太阳能光伏并网控制逆变器工作原理及控制方法
光伏并网逆变器工作原理
光伏并网逆变器工作原理
光伏并网逆变器是一种将光伏发电系统产生的直流电转换为交流电并与电网进行连接的设备,其工作原理如下:
1. 光伏发电:光伏电池板将太阳光转换为直流电。
当太阳光照射到光伏电池板上时,光子的能量激发电池中的电子,从而产生直流电。
2. MPPT控制:光伏并网逆变器内部配备了最大功率点跟踪(MPPT)控制器。
MPPT控制器可以监测光伏电池板的输出电压和电流,并通过适当调节输出电流和电压的方式,以最大效率地提取光伏电池板所能提供的最大功率。
3. 直流-交流转换:光伏并网逆变器将从光伏电池板获得的直流电转换为电网所需的交流电。
首先,逆变器内部的整流器将输入的直流电转换为中间直流电,然后通过高频变压器将中间直流电转换为交流电。
4. 同期控制:为了保证光伏发电系统并网运行时能够与电网保持同频同相,光伏并网逆变器内部配备了同期控制器。
同期控制器可以通过监测电网的电压和频率,并相应调整逆变器输出的电流和电压,以确保光伏发电系统与电网保持同步运行。
5. 并网连接:光伏并网逆变器将转换后的交流电与电网进行连接。
逆变器会通过电网侧的保护装置,如断路器和接地装置,确保逆变器与电网之间的安全连接。
通过以上工作原理,光伏并网逆变器能够将光伏发电系统产生的直流电转换为交流电,并将其注入电网中,实现对电网的供电。
太阳能光伏逆变器的工作原理和作用介绍
光伏逆变器又称电源调整器,可以将光伏太阳能板产生的可变直流电压转换为市电频率交流电的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。
一、光伏逆变器工作原理逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关,使直流输入变成交流输出。
当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。
一般需要采用高频脉宽调制,使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列。
然后让脉冲波通过简单的滤波器形成正弦波。
二、光伏逆变器的作用光伏逆变器不只具有直交流变换功用,还具有最大限制地发扬太阳电池功能的功用和系统毛病维护功用。
归结起来有主动运转和停机功用、最大功率跟踪节制功用、防独自运转功用、主动电压调整功用、直流检测功用、直流接地检测功用。
1、主动运转和停机功能早晨日出后,太阳辐射强度逐步加强,太阳能电池的输出也随之增大,当达到逆变器任务所需的输出功率后,逆变器即主动开始运转,进入运转后,逆变器便每时每刻看管太阳能电池组件的输出,只需太阳能电池组件的输出功率大于逆变器任务所需的输出功率,逆变器就继续运转;直到日落停机,即便阴雨天逆变器也能运转。
当太阳能电池组件输出变小,逆变器输出接近0时,逆变器便构成待机状态。
2、最大功率追踪MPPT功能当日照强度和环境温度变化时,光伏组件输入功率呈现非线性变化,光伏组件既不是恒压源,也不是恒流源,它的功率随着输出电压改变而改变,和负载没有关系。
它的输出电流随着电压升高一开始是一条水平线,到达一定功率时,随着电压升高而降低,当到达组件开路电压时,电流下降到零。
3、孤岛效应的检测及控制功能在正常发电时,光伏并网发电系统连接在电网上,向电网输送有效功率,但是,当电网失电时,光伏并网发电系统可能还在持续工作,并和本地负载处于独立运行状态,这种现象被称为孤岛效应。
逆变器出现孤岛效应时,会对人身安全,电网运行,逆变器本身造成极大的安全隐患,因此逆变器入网标准规定,光伏并网逆变器必须有孤岛效应的检测及控制功能。
光伏电站并网逆变器功率控制
光伏电站并网逆变器功率控制光伏电站并网逆变器功率控制是光伏发电系统中一个重要的技术环节。
它的作用是将太阳能光伏板所产生的直流电转换为交流电,并输出到电网中供用户使用。
在光伏电站中,逆变器是一个核心设备,它具有功率控制的功能,能够根据光伏板的输出功率、电网的负荷情况以及系统的安全性要求等因素,动态地调整逆变器的功率输出,以保证系统的运行稳定和安全。
本文将对光伏电站并网逆变器功率控制的原理和方法进行探讨。
一、光伏电站的运行原理在光伏电站中,光伏板接收太阳能辐射,将太阳能转化为电能。
由于光伏板的输出是直流电,而电网需要的是交流电,因此需要使用逆变器将直流电转换为交流电,并将其输出到电网中。
光伏电站的运行非常依赖于光照强度和太阳的角度。
当太阳照射光伏板时,光子会与光伏板上的半导体材料发生光电效应,产生电子-空穴对。
通过将这些电子-空穴对引导到电池片中,就可以形成电流。
这就是光伏板产生电能的基本原理。
二、光伏电站并网逆变器功率控制的意义光伏电站并网逆变器功率控制在光伏发电系统中具有重要的意义。
它能够根据光伏板的输出功率和电网的负荷情况,动态地调整逆变器的功率输出。
这样可以确保光伏电站对电网的稳定供电,并能够将多余的电能注入到电网中。
另外,光伏电站并网逆变器功率控制还能够提高系统的安全性,避免超载和故障等问题的发生。
三、光伏电站并网逆变器功率控制的方法光伏电站并网逆变器功率控制的方法主要包括响应式功率控制和主动功率控制两种。
响应式功率控制是根据电网电压和频率的变化来调节逆变器的输出功率。
当电网电压或频率发生变化时,逆变器能够根据这些变化自动调整输出功率,以保证光伏电站对电网的稳定供电。
这种方法的优点是实现简单、成本低,但其响应速度相对较慢。
主动功率控制是通过控制逆变器的工作方式和输出功率,来实现对光伏电站的功率控制。
在这种方法中,逆变器可以通过监测光伏板的输出功率和电网的负荷情况,来动态地调整逆变器的功率输出。
太阳能发电-光伏逆变器并网控制
光伏逆变器并网控制的应用有助于优 化能源结构,促进可再生能源的发展, 从而推动能源转型和可持续发展。
光伏逆变器未来的发展方向与趋势
高效化
随着技术的不断进步,光伏逆变器的转换效率和可靠性将得到进一步提升,以满足市场对高效、可靠、安全等性能的 需求。
智能化
随着物联网、云计算、大数据等技术的发展,光伏逆变器的智能化水平将得到提升,能够实现远程监控、智能运维、 故障预警等功能,提高运维效率。
集成化
未来光伏逆变器将更加集成化,能够实现多种能源的整合与优化,如光、风、储能等,形成多能互补的 能源系统,提高能源利用效率。
THANKS FOR WATCHING
感谢您的观看
加强光伏逆变器与智能电网的集成和互联, 实现高效、安全、可靠的能源管理。
05
结论
光伏逆变器并网控制的重要意义
提高能源利用效率
光伏逆变器并网控制能够将太阳能转 化为电能,提高能源的利用效率,减 少对化石燃料的依赖,从而降低碳排 放,保护环境。
优化能源结构
提升电网稳定性
光伏逆变器并网控制能够平滑地接入 电网,提高电网的稳定性和可靠性, 降低因新能源接入带来的电网波动和 故障风险。
分布式发电系统适用于家庭、企业、学校等小型场所,能够满足其日常用电需求, 提高能源利用效率。
光伏逆变器在大型集中式电站中的应用
大型集中式电站是利用大量光伏 组件将太阳能转化为直流电,再 通过集中 的应用,能够提高系统的转换效 率和可靠性,降低建设和维护成
发展趋势
未来光伏逆变器的发展将朝着更高效率、更高可靠性、更低成本、更灵活并网方案等方向发展。同时 ,随着智能电网和分布式能源的兴起,光伏逆变器的智能化和集成化将成为重要趋势。
光伏发电并网逆变器设计及其控制实现
光伏发电并网逆变器设计及其控制实现光伏发电并网逆变器是一种将光伏电池组发出的直流电能转换为交流电能并与电网连接的装置。
它在光伏发电系统中起着重要的作用,能够将光伏电池组产生的直流电能转化为交流电能供电网使用,从而实现将太阳能转化为电能的目的。
本文将对光伏发电并网逆变器的设计原理及其控制实现进行详细介绍。
光伏发电并网逆变器的设计原理是将光伏电池组发出的直流电能经过逆变器的转换,变为符合电网要求的交流电能。
其主要功能包括功率调节、电网电压频率跟踪以及电网短路保护等。
在设计过程中,需要考虑逆变器的效率、可靠性以及控制精度等因素。
光伏发电并网逆变器的组成主要包括直流侧和交流侧两个部分。
直流侧主要由光伏电池组、直流输入滤波电路和直流侧逆变器构成。
交流侧主要由交流输出滤波电路、逆变桥和输出变压器构成。
在设计中,需要对每个部分进行设计和参数选择,以保证逆变器的正常运行。
光伏发电并网逆变器的控制实现主要包括两个方面:MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制和电网逆变控制。
MPPT控制是为了保证光伏电池组能够始终工作在最大功率点上,通过调整光伏电池组的工作电压和电流,以获得最大功率输出。
电网逆变控制是为了保证逆变器能够将直流电能转换为符合电网要求的交流电能,包括电压和频率的跟踪控制。
在MPPT控制方面,一般采用模拟控制和数字控制相结合的方式。
模拟控制主要通过比较光伏电池组输出电压和电流与最大功率点的关系,通过调整控制信号来实现。
数字控制是采用数字信号处理器(DSP)等处理器实现的,能够实时采集光伏电池组的输出电压和电流,并进行计算和调整。
在电网逆变控制方面,主要包括电网电压跟踪和频率控制两个方面。
电网电压跟踪是通过测量电网电压和逆变器输出电压的差值,并通过调整逆变器的控制信号来实现电网电压的稳定。
频率控制是通过测量电网频率和逆变器输出频率的差值,并通过调整逆变器的控制信号来实现电网频率的跟踪。
光伏并网逆变器控制有哪几种方法
光伏并⽹逆变器控制有哪⼏种⽅法
光伏并⽹逆变器控制主要分直接电流控制、间接电流控制、功率控制,逆变器的主电路均需要有控制电路来实现,⼀般有⽅波和正弦波两种控制⽅式,⽅波输出的逆变电源电路简单,成本低,但效率低,谐波成份⼤。
正弦波输出是逆变器的发展趋势,随着微电⼦技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。
1.⽅波输出的逆变器:⽅波输出的逆变器⽬前多采⽤脉宽调制集成电路,如SG3525,TL494等。
实践证明,采⽤SG3525集成电路,并采⽤功率场效应管作为开关功率元件,能实现性能价格⽐较⾼的逆变器,由于SG3525具有直接驱动功率场效应管的能⼒并具有内部基准源和运算放⼤器和⽋压保护功能,因此其外围电路很简单。
2.正弦波输出的逆变器:正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采⽤微处理器控制,如INTEL公司⽣产的80C196MC、摩托罗拉公司⽣产的MP16以及MI- CROCHIP公司⽣产的PIC16C73等,这些单⽚机均具有多路PWM发⽣器,并可设定上、下桥臂之间的死区时间,采⽤INTEL公司 80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发⽣,并检测交流输出电压,实现稳压。
电路输出端⼀般采⽤LC电路滤除⾼频波,得到纯净的正正弦波。
光伏并网发电系统中逆变器的设计与控制方法
相关研究综述
太阳能光伏并网发电系统是将太阳能转化为电能并直接接入电网的系统。近年 来,针对该系统的研究主要集中在提高效率、扩大规模、降低成本以及改善并 网控制策略等方面。已有的研究成果包括对光伏电池模型的改进、并网逆变器 的设计以及系统优化配置等。实验研究方面,研究者们通过构建不同规模的实 验系统对各种控制策略和优化方法进行了验证和比较。
逆变器的基本原理
逆变器是一种将直流电转换为交流电的装置,其在光伏并网发电系统中起着重 要的作用。当太阳能电池板产生直流电时,逆变器将其转换为交流电,以便与 电网连接并进行电力交换。逆变器的主要组成部分包括整流器、逆变桥和滤波 器,其工作原理是基于半导体开关器件的开关动作来实现电流的逆变。
逆变器的设计方法
光伏并网发电系统中逆变器的设计与控 制方法
目录
01 引言
03 逆变器的设计方法
02 逆变器的基本原理 04 逆变器的控制方法
目录
05 逆变器的应用场景
07 参考内容
06 结论
引言
随着全球能源危机的加剧和环境问题的日益突出,光伏并网发电系统作为一种 清洁、可再生的能源形式,越来越受到人们的。逆变器作为光伏并网发电系统 的核心部件之一,其设计与控制方法对整个系统的性能和稳定性具有至关重要 的影响。本次演示将详细介绍逆变器的设计与控制方法在光伏并网发电系统中 的应用。
3、采用滤波技术:滤波技术是解决电磁兼容问题的重要手段之一。通过在系 统中加入滤波器,可以有效地滤除电网中的谐波和电磁噪声,提高系统的电磁 兼容性。
三、方法与技术
本次演示采用仿真和实验相结合的方法对光伏并网发电系统的电磁兼容性进行 研究。首先,利用仿真软件对不同因素引起的电磁干扰进行模拟分析,探讨其 传播途径和危害程度。同时,通过实验测试不同措施对提高系统电磁兼容性的 效果,为优化系统设计提供依据。
并网太阳能逆变器工作原理
并网太阳能逆变器工作原理并网太阳能逆变器是将太阳能电池板所产生的直流电转换为交流电,并将其与电网进行连接的装置。
它是太阳能发电系统中非常重要的一部分,其主要功能是控制和管理太阳能发电系统的运行,以及将所产生的电能送入电网供电。
1.直流输入:并网太阳能逆变器的第一步是接收太阳能电池板所产生的直流电(DC)输入。
这些直流电通常是通过多个太阳能电池板串联而成的,并通过连接线路传输到逆变器。
2.最大功率点跟踪(MPPT):逆变器中配备了最大功率点跟踪器,其作用是优化直流电的输出,以确保最大的发电效率。
MPPT会实时监测太阳能电池板的电压和电流,并根据太阳能电池板的工作状况调整负载电阻,最大程度地提高系统发电效率。
3.直流到交流转换:接下来,逆变器将经过MPPT处理后的直流电转换为交流电(AC)。
逆变器内部包含了一个转换器电路,可以改变直流电的频率、电压和形状,使其符合电网的标准要求。
4.滤波:为了保证逆变器输出的交流电纯净而稳定,逆变器内置了一系列滤波器和补偿电路,用于去除电流中的噪声和谐波,并保持电流的平滑性。
5.功率调整:由于太阳能电池板的发电量会随着太阳光照强度和角度的变化而变化,逆变器需要根据电网的负载情况实时调整发电功率。
当太阳能电池板发电过剩时,逆变器会自动降低功率输出;当负载需求增加时,逆变器会根据电网的要求增加功率输出。
6.电网连接:最后一步是将逆变器的交流电输出与电网进行连接。
逆变器通过电网连接点将其发电功率输入电网,并自动与电网进行同步,保证交流电的有序和稳定。
总之,并网太阳能逆变器通过一系列的电子器件和控制电路,将太阳能电池板所产生的直流电转换为交流电,并通过电网输出供电。
它的工作原理是在不断跟踪和调整太阳能电池板的发电状况的基础上,实现对系统发电效果的最大化,并满足电网的要求。
光伏并网逆变器工作原理及太阳能电池特性
3 提升电耗效率
光伏并网逆变器能够减缓 电力传输过程中的损耗, 从而提升电耗效率。
光伏并网逆变器的工作原理
直流稳压
光伏并网逆变器使用直流稳压 技术,确保输出的电力质量和 电压稳定。
隔离变换
交流输出被隔离变换电路包装, 使电力传输更加稳定和高效。
抗干扰
光伏并网逆变器使用专业的抗 干扰技术,有效防止传输过程 中的电磁干扰。
光伏并网逆变器工作原理 及太阳能电池特性
太阳能电池在当今社会发挥着越来越重要的作用。了解光伏并网逆变器的工 作原理以及太阳能电池的特性,则是更好地利用太阳能电池的关键。
光伏并网逆变器是什么?
定义
光伏并网逆变器是太阳能电池板发电后转化为交流能的关键部件。它将直流能转化为交流能, 以便于供电。
功能
能够将与发电功率相对应的直流电能转换为交流电能,并通过交流公用电网输出电能。
太阳能电池的特及其影响因素
效率高
太阳能电池板是当前效率最高的 可再生能源之一,其总效率可以 高达20%。
天气影响
天气对太阳能电池板的效率产生 显著影响,暴雨和大雪都会消除 大部分太阳能电池板的输出。
安装方向
太阳能电池板的安装方向也会影 响其发电效率,朝向正南方的安 装角度最为理想。
被释放,由电场驱动产生电流。
3
电流收集
电流由金属电极收集并传送至电池板的
电力储存
4
端部。
电池板的电流可以存储在电池组中以供 以后使用。
光伏并网逆变器的作用
1 应对用电高峰
光伏并网逆变器能够应对 电网用电高峰期的电力需 求,使之更具有可靠性。
2 增加用电的稳定性
光伏并网逆变器在电力传 输过程中能使用电更加稳 定,从而增加用电的可靠 性。
光伏逆变器的工作原理
光伏逆变器的工作原理
光伏逆变器是将太阳能光伏电池板产生的直流电转换为交流电的设备。
其工作原理主要可分为三个步骤。
第一步是直流电输入。
光伏逆变器首先接收到光伏电池板产生的直流电,在输入端通过控制电路对输入电压进行采样和稳压。
第二步是直流电转换。
在输入端,光伏逆变器使用大功率的晶体管来将直流电转换为定幅的高频脉冲信号。
这些脉冲信号经过滤波器后形成纯净的正弦交流电。
第三步是输出交流电。
转换完成后的交流电输出到逆变器的输出端,可以连接到电网或者用于供电。
在接入电网的情况下,逆变器还要根据当地电网的频率和电压要求进行相应的调整。
此外,光伏逆变器通常还拥有一些额外的功能,例如对直流电电流、电压和功率的监测以及故障保护等。
这些功能可以提高系统的性能和可靠性。
总的来说,光伏逆变器的工作原理是通过将太阳能光伏电池板产生的直流电转换为交流电,以满足不同应用场景中的电能需求。
光伏逆变器的工作原理
光伏逆变器的工作原理
光伏逆变器是将光伏发电系统输出的直流电转换为交流电的设备。
其工作原理如下:
1. 光伏阵列发电:光照照射到光伏电池上,激发电子流动,产生直流电。
2. 直流电输入:光伏电池组的直流电输出,经过保险丝和DC
隔离开关,进入逆变器。
3. 光伏逆变器的控制:逆变器内部具有控制系统,监测光伏电池组的电流、电压和功率等信息,根据需求对逆变器进行控制。
4. 直流电-交流电转换:逆变器将直流电转换为交流电。
逆变
器内部的功率电子器件(如IGBT)将直流电输入变成高频交
流电。
然后经过滤波电路处理,得到稳定的交流电输出。
5. 网络连接:逆变器将转换后的交流电接入电网。
逆变器内部具有输出过压、过流、欠压等保护功能,以确保输出的交流电质量和稳定性。
通过逆变器转换后的交流电可以用于供电给家庭、工业、商业等电器设备使用,也可以反向输送到电网中,实现光伏发电系统的并网发电。
并网逆变器工作原理
并网逆变器工作原理并网逆变器是太阳能发电系统中的重要组件,它的工作原理对于太阳能发电系统的性能和稳定性起着至关重要的作用。
本文将从并网逆变器的工作原理入手,为大家详细介绍并网逆变器的工作原理及其相关知识。
1. 并网逆变器的基本原理。
并网逆变器是将太阳能光伏电池板所产生的直流电转换为交流电的设备。
在光照条件下,光伏电池板会产生直流电,而家庭或工业用电一般是交流电,因此需要并网逆变器将直流电转换为交流电,以供给家庭或工业用电。
2. 并网逆变器的工作过程。
当太阳能光伏电池板产生的直流电进入并网逆变器时,首先会经过一个整流器,将交流电转换为直流电。
然后,直流电会经过逆变器部分,通过电子元件将直流电转换为交流电,最终输出给家庭或工业用电。
3. 并网逆变器的关键部件。
并网逆变器的关键部件包括整流器、逆变器、控制器和输出端。
整流器主要用来将直流电转换为交流电,逆变器则是将直流电转换为交流电的核心部件,控制器用来监控并调节逆变器的工作状态,输出端则是将转换好的交流电输出给用电设备。
4. 并网逆变器的工作特点。
并网逆变器具有高效、稳定、可靠、安全等特点。
高效是指并网逆变器在将直流电转换为交流电的过程中,能够最大限度地减少能量损耗;稳定是指并网逆变器在各种工作环境下都能够保持稳定的工作状态;可靠是指并网逆变器具有较高的工作可靠性,能够长时间稳定地工作;安全是指并网逆变器在工作过程中能够保证人身和设备的安全。
5. 并网逆变器的应用领域。
并网逆变器广泛应用于家庭光伏发电系统、工业光伏发电系统、商业光伏发电系统等领域。
随着太阳能发电技术的不断发展和普及,并网逆变器的应用范围也在不断扩大,成为太阳能发电系统中不可或缺的重要组件。
总结,通过本文的介绍,相信大家对并网逆变器的工作原理有了更加深入的了解。
并网逆变器作为太阳能发电系统中的关键设备,其工作原理的掌握对于太阳能发电系统的设计、安装和运行具有重要意义。
希望本文能够对大家有所帮助,谢谢阅读!。
光伏并网逆变器的分类及原理—
惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲
宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关 器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内
的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率
和幅值。
19
逆变器工作原理:光伏并网逆变器通过检测直流电压
解决办法:
用万用表电压档测量逆变器直流输入电压。电压正常时,总电压是各组件电压之和。如果没有电压,依 次检测直流开关,接线端子,电缆接头,组件等是否正常。如果有多路组件,要分开单独接入测试。
22
3.2故障现象:逆变器不并网 故障分析:逆变器和电网没有连接,
可能原因:
(1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或 者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是 否断开。 3.3逆变器硬件故障:分为可恢复故障和不可恢复故障 故障分析:逆变器电路板,检测电路,功率回路,通讯回路等电路有故障。 解决办法:逆变器出现上述硬件故障,请把直流端和交流端全部断开,让逆变器停电30分钟以
17
3、IGBT模块
IGBT(Insulated Gate Bipolar Transistor),绝缘 栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅 型场效应管)组成的复合全控型电压驱动式功率半导体器 件, GTR饱和压降低,载流密度大,但驱动电大;MOSFET 驱动功率很小,开关速度快,但导通压降大,载流密度 小。IGBT综合了以上两种器件的优点,驱动功率小而饱 和压降低。
并网逆变器工作原理
并网逆变器工作原理
并网逆变器是一种用于太阳能发电系统中的装置,其主要功能是将太阳能电池板发出的直流电转换为交流电,并将其连接到电网中。
它的工作原理如下:
1. 输入:太阳能电池板将太阳光转换为直流电,然后将其输入到并网逆变器中。
2. MPPT调节:并网逆变器使用最大功率点追踪(MPPT)技术,根据当前的光照条件,调整太阳能电池板的工作点,以确保从太阳能电池板中提取到最大的功率。
3. 直流-直流转换:并网逆变器将太阳能电池板输出的直流电转换为适合于逆变器工作的直流电,并为之后的逆变器阶段提供稳定的直流电。
4. 逆变器阶段:通过使用高频开关电路,逆变器将直流电转换为交流电。
逆变器通常使用拓扑结构(如全桥拓扑)和控制算法来实现高效的功率转换和输出。
5. Synchronization:并网逆变器通过与电网同步交流电的频率和相位,确保其输出电能与电网的标准相匹配。
6. 逆变器控制:并网逆变器通过控制其输出功率,以确保将其与电网的电压和频率保持一致。
此外,逆变器还会监测电网的状况,当检测到电网故障或异常时,会立即切断并停止向电网输送电能,以保护逆变器和电网的安全。
7. 输出:并网逆变器将转换后的交流电输出到电网中,为家庭或工业用电提供电能。
通过以上的工作原理,使得太阳能电池板发出的直流电能够转换为适用于电网的交流电,并将其无缝地并入现有的电力系统中,实现了太阳能发电系统的并网供电功能。
光伏逆变器的设计与控制
光伏逆变器的设计与控制随着新能源的快速发展,光伏逆变器作为太阳能光伏发电系统的核心部件,扮演着重要的角色。
本文将详细介绍光伏逆变器的设计原理和控制方法。
一、光伏逆变器的基本原理光伏逆变器是将直流光伏电能转换为交流电能的电子设备。
其主要功能是将太阳能电池板输出的直流电转换成交流电供电给电网或负载使用。
逆变器的核心部分是功率变换电路,它通过控制开关管(如MOSFET)的开关时间和频率,实现直流电到交流电的转换。
二、光伏逆变器的设计要点1. 功率级别选择:光伏逆变器的功率级别应根据实际应用需求来选择,可以根据系统容量、太阳能电池板的支持功率、并网电网电压等因素综合考虑。
2. 逆变方式选择:根据光伏逆变器的输出电流波形和负载类型,可以选择谐振逆变、逆平波逆变等不同的逆变方式。
3. 电路拓扑设计:常见的光伏逆变器电路拓扑有全桥逆变器、半桥逆变器、多电平逆变器等,根据系统要求和成本效益进行选择。
4. 控制策略设计:逆变器的控制方式包括单闭环控制、双闭环控制、预测控制等,选择合适的控制策略能够提高逆变器的性能和稳定性。
三、光伏逆变器的控制方法1. 集中式控制:逆变器的控制器位于逆变器的核心部分,通过采集和处理逆变器的输入和输出电流、电压等参数,实现对逆变器的控制和保护。
2. 分布式控制:将逆变器的控制器分散在不同的功率电子模块上,各个模块之间通过通讯线路进行数据传输和同步,实现对整个逆变器系统的控制和管理。
3. 智能控制:利用现代控制算法和智能控制技术,将光伏逆变器的控制系统与电网和负载进行智能连接,实现对电能的优化调度和智能管理。
四、光伏逆变器的未来发展方向1. 提高功率密度:通过优化电路设计和封装技术,提高光伏逆变器的功率密度,实现更小体积、更高效率的逆变器产品。
2. 增强智能化水平:结合大数据和云计算技术,实现光伏逆变器的智能化监测和管理,提高逆变器系统的运行效率和可靠性。
3. 改进降噪技术:通过优化电路结构和控制策略,减少逆变器运行过程中的噪声和谐波污染,降低对电网和用户设备的影响。
并网逆变器工作原理
并网逆变器工作原理并网逆变器是太阳能发电系统中的重要组成部分,它的主要作用是将太阳能电池板所产生的直流电转换为交流电,并将其并入电网中。
那么,并网逆变器是如何实现这一功能的呢?接下来,我们将从并网逆变器的工作原理入手,为大家详细介绍。
首先,我们来了解一下并网逆变器的基本构成。
并网逆变器通常由直流输入端、电力部分和控制部分组成。
直流输入端接收太阳能电池板产生的直流电,电力部分通过电子元件将直流电转换为交流电,而控制部分则负责监测电网的状态,并确保逆变器的安全运行。
在并网逆变器的工作过程中,首先是直流输入端的工作。
太阳能电池板产生的直流电首先经过直流输入端进入逆变器,然后进入电力部分。
在电力部分,直流电通过一系列的电子元件,如晶体管、二极管等,经过一系列的变换和控制,最终被转换为符合电网要求的交流电。
在这个过程中,电力部分起着至关重要的作用,它需要精确地控制电流和电压的变换过程,以确保最终输出的交流电符合电网的标准。
而控制部分则负责监测电网的状态,并根据实际情况对逆变器进行调节。
当电网出现异常情况时,如电压波动、频率变化等,控制部分会及时发现并采取相应措施,以确保逆变器和电网的安全运行。
同时,控制部分还负责对逆变器的工作状态进行监测和调节,以保证逆变器在不同工作条件下都能够正常工作。
总的来说,并网逆变器的工作原理可以概括为,将太阳能电池板产生的直流电通过电力部分转换为交流电,并将其与电网进行并联。
在这一过程中,直流输入端、电力部分和控制部分各自发挥着重要的作用,共同保证了并网逆变器的正常运行。
通过以上介绍,相信大家对并网逆变器的工作原理有了更加清晰的认识。
并网逆变器作为太阳能发电系统中的关键设备,其工作原理的了解对于太阳能发电系统的建设和运行至关重要。
希望本文能够帮助大家更好地理解并网逆变器,并为太阳能发电系统的发展贡献一份力量。
太阳能光伏并网逆变器的原理
• 按照逆变器输出电能的去向分可分为: (1)有源逆变器 (2)无源逆变器
• 按逆变器主电路的形式分可分为: (1)单端式逆变器 (2)推挽式逆变器 (3)半桥式逆变器 (4)全桥式逆变器
7
•
按逆变器主开关器件的类型分可分为:
(1)晶闸管逆变器
(2)晶体管逆变器
(3)场效应逆变器
(4)绝缘栅双极晶体管(IGBT)逆变器
16
17
三.保护措施。
一款性能优良的逆变器,还应具备完备的保护功能或
ቤተ መጻሕፍቲ ባይዱ
措施,以应对在实际使用过程中出现的各种异常情况
,使逆变器本身及系统其他部件免受损伤。
(1)输入欠压保户:当输入端电压低于额定电压的85%
时,逆变器应有保护和显示。
(2)输入过压保户:当输入端电压高于额定电压的130
%时,逆变器应有保护和显示。
适合 2 个功率柜的电池板配置完全一致,周边 无遮挡的电站。
全独立方式指的是,2 个功率柜的 PV 输入在逆 变器内部独立,此时逆变器具有 2路 MPPT 控 制。在这种方式下,可实现 2 路 PV 的独立控制 ,请确保此时 2 路 PV没有在逆变器外部相连。
适合 2 个功率柜的电池板因为外部条件原因导致 电池板朝向、遮挡或者配置有差异的电站。
步骤 5 在“运行”界面,点击“实时曲线”,切换查看
各个功率柜和控制柜图形化统计数据。
功率柜实时曲线包括:输入电压曲线和输 出功率曲线。 控制柜实时曲线为:输出功率曲线。
步骤 6 在“运行”界面,点击“ISO 曲线”,查看运行 状态时各功率柜的 ISO(绝缘阻抗)曲线。
步骤 7 在“运行”界面,点击“发电量”,查看发电量 数据
4
太阳能光伏并网控制逆变器工作原理及控制方法
太阳能光伏并网控制逆变器工作原理及控制方法
1.光伏电池板:太阳能光伏电池板将太阳能转化为直流电能。
2.光伏逆变器:光伏逆变器用于将直流电能转换为交流电能。
其基本工作原理是将直流电能通过电子元件(如晶体管、MOSFET等)的开关控制,改变电流和电压的形式,最终得到适合电网输入的交流电。
3.控制方法:太阳能光伏并网逆变器的控制方法主要有以下几种:
-简单的开关控制:通过控制开关电路的通断,将直流电能转换为交流电能。
这种方法比较简单,但效率较低。
-最大功率点追踪(MPPT)控制:通过检测光伏电池板输出电压和电流的变化,调整逆变器的工作参数,使得光伏电池板能够在不同光照条件下工作在最佳工作点,提高光伏发电系统的效率。
-滞环控制:为了保护电网和逆变器,滞环控制方法用于对逆变器工作点进行精确控制,并确保逆变器不会输出超过一定限制的电压和电流。
-网络同步控制:光伏逆变器必须与电网同步运行,确保输出的交流电与电网电压相位和频率一致。
这需要逆变器具备精准的频率和相位检测功能,并通过控制电路将输出电压和频率调整到与电网同步。
综上所述,太阳能光伏并网逆变器将直流电能转换为交流电能,并通过不同的控制方法保证逆变器的稳定工作和输出交流电的质量。
随着太阳能光伏技术的不断发展,逆变器的效率和控制精度也在不断提高,使得光伏发电系统在实际应用中更加可靠和高效。
光伏并网逆变器原理
光伏并网逆变器原理
光伏并网逆变器是将太阳能光伏发电系统产生的直流电能,逆变为交流电能并直接供给电网使用的装置。
其工作原理可以简单概括为以下几个步骤:
1. 光伏电池组件吸收阳光并将其转化为直流电能。
这些电池组件通常由多个光伏电池片组成,通过串联和并联的方式组合形成电池组。
2. 直流电能经过光伏逆变器的直流输入端进入,并经过滤波电路进行滤波,去除掉可能存在的干扰信号。
3. 光伏逆变器内部的控制电路会对直流电能进行处理,包括功率调节、电压控制等。
控制电路会监测电池组件的工作状态,确保其在最佳工作点运行。
4. 经过控制电路处理后的直流电能,会经过逆变器内的高频变压器进行变换。
这种变换通常以高频进行,因为高频变换能够有效减小变压器的体积和重量。
5. 经过变压器变换后的电能,会经过输出电路输出为交流电能,并通过与电网连接的电网过滤电路进行过滤。
过滤电路主要是为了确保输出的交流电能符合电网的标准要求,例如电压频率、波形等。
6. 输出的交流电能通过并网电路连接至公共电网,提供给用户使用。
这样,光伏发电系统就实现了与电网的并网运行。
综上所述,光伏并网逆变器通过将光伏电池组件产生的直流电能逆变为交流电能,并利用变压器将电能变换为适合与电网连接的形式,实现了光伏发电系统与电网的无缝连接。
这种装置在太阳能光伏发电系统中起到了至关重要的作用,有效地提高了光伏发电系统的发电效率和可靠性。
并网逆变器工作原理
并网逆变器工作原理
并网逆变器是一种将直流电转化为交流电的装置,主要用于将太阳能电池板产生的直流电能转换成能够供应给家庭或商业用电网的交流电能。
并网逆变器的工作原理大致分为三个主要过程:直流输入、电流转换和交流输出。
首先,在直流输入阶段,太阳能电池板通过光伏效应产生电能,产生的直流电经过直流输入端子输入到并网逆变器中。
然后,在电流转换阶段,通过电子元件如IGBT(绝缘栅双极
性晶体管)等,将输入的直流电转换成交流电。
这个过程需要经过一系列的处理,包括电压变换、电流调整和频率控制等,以确保输出的交流电符合电网的要求。
最后,在交流输出阶段,经过转换的交流电从并网逆变器的交流输出端子输出到家庭或商业用电网中,并与电网上的其他电源一起供电。
并网逆变器在工作过程中还会具备一些辅助功能,如电压稳定、频率稳定和反向保护等功能,以确保输出的交流电质量可靠,且不会对电网造成损害。
总的来说,通过并网逆变器,太阳能电池板等直流电源可以将直流电转换为交流电,并和家庭或商业用电网进行连接,实现可持续的能源供应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年6月15日22:28太阳能光伏并网控制逆变器工作原理及控制方摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。
本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。
1引言:随着工业文明的不断发展,我们对于能源的需求越来越多。
传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。
可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。
水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。
风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。
在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。
太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。
我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。
因此在我国大力开发太阳能潜力巨大。
太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。
光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。
太阳能的利用目前更多的是指光伏发电技术。
光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。
随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。
并网型光伏系统逐步成为主流。
本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。
2并网型光伏系统结构图1所示为并网型光伏系统的结构。
并网型光伏系统包括两大主要部分:其一,太阳能电池组件。
将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。
根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。
太阳能控制逆变器及并网成套设备,主要包括控制器、逆变器以及监控保护单元组成。
控制器主要实现太阳能电池板的最大功率跟踪,逆变器主要负责将控制器输出的直流电能变换成稳压稳频的交流电能馈送电网,监控保护单元主要负责发电系统安全相关问题如孤岛效应的保护,并及时与上位机通讯传递能量传输信息。
3太阳能控制器及其原理3.1太阳能电池组件模型图2所示硅型光伏电池板的理想电路模型。
其中,Iph是光生电流,Iph值与光伏电池的面积、入射光的辐射度以及环境温度相关。
ID为暗电流。
没有太阳光照射的情况下,硅型太阳能电池板的基本外特性类似于普通的二极管。
暗电流是指光伏电池在没有光照条件下,在外电压的作用下PN结流过的单向电流。
v为开路电压,RS为串联电阻一般小于1欧姆,RSH为旁路电阻为几十千欧。
光伏电池的理想模型可由下式表示:其中,vt为电池板热电势。
图3表述在特定光照条件下电池板的伏安特性。
阴影部分是电池板在相应条件下所能够输出的最大功率。
太阳能电池板在高输出电压区域,具有低内阻特性,可以视为一系列不同等级的电压源;在低输出电压区域内,该电源有高内阻特性,可以视为不同等级的电流源。
电压源与电流源的交汇处便是电池板在相应条件下的最大输出功率。
在电池板的温度保持不变的情况下,这个极大功率值会随着光照强度的变化而变化,最大功率跟踪要求能够自动跟踪电池板的工作在输出功率极大的条件。
3.2太阳能控制器电路拓扑图4为太阳能控制器的电路拓扑结构,从原理上说是以及升压斩波器,通过调整开关器件S的占空比,调节电池板的等效负载阻抗,实现对电池板的最大功率跟踪功能。
3.3最大功率跟踪方法最大功率跟踪技术有两种技术路线:其一是CVT技术,控制电池组件端口电压近似模拟最大功率跟踪,这种方法原理简单但是跟踪精度不够;其二是MTTP技术,实时检测光伏阵列输出功率,通过调整阻抗的方式满足最大功率跟踪。
目前,太阳能逆变器厂家广泛采用的MPPT技术。
目前,常用的MTTP方法有两种。
(A)干扰观测法(P&O):干扰观测法每隔一定时间增加或减少电压,通过观测功率变化方向,来决定下一步的控制信号。
如果输出功率增加,那么继续按照上一步电压变化方向改变电压,如果检测到输出功率减小,则改变电压变化的方向,这样光伏阵列的实际工作点就能逐渐接近当前最大功率点。
如果采用DC/DC变换器实现MPPT控制,在具体实施时应通过对占空比施加扰动来调节光伏阵列输出电压或电流,从而达到跟踪最大功率点的目的。
如果采用较大的步长对占空比进行"干扰",这种跟踪算法可以获得较快的跟踪速度,但达到稳态后光伏阵列的实际工作点在最大功率点附近振荡幅度比较大,造成一定的功率损失,采用较小的步长则正好相反。
(B)电导增量法(INC):光伏电池在最大功率点Pm处dP/dU=0,在Pm两端dP/dU均不为0。
要使输出功率最大,必须满足(4)式,使阵列的电导变化率等于负的电导值。
首先假设光伏阵列工作在一个给定的工作点,然后采样光伏阵列的电压和电流,计算Δv=v(n)-v(n-1)和Δi=i(n)-i(n-1),其中(n)表示当前采样值,(n-1)为前一次的采样值;如果Δv=0,则利用Δi的符号判断最大功率点的位置;如果Δv≠0,则依据Δi/Δv+I/V的符号判断。
这种跟踪法最大的优点是当光伏电池的光照强度发生变化时,输出端电压能以平稳的方式追随其变化,电压波动较扰动观测法小。
缺点是其算法较为复杂,对硬件的要求特别是对检测元件的精度要求比较高,因而整个系统的硬件成本会比较高。
4太阳能逆变器及其工作原理太阳能逆变器的电路拓扑如图5所示,5-a)是单相并网逆变器电路拓扑,5-b)是三相并网逆变器电路拓扑。
从电路拓扑结构上看属于电压型控制逆变电路。
从控制方式上属于电流控制型电路。
4.1电路的基本工作原理以图6的单相光伏逆变电路分析。
按照正弦波和载波比较方式对S1-S4进行控制,交流侧AB处产生SPWM波uAB,uAB中含有基波分量和高次谐波,在LS的滤波作用下高次谐波可以忽略,当uAB的频率与电网一致时,is也是和电网一致的正弦波。
在电源电压一定的条件下,is的幅值和相位仅有uAB的基波的幅值和相位决定,这样电路可以实现整流、逆变以及无功补偿等作用。
图7所示是电路的运行向量图,其中7-a)是整流运行,7-b)是逆变运行,7-c)是无功补偿运行,7-d)是Is超前φ角运行。
单相光伏逆变器工作在7-b)状态。
4.2电路的基本控制方法光伏逆变器对于功率因数有较高要求,为了准确实现高功率因数逆变,需要对输出电流进行控制,通常的电流控制方式有两种:其一是间接电流控制,也称为相位幅值控制,按照图7的向量关系控制输出电流,控制原理简单,但精度较差,一般不采用;其二是直接电流控制,给出电流指令,直接采集输出电流反馈,这种控制方法控制精度高,准确率好,系统鲁棒性好,得到广泛应用。
5监控保护单元简介监控保护单元的主要作用有:光伏并网系统作为接入电力系统的装置,需要设定合理的保护措施保护发电设备的安全以及电网的安全;孤岛效应会产生很多不良影响,光伏系统作为分布式发电系统的典型代表,如何准确测定孤岛效应也是监控保护单元的重要作用;太阳能光伏电站尤其是大规模的光伏电站往往建设在荒漠和无人区,智能电量管理和系统状况检测上报也是光伏发电系统需要重点考虑的因素。
5.1并网保护装置并网保护装置主要实现以下保护功能:低电压保护、过电压保护、低频率保护、国频率保护、过电流保护以及孤岛保护策略等内容。
通常大型光伏电站需要设置冗余保护装置,保证系统故障时及时处理。
5.2孤岛检测技术孤岛效应是指并网逆变器在电网断电时,并网装置仍然保持对失压电网中的某一部分线路继续供电的状态。
当电网的某一区域处于光伏发电的孤岛状态时,电网将不再控制这个电力孤岛的电压和频率。
孤岛效应会对光伏发电系统与电网的重连接制造困难,同时可能引起电气元件以及人身安全危害,因此孤岛效应必须避免。
目前常用的孤岛效应检测方法主要有两种,分别是被动检测方法和主动式检测方法。
(A)被动式孤岛检测:孤岛的发生和电网脱离时的负载特性及与电网之间的有功和无功交换有很大的关系。
电网脱离后有功的波动会引起光伏系统端口电压的变化,无功的波动会引起光伏系统输出频率的变化。
电网脱离后,如果有功或者无功的波动比较明显,通过监测并网系统的端口电压或者输出频率就可以检测到孤岛的发生,这就是被动式孤岛检测方法的原理。
然而在电网脱离后,如果有功和无功的波动都很小,此时被动式检测方法就存在检测盲区。
(B)主动式孤岛检测:主动式孤岛检测方法中用的比较多的是主动频移法(AFD),其基本原理是在并网系统输出中加入频率扰动,在并网的情况下,其频率扰动可以被大电网校正回来,然而在孤岛发生时,该频率扰动可以使系统变得不稳定,从而检测到孤岛的发生。
这类方法也存在"检测盲区",在负载品质因数比较高时,若电压幅值或频率变化范围小于某一值,系统无法检测到孤岛状态。
另外,频率扰动会引起输出电流波形的畸变,同时分析发现,当需要进行电能质量治理时,频率的扰动会对谐波补偿效果造成较严重的影响。
智能电量管理及系统状况监控系统大型光伏电站由于地处偏远地区,常常为无人值守电站。
为了准确计量电站的电能输出及系统运行状况需要设立智能电量管理及系统状况监控系统。
系统往往基于计算机数据处理平台以及互联网技术将分散的发电系统信息收集到集中控制中心进行数据分析处理工作,这部分的工作原理及系统结构在本文中不在详述。
6结语本文主要介绍了光伏并网系统的结构,分析了其主要组成部件的系统框图、功能。
给出了最大功率跟踪的基本原理,分析了光伏逆变器的主要电路拓扑结构及控制方式。
太阳能光伏发电技术作为有可能彻底改变人们生活的朝阳技术,拥有美好的未来,让我们共同期待光伏技术在明天为人类作出更大的贡献。