2021-2022年数学小学奥数系列7-3加乘原理综合应用(一)C卷

人教版2021-2022年数学小学奥数系列7-3加乘原理综合应用(一)C卷姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共36题;共174分)1. (10分)小红家到书店有两条路,书店到少年宫有三条路。

小红从家经过书店到少年宫,有多少种不同的走法?2. (5分)有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?3. (5分)如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?4. (5分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.5. (5分)有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?6. (5分)如图,有A,B,C,D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?7. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?8. (5分)用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法? (6级)9. (5分) 10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?10. (5分)用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?11. (5分)从学校经过百鸟园到猴山,有哪几条路可以走,请列举出来.12. (5分)请把从猴山到飞禽馆的所有路线写出来 .13. (5分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?14. (1分)聪聪从家到姥姥家,然后去水上乐园,有________种乘车方法?15. (1分) (2018三上·山东月考) 从小丽家到博物馆一共有________条不同的路线。

浙江省湖州市小学数学小学奥数系列7-3加乘原理综合应用(一)

浙江省湖州市小学数学小学奥数系列7-3加乘原理综合应用(一)

浙江省湖州市小学数学小学奥数系列7-3加乘原理综合应用(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共36题;共174分)1. (10分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?2. (5分)用数字1,2组成一个八位数,其中至少连续四位都是1的有多少个?3. (5分)请问由A点到G点有多少条不同的路线?(路线或点不可重复.)4. (5分)从甲地到乙地,每天有2班轮船,4班火车,6班汽车,那么这一天中乘坐这些交通工具,从甲地到乙地共有多少种走法?5. (5分)文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)6. (5分)有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?7. (5分)直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?8. (5分)往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站.问:铁路部门要为这趟车准备多少种车票?9. (5分)在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?10. (5分)1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法.11. (5分)从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?12. (5分)(1)由数字1、2可以组成多少个两位数?(2)由数字1、2可以组成多少个没有重复数字的两位数?13. (5分)从公园到动物园有4条路,从动物园到植物园有3条路,从公园经过动物园到植物园有几种走法?14. (1分)如图为一幅街道图,从出发经过十字路口,但不经过走到的不同的最短路线有________条.15. (1分)如图中共有正方形________ 个.16. (5分)从1到3998这3998个自然数中,又多少个数的各位数字之和能被4整除?17. (1分)说出乘法算式中各部分的名称:18. (5分)如果一个大于9的整数,其每个数位上的数字都比他右边数位上的数字小,那么我们称它为迎春数.那么,小于2008的迎春数一共有多少个?19. (10分)文艺汇演共有6个节目,分3种类型:1个小品,2个舞蹈,3个演唱.现在要编排一个节目单;(1)如果要求第一个节目是小品,那么共有多少种节目单的编排顺序?(2)如果要求第一个节目和最后一个节目都是演唱,那么共有多少种节目单的编排顺序?20. (5分)一列火车从上海开到南京,中途要经过6个站,这列火车要准备多少种不同的车票?21. (5分)如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?22. (5分)从7,8,9,,76,77这71个数中,选取两个不同的数,使其和为3的倍数的选法总数是多少?23. (5分)邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?24. (5分)用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法? (6级)25. (5分)在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有多少种不同的取法?26. (5分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?27. (5分)有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?28. (5分)甲、乙、丙、丁、戊、己六个人站队,如果:(1)甲乙两人之间必须有两个人,问一共有多少种站法?(2)甲乙两人之间最多有两个人,问一共有多少种站法?29. (5分)如图,有A,B,C,D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?30. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?31. (5分)有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?32. (1分)从1~10这10个不相等的自然数中每次取出2个数求和,要使它们的和小于10,不同的取法有________ 种.33. (5分)从上海到杭州,可乘汽车、火车和飞机.已知一天中汽车有3班,火车有7班,飞机有2班,从上海到杭州共有多少种不同的走法?34. (5分)从甲地到乙地有3条直达公路,还有5条直达铁路,那么从甲地到乙地共有多少种不同的走法?35. (5分)学校为艺术节选送节目,要从8个合唱节目中选出4个,2个舞蹈节目中选出一个,一共有多少种不同的选送方案?36. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?参考答案一、 (共36题;共174分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、12-2、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、28-1、29-1、30-1、31-1、32-1、33-1、34-1、35-1、36-1、。

山东省莱芜市数学小学奥数系列7-3加乘原理综合应用(一)

山东省莱芜市数学小学奥数系列7-3加乘原理综合应用(一)

山东省莱芜市数学小学奥数系列7-3加乘原理综合应用(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共36题;共174分)1. (10分)从上海到杭州,可乘汽车、火车和飞机.已知一天中汽车有3班,火车有7班,飞机有2班,从上海到杭州共有多少种不同的走法?2. (5分)小红家到书店有两条路,书店到少年宫有三条路。

小红从家经过书店到少年宫,有多少种不同的走法?3. (5分)要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?4. (5分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?5. (5分)从7,8,9,,76,77这71个数中,选取两个不同的数,使其和为3的倍数的选法总数是多少?6. (5分)从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?7. (5分)请问由A点到G点有多少条不同的路线?(路线或点不可重复.)8. (5分)如图,有A,B,C,D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?9. (5分)一个实心立方体的每个面分成了四部分.如图所示,从顶点出发,可找出沿图中相连的线段一步步到达顶点的各种路径.若要求每步沿路径的运动都更加靠近,则从到的各种路径的数目为几?10. (5分)每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子?11. (5分)有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?12. (5分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.13. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?14. (1分)小王在一年中去少年宫学习56次,如图所示,小王家在点,他去少年宫都是走最近的路,且每次去时所走的路线正好互不相同,那么少年宫在________点处.15. (1分)三(3)班有孙志明、朱亮、唐强、沙启刚四位同学参加4×100米接力赛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不...可的..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 由数字1,2,3 可以组成多少个没有重复数字的数?【考点】加乘原理之综合运用 【难度】2星 【题型】解答【解析】 因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求. 教学目标例题精讲 知识要点7-3-2.加乘原理之数字问题(一)⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有326⨯=个;⑶组成三位数:与组成二位数道理相同,有326⨯=个三位数;所以,根据加法原理,一共可组成36615++=个数.【答案】15【例 2】用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是。

【考点】加乘原理之综合运用【难度】2星【题型】填空【关键词】希望杯,4年级,1试【解析】(1+2+3)×2×111=1332.【答案】1332【巩固】由数字0,3,6组成的所有三位数的和是__________。

【考点】加乘原理之综合运用【难度】2星【题型】填空【关键词】希望杯,四年级,二试,第6题【解析】由数字0,3,6组成的所有三位数有306,360,603,630,它们的和为:+++=。

3063606036301899【答案】1899【例 3】由数字0,1,3,9可以组成多少个无重复数字的自然数?【考点】加乘原理之综合运用【难度】2星【题型】解答【解析】满足条件的数可以分为4类:一位、二位、三位、四位数.第一类,组成0和一位数,有4个(0不是一位数,最小的一位数是1);第二类,组成二位数,有339⨯=个;第三类,组成三位数,有33218⨯⨯=个;第四类,组成四位数,有332118⨯⨯⨯=个.由加法原理,一共可以组成49181849+++=个数.【答案】49【例 4】用数字0,1,2,3,4可以组成多少个小于1000的自然数?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】小于1000的自然数有三类.第一类是0和一位数,有5个;第二类是两位数,有++=个.⨯⨯=个,共有520100125⨯=个;第三类是三位数,有4551004520【答案】125【例 5】用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】分为三类,一位数时,0和一位数共有5个;二位数时,为4416⨯=个,三位数时,为:44348++=个小于1000的没⨯⨯=个,由加法原理,一共可以组成5164869有重复数字的自然数.【答案】69【例 6】用0~9这十个数字可组成多少个无重复数字的四位数.【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.(方法一)分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法;第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法;由乘法原理,共有满足条件的四位数9×9×8×7=4536个.(方法二)组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个;第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.由加法原理,共有满足条件的四位数3024+1512=4536个.【答案】4536【巩固】 用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?【考点】加乘原理之综合运用 【难度】3星 【题型】解答【解析】 分为两类:个位数字为0的有326⨯=个,个位数字为 2的有 224⨯=个,由加法原理,一共有:6410+=个没有重复数字的四位偶数.【答案】10【例 7】 在2000到2999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?【考点】加乘原理之综合运用 【难度】3星 【题型】解答【解析】 若相同的数是2,则另一个2可以出现在个、十、百位中的任一个位置上,剩下的两个位置分别有9个和8个数可选,有 3×9×8=216(个);若相同的数是1,有3×8=24(个);同理,相同的数是0,3,4,5,6,7,8,9时,各有 24个,所以,符合题意的数共有216+9×24=432(个).【答案】432【例 8】 在1000至1999这些自然数中个位数大于百位数的有多少个?【考点】加乘原理之综合运用 【难度】3星 【题型】解答【解析】 (方法一)解决计数问题常用分类讨论的方法. 设在1000至1999这些自然数中满足条件的数为1 abc (其中 c a >); (1)当0a =时,c 可取1~9中的任一个数字,b 可取0~9中的任一个数字,于是一共有91090⨯=个. (2)当1a =时,c 可取2~9中的任一个数字,b 仍可取0~9中的任一个数字,于是一共有81080⨯=个.(3)类似地,当a 依次取2,3,4,5,6,7,8时分别有70,60,50,40,30,20,10个符合条件的自然数.所以,符合条件的自然数有9080702010450+++++=个.(方法二)1000至1999这1000个自然数中,每10个中有一个个位数等于百位数,共有100个;剩余的数中,根据对称性,个位数大于百位数的和百位数大于个位数的一样多,所以总数为(1000100)2450-÷=个.【答案】450【例 9】 某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?【考点】加乘原理之综合运用 【难度】3星 【题型】解答【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,只要考虑6的位置即可,6可以随意选择四个位置,其余位置方1,共有4种选择.第二种中,先考虑放2,有4种选择,再考虑5的位置,有3种选择,剩下的位置放1,共有4×3=12种选择,同理,第三、第四、第五种都有12种选择,最后一种与第一种相似,3的位置有四种选择,其余位置放2,共有4种选择.由加法原理,一共可以组成4+12+12+12+12+4=56个不同的四位数,即为确保打开保险柜至少要试56次.【答案】56【例 10】将1到35这35个自然数连续地写在一起,够成了一个大数:1234567891011……333435,则这个大数的位数是。

【考点】加乘原理之综合运用【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】这个数的位数与数码的总共个数有关系,从1到9都是一位数,则共有9个数码,从10到35全市两位数,则共有26252+=⨯=(个)数码,那么位数就共有95261(位)。

【答案】61【例 11】如图,《希望杯数学能力培训教程(四年级)》一书有160页,在它的页码中,数字“2”共出现了次。

【考点】加乘原理之综合运用【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】十位上是2的有20个(含有22和122),个位上是2的有14个(除了22和122),所以共有34个数。

【答案】34个【例 12】按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5. 那么,可供每支球队选择的号码共()个.(A) 34 (B) 35 (C) 40 (D) 56【考点】加乘原理之综合运用【难度】3星【题型】选择【关键词】华杯赛,初赛,第3题【解析】根据题意,可供选择的号码可以分为一位数和两位数两大类,其中一位数可以为0~9,有10种选择;两位数的十位可以为1~5,个位可以为0~5,根据乘法原理,两位数号码有5×6=30种选择。

所以可供选择的号码共有10+30=40种。

【答案】C种【例 13】从1到100的所有自然数中,不含有数字4的自然数有多少个?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有1、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8972⨯=个数不含4.三位数只有100.所以一共有889181+⨯+=个不含4的自然数.【答案】81【巩固】从1到500的所有自然数中,不含有数字4的自然数有多少个?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有1、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有399243⨯⨯=个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3991244⨯⨯+=个.所以一共有8893991324+⨯+⨯⨯+=个不含4的自然数.【答案】324【巩固】从1到300的所有自然数中,不含有数字2的自然数有多少个?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含2的有1、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8972⨯=个数不含2;三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:19981⨯⨯=个,还要加上300;根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有++=个.87282162【答案】162【例 14】将各位数字的和是10的不同的三位数按从大到小的顺序排列,第10个数是。

相关文档
最新文档