圆周角定理.2.2圆周角(1)
圆周角定理与圆的切线
第2讲圆周角定理与圆的切线【2013年高考会这样考】考查圆的切线定理和性质定理的应用.【复习指导】本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法•A1 KAOJIiZIZHUDAOXUE “一亠—亠』01》考基自主导学基础梳理1. 圆周角定理⑴圆周角:顶点在圆周上且两边都与圆相交的角.⑵圆周角定理:圆周角的度数等于它所对弧度数的一_______(3)圆周角定理的推论①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.②半圆(或直径)所对的圆周角是90° 90。
的圆周角所对的弦是直径.2. 圆的切线(1)直线与圆的位置关系①切线的性质定理:圆的切线垂直于经过切点的半径.②切线的判定定理过半径外端且与这条半径垂直的直线是圆的切线.(3)切线长定理从圆外一点引圆的两条切线长相—3. 弦切角(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.(2)弦切角定理及推论①定理:弦切角的度数等于所夹弧的度数的一半.②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.双基自测1 •如图所示,△ ABC 中,/ C = 90° AB= 10, AC = 6,以AC为直径的圆与斜边交于点P,则BP长为___________ .解析连接CP.由推论2知/ CPA= 90°即CP丄AB,由射影定理知,AC2=AP AB.A AP= 3.6,二BP= AB—AP = 64 答案6.4 2•如图所示,AB、AC是。
O的两条切线,切点分别为B、C, D是优弧"BC上的点,已知/ BAC= 80° 那么/BDC = __________ .解析连接OB、OC,贝U OB 丄AB, OC X AC,:/ BOC= 180°— /BAC= 100°A / BDC = 2/BOC= 50°答案50 3. (2011广州测试(一))如图所示,CD是圆O的切线,切点为C, 点A、B在圆O上,BC= 1,/ BCD= 30°则圆O的面积为______ .解析连接OC, OB,依题意得,/ COB= 2/ CAB = 2/BCD =60° 又OB = OC,因此△ BOC是等边三角形,OB= OC= BC = 1,即圆O的半径为1, 所以圆O的面积为nX12= n.答案n4. (2011深圳二次调研)如图,直角三角形ABC中,/ B= 90°AB= 4,以BC为直径的圆交AC边于点D, AD = 2,则/C的大解析 连接 BD ,则有/ ADB = 90°.在 Rt A ABD 中,AB = 4, AD = 2,所以/ A = 60° 在 Rt A ABC 中,/ A = 60° 于是有/ C = 30° 答案 30°5. (2011汕头调研)如图,MN 是圆O 的直径,MN 的延长线与 圆O 上过点P 的切线PA 相交于点A ,若/ M = 30° AP = 2晶 则圆O 的直径为 .解析 连接OP ,因为/ M = 30°所以/ AOP = 60°因为PA 切圆O 于P ,所以AP 2^/3OP 丄AP ,在叱ADO中, OP=寸AO P = tan 丽y 故圆O 的直径为4.答案4*CAOXiANGTANJIUID*OXIi —净考向探究导析 考向一圆周角的计算与证明【例1】?(2011中山模拟)如图,AB 为。
圆周角定理(1)(2)合
C O
A DB
数学作业:
1.大演草:P21习题5.5 第1,2,3 2.试卷一张。
O
推论1:圆周角的度数等于它所对的弧的度
数的一半。
B
A
推论2:同弧或等弧所对的圆周角相等。
推论3:
A
(1)直径所对的圆周角是直角
(2) 90°的圆周角所对的弦是直径
C
.O
B
探究三:
研究一条弧,一条弦所对的角的情况:
一条弧对着一个圆心角 一条弦对着一个圆心角
一条弧对着无数个圆周角
.o
A
B
一条弦对着无数个圆周角(两侧都有)
A C
●O
B
探究二:
1.圆心在圆周 角的一边上
C
2.圆心在圆周 3.圆心在圆周
角的内部
C
角的外部
C
O
O
O
A
A
B
A
B
B
圆周角定理:
圆周角的度数等于它所对弧上的圆心角度数的一半。
推论1:圆周角的度数等于它所对的弧的度数的一半。
探究二:
圆周角定理:圆周角的度数等于它所对弧上的圆心角
度数的一半。
C
从圆周角定理你还能推理出什么结论?
圆周角 (合)
温故知新:
1.圆心角的定义?
O.
答:顶点在圆心的角叫圆心角.
B
C
2.圆心角的度数和它所对的弧的度数的 关系?
答:相等.
探究一:
让角的顶点不在圆心上,我们得到几种两边和圆是什么关系?
探究一:
圆周角定义: 顶点在圆上,并且两边都和圆相交
小练: 半径为3的圆中,一条长为3的弦所对的圆周角是多少度?
圆周角定理的三种证明方法
圆周角定理的三种证明方法
圆周角定理是几何中著名的定理,亦即“每个三角形的外接圆的内切圆与它的最大外接圆所成的圆周角相等”。
此定理由古希腊数学家艾西法 (Euclid) 于其《几何原本》第六章首次提出数千年前,随着数学的发展,有许多其他的证明方法也被提出:
1、几何距离证明法:两个圆的圆心距离为2R的话,就可以让它们的相切线同时证明最大外接圆的圆周角和最小内切圆的圆周角相等。
可以用两等腰直角三角形向根据勾股定理来演算出,两个圆周角的圆心角度都是相等的。
2、数学归纳法:也就是艾西法于其《几何原本》所作的证明,即归纳法可以证明不论外接圆的半径有什么样的大小它们所成的圆周角都是相等的。
3、几何投影证明法:几何投影证明法通过找到三角形它的内切圆和最大外接圆,把两个圆投影到平面上,将圆心连线作为投影线,使投影线在它们之间形成一条射线,然后可以推出它们所成的圆周角相等。
圆周角定理 课件
3.关于圆周角定理推论的理解
(1)在推论1中,注意:“同弧或等弧”改为“同弦或等弦” 的话结论就不成立了,因为一条弦所对的圆周角有两种可 能,在一般情况下是不相等的.
(2)圆心角的度数和它所对的弧的度数相等,但并不是 “圆心角等于它所对的弧”.
(3)“相等的圆周角所对的弧也相等”的前提条件是“在 同圆或等圆中”.
【示例2】 如图,D,E分别为△ABC边AB,AC 的中点,直 线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD.
证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又 已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD = AD. 而 CF∥AD , 连 接 AF , 所 以 ADCF 是 平 行 四 边 形 , 故 CD=AF.
证明 连结 CE、CF、EF,∵BC 为⊙O 的直径,∴∠BFC =90°,∠BEC=90°.又∵∠ACB=90°,∴∠BCE=∠A. 又∵∠BFE=∠BCE,∴∠BFE=∠A.又∵∠EBF=∠DBA, ∴△BEF∽△BDA.∴EBFE=ABDD. ∵∠BFC=∠BCA,∠CBD=∠CBD, ∴△CBF∽△DBC.∴CBCF=CBDD. 又∵AD=CD,∴EBFE=CBCF,∴BBCE=CEFF.
(4)在同圆或等圆中,由弦相等⇒弧相等时,这里的弧要求 同是优弧或同是劣弧,一般选劣弧.
题型一 圆中相关角度数的求解
【例 1】 在半径为 5 cm 的圆内有长为 5 3 cm 的弦 AB,求此弦
所对的圆周角.
[思维启迪] 对于弦所对的圆周角要考虑全面.
解 如图所示,过 O 点作 OD⊥AB 于点 D.因为 OD⊥AB,OD
反思感悟 弦所对的圆周角有两个,易丢掉120°导致错误,另外求圆周角时易应用到解三角形的知识.
圆周角和圆心角的关系—知识讲解(基础)
圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。
圆周角定理及其推论
圆周角定理及其推论圆周角定理是一个重要的几何定理,它规定了三角形内角之和与圆周角之间的关系,从而形成一种经典的几何定理,被广泛应用于几何学和数学中。
关于圆周角定理的历史有很多,就其本身的来源来说,圆周角定理的最早证明可以追溯到古希腊数学家阿基米德,而后经过不同数学家的发展、研究和思考,使得圆周角定理的结构更加完善。
一般来说,圆周角定理讲的是三角形内角之和与圆周角之间的关系,而所指的圆周角是指由三角形所在的圆上某点到另一点之间的弧度,它可以用角度来表示。
圆周角定理用数学语言记述就是,如果把圆上的任一点当作三角形的顶点,将其余两点当作边的端点,此时此三角形的内角之和为180°,这就是圆周角定理的本质。
从实际几何中得出的圆周角定理,有利于我们更深入地理解几何中涉及到的三角形,有助于推理类题目的解答,这种推理关系也被称作三角恒等式,表示两等腰三角形两个内角之和等于三角形外角之和,即内角和=外角,这是圆周角定理的推论之一。
圆周角定理的另一个推论就是全等三角形恒等式,即三角形内角两两等边的三角形,它的三个角的大小相等,即相等的三角形的三个内角之和也等于180°,这是圆周角定理的另一个推论,又称为“全等三角形定理”。
圆周角定理的发现和研究对几何学的发展有重要意义,它为几何学到达发展的新高度和完善提供了重要的理论基础,同时也为数学建立了一种经典的定理模型,并且广泛应用于几何学和数学中。
因此,圆周角定理被广泛应用于几何学和数学中,它影响着我们对几何定理的理解,以及在几何学里面的推理思维,它也是我们几何学课本里面比较重要的定理,引用它可以使我们更好的理解几何形式和推理思维的重要性。
圆周角定理的发现,让我们更好地理解几何,使得更多的几何问题得到解决,从而为我们几何学的发展提供更多有利的条件。
它也为数学研究提供了一种经典的定理结构,从而推动了数学自身的发展和提高,使得数学越来越完善。
归纳总结,圆周角定理的本质是三角形内角之和为180°,它有两个推论:三角形恒等式和全等三角形恒等式,它是几何学和数学中经典的定理,并且对几何学的发展和完善有重要的意义,对数学也起到了推动作用。
圆周角概念和性质
圆周角教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?老师点评:(1)我们把顶点在圆心的角叫圆心角.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法回答下面的问题.1.一个弧上所对的圆周角的个数有多少个?2.同弧所对的圆周角的度数是否发生变化?3.同弧上的圆周角与圆心角有什么关系?(学生分组讨论)提问二、三位同学代表发言.老师点评:1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且 它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示 EF∵∠AOC 是△ABO 的外角∴∠AOC=∠ABO+∠BAO∵OA=OB∴∠ABO=∠BAO∴∠AOC=∠ABO∴∠ABC=∠AOC (2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=∠AOC 吗?请同学们独立完成这道题的说明过程. 老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .(3)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=∠AOC 吗?请同学们独立完成证明. 老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=∠AOD-∠COD=∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.从(1)、(2)、(3),我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可.解:BD=CD理由是:如图24-30,连接AD∵AB 是⊙O 的直径∴∠ADB=90°即AD ⊥BC又∵AC=AB∴BD=CD三、巩固练习1.教材P92 思考题.2.教材P93 练习.四、应用拓展例2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:===2R . 分析:要证明===2R ,只要证明=2R ,=2R ,=2R ,即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB∵CD 是直径121212121212sin a A sin b B sin c Csin a A sin b B sin c C sin a A sin b B sin c C2a R 2b R 2cR∴∠DBC=90°又∵∠A=∠D在Rt △DBC 中,sinD=,即2R= 同理可证:=2R ,=2R ∴===2R 五、归纳小结(学生归纳,老师点评)本节课应掌握:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.应用圆周角的定理及其推导解决一些具体问题.六、布置作业1.教材P95 综合运用9、10、 BC DC sin a Asin b B sin c Csin a A sin b B sin c C。
人教版初中九年级上册数学课件 《圆周角》圆(第1课时圆周角及其定理)
A.140° C.60°
B.70° D.40°
8
5.某小区新建一个圆形人工湖,如图所示,弦 AB 是湖上一座桥,已知桥 AB 长为 200 m,测得圆周角∠ACB=45°,则这个人工湖的直径 AD 长为___2_0_0__2_____m.
9
6.如图,在⊙O 中,弦 AC=2 3,B 是圆上一点,且∠ABC=45°,则⊙O 的 半径 r=___6___.
17
解:(1)∵∠APC=∠CPB=60°,∠BAC=∠CPB,∠ABC=∠APC,∴∠ABC =∠BAC=60°,∴△ABC 为等边三角形.
(2)PC=PA+PB.证明:在 PC 上截取 PD=PA,连接 AD.∵∠APC=60°,∴ △APD 是等边三角形,∴AD=PA=PD,∠ADP=60°,∴∠ADC=120°.又∵∠APB =∠APC+∠BPC=120°,∴∠ADC=∠APB.又∵∠ACP=∠ABP,∴△APB≌△ ADC(AAS),∴PB=DC.又∵PD=PA,∴PC=PA+PB.
18
︵ (3)在AB上任取一点 P,过点 P 作 PE⊥AB,垂足为点 E,过点 C 作 CF⊥AB,垂足 为点 F.∵S△APB=12AB·PE,S△ABC=12AB·CF,∴S 四边形 APBC=12AB·(PE+CF).当点 P
︵ 为AB的中点时,PE+CF=PC 最长,即 PC 为⊙O 的直径,此时四边形 APBC 的面 积最大.又∵⊙O 的半径为 1,∴易得等边三角形的边长 AB= 3,∴四边形 APBC 的最大面积为 S 四边形 APBC=12×2× 3= 3.
A.16° B.32°
C.58° D.64°
分析:∵AB是⊙O的直径, ∴∠ADB=90°,∴∠A=90°- ∠ABD=32°,∴∠BCD=∠A= 32°.
圆周角定理 课件
1.圆周角定理:圆上一条弧所对的圆周角等于它所对的圆 心角的________.
应当注意的是,圆周角与圆心角一定是对着__________,它 们才有上面定理中所说的数量关系.
2.圆心角定理:圆心角的度数________它所对弧的度数.
解析:如图所示,
过点 O 作 OD⊥AB 于点 D.因为 OD⊥AB,OD 经过圆心,
所以 AD=BD= 5 3 (cm).在 Rt△AOD 中,OD= OA2 AD2 2
= 5 (cm),所以∠OAD=30,所以∠AOD=60.所以∠AOB= 2
2∠AOD=120,所以∠ACB= 1 ∠AOB=60.因为∠AOB=120, 2
答案:B
4.已知D、C是以AB为直径的圆弧上的两点,若 BC 所对的圆周角为25°,AD 所对的圆周角为35°,则 DC 所 对的圆周角为( C )
A.30°
B.40°
C.30°或80°
D.80°
5.如图所示,已知AB是半圆O的直径,弦AD、BC相 交于点P,那么 CD 等于( B )
AB
A.sin∠BPD C.tan∠BPD
2.通过圆周角定理的分析、证明,我们可以看到,在几 何里讨论问题时,常常从特殊情况入手,因为在特殊情况下 问题往往容易解决,如下图中,中间一种情况为圆周角的一 边经过圆心,此时∠AOB=2∠C很容易证明.特殊情况下的 问题解决之后,再想办法把一般情况下的问题转化为特殊情 况下的问题,如下图左图和右图的情况,通过辅助线,把它 们变成中间那样的两个角的和或差,这样利用特殊情况下的 结论,便可使一般情况下的结论得证.
所以 AEB 的度数为 120, ACB 的度数为 240.所以∠AEB= 1 240=120.所以此弦所对的圆周角为 60或 120. 2
第一章 §2 2.1 圆周角定理
2.1 圆周角定理对应学生用书P12]1.圆周角定理(1)文字语言:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半.(2)符号语言:在⊙O BAC,∠BOC,则有∠BAC=∠BOC=(3)图形语言:如图所示.2.圆周角定理的推论(1)推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(2)推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弧是半圆.1.圆周角定理中圆周角与圆心角所对的弧是同一段弧吗?提示:一定对着同一条弧才能有定理中的数量关系.2.推论1中若把“同弧或等弧”改为“同弦或等弦”结论还成立吗?提示:不成立.因为一条弦所对的圆周角有两种可能,在一般情况下是不相等的.对应学生用书P13]利用圆周角定理解决计算问题[例1][思路点拨] 本题主要考查圆周角定理.顶点A的位置不确定,所以点A和圆心O可能在BC的同侧,也可能在BC的异侧.[精解详析] (1)当点A和圆心O在BC的同侧时,如图①所示.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BAC=∠BOC=55°.(2)当点A和圆心O在BC的异侧时,如图②所示.设P为圆上与圆心O在BC的同侧一点,连接PB,PC.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BPC=∠BOC=55°.∴∠BAC=180°-∠BPC=180°-55°=125°.综上所得,∠A的度数是55°或125°.使用圆周角定理时,一定要注意“同一条弧”所对的圆周角与圆心角这一条件.1.如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是( )A.40° B.25°C.50° D.60°解析:选A 连接OB.因为∠A=50°,所以BC弦所对的圆心角∠BOC=100°,∠COD=∠BOC=50°,∠OCD=90°-∠COD=90°-50°=40°.所以∠OCD=40°.[例2] 如图,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4 cm.(1)试判断OD与AC的关系;(2)求OD的长;(3)若2sin A-1=0,求⊙O的直径.[思路点拨] 本题主要考查圆周角定理推论2的应用.解题时,可判断∠ACB=90°.利用OD∥BC可得OD⊥AC.用相似可得OD的长,由边角关系可求⊙O的直径.[精解详析] (1)∵AB为⊙O的直径,∴∠ACB=90°.∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC.(2)∵△AOD∽△ABC,∴==,∴OD=BC=×4=2(cm).(3)∵2sin A-1=0,∴sin A=.∵sin A=,∴=,∴AB=2BC=2×4=8(cm).“半圆(直径)所对的圆周角是直角,和直径能构成直角三角形”这一性质应用广泛,解题时注意直角三角形中有关定理的应用.本例的条件变为:“弦AC=4,BC=3,CD⊥AB于D”,求CD.解:由勾股定理知AB=5,∵S△ACB=AC·BC=AB·CD,∴3×4=5×CD,∴CD=.利用圆周角定理解决证明问题[例3]E,求证:AE =BE.[思路点拨] 本题主要考查利用圆周角定理证明问题.解题时只需在△ABE中证明∠ABE=∠EAB.而要证这两个角相等,只需借助∠ACB即可.[精解详析] ∵BC是⊙O的直径,∴∠BAC为直角,又AD⊥BC,∴Rt△BDA∽Rt△BAC.∴∠BAD=∠BCA.FBA=∠ACB.∴∠BAD=∠FBA.∴△ABE为等腰三角形.∴AE=BE.有关圆的题目中,圆周角与它所对的弧及弦可以相互转化.即欲证圆周角相等,可转化为证明它们所对的弧相等.要证线段相等可以转化为证明它们所对的弧相等.这是证明圆中线段相等的常用方法.2.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD.(2)△ABC≌△ODB.证明:(1)因为AB是⊙O的直径,所以∠ACB=90°,由∠ABC=30°,所以∠CAB=60°.又OB=OC,所以∠OCB=∠OBC=30°,所以∠BOD=60°,所以∠CAB=∠BOD.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,所以AC=OB.由BD切⊙O于点B,得∠OBD=90°.在△ABC和△ODB中,所以△ABC≌△ODB.本课时主要考查圆周角定理及推论的计算与证明问题,难度中档.[考题印证]如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.[命题立意]本题主要考查圆周角定理的推论及平行线的性质.[自主尝试] 连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B.于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.对应学生用书P14]一、选择题1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是( )A.AE=BE B.OE=DEC.∠AOD=50° D.D解析:选B 因为CD是⊙O的直径,弦AB⊥CD,AE=BE,因为∠BCD=25°,所以∠AOD=2∠BCD=50°,故A,C,D正确,B不能得证.2.如图所示,AB是⊙O的直径,C AC=8,BC=6,则⊙O的半径r等于( )A. B.5C.10 D.不确定解析:选B 由已知得∠ACB=90°,∴AB==10,即2r=10,r=5.3.如图,直径为10的⊙C经过点A(0,5)和点O(0,0),B是y轴右侧⊙C弧上一点,则cos∠ABO的值为( )A. B.C. D.解析:选B 法一:设⊙C与x轴另一个交点为D,连接AD,如图所示:因为∠AOD=90°,所以AD为⊙C的直径,又因为∠ABO与∠ADO为圆弧AO所对的圆周角,所以∠ABO=∠ADO,又因为A(0,5),所以OA=5,在Rt△ADO中,AD=10,AO=5,根据勾股定理得:OD==5.所以cos∠ABO=cos∠ADO===,故选B.法二:连接CO,因为OA=5,AC=CO=5,所以△ACO为等边三角形,∠ACO=60°,∠ABO=∠ACO=30°,所以cos∠ABO=cos 30°=.4.已知P R都在弦AB的同侧,且点P Q的圆内,点R(如图),则( )A.∠AQB<∠APB<∠ARBB.∠AQB<∠ARB<∠APBC.∠APB<∠AQB<∠ARBD.∠ARB<∠APB<∠AQB解析:选D 如图所示,延长AQ交圆O于点C,设AR与圆O相交于点D,连接BC,BD,则有∠AQB>∠ACB,∠ADB>∠ARB.因为∠ACB=∠APB=∠ADB,所以∠AQB>∠APB>∠ARB.二、填空题5.如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是.解析:因为∠AOC=60°,所以弧ABC的度数为60°,AC对的优弧的度数为360°-60°=300°,所以∠ABC=150°.答案:150°6.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为.解析:因为∠BOD=100°,所以∠A=∠BOD=50°.因为∠B=60°,所以∠C=180°-∠A-∠B=70°.答案:70°7.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=68°,则∠BAC= .解析:因为AB是圆O的直径,所以弧ACB的度数为180°,它所对的圆周角为90°,所以∠BAC=90°-∠ABC=90°-∠ADC=90°-68°=22°.答案:22°8.如图,在半径为2 cm的⊙O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为.解析:作OC⊥AB于C,则BC=,在Rt△BOC中,∵OC===1(cm),∴=,∴sin∠B=,∠B=30°,∴∠BOC=60°,∴∠AOB=120°.答案:120°三、解答题9.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C=.求⊙O的半径长.解:作直径AD,连接BD,则∠ABD=90°,∠D=∠C.因为sin C=,所以sin D=.在Rt△ABD中,sin D==,又因为AB=16,所以AD=16×=20,所以OA=AD=10,即⊙O的半径长为10.10.如图,已知在⊙O中,直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交⊙O于D,求BC,AD和BD的长.解:因为AB为直径,所以∠ACB=∠ADB=90°.在Rt△ABC中,BC===8(cm).因为CD平分∠ACB,所以△ADB为等腰三角形.所以AD=BD=AB=×10=5(cm).11.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C.(1)求证:CB∥MD.(2)若BC=4,sin M=,求⊙O的直径.解:(1)证明:因为∠C与∠M是同一弧所对的圆周角,所以∠C=∠M.又∠1=∠C,所以∠1=∠M,所以CB∥MD(内错角相等,两直线平行).(2)由sin M=知,sin C=,所以=,BN=×4=.由射影定理得:BC2=BN·AB,则AB=6.所以⊙O的直径为6.。
圆周角
圆周角主要内容:(一)圆周角1. 定义:顶点在圆上,两边都与圆相交的角,叫圆周角。
如图,∠BAC强调圆周角与圆心角的区别。
2. 圆周角的性质:定理:一条弧所对的圆周角等于它所对的圆心角的一半。
强调:(1)定理的证明思路和方法,强调分类、归纳的数学思想。
(2)圆周角和圆心角存在关系的前提是它们对着同一条弧。
推论:(1)在同一圆(或相等的圆)中,同弧或等弧所对的圆周角相等;反之,相等的圆周角所对的弧相等。
(2)直径(或半圆)所对的圆周角是直角;反之,90°的圆周角所对的弦是直径。
说明:(1)圆周角的性质定理和推论是圆中证明两角相等、两条线段相等、两条弦相等的重要依据,还能确定直径,在计算和作图中应用较广。
(2)若将“同弧或等弧”改为“同弦或等弦”,则结论不成立,如果一条弦所对的圆周角有两种情况:相等或互补。
如图中,∠ACB=∠ADB∠ACB+∠AEB=180°∠ADB+∠AEB=180°(二)圆的确定1. 过一点的圆有无数个。
2. 过两点的圆有无数个。
3. 过不在同一直线上的三点确定一个圆。
4. 三角形的外接圆和圆的内接三角形。
5. 三角形的外心是三边垂直平分线的交点。
它到三角形三个顶点的距离相等。
锐角三角形的外心在三角形内部。
直角三角形的外心是斜边中点。
钝角三角形的外心在三角形的外部。
【典型例题】例1.分析:则∠C=∠D,易解。
解:作直径AD,连结BD则∠ABD=90°,∠D=∠C即⊙O的半径长为10例2. 如图,已知在⊙O中,弦AB⊥CD,连结AD、BC,OE⊥BC于点E。
分析:略证明:作直径BF,连结FA、FC则∠BCF=∠BAF=90°∵OE⊥BC,∴CE=BE又OB=OF,∴OE为△BCF的中位线又AB⊥CD,FA⊥AB∴FA∥CD例3.且DG⊥AB于点G。
分析:略(1)证明:如图∴∠1=∠A又∠ADB=∠BDE,∴△BDE∽△ADB又AB为直径,∴∠ADB=90°例4.分析:略解:(1)当点A在弦BC所对的优弧上时,如图(1)连OB、OC,过O作OD⊥BC于D(2)当点A在弦BC所对的劣弧上时,如图(2)求∠BOC=120°的方法同前。
第十二讲 圆周角
1第十三讲 圆周角一、知识要点回顾:1、圆周角定理:在同圆或等圆中,同弧(或等弧)所对的圆周角 ;同弧(或等弧)所对的圆周角等于圆心角的 .推论:直径(或半圆)所对的圆周角是直角, 90°的圆周角所对的弦是直径.在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定 。
2、圆内接四边形的相关性质:圆的内接四边形的对角 ,并且任何一个外角都 它的内对角二、典例讲析:例1:如图,△ABC 的顶点A 、B 、C 都在⊙O 上,∠C =30 °,AB =2,则⊙O 的半径是 。
例2: 如图,在△ABC 中,∠A =60°,以BC 为直径的半圆O 分别交AB 、AC 于E 、D ,若BC =2,求DE 的长。
例3:如图⊙O 1与⊙O 2都经过A 、B 两点,经过点A 的直线CD 与⊙O 1 交于点C ,与⊙O 2 交于点D 。
经过点B 的直线EF 与⊙O 1 交于点E ,与⊙O 2 交于点F 。
求证:CE ∥DF三、巩固提高:1、判断正误(1)、同弧或等弧所对的圆周角相等( ) (2)、相等的圆周角所对的弧相等( )(3)、90°角所对的弦是直径( ) (4)、直径所对的角等于90°( )(5)、长等于半径的弦所对的圆周角等于30°( )(6)、 圆上任意两点之间分圆周为两条弧,这两条弧的度数和为3600( )2、四边形ABCD 内接于⊙O ,则∠A+∠C=______ ∠B+∠ADC=_______;若∠B=80°,则∠ADC=____ ∠CDE=______3、四边形ABCD 内接于⊙O ,∠AOC=100°则∠B=______∠D=______2 4、四边形ABCD 内接于⊙O, ∠A:∠C=1:3,则∠A=_____,5、梯形ABCD 内接于⊙O,AD ∥BC, ∠B=750,则∠C=_____,圆的内接梯形一定是 梯形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周角
第1课时圆周角(1)
【教学目标】
1.理解圆周角的定义,会区分圆周角和圆心角.
2.能在证明或计算中熟练运用圆周角的定理.
【教学重点】
理解并掌握圆周角的概念及圆周角与圆心角之间的关系,能进行有关圆周角问题的简单推理和计算.
【教学难点】
分类讨论及由特殊到一般的转化思想的应用.
【教学过程】
一、导
1.圆心角的定义?顶点在圆心的角叫圆心角.
2.圆心角的度数和它所对的弧的度数的关系?相等.
3、判断题:
(1)相等的圆心角所对的弧相等。
×
(2)等弦对等弧。
×
(3)等弧对等弦。
√
二、学
(一)学习目标:
1.理解圆周角的定义,会区分圆周角和圆心角.
2.能在证明或计算中熟练运用圆周角的定理.
(二)自学指导:
阅读教材P49-50,回答下列问题:
问题1 AB所对的圆周角有几个?
问题2 度量下这些圆周角的关系.
问题3 这些圆周角与圆心角∠AOB的关系.
①AB所对的圆周角的个数有无数个.
②通过度量,这些圆周角相等.
③通过度量,同弧对的圆周角是它所对圆心角的一半. 完成下列问题:
1.如图所示的角中,哪些是圆周角?
2.顶点在______上,并且两边都与圆_________的角叫做圆周角.
3.在同圆或等圆中,_____或_______所对的圆周角相等,都等于这条弧所对的______的一半.
4.在同圆或等圆中,相等的圆周角所对的弧也_______. 三、教、
1、圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角. 特征:① 角的顶点在圆上.
② 角的两边都与圆相交
.
2
还可以得出下面推论:
同圆或等圆中,如果两个圆周角相等,那么它们所对的弧一定相等;
四、练
1.如图,在⊙O 中,AD=DC ,则图中相等的圆周角的对数是() A.5对
B.6对
C.7对
D.8对
2.如图所示,点A ,B ,C ,D 在圆周上,∠A=65°,求∠D 的度数.
第2题图
第3题图
3.如图所示,已知圆心角∠BOC=100°,点A 为优弧BC 上一点,求圆周角∠BAC 的度数.
4.如图所示,在⊙O 中,∠AOB=100°,C 为优弧AB 的中点,求∠CAB 的度数.
【分析】在圆中利用同弧所对的圆周角相等推得角相等是灵活对角进行等量转换的关键,要特别注意等弧所对的圆心角也相等.
五、师生互动,课堂小结
1 、这节课主要学习了两个知识点: (1)圆周角定义。
(2)圆周角定理及其定理应用。
2、方法上主要学习了圆周角定理的证明渗透了“特殊到一般”的思想方法和分类讨论的思想方法。
3、圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点。
六、作业
教材P56第3~5题.
【教学反思】
本节课学习了圆周角的定义以及圆周角定理的推导。
有部分学生对数形结合思想理解不够,以后应该多加强这方面能力的培养。