安徽省枞阳县钱桥初级中学八年级数学下册 17.2 一元二次方程的解法复习教案1 (新版)沪科版

合集下载

一元二次方程的解法复习课教学设计.doc

一元二次方程的解法复习课教学设计.doc

一元二次方程的解法(复习课)学习目标:1、能灵活运用四种解法解一元二次方程。

2、体会化“未知为已知”的化归思想,对整式方程的解法有整体感知。

学习过程:一、课前导学1、我们学了一元二次方程的哪些解法?2-4ac>0 时,一元二次方程有实数根;当b当b2-4ac=0 时,一元二次方程有实数根;当b2-4ac<0 时,一元二次方程实数根;练习:1、在方程①x2-3x+2=0 ②3x2-1=0 ③-3t2+t=0④x2-4x=2 ⑤2x2-x=0 ⑥5(m+2)2=8 ⑦3y2-y-2=0⑧2x2+4x-1=0 ⑨(x-2)2=2(x-2) 中利用直接开平方法求解较简便的有;利用配方法求解较简便的有;利用公式法求解较简便的有;利用因式分解法求解较简便的有。

(填序号)12、请你选择恰当的方法解方程。

(1) 3(x-1) 2-6=0 (2)x2+4x-2=0(3)(x-1)(x+1)=x (4)(x-2)2-3(x-2)+2=0二、探索新知例题:解方程3+2x2-8x=0 变式:y4 - 4y2 = 0(1)x课堂小结三、巩固练习(挑战自己)的值。

1、已知:x2+3xy-4y 2=0(y≠0), 求:xy2+3xy-4y 2=0(y≠0), 求:x yx y2、已知:(a2+b2)(a2+b2-1)= 6 求:a2+b2 的值小结:。

2四、总结(谈收获)五、课后练习1、在下列各式中:①x 2 +3=y ; ②2 x2 - 3x=2x(x- 1) –1 ;③3 x 2- 4x –5 ; ④ 2 1xx+2 其中是一元二次方程的共有( )A 0 个B 1 个C 2 个D 3 个2、方程3 x 2 +27=0 的解是( )A x=± 3B x= -3C 无实数根D 以上都不对3、用适当的方法解下列方程:(1)4( x 5) 16 (2) x22 -6x+9 =0(3)(1-3y)2 + 2(3y-1)=0拓展提升:1、解方程: 2 2 0x x (提示:22x x )2、现将进货为 2 元的小礼品盒按 4 元售出时,能卖出100 个。

一元二次方程复习课教案设计

一元二次方程复习课教案设计
教学过程
备注
教师引导学生回顾知识点、
让学生自主建构本章知识点,形成知识网络
一.一元二次方程及其相关概念;并完成相关练习。
判断下列方程是不是一元二次方程
二、配方法、公式法、分解因式法。并完成相关练习
三、利用一元二次方程解决有关的实际问题,并根据具体问题的实际意义检验结果的合理性。并完成相关习题
四.作业:课本习题1~8题
课题
一元二次方程章末复习课
ห้องสมุดไป่ตู้教师
刘明玺
教学
目标
1、通过回顾知识,完成对一元二次方程的知识点的梳理,建构知识体系;
2、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点;
3、通过灵活运用解方程的方法,体会几种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法;
4、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用。
教学重难点
重点:理解并掌握一元二次方程的概念及解法,会运用方程模型解决实际问题。
难点:对于背景较复杂、等量关系不太明显的实际问题的解决。
学情
分析
1.学生认知发展分析:灵活运用解方程的方法,体会各种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法;
2.学生认知障碍点:学生形成本章课知识时最主要的障碍点:对于背景较复杂、等量关系不太明显的实际问题的解决。

一元二次方程复习课教案

一元二次方程复习课教案

一元二次方程复习课教案教学目标:1.知识与技能:(1)梳理全章知识,理解并掌握一元二次方程的概念及一般形式,熟练掌握方程的解法;(2)理解一元二次方程根的判别式并能运用,会用一元二次方程解决简单的实际问题。

2.过程与方法:(1)经历运用知识、技能解决问题的过程,在解题过程中培养学生的独立思考能力和创新精神;(2)经历观察、操作、想象、推理、交流等活动,发展学生发现问题、提出问题的能力。

3.情感态度与价值观:(1)鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流、合作,体会数学知识的应用价值,提高学生学习兴趣;(2)在合作交流的过程中,渗透数学解题中的方程思想、转化思想、建模思想。

教学重点:一元二次方程的解法及应用及掌握知识过程中的分析问题、解决问题的能力的培养。

教学难点:从实际问题中找等量关系,列出一元二次方程。

课前准备:学生完成课前预习作业,梳理全章知识结构;教师准备教案及课件。

教学过程:第一环节:复习引入,直击问题活动内容:学生分组交流本章知识系统图,教师巡视指导,待学生充分交流后,教师展示PPT上做好的“知识系统图”,及时评价与鼓励,从而进入本课学习。

问题1:一元二次方程的最根本特征是什么?你认为识别它的关键点又是什么?此问题的提出让学生的思维从浅层的“感知”走进深层的“凝思”,思维度增高了。

问题2:前面我们系统学习了一元二次方程的几种解法?分别是哪几种?学生根据前置的讨论易于回答,在此基础上,教师进一步提出下面问题。

问题3:这几种方法中,你认为哪一种是最基础的方法?你能说出这几种解法之间的逻辑关系吗?提出此问题的目的是让学生不仅知道表层上的“是什么?”还要让学生知道深层面上的“为什么?”,从而着力发展学生的思维能力。

问题4:你最喜欢运用上述四种方法中的哪一种去解方程?教师提出这样的问题表面看来“似乎简单”,其实质通过这个问题可引发学生两个思考:其一,适合于自己的最熟练的学得最好的;其二,适合于方程本身结构特点的。

八年级数学下册第17章一元二次方程章末复习教案新版沪科版

八年级数学下册第17章一元二次方程章末复习教案新版沪科版

章末复习敦字目师【知识与技能】1.了解一元二次方程的概念,掌握一元二次方程的公式解法和其他解法:能够根据方程的特征,灵活运用•元二次方程的解法求方程的根.2.理解一元二次方程的根的判别式,会运用它解决一些简单的问题.3.掌握一元二次方程根与系数的关系,会用它解一些简单的问题.4.会列出一元二次方程解实际问题.【过程与方法】1.进一步培养学生快速准确的计算能力.2.进一步培养学生严密的逻辑推理与论证能力.3.进一步培养学生的分析问题、解决问题的能力.【情感态度】1.进一步渗透知识之间的相互联系和相互作用.2.进一步渗透“转化”的思想方法及对学生进行辩证唯物主义思想教育.3.进一步体会配方法是解决数学问题的一种思想方法.【教学重点】1.一元二次方程的解法及判别式.2.一元二次方程根与系数的关系以及它的简单应用.【教学难点】列方程解决实际问题,灵活运用根与系数的关系解决何题.2*教字国程一、知识框图,整体把握-•元二次万程的定义:等号两边都是蜷式.只含有一个未知数.井.11.未知数概的拍高次数姑2的万程念般形式:心'+ bx +c =0( a #0 )一元二次方程的解(根):使方程左右两边相等的未知数的值直接开平方法、配方法、公式法、因式分解法」=/广一 4" > 0=方程fl 两个不等的实数根」=/? - 4r/c =()<=>// 程 ff 两个和等的实数根」=b 2 - 4ac < ()<=> Jf ft- X ,实数根根与系数的美系: b cX] +.v 2 ,W2 =--•般步骤:审、设、列、解、捡、答应类型:数字问题、利润问题、增K 率问题、用〔而积问题等【教学说明】教师引导学生回忆本章知识点,边回忆边画出本章知识框图.使学生对本 章知识有■一个总体把握,了解各知识点之间的联系,加深对知识点的理解,为后面的运用其 定根底.二、释疑解惑,加深理解1. 一元二次方程的定义和一般形式(1)只含有一个未知数、H 未知数的最高次数是2的整式方程,叫做一元二次方程. (2) 一•元二次方程的一般形式是ax :+bx+c=O (a^O )特别注意:①分母中不含有未知数.②只有当二次项系数a=0时,整式方程ax>bx+c=O 才是一元二次方程.2. 一元二次方程的解法一元二次方程解法有:直接开平方法、配方法、公式法和因式分解法.说明:(1) 明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法 等方法为手段,从而把•元二次方程转化为•元•次方程求解;(2) 根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方 法解一元二次方程:ffi 得注意的问题:① 一般解-元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要 先将方程写成-•般形式,同时应使二次项系数化为正数.② 直接开平方法是最根本的方法.根的判别式与根的 关系③公式法和配方法是最重要的方法.公式法适用于任何-•元二次方程(有人称之为万能法).在使用公式法时.-•定要把原方程化成一般形式.以便确定系数,而J1在用公式前成先计算根的判别式的值.以便判断方程是否有解.配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种页要的数学方法之一,一定要掌捱好.(三种重要的数学方法:换元法配方法,待定系数法).3.一元二次方程根的判别式—元二次方程ax'+bx+c=O(a^O)中,b' —lac 叫做一元二次方程ax'+bx+c=O(a^O)的根的判别式,通常用“来表示,即A=b'-4ac.①当A >0时.一元二次方程有2个不相等的实数根:②当A =0时,一元二次方程有2个相同的实数根:③当AV0时,一元二次方程没有实数根.4.一元二次方程根与系数的关系如I果方程ax*+bx+c=O(a^O)的两个实数根是Xi. x>那么xi+x:=——. XiX:= —.应用根a a 与系数的关系,可以不解方程.计算两根的和或枳,求式了•的值.5.建立•元二次方程模型解决实际问题建立一元二次方程模型的步骤是:审题、设未知数、列方程.注意:(1)审题过程是找出己知量、未如量及等量关系:(2)设未知数要带单位:(3〉建立一元二次方程模型的关键是依题意找出等量关系・【教学说明】教师引导学生对本章页点知识和需要注意的问题进行详细的回忆,使学生对本章知识有进一步的理解,形成知识网络.三、典例精析.复习新知例1判断关于x的方程X F X(2L«+1)=X中是不是一元二次方程.如果是,指出二次项系数、一次项系数及常项数.【分析】先把方程化为-•般形式aObx+c=0,然后根据一元二次方程的定义可知,当只H0时方程是一元二次方程.解:原方程可化为(l-2m) x*+ (m"-in-l)x=O.当l-2m=0,即!IF?时,原方程整理为—x=0.原方程是一元一次方程:2 4当l-2m^0. IIP 时,原方程是一元二次方程.9此时,二次项系数为l・2m. —次项系数为GfT,常数项为0.例2关于x的-元二次方程<m-V2 ) x2+3x+m^-2=0的•个根中零.求m的值.【分析】(1)正确理解方程的根的概念:(2)要特别注意一元二次方程ax:+bx+c二0中隐含的a^O这个条件.解:方程的一个根是零,即>=0,当x=0时.原方程可化为m-2=0.解得nF 土Ji・又Vm->/2.\m=-V2例3 (四川绵阳中考)关于x的一元二次方程x2=2(l-m)x-in2的两个实数根为x.. X2.(1)求m的取值范围.(2)设y—f 当y取得最小值时,求相应m的值,并求出最小值.【分析】(I)-元一次方程aObx+c=0(a^0)有实数根的条件是bMac^O^不要漏掉bMac-0的情况.先把方程变形成一般形式.把a, b, c的值代入bMac,根据bJac'O 求出皿的取仇范围.(2)可由一次函数y二kx,b,当k>0时,y随x的增大而增大:当kVO时,y昭x的增大而减小的性质,根据自变量取值范围,求出一次函数的最大值或最小值.解:(1)将原方程整理为x^2 (m-1) x^®=0.・.•原方程有两个实数根,/. A = [2 (m-1)] *-4nr=-8m+l N0,得nW —.2(2) Vxj, X2=-2m+2,y=xi+xF-2m+2,•.•y随m的增大而减小,2.••当护卜时.y取得最小值L【教学说明】教师出示典型例题,让学生先兴试解答,教师予以讲解,在讲解的过程中,应着重于知识点的成用和解题方法的漆透・四、复习训练,稳固提高1.假设方程X2-3X-1= 0的两根为X、由,那么—+ —的值为( ).A. 3B. —3C. —D.——3 32.关于x的方程(a-6)x?-8x^6=0有实数根,那么整数a的最大值是( )A.6B. 7C.8D.93.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边.制成一幅矩形挂图,如下图,如果要使整个挂图的面积是5100cm2,设金色纸边的宽为xcm.那么x满足的方程是( ).A.x>130x-1100=0B.x>65x-350-0C.x‘一130x—1400二0D./-65x-350=01.关于x的一元二次方程一x2-(2k+l)x+2-k:0有实数根,姻k的取值范围是______________ ・5.己知邓X?是方程『一3、一2=0的两个实根,那么(x.-2) (x,-2)=____________ .6 .某电动自行车厂三月份的产域为1000辆.由于市场需求量不断增大,五月份的产量提高到1210辆,那么该厂四、五月份的月平均增长率为________ ・7.解方程:(x —3)'+4x(x —3)二0&阅读材料:为解方程(X2-1)2-5(X2-1)+4=0.我们可以将x2-l看作一个整体,然后设x2-l=y»那么原方程可化为y」5y+4=0……①,解Wy.=h yE,当y=l时,x J-l=l.Ax2=2» Ax=± 41 :当y=4 时,x?—1=4. Ax2=5» Ax= ± 45,故原方程的解为X J=A/2,x广—V2 , Xi= 5/5 , x<=— V5 ・解答问题:<1)上述解题过程,在由原方程得到方程①的过程中,利用 _____________ 法到达了解方程的目的,表达了转化的数学思想;(2)请利用以上知识解方程X4-X X-6=0.9.关于x的方程kx J i(k+2)x^=0有两个不相等的实数根.4。

一元二次方程复习课集体备课教案

一元二次方程复习课集体备课教案
西桥学校教师教学设计
教者姓名
科目
数学
年级
9
复习课第1课时
课题
复习《一元二次方程》
课型
复习
备课时间
教学目标
①掌握一元二次方程的概念、一般形式和解法




ax2+bx+c=0 (a≠0)
根的判别式
②一元二次方程的求根公式和根的判别式
③转化思想、分类讨论思想
重点目标
1、2
难点目标
2、3
教具、学具
多媒体、导学案
当b2-4ac=0时,方程有实数根.
当b2-4ac<0时,方程实数根.
【思想方法】
1.常用解题方法——换元法
2.常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想
【例题精讲】
例1.选用合适的方法解下列方程:
(1)(x-15)2-225=0;(2) 3x2-4)x2+ x=0
例2.已知一元二次方程 有一个根为零,求 的值.
例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?
例4.已知关于x的方程x2―(2k+1)x+4(k-0.5)=0
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为a=4,另两边的长b.c恰好是这个方程的两个根,求△ABC的周长.
6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是__________.
7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.
二、选择题:
8.对于任意的实数x,代数式x2-5x+10的值是一个( )

一元二次方程的解法教案教学内容

一元二次方程的解法教案教学内容

一元二次方程的解法教案教学内容《一元二次方程的解法》教案一、教学目标(一)知识教学点:认识形如x2=a(a≥0)或(ax+b)2=c (a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解.(二)能力训练点:培养学生准确而简洁的计算能力及抽象概括能力.(三)德育渗透点:通过两边同时开平方,将2次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知.二、教学重点、难点和疑点1.教学重点:用直接开平方法解一元二次方程.2.教学难点:认清具有(ax+b)2=c(a≠0,c≥0,a,b,c 为常数)这样结构特点的一元二次方程适用于直接开平方法.3.教学疑点:一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.三、教学步骤(一)明确目标在初二代数“数的开方”这一章中,学习了平方根和开平方运算.“如果x2=a(a≠0),那么x就叫做a的平方根.”“求一个数平方根的运算叫做开平方运算”.正确理解这个概念,在本节课我们就可得到最简单的一元二次方程x2=a的解法,在此基础上,就可以解符合形如(ax+b)2=c (a,b,c常数,a ≠0,c≥0)结构特点的一元二次方程,从而达到本节课的目的.(二)整体感知通过本节课的学习,使学生充分认识到:数学的新知识是建立在旧知识的基础上,化未知为已知是研究数学问题的一种方法,本节课引进的直接开平方法是建立在初二代数中平方根及开平方运算的基础上,可以说平方根的概念对初二代数和初三代数起到了承上启下的作用.而直接开平方法又为一元二次方程的其他解法打下坚实的基础,此法可以说起到一个抛砖引玉的作用.学生通过本节课的学习应深刻领会数学以旧引新的思维方法,在已学知识的基础上开发学生的创新意识.一元二次方程的解法:开平方法1.复习提问(1)什么叫整式方程?举两例,一元一次方程及一元二次方程的异同?(2)平方根的概念及开平方运算?2.引例:解方程x2-4=0.解:移项,得x2=4.两边开平方,得x=±2.∴ x1=2,x2=-2.分析x2=4,一个数x的平方等于4,这个数x叫做4的平方根(或二次方根);据平方根的性质,一个正数有两个平方根,它们互为相反数;所以这个数x为±2.求一个数平方根的运算叫做开平方.由此引出上例解一元二次方程的方法叫做直接开平方法.使学生体会到直接开平方法的实质是求一个数平方根的运算.练习:教材P.8中1(1)(2)(3)(6).学生在练习、板演过程中充分体会直接开平方法的步骤以及蕴含着关于平方根的一些概念.3.例1 解方程9x2-16=0.解:移项,得:9x2=16,此例题是在引例的基础上将二次项系数由1变为9,由此增加将二次项系数变为1的步骤.此题解法教师板书,学生回答,再次强化解题负根.例2 解方程(x+3)2=2.分析:把x+3看成一个整体y.例2把引例中的x变为x+3,反之就应把例2中的x+3看成一个整体,两边同时开平方,将二次方程转化为两个一次方程,便求得方程的两个解.可以说:利用平方根的概念,通过两边开平方,达到降次的目的,化未知为已知,体现一种转化的思想.练习:教材P.8中2,此组练习更重要的是体会方程的左边不是未知数的平方,而是含有未知数的代数式的平方,而右边是个非负实数,采用直接开平方法便可以求解.例3 解方程(2-x)2-81=0.解法(一)移项,得:(2-x)2=81.两边开平方,得:2-x=±9∴ 2-x=9或2-x=-9.∴ x1=-7,x2=11.练习:解下列方程:(1)(1-x)2-18=0;(2)(2-x)2=4;(四)总结、扩展1.如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负常数,便可用直接开平方法来解.如(ax+b)2=c(a,b,c为常数,a≠0,c≥0).2.一元二次方程可能有两个不同的实数解,也可能有两个相同的实数解,也可能无实数解.。

八年级数学下册《一元二次方程的解法》教案、教学设计

八年级数学下册《一元二次方程的解法》教案、教学设计
二、学情分析
八年级学生已经具备了一定的数学基础,对一元一次方程的解法有较为深入的理解。在此基础上,学习一元二次方程的解法,他们需要在原有的知识体系上进行拓展和深化。然而,学生在学习过程中可能会遇到以下困难:
1.对一元二次方程的一般形式及其解法理解不够透彻,容易混淆各种解法;
2.在运用配方法和因式分解法解题时,可能会出现操作不当、漏解等问题;
(五)总结归纳
1.对一元二次方程的解法进行系统总结,强调各种解法的适用条件和操作要点。
2.帮助学生建立知识框架,明确本节课的重点和难点。
3.鼓励学生课后进行自我反思,总结学习过程中的收获和不足,为下一节课的学习做好准备。
4.教师对本节课的教学效果进行评估,及时调整教学策略,以提高教学质量。
五、作业布置
3.对求根公式的理解和应用不够熟练,难以将其与实际问题相结合;
4.部分学生对数学学习存在恐惧心理,面对复杂题目时容易产生畏难情绪。
针对以上学情,教师应采取以下措施:
1.注重启发式教学,引导学生主动发现问题和解决问题;
2.通过典型例题和练习题,帮助学生巩固基础知识,提高解题能力;
3.加强对学生的心理辅导,鼓励他们面对困难时保持积极心态,勇于尝试;
4.创设生动有趣的教学情境,激发学生的学习兴趣,提高他们的学习积极性。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一元二次方程的解法,包括直接开平方法、配方法、因式分解法和求根公式。
2.难点:
-理解并掌握配方法将一元二次方程转化为完全平方形式的过程;
-正确运用因式分解法,特别是对一些特殊类型的方程进行分解;
2.养成良好的学习习惯,严谨、细致、有耐心,面对困难时勇于挑战、积极寻求解决方法;

一元二次方程(复习)教案

一元二次方程(复习)教案

一元二次方程复习一.学习目标:1.理解并掌握一元二次方程的意义,正确识别一元二次方程中的各项及各项的系数;2.一元二次方程的解的定义与检验一元二次方程的解;3.明确解一元二次方程的基本思想是以降次为目的,会用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;4.了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的字母系数的取值范围;5.会列一元二次方程解决生活中的实际问题,与二次函数综合考查最优问题。

本节的主要考查一元二次方程的根,解一元二次方程,根的判别式,以及一元二次方程在实际生活中的应用。

在中考中,往往会在填空题中考查一元二次方程的根,根的判别式,在解答题中考查一元二次方程的解法,尤其是在倒数第二题中考查一元二次方程在实际生活中的应用,和二次函数相结合的综合应用。

二.教学过程1、一元二次方程定义:只含有,未知数,并且,这样的就是一元二次方程。

2、一般表达式:其中2ax是二次项,叫二次项系数;是一次项,叫一次项系数,是常数项。

二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。

3、使值,就是方程的解。

4、一元二次方程的解法:(1)法,适用于能化为的一元二次方程。

(2 )法,即把一元二次方程变形为(x+a)(x+b)=0的形式,则(x+a)=0或(3)法,即把一元二次方程配成形式,再用直接开方法,(4) 法,其中求根公式是(≥0)5、根的判别式、根与系数的关系:当时,方程有两个不相等的实数根。

当时,方程有两个相等的实数根。

当时,方程有没有的实数根。

如果一元二次方程有两根,则有6、列一元二次方程解实际应用题步骤三.跟踪练习:1:若x=2是关于x的一元二次方程x2-mx+8=0的一个解.则m的值是.(A) 6 (B) 5 (C) 2 (D)-62.(2011广西贵港3分)若关于x的一元二次方程x2-mx-2=0的一个根为-1,则另一个根为A.1 B.-1 C.2 D.-23.(2012年河北一模)关于x的一元二次方程(a-1) x2+x+a2-1=0的一个根是0,则a的值为()A. 1B. -1C. 1或-1D. 04. (2011广西百色3分)关于x的方程的一个根为1,则m的值为 A.1B. 12.C.1 或12.D.1 或-12 .5. (2012年浙江一模)已知关于x的方程的一个根是1,则k= .考点二、一元二次方程的解法:(1)(2012湖北荆州)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是( ) A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=16(2012山东省滨州中考)方程x(x﹣2)=x 的根是.(2)(3)(2011江苏省无锡市)解方程:x²-4x+2=0举一反三1:(2012贵州铜仁,17,4分,一元二次方程的解为____________;2:(2012贵州黔西南州,4,4分)三角形的两边分别为2和6,第三边是方程x2―10x+21=0的解,则第三边的长为( ). A.7 B.3 C.7或3 D.无法确定3:解方程:(1)(2011广东清远6分)解方程:x2-x-1=0.(2)(2011湖北武汉6 分)解方程:x2+3x+1=0.考点三:根的判别式,根与系数的关系(2012 湖北襄阳)如果关于x的一元二次方程kx2 -+1 =0有两个不相等的实数根,那么k的取值范围是 A.k< 1 2 B.k< 1 2 且k≠0 C.-12≤k<12 D.-12≤k<1 2 且k≠0。

八年级数学下册17.2《一元二次方程的解法》直接开平方法教案(新版)沪科版

八年级数学下册17.2《一元二次方程的解法》直接开平方法教案(新版)沪科版

八年级数学下册17.2《一元二次方程的解法》直接开平方法教案(新版)沪科版17.2 一元二次方程的解法教学目标1.会用直接开平方法解形如(a≠0,a≥0)的方程;2.灵活应用直接开平方法解一元二次方程。

3.使学生了解转化的思想在解方程中的应用。

研讨过程一、复习导学1.什么叫做平方根?2.平方根有哪些性质?二、探索新知试一试:解下列方程,并说明你所用的方法,与同伴交流。

(1)x2=4 (2)x2-1=0解(1)∵x是4的平方根∴x=即原方程的根为: x1= ,x2 =(2)移向,得x2=1∵ x是1的平方根∴x=即原方程的根为: x1= ,x2 =概括总结:就是把方程化为形如x2=a(a≥0)或(a≠0,a≥0)的形式,然后再根据平方根的意义求解的过程,叫做直接开平方法解一元二次方程。

如:已知一元二次方程mx2+n=0(m≠0),若方程可以用直接开平方法求解,且有两个实数根,则m、n必须满足的条件是()A.n=0B.m、n异号C.n是m的整数倍D.m、n同号例1解下列方程(1)x2-1.21=0 (2)4x2-1=0解:(1)移项,得x2= (2)移项,得4x2=∵x是的平方根两边都除以4,得∴x= ∵x是的平方根即原方程的根为: x1= ,x2 = ∴x=即原方程的根为:x1= ,x2 =例2解下列方程:⑴(x+1)2= 2⑵(x-1)2-4 = 0⑶ 12(3-2x)2-3 = 0练一练:1.解下列方程:(1)x2-0.81=0 (2)9x2=42.解下列方程:(1)(x+2)2 =3 (2)(2x+3)2-5=0(3)(2x-1)2 =(3-x)24、一个正方形的面积是100cm2,求这正方形的边长是多少?课堂小结:1.能用直接开平方法解的一元二次方程有什么特点?2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明。

初中数学初二数学下册《一元二次方程的解法》教案、教学设计

初中数学初二数学下册《一元二次方程的解法》教案、教学设计
4.引导学生总结解题规律,培养学生归纳、概括的能力。
(三)情感态度与价值观
1.培养学生勇于探索、善于思考的精神,增强学生克服困难的信心。
2.培养学生合作交流的意识,让学生在合作中学会倾听、表达和尊重他人。
3.培养学生严谨、认真的学习态度,提高学生的数学素养。
4.引导学生体会数学在生活中的应用,感受数学的价值,激发学生学习数学的兴趣。
初中数学初二数学下册《一元二次方程的解法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元二次方程的标准形式,掌握其基本性质。
2.学会使用直接开平方法求解一元二次方程,并掌握其适用条件。
3.学会使用配方法求解一元二次方程,理解其原理和步骤。
4.学会使用公式法求解一元二次方程,并熟练运用公式。
5.能够根据问题情境选择合适的解法求解一元二次方程,提高解决问题的能力。
(2)开展数学实践活动,让学生在实际操作中体验数学的乐趣和价值。
(3)鼓励学生参加数学竞赛、讲座等活动,拓宽学生的知识视野。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
(1)通过一个实际问题引入一元二次方程,如:一块正方形菜地的边长比它的面积多1,求这块菜地的边长。让学生尝试用已学过的知识解决问题,引导学生发现一元一次方程无法解答该问题。
2.难点:
(1)理解并掌握配方法的原理和步骤,特别是如何通过添加和减去同一个数使方程变形。
(2)熟练运用求根公式求解一元二次方程,并理解公式中各个参数的含义。
(3)在实际问题中,能够根据方程的特点选择合适的解法。
(二)教学设想
1.对于重点内容的教授:
(1)通过实际例题引入,让学生感受一元二次方程解法的必要性,激发学生的学习兴趣。

初二数学复习教案一元二次方程的解法

初二数学复习教案一元二次方程的解法

初二数学复习教案一元二次方程的解法(正文开始)初二数学复习教案:一元二次方程的解法一、引言一元二次方程是初中数学的重要内容之一,解一元二次方程是数学学习过程中的基本技能之一。

本教案将介绍一元二次方程的解法,帮助初二学生进行复习巩固。

二、基本概念1. 一元二次方程以形如ax^2 + bx + c = 0的形式表示,其中a、b、c 为实数,且a≠0。

2. 一元二次方程的解即使能够使等式成立的未知数的值。

三、解一元二次方程的基本方法1. 因式分解法a) 将一元二次方程完全因式分解为两个一次因式的乘积形式,然后根据零乘积法则求解。

例如,对于方程x^2 + 5x + 6 = 0,将其因式分解为(x + 2)(x + 3) = 0,然后根据零乘积法则,可得x + 2 = 0或x + 3 = 0。

b) 对于无法直接因式分解的方程,可以通过特殊公式求解。

例如,对于方程x^2 - 6x + 9 = 0,通过观察可以得知其等式两边可以分别写成(x - 3)^2 = 0,从而得到x - 3 = 0。

2. 完全平方公式法一元二次方程可以利用完全平方公式进行求解。

对于一元二次方程ax^2 + bx + c = 0,其解可以表示为x = (-b ± √(b^2 - 4ac)) / 2a。

根据公式,我们可以直接计算出方程的解。

例如,对于方程x^2 - 2x - 3 = 0,代入公式我们可以得到x = (2 ± √(4 + 12)) / 2。

四、实例分析1. 求解一元二次方程x^2 + 6x - 16 = 0。

a) 因式分解法:将方程分解为(x + 8)(x - 2) = 0,得到x + 8 = 0或x - 2 = 0,即x = -8或x = 2。

b) 完全平方公式法:根据公式,代入a = 1,b = 6,c = -16,可以计算得到x = (-6 ± √(36 + 64)) / 2,化简后可得x = -8或x = 2。

《一元二次方程解法》复习课教案设计

《一元二次方程解法》复习课教案设计

《一元二次方程解法》复习课教案设计复习目标:、能说出一元二次方程及其相关概念。

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

复习重难点:一元二次方程的解法教学过程一、情景导入前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节课我们就一起来复习一元二次方程的解法(板书课题)二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。

)复习提纲.-元二次方程的定义:只含有_______叫做一元二次方程。

2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项。

3.一元二次方程的解法:用直接开平方法解方程(2x+1)2=9形如x2=p的方程的根为________。

用配方法解方程x2+2x=3用配方法解方程步骤:,,,。

用求根公式法解方程x2-3x-5=0,x2-3x+5=0。

一元二次方程ax2+bx+c=0的根的判别式△=________,根x=。

当△&gt;0时,方程有两个_______的实数根。

当△=0时,方程有两个_______的实数根。

当△&lt;0时,_______。

三、展示归纳、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。

2、教师发动全班学生进行评价,补充,完善。

3、教师画龙点睛的强调。

四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:可用直接开平方法;用配方法或公式法;可用公式法;方程都有共同的因式,故可用因式分解法。

)、判断下列哪些方程是一元二次方程?(1)4x2-16x+15=0(2)2x2-3=0(3)ax2+bx+c=02、请将方程=1化为一般形式_______。

八年级数学下册第17章一元二次方程17.2一元二次方程的解法第1课时直接开平方法教案新版沪科版

八年级数学下册第17章一元二次方程17.2一元二次方程的解法第1课时直接开平方法教案新版沪科版

17.2 一元二次方程的解法第1课时直接开平方法【知识与技能】认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解.【过程与方法】培养学生准确而简洁的计算能力及抽象概括能力.【情感态度】通过两边同时开平方,将二次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知. 【教学重点】用直接开平方法解一元二次方程.【教学难点】(1)认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法;(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.一、创设情境,导入新课1.口答题:4 的平方根是,81的平方根是, 81的算术平方根是 .2.我们曾学习过平方根的意义及其性质,回忆一下:什么叫做平方根?平方根有哪些性质?学生回答:(1)如果一个数的平方等于a,那么这个数就叫做a的平方根.用式子表示:若x2=a,则x叫做a的平方根.(2)平方根有下列性质:①一个正数有两个平方根,这两个平方根是互为相反数的;②零的平方根是零;③负数没有平方根.【教学说明】 以上问题让学生自主完成,教师归纳总结,重点强调正数有两个平方根,负数没有平方根.为后面的学习奠定基础.二、合作探究,探索新知1.教师设问:如何求出适合等式x 2=4的x 的值呢?学生思考,尝试解答2.根据平方根的定义,由x 2=4可知,x 就是4的平方根,因此x 的值为2和-2 即根据平方根的定义,得x 2=4,x =±2即此一元二次方程的解为: x 1=2,x 2 =-23.小结:这种解一元二次方程的方法叫做直接开平方法.【教学说明】根据平方根的求法得到方程的解,让学生将它们对应起来,然后教师将这种方法进行总结,注意方程解的写法.4.提问:怎样解方程(x+1)2=256?让学生说出解法,教师板书.解:直接开平方,得x+1=±16所以原方程的解是x 1=15,x 2=-175.教师小结:对于形如x 2=a (a ≥0)或(x+h )2=a(a ≥0)的一元二次方程可以用直接开平方法求解.解一元二次方程的基本思想是降次,将一元二次方程转化为一元一次方程.【教学说明】 这里教师要对式子进行分析,然后类比上面的解法,进行求解,最后进行总结,用字母的式子表示,便于学生理解和记忆.三、示例讲解,掌握新知例1 解下列方程:(1)x 2=2; (2)4x 2-1=0.【分析】第1题直接用开平方法解;第2题可先将-1移项,再将两边同时除以4化为x 2=a 的形式,再用直接开平方法解之.【教学说明】形如方程ax 2-k=0(a k ≥0)可变形为x 2=a k (ak ≥0)的形式,即方程左边是关于x 的一次式的平方,右边是一个非负常数,可用直接开平方法解此方程.例2 解下列方程:(1)(x +1)2=2;(2)(x -1)2-4 =0;(3)12(3-x )2-3 =0.【分析】 第1小题中只要将(x +1)看成是一个整体,就可以运用直接开平方法求解;第2小题先将-4移到方程的右边,再同第1小题一样的解法;第3小题先将-3移到方程的右边,再两边同除以12,再同第1小题一样去解即可.【教学说明】(1)解形如(x+h )2=k(k ≥0)的方程时,可把(x+h )看成整体,然后直接开平方;(2)注意对方程进行变形,方程左边变为一次式的平方,右边是非负常数;(3)如果变形后形如(x+h )2=k 中的k 是负数,不能直接开平方,说明方程无实数根;(4)如果变形后形如(x+h)2=k 中的k =0这时可得方程两根相等.四、练习反馈,巩固提高1.若8x 2-16=0,则x 的值是 .2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是 .3.如果a 、b 为实数,满足43 a +b 2-12b+36=0,那么ab 的值是 .4.用直接开平方法解下列方程:(1)x2=169;(2)45-x2=0;(3)4x2-16=0;(4)(x+2)2-16=0【答案】1.±2 2.9或-3 3.-8【教学说明】学生易错的是开方时应该是两种情况,学生可能只写一种,所以教师要进行强调.第2题应该先两边除以2,再进行开方求解.五、师生互动,课堂小结1.如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负常数,便可用直接开平方法来解.如(ax+b)2=c(a,b,c为常数,a≠0,c≥0).2.平方根的概念为直接开平方法的引入奠定了基础,同时直接开平方法也为一元二次方程的解法起了一个抛砖引玉的作用.两边开平方实际上是二次方程由二次转化为一次,实现了由未知向已知的转化,由高次向低次的转化,是高次方程解法的一种根本途径.3.一元二次方程可能有两个不同的实数解,也可能有两个相同的实数解,也可能无实数解.【教学说明】教师引导学生自主总结,教师适当渗透相关的解题思想并进行总结,为后面的学习奠定基础.完成同步练习册中本课时的练习.一元二次方程的求解是初中数学学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视.“直接开平方法解一元二次方程”是配方法解一元二次方程的基础;同时这一节的教材编写中还突出体现了“换元”、“转化”等重要的数学思想方法.因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课.教学过程中,在合作探究过程中给学生较充分的时间进行独立思考、小组交流,让学生的思维互相启发互相碰撞,让个人智慧与集体智慧充分交融.在探究过程中适当巡视,适时指导点拨,保证各小组探究学习的有效性.同时,及时评价.对学生发现了不同解法时首先给予表扬和肯定,从而激发学生的求知欲.。

《一元二次方程》复习课 教学设计

《一元二次方程》复习课 教学设计

一元二次方程章末复习教学设计一、学生知识状况分析学生的知识技能基础:学生在七年级和八年级已经学习了一元一次方程、二元一次方程以及一次函数的相关知识及应用,在本章中,又学习了一元二次方程及其相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力;学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.为此,设置本节课的教学目标如下:1、知识与技能:①经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;③了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想;2、过程与方法:①通过让学生经历将多种实际问题抽象成数学问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②通过小组合作学习,经历一题多解等过程,发展学生多角度思考问题的方法.3、情感与态度:①通过对方程的认识、一题多解的思维展示,发展学生勇于展示自己的品质;②在解决富有挑战性的问题的过程中,培养学生敢于直面困难、勇于挑战的良好品质,鼓励学生大胆尝试,体会成功的喜悦,激发学生学习数学的兴趣.三、教学过程分析本节课设计了六个教学环节:第一环节:基础知识重现;第二环节:巩固提高;第三环节:课堂小结;第四环节:布置作业.第一环节:基础知识重现活动内容:在授完本章新课知识后,让学生重新回顾本章内容,整理出本章的知识结构网,理清各板块内容间的联系.此活动内容在上课前一天布置,让每一位学生都提前做好准备.上课时,选取有代表性的知识结构网络进行全班展示,其他同学对照自己的总结查缺补漏.同时,教师展示一下本章的框架,指出本节课的重点是:利用一元二次方程解决实际问题.活动目的:学生在整理本章知识结构的同时,可以回顾本章的重点内容,细细体会解一元二次方程的“转化”思想,找寻利用方程解决实际问题的关键.活动的实际效果:基于对学生两年来的不间断训练,绝大分学生可以对本章的主要内容以及注意点详细地总结出来,只是呈现形式略微不同.但也有少数同学只是泛泛地停留在书本上的定义、黑体字上,对于更深入的内容总结不到位,这部分同学在教学中往往也是需要特别关注的同学,需要我们教师从各方面来激发他们对数学学习的兴趣.附部分学生的作业:学生A的本章知识结构㈡本章的重点:一元二次方程的解法和应用.㈢本章的难点:应用一元二次方程解决实际问题的方法.学生B 的本章知识结构:本章的知识体系包括三大部分:(一)一元二次方程的定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a ,b ,c 为常数,a≠0)的形式,这样的方程叫做一元二次方程.在这里应注意的问题是:⑴只含有一个未知数;⑵未知数的最高指数必须是2;(3)二次项系数不为0)(二)一元二次方程的解法:一元二次方程的常用解法有:⑴ 直接开平方法;⑵ 配方法;⑶ 公式法;⑷ 分解因式法.(注意:在运用配方法解一元二次方程时,一般先将二次项系数化为1;在运用公式法解一元二次方程时,必须先将方程化为ax 2+bx+c=0 (a≠0)的形式,同时判断b 2-4ac 是否≥0,如果b 2-4ac ≥0,才可用公式求解) (三)一元二次方程的应用:其关键是能找出题目中的等量关系,列出方程本章的重点和难点是:一元二次方程的解法和应用.第二环节:课堂练习内容:以投影形式展示一组基础题目,内容涉及一元二次方程的定义和解法.其中,1、2小题采取口答形式,第3、4小题对比来做,体会其中的方法,第5aac b b x 242-±-=㈠ 问题情景---- —元二次方程1、定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程. ⑴ 直接开平方法 ⑵ 配方法 ⑶ 公式法 ax 2+bx+c=0 (a ≠0,b 2-4ac ≥0)的解为: a ac b b x 242-±-= ⑷ 分解因式法2、解法:3、应用 :其关键是能根据题意找出等量关系.目的:上述这一组题目主要目的是巩固对一元二次方程定义的理解、熟练地解一元二次方程.其中,第1、2小题对比,加深学生对一元二次方程和一元一次方程定义的理解;第3、4小题均是对一元二次方程配方法掌握程度的检验,同时,这部分内容所涉及的方法也是后续“二次函数”学习的基础,此处,也为二次函数的学习奠定一定的基础;第5小题设置三道小题,分别限定方法让学生来解一元二次方程,让学生熟练方程的解法.实际效果:对于第1题,学生普遍掌握比较好,但对于与之对比的第2题,有部分同学存在一定的问题,尤其是对于何时是一元一次方程,更是没有思路,通过这两道题的对比,使学生对方程的定义更加深了理解,也明确了判断一个方程是何类方程时,不仅要关注未知数的次数,还要注意系数;对于第5小题中的第(3)小题,部分学生直接用分解因式法来做,这也是本题设置的一个重要意图:当方程中等式右侧不为0时,不可以直接用分解因式法来做,而要先化成一般形式,再具体选用方法.通过这几道题,让学生关注了方程中的易错点,对于今后的学习也作了部分铺垫.第三环节:重难点突破内容:在本环节中,选择具有代表性的两个题目,提出问题,帮助学生分析问题、解决问题:目的:对本节知识重难点进行巩固练习.实际效果:通过对这些题目的具体分析,发展学生分析问题、解决问题的意识和能力,也为下学期二次函数的学习奠定一定的基础,体现了教材螺旋式上升的设计意图.第四环节:课堂小结内容:师生共同总结本节课的收获,内容主要设计以下几个方面:(1)整节课的感悟:如在解决概念性题目时,要注意领会概念的实质含义;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等;(2)解决问题时所用到的方法;(3)对于某个知识点的困惑;(4)通过本节课的学习,自己的最大收获.目的:关注学生对数学知识的理解、数学方法的掌握和数学情感的感悟,力争使每个层次的学生在本节课学有所获.实际效果:学生畅所欲言自己的切身感受与实际收获,每个同学的感受也揭示了各自的良好学习方法,为其他同学的学习、听讲等方面提供了有效的借鉴.第六环节:布置作业1、本节课中涉及的所有题目在课下进行分类整理,留作资料;2、针对自己对本章的理解,每名同学命制一份试卷,要求时间在60分钟左右,重点突出,难度适宜,并配有答案(此作业不要求第二天必须上交,给学生一定的收集资料时间).四、教学反思1、作为一章的复习课,本节课设置的内容较为全面细致,重点突出,课堂容量相对来说较大,学生的分组讨论从时间上来看较为紧张,因而,应该更好地规划对某些题目的处理.2、通过课前知识网络的整理、课堂展示讲解的过程,为学生提供展示自己的机会,更利于教师在此过程中发现学生的闪光点以及思维的误区,以便指导今后的教学.3、学生的学习合作小组也应该是动态的,所学知识的不同,学生的反应也不相同,在分组时,应该将思维形态类似的同学放在一组,这样,可以避免让一些思维活跃的学生代替了其他学生的思考,掩盖了其他学生的疑问.同时,教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.此外,作为一个较大的章节复习课,希望一节课完成上面所有的任务,是比较困难的,因此,建议根据学生状况灵活选择其中部分例习题,如有可能,将例习题分解成两个课时.。

安徽省枞阳县钱桥初级中学八年级数学下册 17.1 一元二次方程教案 (新版)沪科版

安徽省枞阳县钱桥初级中学八年级数学下册 17.1 一元二次方程教案 (新版)沪科版

17.1 一元二次方程教学流程安排教学过程设计「活动2」1、一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

眼疾口快:请抢答下列各式是否为一元二次方程:2、 2、一元二次方程的一般式:由以上问题得到3个方程,由学生观察归纳这3个方程的特征,给出名称并类比一元一次方程的定义,得出一元二次方程的定义.活动中教师应重点关注:(1) 引导学生观察所列出的3个方程的特点;(2) 让学生类比前面复习过的一元一次方程定义得到一元二次方程定义.(3) 强调定义中体现的3个特征:①整式;②一元;③2次.由学生以抢答的形式来完成此题,并让学生找出错误理由.其中(1)~(6)题较为让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.(7),(8)两个题目的设置,目的在于进一步加深学生对定义的掌握,尤其结合字母系数,加大题目难度,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌3、简单,学生可非常容易给出答案;而(7),(8)两题有一定难度,(7)需要进行分类讨论.此活动中,教师应注意对学生给出的答案作出点评和归纳.引导学生类比一元一次方程的一般形式,总结归纳一元二次方程的一般形式及项、系数的概念.握的目的.问题与情境师生行为设计意图试一试:下面给出了某个方程的几个特点:(1)它的一般形式为(2)它的二次项系数为5;(3)常数项是一次项系数的倒数的相反数。

「活动3」例1.某某四中为树立学生的先由教师在大屏幕上显示问题,由学生经过思考,给出符合条件的答案,全体学生进行判断是否正确.在此环节可设置一个小游戏,让答对学生给出类似条件,找其他同学回答给出的新问题,让大家进行判断给出的方程是否正确.此环节中,教师应注此题设置的目的在于加深学生对一般形式的理解采取游戏的形式以提高学生对数学学习的兴趣,参与课堂活动的积极性,还可鼓励学生课下继续以合作的形式进行学习.整理一元二次方程的项,去分母等.(4)让学生指出各项系数时,教师强调系数须带符合.问题与情境师生行为设计意图小试牛刀:你能否把下列方程整理成一般形式?例2、当m取何值时,方程是关于x的一元二次方程?考考你:判断下列关于x的方程是否是一元二次方程:( 为有理数);巩固练习学生整理一般形式的方法,并准确找出各项系数.此环节可找学生口答结果.此题是字母系数问题,由学生思考解题过程,让学生讲解此题,教师进行总结点评.大屏幕显示解题过程.此题由学生思考,讨论,并由学生给出结果并进行解释.此活动过程中,教师应重点关注:(1)此题目在上一题的基础上继续加大难度,第(1)题须强调先进行整理,再考虑二次项系数是否为零;第(2)题须先求出m值,再代入二次项系数中,验证是否为0,得到结让学生落实将刚才教师板书的整理一般形式的过程,再次突出本节课的重点内容此题为一元二次方程概念中常见题型,通过此题让学生加深对定义和一般形式的理解,为其他字母系数问题做好准备。

初中八年级初二数学教案 一元二次方程复习复习学案 师生共用讲学稿(期末复习)

初中八年级初二数学教案 一元二次方程复习复习学案 师生共用讲学稿(期末复习)

师生共用讲学稿年级:八年级(下) 学科:数学 设计:顾老师 内容:一元二次方程复习(一) 课型:期末复习 时间:6月1日一、一元二次方程及其解的概念1、一元二次方程:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。

一般形式:ax 2+bx +c =0 (a 、b 、c 是已知数,a ≠0)例1、下列方程中,属于一元二次方程的有①05322=--y x ②05322=-x ③x x 22= ④241x x=+ ⑤0322=--y y 练习1.关于_________时,是一元一次方程;当m _________时,是一元二次方程. 练习2.方程5(x 2-2x +1)=-32x +2的一般形式是__ ________,其二次项系数是__________,一次项系数是__________,常数项是__________.例2、若方程242=+-x mx x 的一个根 2。

则m=_______,另一个根是________;练习1.已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是( ) (A )11 (B )12 (C )13 (D )14练习2.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( ) (A )1,0 (B )-1,0 (C )1,-1 (D )无法确定二.一元二次方程的解法例3、用指定的方法解下列方程:(1)2(10)3x -= ——直接开平方法 (2) 22630x x -+= ——配方法(3) 291040x x +-= ——公式法 (4) 2250x x -= ——因式分解法例4、用适当的方法解下列方程09)12)(1(2=--x 14)2(2=-x x 5)2)(2()12(2)3(+-+=-x x x x(4)(6)2(6)x x x -=-- (5)42x )3x )(1x (+=++;;练一练:1、将方程02x 23x 2=-+化为n )m x (2=+的形式应为 . 2、x 2+y 2+4x –6y +13=0, x ,y 为实数,求x y 的值。

沪科版八年级数学下册教学设计《第17章一元二次方程数17.2一元二次方程的解法(第3课时)》

沪科版八年级数学下册教学设计《第17章一元二次方程数17.2一元二次方程的解法(第3课时)》

沪科版八年级数学下册教学设计《第17章一元二次方程数17.2一元二次方程的解法(第3课时)》一. 教材分析《第17章一元二次方程数17.2一元二次方程的解法(第3课时)》是沪科版八年级数学下册的教学内容。

本节课主要介绍一元二次方程的解法,包括因式分解法、配方法、求根公式法等。

通过本节课的学习,使学生掌握一元二次方程的解法,并能灵活运用解决实际问题。

二. 学情分析学生在之前的学习中已经掌握了一元二次方程的基本概念,具备了一定的代数基础。

但是,对于一元二次方程的解法,部分学生可能还存在一定的困难。

因此,在教学过程中,要关注学生的个体差异,针对不同的学生进行有针对性的教学。

三. 教学目标1.知识与技能:使学生掌握一元二次方程的解法,能够熟练运用因式分解法、配方法、求根公式法等解决实际问题。

2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一元二次方程的解法。

2.难点:灵活运用不同的解法解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一元二次方程的解法,使学生感受到数学与生活的联系。

2.启发式教学法:引导学生主动思考,探索一元二次方程的解法。

3.合作学习法:学生进行小组讨论,共同解决问题。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示一元二次方程的解法。

2.教学素材:准备一些实际问题,用于巩固学生的学习。

3.板书设计:设计清晰易懂的板书,帮助学生理解一元二次方程的解法。

七. 教学过程1.导入(5分钟)通过一个生活实例,引出一元二次方程的解法。

例如,假设小明买了一辆自行车,已知自行车的速度与时间的关系为v = at,其中a是加速度,t是时间。

小明想知道,在一定的加速度下,多长时间可以到达某个速度。

这个问题就可以转化为一个一元二次方程。

2.呈现(10分钟)呈现一元二次方程的解法,包括因式分解法、配方法、求根公式法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.2 一元二次方程的解法
教材内容
1.本节教学的主要内容.
解一元二次方程的方法.
2.本节内容在教材中的地位与作用.
一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.
教学目标
1.知识与技能
了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.
2.过程与方法
(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.
(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.
(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.
(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.
(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观
经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.
教学重点
1.一元二次方程及其它有关的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.
教学难点
1.一元二次方程配方法解题.
2.用公式法解一元二次方程时的讨论.
3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.
教学关键
1.分析实际问题如何建立一元二次方程的数学模型.
2.用配方法解一元二次方程的步骤.
3.解一元二次方程公式法的推导.
教学活动、习题课、小结2课时
一元二次方程(1)
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观:通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
重难点关键
1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,•那么门的高和宽各是多少?
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,•根据题意,•得________.整理、化简,得:__________.
问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.
如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a ≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P21练习2
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
教材P22习题2、3.
课后作业设计
一、选择题
1.在下列方程中,一元二次方程的个数是().
①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-=0
A.1个B.2个C.3个D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则().
A.p=1B.p>0C.p≠0D.p为任意实数
二、填空题
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为
_________.
2.一元二次方程的一般形式是__________.
3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.
三、综合提高题
1.a满足什么条件时,关于x的方程a(x2+x)=x-(x+1)是一元二次方程?
2.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么?
3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的:
设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:
所以,________<x<__________
所以,________<x<__________
(1)请你帮小明填完空格,完成他未完成的部分;
(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.。

相关文档
最新文档