2015年福建公务员考试行测数量关系之特殊容斥问题分析

合集下载

公考容斥问题解题技巧

公考容斥问题解题技巧

公考容斥问题解题技巧
一、理解问题背景
容斥问题在公务员考试中是一种常见的题型,主要考察考生对于集合概念的理解和应用。

在解决这类问题时,首先要明确问题的背景和涉及的集合。

了解题目所给的各个集合的元素以及它们的属性,以便更好地分析问题。

二、识别关键信息
在阅读题目时,要迅速识别出关键信息,尤其是涉及到集合关系和数量关系的语句。

这些信息将有助于确定解题思路和方向,避免在解题过程中出现混乱。

三、使用公式计算
解决容斥问题需要使用到一定的公式进行计算。

考生应熟练掌握基本的公式,如容斥原理公式:∣A∪B∣=∣A∣+∣B∣−∣A∩B∣(∣A∪B∣表示集合A和集合B的并集的元素数量,∣A∣和∣B∣分别表示集合A和集合B的元素数量,∣A∩B∣表示集合A和集合B的交集的元素数量)。

通过合理运用公式,可以快速准确地得出答案。

四、避免重复和遗漏
在解题过程中,要注意避免重复计数和遗漏。

当分析两个集合之间的关系时,要特别小心,确保每个元素只被计算一次,并且所有的元素都被考虑在内。

通过仔细分析集合之间的关系,可以有效地避免重复和遗漏。

五、提高运算速度
在考试中,时间是非常宝贵的。

为了提高解题速度,考生需要熟练掌握各种运算技巧和方法。

通过练习和总结经验,考生可以逐渐提高自己的运算速度,从而在考试中更加从容地应对各种问题。

综上所述,解决公考容斥问题需要考生具备一定的数学基础和逻辑思维能力。

通过理解问题背景、识别关键信息、使用公式计算、避免重复和遗漏以及提高运算速度等技巧,考生可以更加高效地解决这类问题,提高自己的考试成绩。

考公数量容斥问题

考公数量容斥问题

考公数量容斥问题容斥问题在公务员考试中是一种常见的数学问题,它涉及到集合和计数原理的应用。

在数量关系和资料分析中,容斥问题通常涉及到两个或多个集合,以及它们的交集和并集。

解决容斥问题时,首先需要明确各个集合的元素和范围,然后根据题目要求选择适当的集合运算方法。

常见的集合运算包括并集、交集、差集等。

下面是一个简单的容斥问题示例:一个班里有30个学生,其中10个是数学爱好者,8个是物理爱好者,5个是化学爱好者。

有些学生同时喜欢数学和物理,有些学生同时喜欢数学和化学,有些学生同时喜欢物理和化学。

请问这个班里有多少学生同时喜欢数学、物理和化学?首先,我们可以使用集合的概念来描述这个问题。

设A表示数学爱好者的集合,B表示物理爱好者的集合,C表示化学爱好者的集合。

根据题目,我们有以下信息:A = 10(数学爱好者的人数)B = 8(物理爱好者的人数)C = 5(化学爱好者的人数)A ∩ B(同时喜欢数学和物理的人数)A ∩ C(同时喜欢数学和化学的人数)B ∩ C(同时喜欢物理和化学的人数)我们需要求解的是同时喜欢数学、物理和化学的学生人数,即A ∩ B ∩ C。

根据容斥原理,我们有:A ∩B ∩C = A + B + C - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C将已知数值代入公式中,我们得到:A ∩B ∩C = 10 + 8 + 5 - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C由于题目没有给出同时喜欢数学、物理和化学的学生人数,我们需要使用其他方法来求解。

常用的方法是使用韦恩图来直观地表示集合之间的关系,从而得出结果。

[2015公务员考试行测容斥原理解题技巧] 容斥原理行测

[2015公务员考试行测容斥原理解题技巧] 容斥原理行测

[2015公务员考试行测容斥原理解题技巧] 容斥原理行测
[2015公务员考试行测容斥原理解题技巧] 容斥原理行测
发布时间:2019-07-23 09:39:55 影响了:人
2015公务员考试行测容斥原理解题技巧在行测考试中,容斥原理令很多考生头痛不已,因为容斥原理题看起来复杂多变,让考生一时找不到头绪,但该题型还是有着非常明显的内在规律,只要考生能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解。

下面中公教育专家对该题型分两种情况进行剖析,相信能给考生带来一定的帮助。

一、两集合类型1. 解题技巧题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:A ∪B=A+B-A∩B快速解题技巧:总数=两集合之和+两集合之外数-两集合公共数。

2. 真题示例【例1】现有50名学生都做物理,化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对有()A 27人B 25人C 19人D 10人【中公解析】B 。

直接带入公式为:50=31+40+4-A∩B ,得A∩B=25,所以答案为B 。

二、三集合类型。

行测数量关系容斥问题

行测数量关系容斥问题

行测数量关系容斥问题引言:在行测考试中,数量关系容斥问题是一个常见的考点。

掌握了该问题的解题方法,能够帮助考生更好地应对这一类题型。

本文将从概念、解题思路以及实例分析等方面进行详细讲解,以帮助考生更好地理解和掌握数量关系容斥问题。

一、概念解释:数量关系容斥问题是指在求解满足多个条件的情况数量时,通过排除重复计数的方法来得到准确结果。

其基本思想是通过理清各个条件的关系,累加满足每个条件的情况数量,然后再减去同时满足不止一个条件的情况数量,以得到最终结果。

二、解题思路:1.理解问题要求:首先,要明确问题所要求的情况数量。

通常情况下,此类问题要求计算满足多个条件的情况数量。

2.列出条件:将题目中给出的条件进行列举,每个条件单独列成一行。

3.计算满足每个条件的情况数量:对于每个条件,可以单独计算满足该条件的情况数量。

这可以通过排列组合、分类讨论等方法来计算。

4.累加满足每个条件的情况数量:将每个条件满足的情况数量累加起来,得到初步的结果。

5.减去同时满足不止一个条件的情况数量:根据容斥原理,需要减去同时满足不止一个条件的情况数量,以避免重复计数。

通过分类讨论或使用其他方法计算同时满足不止一个条件的情况数量。

6.得到最终结果:将初步结果减去同时满足不止一个条件的情况数量,即可得到最终的结果。

三、实例分析:下面通过一个实例来进一步说明解题思路。

例题:某校有甲、乙、丙三位老师,每位老师选择在星期一至星期五中任意一天进行家访。

如果每位老师至少选择一天进行家访,那么共有多少种家访方式?条件:1.甲、乙、丙三位老师任选一天进行家访;2.甲、乙、丙三位老师至少选择一天进行家访。

解题思路:1.理解问题要求:题目要求计算满足两个条件的家访方式数量。

2.列出条件:条件1:甲、乙、丙三位老师任选一天进行家访;条件2:甲、乙、丙三位老师至少选择一天进行家访。

3.计算满足每个条件的情况数量:条件1满足的情况数量为3(每个老师有5种选择,共有3个老师);条件2满足的情况数量为5^3-1(每个老师有5种选择,减去同时不选择任意一天的情况数量)。

行测数量关系技巧:容斥问题求极值

行测数量关系技巧:容斥问题求极值

行测数量关系技巧:容斥问题求极值在考场上人与人拉开差距的除了平常的知识点的积累,还有面对考试题型能够有一个更好的解答思路,下面为你精心准备了“行测数量关系技巧:容斥问题求极值”,持续关注本站将可以持续获取的考试资讯!行测数量关系技巧:容斥问题求极值对于绝大部分考生而言,行测数量关系一直是比较难的专项,但是要想真正在笔试中遥遥领先数量部分还是要去攻破的。

因此,针对数量所考察的所有题型我们也要由易到难的逐步攻破,在考场考试时学会挑出自己平时擅长的题型先入手。

所以,今天就给大家分享下容斥这一考点。

容斥问题常规的考点有二者容斥和三者容斥问题,利用一些公式以及文氏图能够轻松地解决。

今天我们就把这个题型深入挖掘探讨。

容斥问题也会涉及到求极值的问题,接下来我们就以题目为例讲解下容斥中求极值问题怎么处理。

例题1、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少人?A.165B.203C.267D.199【答案】C。

读完题目我们就能判断出考察容斥问题中的二者容斥问题,但是有涉及到求极值问题。

解极值问题我们可以通过逆向思维来求解,题目要求两种课程都选的至少,即求没选课程的人数最多。

通过这个表格我们可以得出要想不选课程的人数最多,即未选数学的141人和未选文学的92人不重复,因此不选课程的人数最多为141+92,因此题目所求的两种都选的最少=500-(141+92)=267人,故选C。

例题2、阅览室有100本杂志。

小赵借阅过其中75本,小王借阅过70本,小刘借阅过60本,则三人共同借阅过的杂志最少有()本。

A.5B.10C.15D.30【答案】A。

读完题目我们也可以判断出事考察三者容斥中的极值问题,那么我们也可以利用逆向思维来求解,所以我们也能知道未借阅的杂志最多=25+30+40,那么题目所求=100-(25+30+40)=5,因此选A。

通过这2道例题的讲解我们了解到容斥问题的极值问题其实也可以很简单,求N部分都包含的至少=(A+B+C+D+...+N)-(N-1)×I,后期我们碰到这样的问题直接带入公式求解就可以啦。

2015国家公务员考试行测:数量关系——高频考点之容斥问题

2015国家公务员考试行测:数量关系——高频考点之容斥问题

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数量关系——高频考点之容斥问题,更多信息请关注安徽人事考试网容斥问题在历年省考、国考中的出镜频率都很高,预计2015国家公务员考试也会继续采用该题型,考生们需引起足够重视。

中公教育专家认为,对于容斥问题,考生只要认真读题就一定能够正确地解出此题。

接下来,我们一起来看一下有关容斥问题的解法。

一、两者容斥的解法对于容斥问题,解题关键是首先找到各个集合,然后理清各集合之间的关系,然后通过两大核心方法便可解决问题,两大核心方法为:1、将所有区域化为一层2、画文氏图容斥问题考察的题型包括求定值、求极值,求定值通常考察两种题型——两者容斥、三者容斥,首先来看两者容斥问题:例:大学四年级某班有50名同学,其中奥运会志愿者10人,全运会志愿者17人,30人两种志愿者都不是,则班内是全运会志愿者且奥运会志愿者的同学是多少?A.6B.7C.8D.9中公解析:第一步:根据题意画文氏图,描述出题中所涉及到的几个集合之间的容斥关系:第二步:在集合当中把每一个独立的封闭区间,都用一个单独的字母来表示:A表示是奥运会自愿者B表示是全运会志愿者I表示是全班人数X表示全运会且奥运会志愿者Y表示非奥运会且非全运会志愿者第三步:根据题意建立等量关系,根据把重复数的次数变为只数1次,或者说把重叠的面积变为一层,做到不重不漏的原则。

I=A+B-X+Y,所以X=A+B+Y-I=7(利用尾数法)。

结论:两者容斥问题,画图之后可知,两个圆相交的地方有1层、2层两种情况,当将两个集合相加的时候,2层部分多计算一次,故若想求全集,需要将重叠区域减掉,故两者容斥问题的公式为:全集I=A+B-X+Y(I代表全集,A、B分别代表两个集合,X代表两个集合的交集,Y代表集合之外的部分)二、三者容斥的解法接下来看三者容斥问题,三者容斥问题所给的已知条件不同,导致其公式不同。

首先来看第一种三者容斥问题:例:某调查公司对甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影都看过,20人一部也没有看过,则只看过其中两部电影的人数是多少人?A、69B、65C、57D、46中公解析:第一步:根据题意描述出题中所涉及的几个集合之间的容斥关系第二步:在集合当中把具有相似属性的封闭区间,都用一个单独的字母来表示。

行测数量关系备考:容斥问题

行测数量关系备考:容斥问题

行测数量关系备考:容斥问题行测数量关系备考:容斥问题容斥问题一直是行测数量关系考试当中的“常客”,而如此“文艺”的名字之下,本质研究的其实就只是集合间关系的一类问题。

那么集合间的关系都有哪些呢?一般来说,我们把容斥问题分成三大类研究,分别是二者容斥、三者容斥和容斥极值,其中以三者容斥问题最为常考,也是相对来说最难理解的一类问题。

今天就为大家解释什么是三者容斥?它又难在哪里?【例2】某研究中心就消费者对红、黄、蓝三种颜色的偏好情况进展市场调查,共抽取了40名消费者,发现其中有20人喜欢红色、20人喜欢黄色、15人喜欢蓝色,至少喜欢两种颜色的有19人,喜欢三种颜色的有3人,问三种颜色都不喜欢的有几人?A.1B.3C.5D.7通过以上两道题目,我们不难发现,容斥问题本身难度并不是很大,只要找到题目中数据描绘的特点,对应正确的公式,还是很容易解决的。

比例统一的方法如下:1.找不同比例当中都出现的不变量(某个量、总量、差量等)2.将不变量的份数统一为最小公倍数3.其他量保持比例不变同倍数变化理解完以上相关的方法,我们就详细来看题目感受一下。

【例1】A:B=2:3,B:C=2:3,C比A多10,那么A+B+C=?A.35B.36C.37D.38【解析】答案:D。

根据题干信息可知,给出了一个实际量C比A多10,那么我们就需要找到实际量10所对应的比例份数进展相关的解题,同时我们可以发现题干给出了两个比例,两个比例都出现了B这个不变量,在和A做比的时候是3份,在和C做比的时候是2份,但是B所代表的实际量是一样的,所以把B分成不同的份数每一份所代表的实际量就不一样。

那么我们将B的份数变成一样即可,所以将B统一为最小公倍数6,那么其他量保持比例不变同倍数变化。

得到A:B:C=4:6:9,可以发现C比A多了5份,这5份正是对应的10,题目求A+B+C,通过比例可以知道共有19份,所以答案为38,选D。

【例2】林先生的水果摊销售苹果、芒果、香蕉三种水果,第一天苹果、芒果、香蕉三种水果的收入之比为8:7:5,第二天的收入之比7:9:14.假设第二天苹果的销售收入减少了100元,但这三种水果的总收入不变,问第二天香蕉的收入为多少元?A.180B.200C.280D.360【解析】答案:C。

2015年市公务员考试行测冲刺:一题多解容斥问题

2015年市公务员考试行测冲刺:一题多解容斥问题

2015年市公务员考试行测冲刺:一题多解容斥问题通过对近年来国家公务员考试和各地市公务员考试行政职业能力测验真题的分析,不难发现,计数性质的试题经常出现在数量关系部分的数学运算中。

而此类试题在运算的过程中又因为容易遗露某个条件而漏计或重复计数出现错误。

今天结合具体的试题来和大家一起探讨解决此类试题的方法。

例题:某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。

则三项全部合格的建筑防水卷材产品有多少种?A.34B.35C.36D.37为便于解决此类计数问题,不妨先让我们引入小学奥数中经常用到的一个原理,即容斥原理:在计数时,必须注意无一重复,无一遗漏。

为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先容纳(计算)进去,然后再把计数时重复计算的数目排斥出去(减去),使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

容斥原理中经常用到的有如下两个公式:运用上述两个公式需要注意以下情况:这两个公式分别主要针对两种情况:第一个公式是针对涉及到计算两类事物的个数,第二个公式是针对涉及到三类事物的个数。

在理清了容斥原理之后,再来计算前面所提到的例题就会发现,运用容斥原理解决此类问题就会方便很多。

一、运用容斥原理公式来解题题干中所要寻找的是三项全部合格的建筑防水卷材产品有多少种,而这道题已经给出了这三项建筑防水卷材产品总共有52种,所以,只要求得至少有一项不达标的产品的种数,就可以计算出三项全部合格(达标)的产品种数。

而不合格的产品涉及到三种情况,所以运用三个集合的容斥关系公式成了解决此题的不二选择。

假设B是低温柔度不合格产品的集合,A是可溶物含量不达标的产品集合,C属于接缝剪切性能不合格的产品集合,则:当然,此题还有一种相对较为容易理解的算法,即用文氏图法。

数量关系之容斥问题解题原理及方法

数量关系之容斥问题解题原理及方法

数量关系之容斥问题解题原理及⽅法 ⼀、知识点 1、集合与元素:把⼀类事物的全体放在⼀起就形成⼀个集合。

每个集合总是由⼀些成员组成的,集合的这些成员,叫做这个集合的元素。

如:集合A={0,1,2,3,……,9},其中0,1,2,…9为A的元素。

2、并集:由所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作A∪B,记号“∪”读作“并”。

A∪B读作“A 并B”,⽤图表⽰为图中阴影部分表⽰集合A,B的并集A∪B。

例:已知6的约数集合为A={1,2,3,6},10的约数集合为B={1,2,5,10},则A∪B={1,2,3,5,6,10} 3、交集:A、B两个集合公共的元素,也就是那些既属于A,⼜属于B的元素,它们组成的集合叫做A和B的交集,记作“A∩B”,读作“A交B”,如图阴影表⽰: 例:已知6的约数集合A={1,2,3,6},10的约数集合B={1,2,5,10},则A∩B={1,2}。

4、容斥原理(包含与排除原理): (⽤|A|表⽰集合A中元素的个数,如A={1,2,3},则|A|=3) 原理⼀:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进⾏: 第⼀步:先求出∣A∣+∣B∣(或者说把A,B的⼀切元素都“包含”进来,加在⼀起); 第⼆步:减去∣A∩B∣(即“排除”加了两次的元素) 总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣ 原理⼆:给定三个集合A,B,C。

要计算A∪B∪C中元素的个数,可以分三步进⾏: 第⼀步:先求∣A∣+∣B∣+∣C∣; 第⼆步:减去∣A∩B∣,∣B∩C∣,∣C∩A∣; 第三步:再加上∣A∩B∩C∣。

即有以下公式: ∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣B∩C∣- |C∩A|+|A∩B∩C∣ ⼆、例题分析: 例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。

分析:设A={20以内2的倍数},B={20以内3的倍数},显然,要求计算2或3的倍数个数,即求∣A∪B∣。

最新完美版国考笔试资料数量关系之容斥问题

最新完美版国考笔试资料数量关系之容斥问题

行测高频考点技巧荟萃第6期:数量关系之容斥问题在公务员、政法干警、选调生等行测考试中会经常考察到容斥问题,所以考生一定要给予重视。

通常情况下容斥问题的解题思路都是比较清晰且简单的,只要经过一段时间的复习,解容斥问题的正确率一定会有所提高哦数量关系容斥问题知识点储备一、考情分析容斥问题在最近几年的国家公务员考试中出现的频率逐渐增大,尤其是最近两年国家公务员中都有出现。

难度也逐渐增大,不再拘泥于最常规的两个集合和三个集合的考查方式。

在各省市的公务员考试中,容斥问题仍然出现活跃。

因此,这一题型还是需要重点关注。

二、基本概念涉及多个相互关联的集合,要求根据集合间的相互关系计算集合中元素个数的问题称为“容斥原理”问题。

三、技巧方法(一)公式法解两个集合容斥问题两个集合的容斥问题公式:A∪B=A+B-A∩B三个集合的容斥问题公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C一、考情分析容斥问题在最近几年的国家公务员考试中出现的频率逐渐增大,尤其是最近两年都有出现。

难度也逐渐增大,不再拘泥于最常规的两个集合和三个集合的考查方式。

在各省市的公务员考试中,容斥问题仍然出现活跃。

因此,这一题型还是需要重点关注。

二、基本概念涉及多个相互关联的集合,要求根据集合间的相互关系计算集合中元素个数的问题称为“容斥原理”问题。

三、技巧方法(一)公式法解两个集合容斥问题两个集合的容斥问题公式:A∪B=A+B-A∩B三个集合的容斥问题公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C(二)文氏图法解两个集合容斥问题四、例题精讲例题1:某班有56人,每人至少参加一个兴趣小组,参加生物组的有46人,参加科技组的有28人,两组都参加的有多少人?A.10B.18C.24D.30解析:集合A={参加生物组的人}、集合B={参加科技组的人},由A∪B=A+B-A∩B知两组都参加的有A∩B=46+28-56=18人。

2015年国家公务员数量关系备考:巧解三集合容斥问题

2015年国家公务员数量关系备考:巧解三集合容斥问题

【北京华图】2015年国家公务员数量关系备考:巧解三集合容斥问题【北京华图】2015年国家公务员考试将在2014年10月发布招考公告,有志于参加2015年国家公务员考试的考生们现在已经进入了备考阶段,本文总结华图教育名师关于数学运算的内容,为2015年国家公务员考试考生备考给予帮助。

三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。

近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想--剔除重复,那么做任何一个容斥原理题目都能够得心应手。

根据上图,可得三集合容斥原理核心公式:一、直接利用公式型【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【答案】A【解析】设同时报乙、丙职位的人数为x,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。

因此,本题答案为A选项。

二、三集合容斥原理作图型若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。

【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?()A.5名B.6名C.7名D.4名【答案】B【解析】本题问题中出现了“只”,故只能采用作图法。

国考笔试资料数量关系之容斥问题

国考笔试资料数量关系之容斥问题

行测高频考点技巧荟萃第6期:数量关系之容斥问题在公务员、政法干警、选调生等行测考试中会经常考察到容斥问题,所以考生一定要给予重视。

通常情况下容斥问题的解题思路都是比较清晰且简单的,只要经过一段时间的复习,解容斥问题的正确率一定会有所提高哦数量关系容斥问题知识点储备一、考情分析容斥问题在最近几年的国家公务员考试中出现的频率逐渐增大,尤其是最近两年国家公务员中都有出现。

难度也逐渐增大,不再拘泥于最常规的两个集合和三个集合的考查方式。

在各省市的公务员考试中,容斥问题仍然出现活跃。

因此,这一题型还是需要重点关注。

二、基本概念涉及多个相互关联的集合,要求根据集合间的相互关系计算集合中元素个数的问题称为“容斥原理”问题。

三、技巧方法(一)公式法解两个集合容斥问题两个集合的容斥问题公式:A∪B=A+B-A∩B三个集合的容斥问题公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C一、考情分析容斥问题在最近几年的国家公务员考试中出现的频率逐渐增大,尤其是最近两年都有出现。

难度也逐渐增大,不再拘泥于最常规的两个集合和三个集合的考查方式。

在各省市的公务员考试中,容斥问题仍然出现活跃。

因此,这一题型还是需要重点关注。

二、基本概念涉及多个相互关联的集合,要求根据集合间的相互关系计算集合中元素个数的问题称为“容斥原理”问题。

三、技巧方法(一)公式法解两个集合容斥问题两个集合的容斥问题公式:A∪B=A+B-A∩B三个集合的容斥问题公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C(二)文氏图法解两个集合容斥问题四、例题精讲例题1:某班有56人,每人至少参加一个兴趣小组,参加生物组的有46人,参加科技组的有28人,两组都参加的有多少人?A.10B.18C.24D.30解析:集合A={参加生物组的人}、集合B={参加科技组的人},由A∪B=A+B-A∩B知两组都参加的有A∩B=46+28-56=18人。

2015国家公务员考试行测之数量关系经典题型

2015国家公务员考试行测之数量关系经典题型

巧解2015国家公务员考试行测数量关系容斥问题国家公务员行测考试中会考察到容斥问题,容斥问题的实质就是数数,在数数的时候能准确将题目中所涉及的量明确分类,而且分类的时候不能重复,也不能遗漏。

下面为大家讲解容斥问题的几种题型及解题方法,希望能对考生有所帮助。

一、两者容斥问题如上图所示,一个班级的总人数为I人,其中喜欢语文的有A人,喜欢数学的有B人,两者都不喜欢的有Y人,问两者都喜欢的至少有多少人?解析:这个例题很经典,当我们用一般方法去思考时很容易把自己绕进去,所以在这里给大家一个很好用的公式,只要把这个模板套进去,式子自然就列出来了,对于这道题,显然题目让求得量是X,那么根据图可得I = A + B - X + Y,在这里要减去X就是因为,A和B里边都含有X,相加完之后X重复了一次,所以要把多余的这一次减掉,此时,对应着题目所给的量代入,即可求出X的值。

强化练习:电视台向100个人调查昨天收看电视情况,有62人看过一频道,有34人看过六频道,有11个人两个频道都看过,问:两个频道都没有看过的有多少人?A 4B 15C 17D 25解析:这道题和上面讲述的例题一样,只要明白这道题让求得量是Y就可以了,所以直接套公式I = A + B - X + Y,I、A、B、X分别对应100、62、34、11,代入就能求出Y为15,所以答案选B。

二、三者容斥问题如上图所示,这个模型表示的含义是:一个班一共有学生I人,喜欢语文的有A人,喜欢数学的有B人,喜欢英语的有C人,只喜欢语文和数学的有e人,只喜欢语文和英语的有f人,只喜欢数学和英语的有g人,三科都喜欢的有X人,三科都不喜欢的有Y人,对于这个模型可以表示为I = A + B + C - ( e + f + g ) -2X + Y,对于这个式子一定要明白每一个量表示的是什么意思,这样做题的时候就容易知道让我们求得量是谁,到时候直接套公式就行了。

强化练习:某调查公司对甲、乙、丙三部电影的收看情况向125人进行调查,其中有89人看过甲片,47人看过乙片,63人看过丙片,24人三部电影全看过,20人一部也没看过,则只看过其中两部电影的人数是( )A 69人B 65人 C57人 D 46人解析:这道题的文法跟例题有一点点出入,但变化不大,在公式I = A + B + C - ( e + f + g ) -2X + Y中, e + f + g作为一个整体来看,表示的量就是只看过两部电影的人数,也就是要求的量,所以直接把题目所给出的量代入即可,所求答案为46人,选D。

2015年福建省公务员考试行测真题数量关系

2015年福建省公务员考试行测真题数量关系

2015年福建省公务员考试行测真题:数量关系2015年福建省公务员考试行测真题:数量关系第三部分数量关系(共10题,参考时限15分钟)在这部分试题中,每道题呈现一段表述数字关系的文字,要求你迅速、准确地计算出答案。

每题0.8分,共8分。

请开始答题61.如图,某三角形展览管由36个正三角形展室组成,每两个相邻展室(指有公共边的小三角形)都有门相通,若某参观者不愿返回已参观过的展室(通过每个房间至少一次),那么他至多能参观多少个展室?A.33B.32C.31D.3062.某超市销售"双层锅"和"三层锅"两种蒸锅套装,其中"双层锅"需要2层锅身和1个锅盖,"三层锅"需要3层锅身和1个锅盖,并且每卖一个"双层锅"获利20元,每卖一个"三层锅"获利30元,现有7层锅身和4个锅盖来组合"双层锅"和"三层锅"蒸锅套装,那么最大获利为:A.50元B.60元C.70元D.80元63.设有编号为1、2、3、…、10的10张背面向上的纸牌,现有10名游戏者,第1名游戏者将所有编号是1的倍数的纸牌翻成另一面向上的状态,接着第2名游戏者将所有编号是2的倍数的纸牌翻成另一面向上的状态,……,第n名(n<=10)游戏者,将所有编码是n的倍数的纸牌翻成另一面向上的状态,如此下去,当第10名游戏者翻成完纸牌后,那些纸牌正面向上的最大编码与最小编码的差是:A.2B.4C.6D.864.野生动物保护机构考查某圈养动物的状态,在n(n为正整数)天中观察到:①有7个不活跃日(一天中有出现不活跃的情况); ②有5个下午活跃; ③有6个上午活跃,④当下午不活跃时,上午必活跃。

则n等于:A.7B.8C.9D.1065.每年三月某单位都要组织员工去A.B两地参加植树活动,已知去A地每人往返车费20元,人均植树5棵,,去B地每人往返车费30元,人均植树3 棵,设到A地员工有x 人,A,B两地共植树Y棵,Y与X之间满足y=8x-15,若往返车费总和不超过3000元,那么,最多可植树多少棵?A.498B.400C. 489D.50066.为了国防需要,A基地要运载1480吨的战备物资到1100千米外的B基地。

行测容斥原理问题答题技巧

行测容斥原理问题答题技巧

国考行测容斥原理解题技巧在行测考试中,容斥原理题令很多考生头痛不已,因为容斥原理题看起来复杂多变,让考生一时找不着头绪。

但该题型还是有着非常明显的内在规律,只要考生能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解,下面就该题型分两种情况进行剖析,相信能够给考生带来一定的帮助。

一、两集合类型1、解题技巧题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:A∪B=A+B-A∩B快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数2、真题示例【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有()A、27人B、25人C、19人D、10人【答案】B【解析】直接代入公式为:50=31+40+4-A∩B得A∩B=25,所以答案为B。

【例2】某服装厂生产出来的一批衬衫大号和小号各占一半。

其中25%是白色的,75%是蓝色的。

如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A、15B、25C、35D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。

二、三集合类型1、解题步骤涉及到三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。

2、解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。

公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数3、真题示例【例3】【国考2010-47】某高校对一些学生进行问卷调查。

国家公务员考试行测数量关系:理科题高频考点之容斥问题

国家公务员考试行测数量关系:理科题高频考点之容斥问题

国家公务员考试行测数量关系:理科题高频考点之容斥问题公务员考试数量关系主要测查报考者理解、把握事物间量化关系和解决数量关系问题的能力,主要涉及数据关系的分析、推理、判断、运算等。

觉的题型有:数字推理、数学运算等。

了解公务员成绩计算方法,可以让你做到心中有数,高效备考。

公务员行测题库帮助您刷题刷出高分来!>>>我想看看国考课程。

容斥问题在历年省考、国考中的出镜频率都很高,预计2016国家公务员考试也会继续采用该题型,考生们需引起足够重视。

中公教育专家认为,对于容斥问题,考生只要认真读题就一定能够正确地解出此题。

接下来,我们一起来看一下有关容斥问题的解法。

一、两者容斥的解法对于容斥问题,解题关键是首先找到各个集合,然后理清各集合之间的关系,然后通过两大核心方法便可解决问题,两大核心方法为:1、将所有区域化为一层2、画文氏图容斥问题考察的题型包括求定值、求极值,求定值通常考察两种题型——两者容斥、三者容斥,首先来看两者容斥问题:例:大学四年级某班有50名同学,其中奥运会志愿者10人,全运会志愿者17人,30人两种志愿者都不是,则班内是全运会志愿者且奥运会志愿者的同学是多少?A.6B.7C.8D.9中公解析:第一步:根据题意画文氏图,描述出题中所涉及到的几个集合之间的容斥关系:第二步:在集合当中把每一个独立的封闭区间,都用一个单独的字母来表示:A表示是奥运会自愿者B表示是全运会志愿者I表示是全班人数X表示全运会且奥运会志愿者Y表示非奥运会且非全运会志愿者第三步:根据题意建立等量关系,根据把重复数的次数变为只数1次,或者说把重叠的面积变为一层,做到不重不漏的原则。

I=A+B-X+Y,所以X=A+B+Y-I=7(利用尾数法)。

结论:两者容斥问题,画图之后可知,两个圆相交的地方有1层、2层两种情况,当将两个集合相加的时候,2层部分多计算一次,故若想求全集,需要将重叠区域减掉,故两者容斥问题的公式为:全集I=A+B-X+Y(I代表全集,A、B分别代表两个集合,X代表两个集合的交集,Y代表集合之外的部分)二、三者容斥的解法接下来看三者容斥问题,三者容斥问题所给的已知条件不同,导致其公式不同。

2015福建厦门公务员考试行测数量关系-容斥原理和抽屉原理练习题及答案

2015福建厦门公务员考试行测数量关系-容斥原理和抽屉原理练习题及答案
查,其中1258 个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352 48
C.350 D.500
2. 36名女生结伴购物,21人买了长裙,24人买了短裙,24人买了超短裙;14人买了长裙和短裙,15人买了短裙和超短裙,13人买了长裙和超短裙;只有一位羞涩的小姑娘一条裙子都没买。请问,共有几名女生购买了三种裙子?
A.1 B.5 C.8 D.9
3.100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么,参加人数第四多的活动最多有几人参加?
A.22 B.21 C.24 D.23
4.如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问

福建公务员考试行测数量关系之特殊容斥问题分析

福建公务员考试行测数量关系之特殊容斥问题分析

最全汇总>>>福建公务员历年真题通过最新福建公务员考试资讯、大纲可以了解到,《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,测试内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。

福建中公教育整理了福建省考资料大全供考生备考学习。

需要更多指导,请选择在线咨询一对一解答。

容斥问题是公务员考试行测数量关系部分的高频考点,这类题型最大的特点就是形式灵活,考点繁多,很多考生对之头痛不已。

今天中公教育专家就对容斥问题的各种不同题型及解题思路做分析,以助考生备考。

一、工具的应用容斥问题研究的是集合与集合之间关系,对应于不同的题型,我们往往要选择不同的工具展示题目中的关系,简化分析过程。

题型不同时要借助的工具也不一样。

普通二者或三者容斥借助文氏图分析;四者容斥往往借助表格;而一些有比较或排序类的容斥题目往往借助线段。

考生要区分不同题型、考点,明确做题工具。

二、结论的不同不同题型不但解题工具不同,结论、公式也是不同的。

普通的二者和三者容斥考生往往都比较熟悉,下面几个特殊容斥的题目一样值得考生注意:1、四者容斥例:有100件衬衫,其中白色和黑色的各50%,大号有25%,小号占75%,白色大号的有10件,请问黑色小号的有几件?中公分析:这是一道四者容斥的题目,用表格法解决。

依据比例将白色、黑色衬衣的件数和大小号衬衣的件数写在表格最右列和最下行。

大号白色10件,标在大号一列和白色一行的交叉格中,如下表所示:则大号黑色有25-10=15件,小号黑色有50-15=35件。

总结:四者容斥的题目一般都是描述某一事务在两个不同方面的四个不同属性。

利用表格可以快速解题。

2、容斥全极值N者容斥问N者重合部分的最值即为容斥全极值问题。

考试很少考最大值,一般都是问N者重合部分最小的时候,直接利用结论做:N者极值=N个大集合的和减去(N-1)个全集。

例:某班有100人,其中语文好的有80人,数学好的有78人,英语好的有82人,请问三个科目都好的至少有几人?中公分析:此题属于三者全极值的问题,带入公式:80+78+82-100×2=40。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公务员考试行测数量关系之特殊容斥问题分析容斥问题是公务员考试行测数量关系部分的高频考点,这类题型最大的特点就是形式灵活,考点繁多,很多考生对之头痛不已。

今天中公教育专家就对容斥问题的各种不同题型及解题思路做分析,以助考生备考。

一、工具的应用
容斥问题研究的是集合与集合之间关系,对应于不同的题型,我们往往要选择不同的工具展示题目中的关系,简化分析过程。

题型不同时要借助的工具也不一样。

普通二者或三者容斥借助文氏图分析;四者容斥往往借助表格;而一些有比较或排序类的容斥题目往往借助线段。

考生要区分不同题型、考点,明确做题工具。

二、结论的不同
不同题型不但解题工具不同,结论、公式也是不同的。

普通的二者和三者容斥考生往往都比较熟悉,下面几个特殊容斥的题目一样值得考生注意:
1、四者容斥
例:有100件衬衫,其中白色和黑色的各50%,大号有25%,小号占75%,白色大号的有10件,请问黑色小号的有几件?
中公分析:这是一道四者容斥的题目,用表格法解决。

依据比例将白色、黑色衬衣的件数和大小号衬衣的件数写在表格最右列和最下行。

大号白色10件,标在大号一列和白色一行的交叉格中,如下表所示:
则大号黑色有25-10=15件,小号黑色有50-15=35件。

总结:四者容斥的题目一般都是描述某一事务在两个不同方面的四个不同属性。

利用表格可以快速解题。

2、容斥全极值
N者容斥问N者重合部分的最值即为容斥全极值问题。

考试很少考最大值,一般都是问N者重合部分最小的时候,直接利用结论做:N者极值=N个大集合的和减去(N-1)个全集。

例:某班有100人,其中语文好的有80人,数学好的有78人,英语好的有82人,请问三个科目都好的至少有几人?
中公分析:此题属于三者全极值的问题,带入公式:80+78+82-100×2=40。

即三个科目都好的人至少40人。

3、三者容斥二者最多
三者容斥求其中二者重复部分最多,直接三个大集合之和除以2,求整数部分。

例:某班有100人,其中语文好的有40人,数学好的有32人,英语好的有48人,请问其中只有两科好的至多有几人?
中公分析:三者容斥求二者最多,可以直接计算:(40+32+48)÷2=60人。

以上是中公教育专家总结的几种可能考查容斥问题的特殊题型,因为其与常规题目的差异性,考生如若没能掌握正确的思路则很难做对。

以上题目所体现的思想,希望考生好好体会,力争在考场上遇到这类题目时能快速准确地求解。

相关文档
最新文档