Terrain Decimation through Quadtree Morphing
Unity3D Terrian地形设置中文教程
学IT技能上我学院网Unity3D Terrian地形设置中文教程本文是Unity3D Terrain地形设置教程,图文并茂,使用非常广泛,大家可以自己动手进行测试,每一句都会有翻译进行解释,即使你是小白也可以轻易看懂,希望大家能够喜欢。
Using Terrains 使用地形Creating a new Terrain 创建地形A new Terrain can be created from Terrain->Create Terrain. This will add a Terrain to your Project andHierarchy Views. 如要创建地形,点击Terrain->Create Terrain.如下图所示刚创建好的地形在场景视图中如下图:学IT技能上我学院网可以设置地形的大小.如下图所示.从上而下依次为地形的宽度,高度,长度,高度图像素,细节像素-草或其它细节贴图,像素,贴图像素—对应第二个及其之后的贴图,底层贴图像素-对应第一个贴图。
地形对象与其他游戏对象有点不同,它没有转换轴,不可以通过鼠标直接改变它的坐标.如果要改变坐标,可以通过在属性面板修改.不过不可以旋转和缩放.地形被选择后,按F按可以以鼠标点击位置为中心察看地形.如果没有用鼠标点击任何一点,会以整个地形为中心察看地形.学IT技能上我学院网diting the Terrain 编辑地形选择地形后,在属性面板会出现7 个按钮以方便地形的编辑.从左到右依次为高度工具.特定高度工具.平滑工具.贴图工具.画树工具.细节工具.其他设置.如下图所示。
点击任何一个按钮,按钮下面都会出现关于此按钮的说明及相关的快捷键。
每个工具都有不同的笔刷.选取笔刷后,在地形上都会出现蓝色图形表示笔刷的范围。
花点时间熟悉这些工具.选取一个工具及笔刷,用拖放的方式就可以实时地编辑地形.F 键,多用用这个键,你会发现没有它,修改地形是件困难与痛苦的事.享受它带来的方便吧。
基于栅格地图的复杂地形建模与仿真技术研究
第34卷第3期机电卢品开发与创新Vol.34,No.3 2021 年5 月Development & Innovation of Machinery & Electrical Products M—y.,2021文章编号:1002-6673 (2021) 03-015-04基于栅格地图的复杂地形建模与仿真技术研究冯铂凯,张阳(沈阳建筑大学机械工程学院,辽宁沈阳110168)摘要:针对当前二维地图语义信息单一且三维地图构建复杂以及占用内存大的问题,提出一种基于栅格地 图的复杂地形下的机器人仿真环境。
该平台能自动生成复杂地形任意组合的随机地图,并获取传感器实时 仿真数据。
实验结果表明,该平台完全满足路径规划相关算法验证,且复杂地形子模块提供更丰富多变的地 形组合,适合用于深度学习数据集的建立。
关键词:栅格地图;随机地图;仿真环境;路径规划中图分类号:TP24 文献标识码:A d〇i:10.3969/j.issn.1002-6673.2021.03.005System Modelling and Simulation for Autonomous Following Vehicles via Grid-Map-MethodFENG Bo-Kai,ZHANG Yang(School of Mechanical Engineering,Shenyang Jianzhu University,Shenyang Liaoning 110168,China) Abstract:At present,the semantic information of the two-dimensional map is single,at the same tim e,the construction of the threedimensional map is complicated and the memory is large. For the above problems,a robot simulation environment based on grid maps under complex terrain is proposed. The platform can generate random maps automatically in any combination of complex terrain,and it also can obtain real-time simulation data from sensor. The results show that the platform fully meets the verification of the related algorithms of path planning,and the complex terrain sub -m odule provides a richer and more varied terrain combination,which is suitable for the establishment of deep learning data sets.Keywords :Grid map %Random map %Simulation environment %Path planning0引言2020全国乃至全世界都笼罩在新冠肺炎疫情的阴霾下,2020年年初党中央国务院下达修建火神山、雷神山的指令。
IEC61400-1-2005风电机组设计要求标准英汉对照
需要什么文档直接在我的文档里搜索比直接在网站大海捞针要容易的多也准确省时的多
INTERNATIONAL STANrbines – Part 1:
Design requirements
Publication numbering As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.
Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued,is also available from the following: IEC Web Site (www.iec.ch) Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches,technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda. IEC Just Published This summary of recently issued publications (www.iec.ch/online_news/justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information. Customer Service Centre If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre: Email: custserv@iec.ch Tel: +41 22 919 02 11 Fax: +41 22 919 03 00 .
3d MAX 菜单中英文对照表
3d MAX 菜单中英文对照表Absolute Mode Transform Type-in绝对坐标方式变换输入Absolute/Relative Snap Toggle Mode绝对/相对捕捉开关模式ACIS Options ACIS选项Activate活动;激活Activate All Maps激活所有贴图Activate Grid激活栅格;激活网格Activate Grid Object激活网格对象;激活网格物体Activate Home Grid激活主栅格;激活主网格ActiveShade实时渲染视图;着色;自动着色ActiveShade(Scanline)着色(扫描线)ActiveShade Floater自动着色面板;交互渲染浮动窗口ActiveShade Viewport自动着色视图Adaptive适配;自动适配;自适应Adaptive Cubic立方适配Adaptive Degradation自动降级Adaptive Degradation Toggle降级显示开关Adaptive Linear线性适配Adaptive Path自适应路径Adaptive Path Steps适配路径步幅;路径步幅自动适配Adaptive Perspective Grid Toggle适配透视网格开关Add as Proxy加为替身Add Cross Section增加交叉选择Adopt the File’s Unit Scale采用文件单位尺度Advanced Surface Approx高级表面近似;高级表面精度控制Advanced Surface Approximation高级表面近似;高级表面精度控制Adv。
Lighting高级照明Affect Diffuse Toggle影响漫反射开关Affect Neighbors影响相邻Affect Region影响区域Affect Region Modifier影响区域编辑器;影响区域修改器Affect Specular Toggle影响镜面反射开关AI Export输出Adobe Illustrator(*.AI)文件AI Import输入Adobe Illustrator(*.AI)文件Align对齐Align Camera对齐摄像机Align Grid to View对齐网格到视图Align Normals对齐法线Align Orientation对齐方向Align Position对齐位置(相对当前坐标系)Align Selection对齐选择Align to Cursor对齐到指针Allow Dual Plane Support允许双面支持All Class ID全部类别All Commands所有命令All Edge Midpoints全部边界中点;所有边界中心All Face Centers全部三角面中心;所有面中心All Faces所有面All Keys全部关键帧All Tangents全部切线All Transform Keys全部变换关键帧Along Edges沿边缘Along V ertex Normals沿顶点法线Along Visible Edges沿可见的边Alphabetical按字母顺序Always总是www_bitscn_com中国.网管联盟Ambient阴影色;环境反射光Ambient Only只是环境光;阴影区Ambient Only Toggle只是环境光标记American Elm美国榆树Amount数量Amplitude振幅;幅度Analyze World分析世界Anchor锚Angle角度;角度值Angle Snap Toggle角度捕捉开关Animate动画Animated动画Animated Camera/Light Settings摄像机/灯光动画设置Animated Mesh动画网格Animated Object动画物体Animated Objects运动物体;动画物体;动画对象Animated Tracks动画轨迹Animated Tracks Only仅动画轨迹Animation动画Animation Mode Toggle动画模式开关Animation Offset动画偏移Animation Offset Keying动画偏移关键帧Animation Tools动画工具Appearance Preferences外观选项Apply Atmospherics指定大气Apply—Ease Curve指定减缓曲线Apply Inverse Kinematics指定反向运动Apply Mapping指定贴图坐标Apply—Multiplier Curve指定增强曲线Apply To指定到;应用到Apply to All Duplicates指定到全部复本Arc弧;圆弧Arc Rotate弧形旋转;旋转视图;圆形旋转Arc Rotate Selected弧形旋转于所有物体;圆形旋转选择物;选择对象的中心旋转视图Arc Rotate SubObject弧形旋转于次物体;选择次对象的中心旋转视图Arc ShapeArc Subdivision弧细分;圆弧细分Archive文件归档Area区域Array阵列Array Dimensions阵列尺寸;阵列维数Array Transformation阵列变换ASCII Export输出ASCII文件Aspect Ratio纵横比Asset Browser资源浏览器Assign指定Assign Controller分配控制器Assign Float Controller分配浮动控制器Assign Position Controller赋予控制器Assign Random Colors随机指定颜色Assigned Controllers指定控制器At All Vertices在所有的顶点上At Distinct Points在特殊的点上At Face Centers 在面的中心At Point在点上Atmosphere氛围;大气层;大气,空气;环境Atmospheres氛围Attach连接;结合;附加Attach Modifier结合修改器Attach Multiple多项结合控制;多重连接Attach To连接到Attach To RigidBody Modifier连接到刚性体编辑器Attachment连接;附件Attachment Constraint连接约束Attenuation衰减AudioClip音频剪切板AudioFloat浮动音频Audio Position Controller音频位置控制器AudioPosition音频位置Audio Rotation Controller音频旋转控制器AudioRotation音频旋转Audio Scale Controller音频缩放控制器AudioScale音频缩放;声音缩放Auto自动Auto Align Curve Starts自动对齐曲线起始节点Auto Arrange自动排列Auto Arrange Graph Nodes自动排列节点Auto Expand自动扩展Auto Expand Base Objects自动扩展基本物体Auto Expand Children自动扩展子级Auto Expand Materials自动扩展材质Auto Expand Modifiers自动扩展修改器Auto Expand Selected Only自动扩展仅选择的Auto Expand Transforms自动扩展变换Auto Expand XYZ Components自动扩展坐标组成Auto Key自动关键帧Auto-Rename Merged Material自动重命名合并材质Auto Scroll自动滚屏Auto Select自动选择Auto Select Animated自动选择动画Auto Select Position自动选择位置bitsCN#com中国网管联盟Auto Select Rotation自动选择旋转Auto Select Scale自动选择缩放Auto Select XYZ Components自动选择坐标组成Auto—Smooth自动光滑AutoGrid自动网格;自动栅格AutoKey Mode Toggle自动关键帧模式开关Automatic自动Automatic Coarseness自动粗糙Automatic Intensity Calculation自动亮度计算Automatic Reinitialization自动重新载入Automatic Reparam.自动重新参数化Automatic Reparamerization自动重新参数化Automatic Update自动更新Axis轴;轴向;坐标轴Axis Constraints轴向约束Axis Scaling轴向比率Back后视图Back Length后面长度Back Segs后面片段数Back View背视图Back Width后面宽度Backface Cull背面忽略显示;背面除去;背景拣出Backface Cull Toggle背景拣出开关Background背景Background Display Toggle背景显示开关Background Image背景图像Background Lock Toggle背景锁定开关Background Texture Size背景纹理尺寸;背景纹理大小Backgrounds背景Backside ID内表面材质号Backup Time One Unit每单位备份时间Banking倾斜Banyan榕树Banyan tree榕树Base基本;基部;基点;基本色;基色Base/Apex基点/顶点Base Color基准颜色;基本颜色Base Colors基准颜色Base Curve基本曲线Base Elev基准海拔;基本海拔Base Objects导入基于对象的参数,例如半径、高度和线段的数目;基本物体Base Scale基本比率Base Surface基本表面;基础表面Base To Pivot中心点在底部Bevel Profile轮廓倒角Bevel Profile Modifier轮廓倒角编辑器;轮廓倒角修改器Bezier贝塞尔曲线Bezier Color贝塞尔颜色bbs。
3DEC用户手册(4.0)中文版
mm5说明书(中文版)
中尺度模式(Mesoscale Model 5 v3)用户手册一、概述1.mm5模式系统的结构第五代中尺度模式mm5是近年来由美国大气研究中心(NCAR)和美国滨州大学(PSU)在mm4基础上联合研制发展起来的中尺度数值预报模式,已被广泛应用于各种中尺度现象的研究。
Mm5在以往的模式基础上作了许多变化,主要有以下几点:1)复合区域嵌套功能,2)菲静力部分扩展3)四位数据同化功能以及较多的物理过程参数化,能够方便、广泛地应用于各种计算平台。
这些变化使得许多工作在这一模式系统下建立起来。
图1.1是整个mm5模式系统的结构框图,它表现了模式的模块次序、数据流程以及各模块主要功能的简短说明。
TERRAIN和REGRID模块用来处理在麦卡托或兰博托或极射赤面投影下,地形数据和等压面气象数据从规则经纬网格点到高分辨可变中尺度区域的水平插值。
由于插值不能提供全面的中尺度信息,因此插值数据必须加大,RAWINS/little_r就是用连续扫描Cressman客观分析方法和复合二次曲面技术来处理水平网格观测资料和无线电探空资料。
INTERP模块处理MM5系统中气压坐标到sigma坐标的垂直插值,接近地面的sigma平面与地形相似,高水平sigma面与等压面近似。
MM5模块是系统的核心部分,包含气象过程的主控程序,主要求解大气运动基本方程组。
INTERB模块与INTERP 模块作用相反,主要是把MM5模块计算结果从sigma坐标插值到气压坐标中。
2.Mm5模式的水平和垂直格点介绍模式的格点构造是非常有用的,模式系统通常是从等压面上获得、分析数据的,但是这些资料在进入模式之前不得不被插值到模式的垂直坐标中。
垂直坐标是地形伴随的,也就是在底层水平网格伴随地形,而上层表面是平坦的。
中间层是随着气压的减小趋向顶层气压逐渐变得平坦(如图1.2)。
σ用来定义模式水平层:p是气压,p t是顶层气压,p s是表面气压。
从上图可以看出:在顶层σ等于0,在底层σ等于1,模式的每一水平层由σ值来定义,模式的垂直分辨率由0到1之间的数目决定,通常边界层的分辨率高于顶层分辨率,水平层数尽管原则上没有限制,但通常在10到40层之间变化。
Houdini节点解释翻译对照
HoudiniOP 解释Add Generators|polygon 创建点或Polygon线/面,为输入添加点或polysAlign Filters|NURBS 互相对齐一组面或和辅助输入节点对齐, 通过绕着某一轴心点平移或旋转Attrib Composite Attribute 用于在多个选择中合成顶点,点,面,或其他属性Attrib Copy 用于在多组顶点,点,或面之间copy属性Attrib Create 用于添加或修改用户定义的属性Attrib Mirror 从镜像平面的一侧向另外一侧镜像属性Attrib Promote 用于提升或降级属性,转换属性类型。
比如把点转成面Attrib Reorient 属性再适应,用于修改基于两个不同几何体之间差异修改点属性Attrib String Edit 用于编辑字符串属性Attrib Transfer 用于在两个选择之间传递顶点,点,面等属性.Attribute Attribute|Material 允许你手动重命名或删除点和面属性.可用于renderman 渲染Bake VEX 渲染前的烘培操作,只对具有VEX shader 的mesh,Bezier或NURBS 有效Basis NURBS 提供一组对样条曲线或表面的参数空间可用的操作Blast Edge 删除面,点,边,断点Blend Shapes 融合变形,计算拓扑相同的形体之间的3D变形.Bone Link 创建骨头棒Bound 边界框计算,为输入几何体创建绑定体积,可以是方盒或球形Box primitive 创建方盒.Bridge 桥,对于有洞的,剪切表面的蒙皮很有用,在手臂和身体之间,分支或管的相交部位创建高度可控的连接Bulge Manipulate 凸起.用来自第二输入的一个或多个磁体变形来自第一个输入的点Cache Misc 缓存输入的几何体,用于快速播放.Cap 用于闭合开放的几何体Capture character 用于蒙皮。
GIS英语
现整理ArcGIS空间分析扩展模块涉及到术语(英汉对照)Altitude 高度,海拔,地平纬度Analysis extent 分析范围Analysis mask 分析掩码Arithmetic functions 算术函数Arithmetic operators 算术运算符Aspect 坡向Attribute table属性表Azimuth方位角,地平经度Barrier 界线、中断线、阻碍线Boolean Operators 逻辑运算符cell 单元(注:pixl 像元)cell size 单元大小cell statistics 单元统计continuous raster 连续栅格数据contour 等值线coordinate system坐标系统cost dataset 成本数据集cost weighted allcation 成本权重分配cost weighted direction 成本权重方向cost weighted distance 成本权重距离Density 密度Destination目的地Discrete raster 离散栅格数据feature 要素feature Dataset 要素数据集field 字段、域Focal functions 邻域函数Global functions全局函数Grid格网Hillshade山体阴影Histogram 直方图Interpolation 内插、插值Inverse Distance Weighted 反距离权重(插值)Kriging 克里格(插值)least-cost path 最低成本路径local functions局域函数Make permanent 生成永久文件Map Algebra 地图代数GIS英文词汇翻译GIS英文词汇翻译abscissa横坐标absolute accuracy绝对精度absolute coordinates绝对坐标absorption吸收abstraction抽取accuracy 精度across-track scanner跨径扫描仪active remote sensing主动遥感Add Data 添加数据address geocoding地址地理编码address locator地址定位器address matching地址匹配Advanced Very High Resolution Radiometer 高级甚高分辨率辐射仪agreement licensee 协议被许可人air station航摄站alidade照准仪along-track scanner沿径扫描仪alphanumeric grid字母数字网格视差立体图analog image模拟图像analysis mask分析掩模anisotropy各向异性antipode对跖点apogee远地点arc弧architecture架构archive档案argument参数arithmetic expressionaspatial data非空间数据aspect ratio纵横比astrolabe星盘atlas grid地图集网格atmospheric window大气窗口atomic clock原子钟attenuation衰减authentication身份验证author 作者autocorrelation自相关automated cartographyautomation scale自动化比例autovectorization自动矢量化axis轴azimuthal projection 方位投影backscatter后向散射band波段band ratio波段比band-pass filter带通滤波器bandwidth带宽bar scale比例尺(图形比例尺) base layer底层base station基站batch 批量batch geocoding批量地理编码batch processing批处理batch vectorization 批量矢量化bathymetric curve 等深线battleships grid战舰网格Bayesian statistics 贝叶斯统计bearing方位角Bézier curvebilinear interpolation双线性内插法binding绑定binomial distribution二项式分布biogeography生物地理学blind digitizing盲目数字化block group街区群block kriging块段克里金法bookmark 书签boolean 1.布尔数据类型; 2.布尔值Boolean operator布尔运算符boundary边界界线boundary monument界标boundary survey 边界测量bounding rectangle边界矩形Bowditch rule包狄法则break point 断点breakline断裂线browser 浏览器buffer area 缓冲区business logic 业务逻辑CAD 计算机辅助设计(computer-aided design) cadastral survey地籍测量cadastre地籍calibration 校准,定标callout line标注线camera station摄站capacity容量cardinal point方位基点cardinality基数Cartesian coordinate system 笛卡尔坐标系cartogram统计图cartographer制图员cartography制图学cartouche地图饰框catalog tree 目录树catchmentcategorical raster 类目栅格celestial sphere天球cell size栅格大小cells 栅格cellular automaton 元胞自动机census block人口普查区块census geography 人口普查地理学center 中心点centerline中心线centerpoint中点central meridian 中央子午线centroidchart 图表chi-square statistic卡方统计choropleth map面量图chroma色度chronometer天文钟circle圆circular variance圆方差civilian code民用码Clarke Belt克拉克带Clarke ellipsoid 克拉克椭球Clarke spheroid 克拉克椭球面clearinghouse(信息或服务)交换中心clinometric map坡度图code-phase GPS码相位GPScognitive map认知图coincident重叠cokriging协同克里金法command 命令command line 命令行compass north罗经北compass point罗经点compass rose罗经盘compass rule罗盘仪法则compression program 压缩程序computational geometry计算几何学conformal projection等角投影,保角投影,正形投影conformality保形性conic projection圆锥投影conjoint boundary共同边界constant azimuth恒定方位containment包含Content Standard for Digital Geospatial Metadata 数字地理空间元数据的内容标准continuous raster连续栅格contour 等高线,等值线contour drawings 等高线图,等值线图contour interval等高线间距,等值线间距contour line等高线,等值线contour tagging等高线标注,等值线标注contrast ratio对比度contrast stretch对比度扩展convergence angle收敛角conversion转换convex hull凸包coordinate geometry坐标几何学coordinate system??坐标系??coordinated universal time 协调世界时correlation相关corridor analysis走廊分析, 廊道分析county subdivision县级分区covariance协方差coverage1.覆盖面;2.ESRI图层cracking裂化Crandall rule Crandall 法则crop guide裁切参考线crop marks裁切标记cross correlation交叉相关cross covariance交叉协方差cross tabulation 交叉表cross validation交叉验证cross variogram交叉变差函数cubic convolution立方卷积插值法cultural feature人文要素cultural geography文化地理学curb approach路边通道curve fitting曲线拟合customizations 自定义cylindrical projection圆柱投影dangle length悬线长度dangle tolerancedangling arc 悬弧dasymetric mapping分区制图(多用于人口数据)data management 数据管理data table 数据表dataset 数据集datum基准DBMS 数据库管理系统(data-base management system) dead reckoning航位推测法declination 1.偏角;2.磁偏角degree slope坡度Delaunay triangulation德洛内三角delimiter分隔符demography人口统计学densify增密密度计density slicing密度分割deploy 部署或安装(硬件、软件等)depression contour洼地等高线depth contour等深线depth curve深度曲线descending node降交点desire-line analysis期望线分析desktop 桌面desktop clients 桌面客户端Desktop GIS 桌面GIS destination目标determinate flow direction确定性流向deterministic model确定性模型detrending趋势分离developable surface可展表面developer 开发人员development environment开发环境diazo process重氮晒印法difference 差异differential correction差分校正differential Global Positioning System差分全球定位系统diffusion扩散Digital elevation model 数字高程模型Digital Geographic Information Exchange Standard 数字化地理信息交换标准Digital Geographic Information Working Group 数字地理信息工作组digital image processing数字图像处理digital line graph数字线划图digital nautical chart数字海图digital number数值digital orthophoto quadrangle数字正射影像图digital orthophoto quarter quadrangle数字正射影像象限图digital raster graphic数字栅格图digital terrain elevation data??数字地形高程数据??digital terrain model数字地形模型digitizer数字化仪Dijkstra’s algorithm狄捷斯特拉算法dilution of precision精度衰减因子dimension 尺寸,维,维度directed network flow有向网络流direction 方向Dirichlet tessellation荻瑞斯莱特镶嵌,荻瑞斯莱特剖分discovery 发现discrete data离散数据discrete digitizing离散数字化discrete raster离散栅格数据displacement 位移display scale显示比例display unit显示单位dissemination 扩散,传播distance距离distance decay 距离衰减distance unit 距离单位distortion变形district 地区dithering抖动diurnal arc周日弧docking停靠Doppler shift 多普勒位移Doppler-aided GPS多普勒辅助GPSdot density map点密度图dot distribution map点分布图double precision双精度double-coordinate precision 双坐标精度Douglas-Peucker algorithm 道格拉斯-普克算法downstream下游drafting描绘draping叠加,披盖drift漂移drive-time area驾车时间区drop-down list 下拉列表drum scanner鼓式扫描仪Dual Independent Map Encoding 双重独立坐标地图编码dynamic zoom 动态缩放easting东距eccentricity偏心率ecliptic黄道edge边edgematching边缘匹配elastic transformation弹性变形electromagnetic spectrum 电磁光谱electronic atlas电子地图集electronic navigational chart 电子航海图element元素elevation guide高程指南ellipsoid 椭球体ellipticity椭圆率end offset末端偏移endpoint 端点enterprise GIS企业级GISentity objects 实体对象envelope包络矩形environmental model环境模型ephemeris星历表equal competition area平等竞争区equal-area classification等积分类equal-area projection等积投影equal-interval classification 等距分类equatorial plane 赤道面equidistant projection等距投影ESRI Data ESRI 数据event事件exponent指数export导出exposure stationexpression表达式extended 扩展extent范围extrapolation外插法extrude 拉伸extrusion拉伸face平面false easting东移假定值false northing北移假定值feature 要素Federal Geographic Data Committee 美国联邦地理数据委员会field 字段fill 填充圆角filter过滤器,过滤flow direction流向flow map流向图focal analysis 邻域分析focal functions 邻域函数form 地形,形式fractal分形framework 框架frequency频率from-node起点Full Extent完整范围fuzzy boundary模糊边界fuzzy classification模糊分类fuzzy set模糊集合fuzzy tolerance模糊容差Gauss-Krüger projection高斯-克吕格投影generalization概化,(数据库或地图的)综合技术geocentric coordinate system??地心坐标系??geocode地理编码geocoding 地理编码geocomputation地理计算geodata 地理数据geodatabase 地理数据库geodatabase data model地理数据库数据模型geodataset地理数据集geodesic测地线geodetic 测地学geographic coordinate system 地理坐标系geographic information science地理信息学Geographic Information System (GIS) 地理信息系统(GIS) geography地理学geography level地理等级Geography Markup Language地理标记语言geoid大地水准面geoid-ellipsoid separation大地水准面-地球椭球面分离geolocation几何定位geometric coincidence几何重叠geometric correction几何校正geometric dilution of precision 几何精度衰减因子geometric network几何网络geometric transformation几何变换geometry 几何学geomorphology地貌学geoprocessing 地理处理georectification地理校正georeference 地理参考georeferencing地理参考georelational data model地理相关数据模型geospatial data地理空间数据geospatial data clearinghouse 地理空间数据交换中心geospatial technology地理空间技术geospecific model地学相关模型geostationary对地静止geostatistics地理统计学geosynchronous对地同步geotypical model典型地理模型GIS地理信息系统GIScience地理信息学Global Navigation Satellite System 全球卫星导航系统Global Positioning System全球定位系统global spatial data infrastructure全球空间数据基础架构glyph字形gnomonic projection日晷投影Go to XY 转至XYGPS全球定位系统grad梯度(原英文单词可能有误) gradian梯度gradient坡度,斜率graticule经纬网gravimeter重力计gravimetric geodesy大地重力学gravity model引力模型gray scale灰度great circle大圆Greenwich mean time 格林尼治标准时间Greenwich meridian格林尼治子午线grid 网格grid cell网格单元ground 大地,地面GUI GUI (图形用户界面) hachure晕渲线Hamiltonian circuit汉密尔顿回路Hamiltonian path汉密尔顿路径height高度Helmert transformation线性正形变换hemisphere半球heuristic试探算法,试探函数hexadecimal十六进制High Accuracy Reference Network高精度基准网High Precision Geodetic Network高精度大地基准网hillshading 坡面阴影,晕渲histogram equalization直方图均衡化hole孔洞horizontal geodetic datum 水平大地基准human geography人文地理学hydrography水文地理学hydrologic cycle水循环hydrology水文学hyperlink 超链接hypsography测高学,地势图hypsometric curve等高线hypsometric map地势图hypsometry测高法Identify 识别identity link一致性链接illumination照度image coordinate图像坐标image data图像数据image division图像除法运算image scale图像比例尺image space图像空间imager成像仪impedance阻抗import导入IMS IMS (网络地图服务器,Internet Map Server) incident energy入射能量index索引index map索引图infrared scanner红外扫描仪infrastructure基础设施inset map插图instance 实例instantiation实例化integer data整数型数据integration 集成intensity亮度interactive vectorization 交互矢量化interchange format交换格式interferogram干涉图intermediate data中间数据international date line 国际日期变更线international meridian 国际子午线International Organization for Standardization 国际标准化组织interpolation内插法interrupted projection分瓣投影intrinsic stationarity内在稳态inverse distance weighted interpolation反距离加权内插法irregular triangular mesh不规则三角网irregular triangular surface model不规则三角面模型isanomal等地平isarithm等数线isobar等压线isochrone等时线isohyet等雨量线isolines 等值线isometric line等容线isopleth等值线isotherm等温线isotropy无向性iteration 迭代iterative procedure迭代过程jaggies 锯齿Jenks’ optimization詹克斯优化joint operations graphic联合作战地图junction element交点元素kernel内核key identifier 主标识符kinematic positioning动态定位knockout分离区(信号或通讯的中断) known point已知点Kohonen map柯霍南图kriging克里金法label标签labeling 标注lag间隔land cover土地覆盖land information system土地信息系统land use土地利用landform地形landmark地标Landsat陆地卫星landscape ecology景观生态学large scale大比例尺lattice点阵面layers 层layout布局least squares 最小二乘法level水平leveling水平测量library 类库license 许可证license agreement 许可协议licensee 被许可人lidar激光雷达line线line feature线要素line of sight视线line simplification线条简化line smoothing线条平滑linear dimension线性尺寸linear feature线性要素linear interpolation线性内插法linear referencing线性参考(用于交通GIS) linear unit线性单位localization本地化location query位置查询location-allocation位置分配location-based services 基于位置的服务logarithm对数logical network逻辑网络loop traverse闭合导线loxodrome恒向线magnetic bearing磁方位magnetometer磁力计majority resampling 多数重新采样map algebra地图代数map collar地图边缘map display地图显示map document地图文档map element地图元素map extent地图范围map feature 地图要素map generalization 地图概化,地图综合map projection地图投影map query地图查询map readingmap scale地图比例尺map series地图系列map service地图服务map sheet地图map style地图风格map unit地图单位mapping 制图mask掩模mass point散点mathematical operator 数学运算符matrix矩阵mean center平均中心mean sea level平均海平面mean stationarity平均稳态Measure 测量measure valuemeasurement residual测量残差median中间数median center平均中心mental map意境图meridian子午线metadata 元数据metropolitan statistical area 大都市统计区microdensitometer测微密度计micrometer1.测微计;2.微米minimum bounding rectangle 最小边界矩形minimum map unit最小地图单位minor axis短轴misclosure闭合差Mitigation 减轻mobile clients 移动客户端Mobile GIS移动GISmodel模型monument标石morphology形态学mosaic镶嵌图mud pit 泥浆池multichannel receiver多频道接收器multidimensional data多维数据multipart feature多部分要素multipatch feature带纹理要素multiplexing channel receiver多路复用频道接收器multipoint feature多点要素multispectral scanner多光谱扫描仪multivariate analysis多元分析My Places 我的位置National Spatial Data Infrastructure美国国家空间数据基础设施natural breaks classification??自然分类??navigation导航NavstarNavstar (美国国防部全球定位系统联合服务项目)neighborhood statistics邻域统计networked 联网node节点noncoterminous polygon 非相连多边形nonversioned 非版本normal distribution 正态分布normal probability distribution正态概率分布northing北距oblate ellipsoid扁椭球体oblate spheroid扁椭球面offset 偏移oill spill 溢油(原文oill 应为Oil)Online GIS 在线GISOpen Geodata Interoperability Specification开放地理空间数据互操作规范Open Geospatial Consortium开放地理空间协会open traverse不闭合导线OpenGIS ConsortiumOpenGIS 协会OpenLSOpenLS (OpenGIS所包含的Open Location Service) operand运算数operator运算符optical center光学中心ordinal data序数数据ordinary kriging普通克里金法ordinate纵坐标Ordnance Survey英国陆地测量局orientation方向origin point 原点orthogonal offset正交偏移orthographic正交orthomorphic正形orthophoto 正射影像orthophotograph正射影像orthophotoquad无等高线正射影像orthophotoscope正射投影仪orthorectification 正射校正outlier 异常值outline vectorization轮廓矢量化output data 输出数据overlay重叠overprinting套印overview map总览图pan平移panchromatic sharpening 全色锐化parallax bar视差尺parameter参数parametric curve参数曲线passive remote sensing被动遥感passive sensors被动传感器path路径pathfinding路径搜寻peak山峰percent slope斜率perigee近地点persistence持久性photogeology摄影地质学photogrammetry摄影测量学photomap摄影地图photometer光度计physical geography自然地理学pit洼地,山谷placement 放置planar coordinate system 平面坐标系planar enforcement平面强化planarize平面化plane平面planimetric map平面图planimetric shift平面位移platform平台plot 绘图plotter绘图仪plumb line铅垂线。
GIS英语
现整理ArcGIS空间分析扩展模块涉及到术语(英汉对照)Altitude 高度,海拔,地平纬度Analysis extent 分析范围Analysis mask 分析掩码Arithmetic functions 算术函数Arithmetic operators 算术运算符Aspect 坡向Attribute table属性表Azimuth方位角,地平经度Barrier 界线、中断线、阻碍线Boolean Operators 逻辑运算符cell 单元(注:pixl 像元)cell size 单元大小cell statistics 单元统计continuous raster 连续栅格数据contour 等值线coordinate system坐标系统cost dataset 成本数据集cost weighted allcation 成本权重分配cost weighted direction 成本权重方向cost weighted distance 成本权重距离Density 密度Destination目的地Discrete raster 离散栅格数据feature 要素feature Dataset 要素数据集field 字段、域Focal functions 邻域函数Global functions全局函数Grid格网Hillshade山体阴影Histogram 直方图Interpolation 内插、插值Inverse Distance Weighted 反距离权重(插值)Kriging 克里格(插值)least-cost path 最低成本路径local functions局域函数Make permanent 生成永久文件Map Algebra 地图代数GIS英文词汇翻译GIS英文词汇翻译abscissa横坐标absolute accuracy绝对精度absolute coordinates绝对坐标absorption吸收abstraction抽取accuracy 精度across-track scanner跨径扫描仪active remote sensing主动遥感Add Data 添加数据address geocoding地址地理编码address locator地址定位器address matching地址匹配Advanced Very High Resolution Radiometer 高级甚高分辨率辐射仪agreement licensee 协议被许可人air station航摄站alidade照准仪along-track scanner沿径扫描仪alphanumeric grid字母数字网格视差立体图analog image模拟图像analysis mask分析掩模anisotropy各向异性antipode对跖点apogee远地点arc弧architecture架构archive档案argument参数arithmetic expressionaspatial data非空间数据aspect ratio纵横比astrolabe星盘atlas grid地图集网格atmospheric window大气窗口atomic clock原子钟attenuation衰减authentication身份验证author 作者autocorrelation自相关automated cartographyautomation scale自动化比例autovectorization自动矢量化axis轴azimuthal projection 方位投影backscatter后向散射band波段band ratio波段比band-pass filter带通滤波器bandwidth带宽bar scale比例尺(图形比例尺) base layer底层base station基站batch 批量batch geocoding批量地理编码batch processing批处理batch vectorization 批量矢量化bathymetric curve 等深线battleships grid战舰网格Bayesian statistics 贝叶斯统计bearing方位角Bézier curvebilinear interpolation双线性内插法binding绑定binomial distribution二项式分布biogeography生物地理学blind digitizing盲目数字化block group街区群block kriging块段克里金法bookmark 书签boolean 1.布尔数据类型; 2.布尔值Boolean operator布尔运算符boundary边界界线boundary monument界标boundary survey 边界测量bounding rectangle边界矩形Bowditch rule包狄法则break point 断点breakline断裂线browser 浏览器buffer area 缓冲区business logic 业务逻辑CAD 计算机辅助设计(computer-aided design) cadastral survey地籍测量cadastre地籍calibration 校准,定标callout line标注线camera station摄站capacity容量cardinal point方位基点cardinality基数Cartesian coordinate system 笛卡尔坐标系cartogram统计图cartographer制图员cartography制图学cartouche地图饰框catalog tree 目录树catchmentcategorical raster 类目栅格celestial sphere天球cell size栅格大小cells 栅格cellular automaton 元胞自动机census block人口普查区块census geography 人口普查地理学center 中心点centerline中心线centerpoint中点central meridian 中央子午线centroidchart 图表chi-square statistic卡方统计choropleth map面量图chroma色度chronometer天文钟circle圆circular variance圆方差civilian code民用码Clarke Belt克拉克带Clarke ellipsoid 克拉克椭球Clarke spheroid 克拉克椭球面clearinghouse(信息或服务)交换中心clinometric map坡度图code-phase GPS码相位GPScognitive map认知图coincident重叠cokriging协同克里金法command 命令command line 命令行compass north罗经北compass point罗经点compass rose罗经盘compass rule罗盘仪法则compression program 压缩程序computational geometry计算几何学conformal projection等角投影,保角投影,正形投影conformality保形性conic projection圆锥投影conjoint boundary共同边界constant azimuth恒定方位containment包含Content Standard for Digital Geospatial Metadata 数字地理空间元数据的内容标准continuous raster连续栅格contour 等高线,等值线contour drawings 等高线图,等值线图contour interval等高线间距,等值线间距contour line等高线,等值线contour tagging等高线标注,等值线标注contrast ratio对比度contrast stretch对比度扩展convergence angle收敛角conversion转换convex hull凸包coordinate geometry坐标几何学coordinate system??坐标系??coordinated universal time 协调世界时correlation相关corridor analysis走廊分析, 廊道分析county subdivision县级分区covariance协方差coverage1.覆盖面;2.ESRI图层cracking裂化Crandall rule Crandall 法则crop guide裁切参考线crop marks裁切标记cross correlation交叉相关cross covariance交叉协方差cross tabulation 交叉表cross validation交叉验证cross variogram交叉变差函数cubic convolution立方卷积插值法cultural feature人文要素cultural geography文化地理学curb approach路边通道curve fitting曲线拟合customizations 自定义cylindrical projection圆柱投影dangle length悬线长度dangle tolerancedangling arc 悬弧dasymetric mapping分区制图(多用于人口数据)data management 数据管理data table 数据表dataset 数据集datum基准DBMS 数据库管理系统(data-base management system) dead reckoning航位推测法declination 1.偏角;2.磁偏角degree slope坡度Delaunay triangulation德洛内三角delimiter分隔符demography人口统计学densify增密密度计density slicing密度分割deploy 部署或安装(硬件、软件等)depression contour洼地等高线depth contour等深线depth curve深度曲线descending node降交点desire-line analysis期望线分析desktop 桌面desktop clients 桌面客户端Desktop GIS 桌面GIS destination目标determinate flow direction确定性流向deterministic model确定性模型detrending趋势分离developable surface可展表面developer 开发人员development environment开发环境diazo process重氮晒印法difference 差异differential correction差分校正differential Global Positioning System差分全球定位系统diffusion扩散Digital elevation model 数字高程模型Digital Geographic Information Exchange Standard 数字化地理信息交换标准Digital Geographic Information Working Group 数字地理信息工作组digital image processing数字图像处理digital line graph数字线划图digital nautical chart数字海图digital number数值digital orthophoto quadrangle数字正射影像图digital orthophoto quarter quadrangle数字正射影像象限图digital raster graphic数字栅格图digital terrain elevation data??数字地形高程数据??digital terrain model数字地形模型digitizer数字化仪Dijkstra’s algorithm狄捷斯特拉算法dilution of precision精度衰减因子dimension 尺寸,维,维度directed network flow有向网络流direction 方向Dirichlet tessellation荻瑞斯莱特镶嵌,荻瑞斯莱特剖分discovery 发现discrete data离散数据discrete digitizing离散数字化discrete raster离散栅格数据displacement 位移display scale显示比例display unit显示单位dissemination 扩散,传播distance距离distance decay 距离衰减distance unit 距离单位distortion变形district 地区dithering抖动diurnal arc周日弧docking停靠Doppler shift 多普勒位移Doppler-aided GPS多普勒辅助GPSdot density map点密度图dot distribution map点分布图double precision双精度double-coordinate precision 双坐标精度Douglas-Peucker algorithm 道格拉斯-普克算法downstream下游drafting描绘draping叠加,披盖drift漂移drive-time area驾车时间区drop-down list 下拉列表drum scanner鼓式扫描仪Dual Independent Map Encoding 双重独立坐标地图编码dynamic zoom 动态缩放easting东距eccentricity偏心率ecliptic黄道edge边edgematching边缘匹配elastic transformation弹性变形electromagnetic spectrum 电磁光谱electronic atlas电子地图集electronic navigational chart 电子航海图element元素elevation guide高程指南ellipsoid 椭球体ellipticity椭圆率end offset末端偏移endpoint 端点enterprise GIS企业级GISentity objects 实体对象envelope包络矩形environmental model环境模型ephemeris星历表equal competition area平等竞争区equal-area classification等积分类equal-area projection等积投影equal-interval classification 等距分类equatorial plane 赤道面equidistant projection等距投影ESRI Data ESRI 数据event事件exponent指数export导出exposure stationexpression表达式extended 扩展extent范围extrapolation外插法extrude 拉伸extrusion拉伸face平面false easting东移假定值false northing北移假定值feature 要素Federal Geographic Data Committee 美国联邦地理数据委员会field 字段fill 填充圆角filter过滤器,过滤flow direction流向flow map流向图focal analysis 邻域分析focal functions 邻域函数form 地形,形式fractal分形framework 框架frequency频率from-node起点Full Extent完整范围fuzzy boundary模糊边界fuzzy classification模糊分类fuzzy set模糊集合fuzzy tolerance模糊容差Gauss-Krüger projection高斯-克吕格投影generalization概化,(数据库或地图的)综合技术geocentric coordinate system??地心坐标系??geocode地理编码geocoding 地理编码geocomputation地理计算geodata 地理数据geodatabase 地理数据库geodatabase data model地理数据库数据模型geodataset地理数据集geodesic测地线geodetic 测地学geographic coordinate system 地理坐标系geographic information science地理信息学Geographic Information System (GIS) 地理信息系统(GIS) geography地理学geography level地理等级Geography Markup Language地理标记语言geoid大地水准面geoid-ellipsoid separation大地水准面-地球椭球面分离geolocation几何定位geometric coincidence几何重叠geometric correction几何校正geometric dilution of precision 几何精度衰减因子geometric network几何网络geometric transformation几何变换geometry 几何学geomorphology地貌学geoprocessing 地理处理georectification地理校正georeference 地理参考georeferencing地理参考georelational data model地理相关数据模型geospatial data地理空间数据geospatial data clearinghouse 地理空间数据交换中心geospatial technology地理空间技术geospecific model地学相关模型geostationary对地静止geostatistics地理统计学geosynchronous对地同步geotypical model典型地理模型GIS地理信息系统GIScience地理信息学Global Navigation Satellite System 全球卫星导航系统Global Positioning System全球定位系统global spatial data infrastructure全球空间数据基础架构glyph字形gnomonic projection日晷投影Go to XY 转至XYGPS全球定位系统grad梯度(原英文单词可能有误) gradian梯度gradient坡度,斜率graticule经纬网gravimeter重力计gravimetric geodesy大地重力学gravity model引力模型gray scale灰度great circle大圆Greenwich mean time 格林尼治标准时间Greenwich meridian格林尼治子午线grid 网格grid cell网格单元ground 大地,地面GUI GUI (图形用户界面) hachure晕渲线Hamiltonian circuit汉密尔顿回路Hamiltonian path汉密尔顿路径height高度Helmert transformation线性正形变换hemisphere半球heuristic试探算法,试探函数hexadecimal十六进制High Accuracy Reference Network高精度基准网High Precision Geodetic Network高精度大地基准网hillshading 坡面阴影,晕渲histogram equalization直方图均衡化hole孔洞horizontal geodetic datum 水平大地基准human geography人文地理学hydrography水文地理学hydrologic cycle水循环hydrology水文学hyperlink 超链接hypsography测高学,地势图hypsometric curve等高线hypsometric map地势图hypsometry测高法Identify 识别identity link一致性链接illumination照度image coordinate图像坐标image data图像数据image division图像除法运算image scale图像比例尺image space图像空间imager成像仪impedance阻抗import导入IMS IMS (网络地图服务器,Internet Map Server) incident energy入射能量index索引index map索引图infrared scanner红外扫描仪infrastructure基础设施inset map插图instance 实例instantiation实例化integer data整数型数据integration 集成intensity亮度interactive vectorization 交互矢量化interchange format交换格式interferogram干涉图intermediate data中间数据international date line 国际日期变更线international meridian 国际子午线International Organization for Standardization 国际标准化组织interpolation内插法interrupted projection分瓣投影intrinsic stationarity内在稳态inverse distance weighted interpolation反距离加权内插法irregular triangular mesh不规则三角网irregular triangular surface model不规则三角面模型isanomal等地平isarithm等数线isobar等压线isochrone等时线isohyet等雨量线isolines 等值线isometric line等容线isopleth等值线isotherm等温线isotropy无向性iteration 迭代iterative procedure迭代过程jaggies 锯齿Jenks’ optimization詹克斯优化joint operations graphic联合作战地图junction element交点元素kernel内核key identifier 主标识符kinematic positioning动态定位knockout分离区(信号或通讯的中断) known point已知点Kohonen map柯霍南图kriging克里金法label标签labeling 标注lag间隔land cover土地覆盖land information system土地信息系统land use土地利用landform地形landmark地标Landsat陆地卫星landscape ecology景观生态学large scale大比例尺lattice点阵面layers 层layout布局least squares 最小二乘法level水平leveling水平测量library 类库license 许可证license agreement 许可协议licensee 被许可人lidar激光雷达line线line feature线要素line of sight视线line simplification线条简化line smoothing线条平滑linear dimension线性尺寸linear feature线性要素linear interpolation线性内插法linear referencing线性参考(用于交通GIS) linear unit线性单位localization本地化location query位置查询location-allocation位置分配location-based services 基于位置的服务logarithm对数logical network逻辑网络loop traverse闭合导线loxodrome恒向线magnetic bearing磁方位magnetometer磁力计majority resampling 多数重新采样map algebra地图代数map collar地图边缘map display地图显示map document地图文档map element地图元素map extent地图范围map feature 地图要素map generalization 地图概化,地图综合map projection地图投影map query地图查询map readingmap scale地图比例尺map series地图系列map service地图服务map sheet地图map style地图风格map unit地图单位mapping 制图mask掩模mass point散点mathematical operator 数学运算符matrix矩阵mean center平均中心mean sea level平均海平面mean stationarity平均稳态Measure 测量measure valuemeasurement residual测量残差median中间数median center平均中心mental map意境图meridian子午线metadata 元数据metropolitan statistical area 大都市统计区microdensitometer测微密度计micrometer1.测微计;2.微米minimum bounding rectangle 最小边界矩形minimum map unit最小地图单位minor axis短轴misclosure闭合差Mitigation 减轻mobile clients 移动客户端Mobile GIS移动GISmodel模型monument标石morphology形态学mosaic镶嵌图mud pit 泥浆池multichannel receiver多频道接收器multidimensional data多维数据multipart feature多部分要素multipatch feature带纹理要素multiplexing channel receiver多路复用频道接收器multipoint feature多点要素multispectral scanner多光谱扫描仪multivariate analysis多元分析My Places 我的位置National Spatial Data Infrastructure美国国家空间数据基础设施natural breaks classification??自然分类??navigation导航NavstarNavstar (美国国防部全球定位系统联合服务项目)neighborhood statistics邻域统计networked 联网node节点noncoterminous polygon 非相连多边形nonversioned 非版本normal distribution 正态分布normal probability distribution正态概率分布northing北距oblate ellipsoid扁椭球体oblate spheroid扁椭球面offset 偏移oill spill 溢油(原文oill 应为Oil)Online GIS 在线GISOpen Geodata Interoperability Specification开放地理空间数据互操作规范Open Geospatial Consortium开放地理空间协会open traverse不闭合导线OpenGIS ConsortiumOpenGIS 协会OpenLSOpenLS (OpenGIS所包含的Open Location Service) operand运算数operator运算符optical center光学中心ordinal data序数数据ordinary kriging普通克里金法ordinate纵坐标Ordnance Survey英国陆地测量局orientation方向origin point 原点orthogonal offset正交偏移orthographic正交orthomorphic正形orthophoto 正射影像orthophotograph正射影像orthophotoquad无等高线正射影像orthophotoscope正射投影仪orthorectification 正射校正outlier 异常值outline vectorization轮廓矢量化output data 输出数据overlay重叠overprinting套印overview map总览图pan平移panchromatic sharpening 全色锐化parallax bar视差尺parameter参数parametric curve参数曲线passive remote sensing被动遥感passive sensors被动传感器path路径pathfinding路径搜寻peak山峰percent slope斜率perigee近地点persistence持久性photogeology摄影地质学photogrammetry摄影测量学photomap摄影地图photometer光度计physical geography自然地理学pit洼地,山谷placement 放置planar coordinate system 平面坐标系planar enforcement平面强化planarize平面化plane平面planimetric map平面图planimetric shift平面位移platform平台plot 绘图plotter绘图仪plumb line铅垂线。
OpenGL_Terrain
OpenGL_Terrain美丽地形的例程来自:86VR | 作者:halflucifer | 时间:2004-10-8 | 点击:767目录1 纹理混合2 如何实现纹理混合3 通道与扩展指令4 总结工作附带原程序这个演示展示了一种纹理混合贴图(T exture Blending)的技术。
在程序之中,使用了三张不同的细节纹理( detail texture)及一张光照图(lightmap),以标准OpenGL扩展指令(Extension)中的GL_ARB_multitexture及 GL_EXT_texture_env_combine功能来实做出纹理混合贴图的效果。
此程序需要Geforce256或同等级以上的显示卡,才能够顺利执行;并且此程序有对Geforce3或同等级以上的显示卡做最佳化,能够使程序的执行效能更为提升。
1、什么是纹理混合(Why texture blending)为什么我们需要使用纹理混合贴图(T exture Blending)的技术呢?因为这样可以让地形场景看起来更为真实美丽。
为什么这样做就可以让场景变漂亮?让我们仔细来想想:假设现在我们有一个128x128像素大小的高度图(heightmap),我们想把它当作主要的地形场景;可是想想,128x128像素的尺寸实在太小、不足以作为一个完整的场景阿,该怎么办?我们可以在读取高度图时把其的比例放大100倍,这样我们的场景至少就有12800x12800的大小啦。
这也就是使用基于高度图地形渲染(heightmap-based terrain)常用的小技巧。
然而当我们想为地形贴上纹理时,就会有些问题产生:我们要使用多大的图像文件来作为纹理?使用128x128大小的图片如何?好的,当我们使用这样的一张图档在我们的地形场景上时,就等同于要把原来128x128大小的图片对应贴至(mapping)12800x12800 像素大小的整个范围上。
Unity场景分页插件WorldStreamer支持无限大地图的解决方案(二)
Unity场景分页插件WorldStreamer⽀持⽆限⼤地图的解决⽅案(⼆)Terrain Streaming可以⽤WorldCreator创建Tile地形,然后⽤WorldStreamer实现分块地图。
⽐如10000*10000(16平⽅公⾥)的地形,需要1000*1000的100个地块。
如果每次加载9个格⼦,那么同时载⼊的地块⼤⼩为3000*3000⼤⼩——⽐⼀次加载100000*10000要省掉 90%的数据——如果直接加载10000*10000估计Unity要跪了。
似乎也可以500*500,加载25个地块(保证1000左右的视野),总体数量要更⼩⼀些,但是地图分块却更多了(400个)。
(⼀)基础设置如果想要分页读取Terrain,需要先把⼤块Terrain处理成⼩块,我使⽤的是WorldCreator Pro(189美⾦,巨贵⽆⽐)可以直接搞定这⼀步。
下⾯就需要思考了:(1)不使⽤MeshTerrain作为低模LOD,那么推荐3*3地表块,每个地表块的Size应该⽐FOV的最远距离⾼个10%左右,以尽量使玩家不会看到地形加载的过程。
(2)使⽤Ring模式和低模LOG,可以使⽤较多的Load Range。
(3)纯MeshTerrain,通常⽤于移动游戏。
接下来的例⼦中我设置了⼀个6*6*500*500的地图分块,每个分块是⼀个500*500的Unity Terrain注意每个分块的位置,应该是500的正数倍。
Streamer设置:通常Terrain作为Major Streamer。
如果还需要模型Terrain,那么其将设置为Minor Streamer,因为Major只能有⼀个。
把指定的SceneCollection Prefab赋值给Streamer,就完成了Streamer与Scene Clips之间的联动。
如果使⽤Unity Terrain,需要把Terrain Neighbour脚本添加到MajorStreamer对象,并关联他们。
terrasolid 建模原理
一、概述terrasolid是一种用于激光雷达数据处理和三维建模的软件工具,在地理信息系统、测绘和建筑行业中得到广泛应用。
本文将介绍terrasolid 建模原理,包括数据采集、点云处理和模型生成等方面的基本原理和方法。
二、激光雷达数据采集1. 激光雷达原理激光雷达是通过发射激光束并接收反射光束来获取目标物体的位置和形状信息的一种测量技术。
激光雷达设备通过扫描和测量地面上的点来获取三维点云数据。
2. 数据采集参数在进行激光雷达数据采集时,需要考虑激光束的发射角度、扫描频率、波长等参数,以确保采集到的数据质量和精度。
还需要考虑传感器的安装位置和角度等因素,以最大限度地提高数据采集的效果。
三、点云数据处理1. 数据预处理在获取激光雷达数据后,需要对原始数据进行预处理,包括点云滤波、去除离裙点、坐标转换等操作,以减少数据噪声和提高数据质量。
2. 数据配准数据配准是指将多次激光雷达扫描得到的点云数据进行配准,以实现不同位置点云数据的拼接和融合。
配准操作需要考虑标定参数、地面特征提取和匹配等步骤,以实现高精度的数据配准效果。
3. 点云拼接通过数据配准后,可以对不同位置的点云数据进行拼接,生成完整的三维点云模型。
拼接操作需要考虑点云切割、数据融合和去除重叠点等步骤,以获得高质量的点云模型。
四、模型生成1. 特征提取在进行模型生成前,需要根据点云数据提取出地面、建筑物、树木等地物的特征信息。
特征提取操作需要考虑点云分类、特征识别和特征描述等步骤,以实现准确的地物识别和分类效果。
2. 模型重建通过特征提取后,可以进行模型重建操作,生成各种地物的三维模型。
模型重建需要考虑边缘检测、三角网格生成、多视角融合等步骤,以实现真实、精细的三维模型生成。
五、总结terrasolid建模原理涉及激光雷达数据采集、点云处理和模型生成等多个方面的基本原理和方法。
通过对这些原理和方法的理解和应用,可以实现高效、精确的三维建模效果,为地理信息系统、测绘和建筑行业的应用提供有力支持。
TERRAMODEL 使用说明
TERRAMODEL 使用说明70.3路线设计的主线:平面--纵断面--横断面--横断面导入到CAD的整理、平纵缩图的整理、数据的导出至excel整理。
terramodel常用操作及命令:pl(多段线)、delete(删除)、di (量距)、id(属性查询,图层、颜色、高程等等),Ex、tr、F(倒角,修改图形时经常用到)、br(打断)、ma(特性匹配)、join(合并)、cu(设置圆曲线或竖曲线等)、undo(撤销)。
Crtl+鼠标中键(放大缩小),Crtl+按中键框选(放大框选的部分)。
输入命令后如delete,单击右键会出现一个功能菜单,对应的crossing为框选,layer为按图层选择,color为按颜色选择,等等。
使用过程中多注意对比cad 操作的区别。
主要步骤:导入/导出:File-Download/import-ASCII Point(导入点)-autocad(dxf or dwg)(导入cad图形) File-export/upload-ASCII Point(导出点)-autocad(dxf or dwg)(导出cad图形) 导入点:(此为导入点步骤,导入前注意将图层设置为point层,软件支持且常用的点格式为dat和pts。
点为dat格式只需注意将文本里的“,,”替换为“,”即可导入。
当点为pts格式时,须新建一个txt文本文档,再将测量提供的excel里的数据复制到txt里保存,最后将文件后缀改为pts即可)(注意P N E Z D中N和E的顺序,测量给的数据经常是相反的)此后只需点NEXT—NEXT—IMPORT 即可,中间无需设置。
(成功导入。
)导出至CAD:(注意将红框处修改为10,10表示将图形导出到cad模型空间,11表示导出到cad的布局空间)平面:平曲线:确定线型(PL)--draw—arc—curve—spiral—Radius(中间过程可用快捷键cu代替)标注桩号:edit—station(设置标注范围)—draft—label HAL(红色方框内的设置为设置图中黄色方框的显示内容,一般显示图中几项即可)平面编辑完成后还需完成两个步骤:1、xline(对地面线切割,分成若干个截面,即横断面,相当于纬地数模里生成纵断面地面线)具体操作为:roads—road design—road xlines其中interval为按间距生成、hal pts除按间距外还包括特殊点(如交点,圆缓、直缓点等)、station为某个固定桩号(如查看K0+001断面则先xline此桩号,横断面才能生成这个断面查看)2、定义平面:roads—alignments—hal manager(为下一步的纵断面设计准备,定义后才可生成此平面对应的纵断面地面线)纵断面设计:在拉坡前先生成地面线:DTM—Create profile1、纵断面拉坡(pl)—cu—选择vertical—设置K值(为R的100倍)2、标注:draft—lable VAL纵断面设计中label profile的操作:Draft—label profile—先选设计线再选地面线—setting—以下步骤如图操作设置完成后点OK平纵缩图及涵洞排水沟设计用到此步骤,文后祥述。
常见战地风云2控制台口令集锦
常见战地风云2控制台口令集锦常见战地风云2控制台口令集锦Console Commands(控制台命令)To open the BF2 in-game console press the '~' key (or the key above TAB)(按~键或者TAB键)to open/close the console. To see the list of command categories, press the TAB key twice. To see particular sub-types, enter the start of the command press TAB twice. E.g. enter renderer, then press TAB twice to see the renderer sub-class of commands.要在游戏中打开控制台,按~键或者TAB键来控制开或关,要看全部命令表的话按TAB2次,要观看普通(完整)命令?,在命令开始处按TAB2次,要进入渲染选项,然后按TAB2次,来观看渲染选项。
Renderer Commands(渲染命令--关系到画面)renderer.drawHud [0,1] - Turns the Heads Up Display (HUD) on or off.--渲染用户界面,0,1控制开或关。
renderer.drawConsole [0,1] - Turns off access to the in-game console if set to 0.---选0的话,会在游戏中关闭控制台renderer.drawFps [0,1] - Displays the current and average frames per second --(FPS) in the top left corner------在左上角显示帧数(相同设置下,FPS越高表示你机器越NB)Game Commands(游戏命令)game.sayAll [string] - Says the specified text in global chat----与所有玩家交谈game.sayTeam [number] [string] - Says the specified text in team chat--与同组玩家交谈game.lockFps [framerate] - Caps the game's maximum framerate to specified number----控制游戏最大帧数game.allowToggleFullscreen [0,1] - If set to 1 allows toggling of fullscreen/windowed mode game.toggleFullscreen - Toggles between fullscreen and windowed mode----------控制是否全屏Localprofile Commands-----本地文件命令localProfile.setName [name] - Sets the name for your current account-----更改目前帐户localProfile.setNick [nick] - Sets the nickname for your current account----更改当前帐户呢称localProfile.setGamespyNick [GameSpyNick] - Sets the GameSpy login name for your account---设置GAMESPY里面你的呢称localProfile.setEmail [email account] - Sets the email account for the current account---设置帐户的邮箱地址localProfile.setPassword [password] - Sets the password for the current account--为当前帐户设置密码localProfile.setNumTimesLoggedIn [number] - Sets the number of times the player has logged in with the current account----设置玩家自动登陆的次数localProfile.setTotalPlayedTime [seconds] - Sets the time the game has been played using the current account------设置游戏被当前帐户玩的次数localProfile.save - 存盘localProfile.addDemoBookmark [ ] ----增加录象的书签Globalsettings Commands---全局设定globalSettings.setDefaultUser [number] - Sets the profile to use, the first one being 0001, then 0002 etc.---设置要使用的档案,第一个以0001开始,第2个002,等等Sv Commands-----SV命令(一般是用来控制一些调整参数的,尤其是在服务器端在XXXX路径下)These commands are used to adjust server settings, particularly in the Serversettings.con file under your\Documents and Settings\[username]\MyDocuments\Battlefield 2 Demo\Profiles\[profile]\ directory. sv.allowNATNegotiation [0,1] -sv.interface -交流界面sv.timeBeforeRestarting [0,1] ----重新开局的时间sv.autoBalanceTeam [0,1] ---自动平衡sv.teamRatioPercent [0,1] ----队伍比率sv.autoRecord [0,1] ---自动记录sv.demoIndexURL [address] ----录象的路径sv.demoDownloadURL [address] ---录象下载路径sv.autoDemoHook ----自动切换录象sv.demoQuality ---录象质量sv.adminScript ----管理员脚本sv.sponsorText ---sv.sponsorLogoURL [address] -munityLogoURL [address] -交流图标地址sv.radioSpamInterval ---全局广播sv.radioMaxSpamFlagCount -广播最大丢包数sv.radioBlockedDurationTime [seconds] -广播被拦截时间eGlobalRank [0,1] -使用全球排名eGlobalUnlocks [0,1] -使用全球解锁Gamelogic Commands--游戏逻辑命令gameLogic.togglePause - Toggles pausing the game.--使用按键暂停游戏Settingsmanager Commands--设置控制命令These commands set a range of variables. E.g. SettingsManager.boolSet GSUseObjectCache 1. The command used must match the type of variable (e.g. .boolset for Boolean variables, .IntSet for variables requiring integer input, etc.)---这些命令设置了一组有范围的,多样的·#%%……—,物体缓存,基本不用管它)SettingsManager.stringSet ---SettingsManager.boolSet -SettingsManager.IntSet -SettingsManager.floatSet -浮点设置SettingsManager.u32Set -SettingsManager.stringGet -SettingsManager.boolGet -SettingsManager.intGet -SettingsManager.foatGet -SettingsManager.U32Get -Inputdevices Commands--输入设备控制InputDevices.setInvertAxis -颠倒飞行遥感InputDevices.setAxisScale -设置遥感比例Controlmap Commands---地图控制命令These settings should be used in the Controls.con file under your \Documents and Settings\[username]\MyDocuments\Battlefield 2 Demo\Profiles\[profile]\ directory.-这些命令应该在路径XXX下面使用controlMap.deleteControlMap ---删除地图controlMap.dump ---读取地图controlMap.setButtonRiseTime ---设置底段控制时间controlMap.SetButtonFallTime ---设置失败时间controlMap.SetDoubleTapTime -controlMap.addAxisToAxisMapping [string] -controlMap.addButtonsToAxisMapping [string] - controlMap.addKeyAndButtonToAxisMapping [string] - controlMap.addKeysToAxisMapping [string] - controlMap.addButtonToTriggerMapping [string] - controlMap.AddKeyToTriggerMapping [string] - controlMap.setAxisScale -设置比例?controlMap.setYawFactor -controlMap.setPitchFactor -controlMap.addAxisToTriggerMapping -controlMap.InvertMouse [0,1] - Set to 1 for inverted mouse, 0 for default mouse--反转鼠标,1是反,0是不反controlMap.mouseSensitivity [number] - Determines thesensitivity of the mouse--鼠标灵敏度controlMap.keyboardSensitivity [number] - Deterimes the sensitivity of the --键盘灵敏度keyboardMaplist Commands---地图列表命令These commands are used to manage lists of maps by server administrators.mapList.list - Lists map ID numbers, map name, game mode and the number of players if specified.--这些命令用来列出管理员的地图表mapList.configFile [new location for file] - Used to specify the location of the _mapList.con file. Default is \My Documents\Battlefield 2 Demo\ServerConfigs\mapList.load - Makes the server reload _mapList.con--用这个命令来定位于XXXXXX路径的地图mapList.save - Saves the current map list on the server to the file _mapList.con---保存目前地图mapList.mapCount - Shows the total number of maps in the current map list--列出目前地图总数mapList.currentMap - Shows the map list ID number of the current map being --列出目前地图名称mapList.clear - Clears the current map list-清空当前地图列表mapList.remove [map ID number] - Removes the specifiedmap from the map list--删除目前选中地图mapList.append [map name] [game mode] [number of players] - Add a new map to the end of the map list. You must specify the map name and game mode.--添加一个地图到列表末尾,你必须指明地图名称和游戏模式mapList.insert [map ID number] [map name] [game mode] [number of players] - Same as mapList.append command, but with this command you can specify at what map ID number to insert the new map into the list----和添加命令一样,但是这个命令你可以指定地图添加到列表中任意位置Admin Commands-----管理员命令These commands are used by server administrators.--管理员专用admin.listPlayers - Lists the players connected to the server, showing their name, ID number and IP number.----列出目前服务器上所有人员的名字,ID,和IPadmin.runNextLevel - Forces the server to end the round and start the next map in the map list.---强制服务器结束当前局,开始下一局admin.currentLevel - Shows the map list ID number for the current map being played.---列出当前地图的玩家IDadmin.nextLevel - Shows the map list ID number for the next map to be played.---列出下个地图的ID号码admin.restartMap - Restarts the current map.--重开局admin.banPlayer [player ID number] [timeout] - Enter the player ID number you want to ban. Bans the player from the server by using their IP address. The timeout value controls the length of the ban e.g. perm for permanent ban, round to ban them for the rest of the round, and 180 is 180 seconds (3 minutes).-----封锁某玩家ID号,封锁时间由你键如的值确定admin.banPlayerKey [player ID number] [timeout] - Enter the player ID you want to ban. Bans the player from the server by using their CD key hash.--封锁你想封的人的CDKEY,(估计井限于当前服务器)admin.addAddressToBanList [IP address] [timeout] - Enter the IP number you want to ban.--输入那个家伙的IP地址,来封锁他admin.addKeyToBanList [CD key hash] [timeout] - Enter the CD key hash you want to ban.---输入CD-KEY来封他admin.removeAddressFromBanList [IP address] - Enter the IP address to remove from the ban list.---将封锁的IP地址解开admin.removeKeyFromBanList [CD key hash] - Enter the CD key hash you want to remove from the ban list.将封锁的CDKEY解开admin.clearBanList - Clears all ban lists.--清空封锁列表admin.listBannedAddresses - Displays a list of the currently banned IP addresses.--列出一张当前被封的IP地址表admin.listBannedKeys - Displays a list of the currently banned CD keys.同上,CDKEY表admin.kickPlayer [player ID number] - Enter the ID number of the player you --want to kick--踢人Remote Console---移动控制These commands are used by server administrators.----这些是服务器管理员命令To setup remote console access to the server, onthe server create a new plain text document in \admin\ called default.cfg and enter the following text into the new file:--为了建立这个能够连接到服务器的控制,在服务器端建立一个新的TEXT文档,在XXX路径,然后进入文档写下面这些命令:port=4711password=YourPassword---密码Save the file, and start the server. Now you can access the server remotely by using the following commands from a client:--保存,打开服务器,现在你可以通过这种方式,在客户端随意进入服务器,rcon login [YourPassword] - Use this command to login to the server.---连接到服务器(和CS有点象)rcon users - This command lists all the users connected to the server. Very similar to admin.listPlayers----列出所有用户rcon exec [command name] - Replace with a console command you would like to execute on the server. For example: rcon exec admin.kickPlayer 3---使用管理员命令Exit - Quits the game to desktop--退出there is a lot more, ill go thru the render ones, and somebody (T0m ? ) can put them into a pretty list like his.--还有许多,我将学习渲染部分的,有人会把他列成下面这张表样的These are all "renderer." and some you will get "Unauthorized" you should know what to do in such a case --这里是所有渲染指令有些输入后会变成《未确认》,你应该知道怎么办~~vsync [0/1] Vsync On/Off---垂直同步开/关presentAsync ?presentSpinIfBusy ?clearColor ?--色彩screenDumpPath ?---景深dumpScreen ?--截屏occlusionTerrainMaxFrames ?--地表最大帧数occlusionObjectsMaxFrames ?--物体最大帧数enableHWOcclusion ?allowA2M ?stopRenderMovie ?--停止渲染电影drawObjects [0/1] -> Stops Drawing Nearly Everything--绘图---停止绘制附近物体drawDeferred [0/1] -> Didnt notice a Change--绘图延期--忽视改变drawBundledMeshes [0/1] -> Stops Drawing Guns + Some Tiny Terrain ?--绘制材质,列如枪draw1pZOnly [0/1] -> Didnt notice a Change----同上draw1pMeshes [0/1] -> Removes your Arm (First Person) + Darkens your Gun.--同上drawParticles [0/1] -> Removes Dust--去处灰drawStaticMeshes [0/1] -> Stops Drawing 90% of the Buildings--不渲染90%的建筑drawSkinnedMeshes [0/1] -> Stops Drawing All Players (Including your arm)--除了你自己,不渲染其他人drawSkyDome [0/1] -> Stops Drawing Sky (Awsome!)--不渲染天空drawSunFlare [0/1] -> Removes Some Glare from the Sun (Use Previous for no sun)--去处太阳drawRoads [0/1] -> Removes some Road Tracks---移除某些路drawTerrain [0/1] -> Removes Ground--移除地面drawUndergrowth [0/1] -> Removes Grass--移除草drawOvergrowth [0/1] -> Removes Most Trees--移除树drawNametags [0/1] -> Removes all Tags in Game [Players/Flags/Misc]---移除游戏中所有目标drawTrees [0/1] -> Removes rest of the Trees-清除其他树木drawPostproduction [0/1] -> Didnt notice anything.--不提醒任何事drawGraphs ?--图形绘制makeTopWorldScreen -> 4 args -> Unknown--未知glowEnabled -> Unknown--未知glowStrength -> Unknown--未知fogColor [r/g/b] -> Color of Fog -> Example: 255/0/0 -> Red Fog --红雾waterFogStartEndAndBase -> 4 args -> Unknown--未知waterFogColor [r/g/b] -> Color of Fog on Water ?--水上面的雾色。
Unity3d之将terrain转化成mesh
Unity3d之将terrain转化成meshUnity3d中,terrain还是⽐较耗的,为了优化性能,可能需要将terrain转化成mesh。
现提供⼀⼯具,思路是根据terrain⾼度图⽣成mesh等。
转载请注明出处:代码如下:1using UnityEditor;2using UnityEngine;34public class TerrainToMeshConverter : ScriptableObject5 {6 [MenuItem("Custom/Convert terrain to mesh")]7static void Init()8 {9if (Selection.objects.Length <= 0)10 {11 Debug.Log("Selection.objects.Length <= 0");12return;13 }1415var terrainObj = Selection.objects[0] as GameObject;16if (terrainObj == null)17 {18 Debug.Log("terrainObj == null");19return;20 }2122var terrain = terrainObj.GetComponent<Terrain>();23if (terrain == null)24 {25 Debug.Log("terrain == null");26return;27 }2829var terrainData = terrain.terrainData;30if (terrainData == null)31 {32 Debug.Log("terrainData == null");33return;34 }3536int vertexCountScale = 4; // [dev] 将顶点数稀释 vertexCountScale*vertexCountScale 倍37int w = terrainData.heightmapWidth;38int h = terrainData.heightmapHeight;39 Vector3 size = terrainData.size;40float[, ,] alphaMapData = terrainData.GetAlphamaps(0, 0, terrainData.alphamapWidth, terrainData.alphamapHeight);41 Vector3 meshScale = new Vector3(size.x / (w - 1f) * vertexCountScale, 1, size.z / (h - 1f) * vertexCountScale);42 Vector2 uvScale = new Vector2(1f / (w - 1f), 1f / (h - 1f)) * vertexCountScale * (size.x / terrainData.splatPrototypes[0].tileSize.x); // [dev] 此处有问题,若每个图⽚⼤⼩不⼀,则出问题。
Houdini节点解释翻译对照
HoudiniOP 解释Add Generators|polygon 创建点或Polygon线/面,为输入添加点或polysAlign Filters|NURBS 互相对齐一组面或和辅助输入节点对齐, 通过绕着某一轴心点平移或旋转Attrib Composite Attribute 用于在多个选择中合成顶点,点,面,或其他属性Attrib Copy 用于在多组顶点,点,或面之间copy属性Attrib Create 用于添加或修改用户定义的属性Attrib Mirror 从镜像平面的一侧向另外一侧镜像属性Attrib Promote 用于提升或降级属性,转换属性类型。
比如把点转成面Attrib Reorient 属性再适应,用于修改基于两个不同几何体之间差异修改点属性Attrib String Edit 用于编辑字符串属性Attrib Transfer 用于在两个选择之间传递顶点,点,面等属性.Attribute Attribute|Material 允许你手动重命名或删除点和面属性.可用于renderman 渲染Bake VEX 渲染前的烘培操作,只对具有VEX shader 的mesh,Bezier或NURBS 有效Basis NURBS 提供一组对样条曲线或表面的参数空间可用的操作Blast Edge 删除面,点,边,断点Blend Shapes 融合变形,计算拓扑相同的形体之间的3D变形.Bone Link 创建骨头棒Bound 边界框计算,为输入几何体创建绑定体积,可以是方盒或球形Box primitive 创建方盒.Bridge 桥,对于有洞的,剪切表面的蒙皮很有用,在手臂和身体之间,分支或管的相交部位创建高度可控的连接Bulge Manipulate 凸起.用来自第二输入的一个或多个磁体变形来自第一个输入的点Cache Misc 缓存输入的几何体,用于快速播放.Cap 用于闭合开放的几何体Capture character 用于蒙皮。
Cesium原理篇:3最长的一帧之地形(4:重采样)
Cesium原理篇:3最长的⼀帧之地形(4:重采样)地形部分的原理介绍的差不多了,但之前还有⼀个刻意忽略的地⽅,就是地形的重采样。
通俗的讲,如果当前Tile没有地形数据的话,则会从他⽗类的地形数据中取它所对应的四分之⼀的地形数据。
打个⽐⽅,当我们快速缩放影像的时候,下⼀级的影像还没来得及更新,所以会暂时把当前Level的影像数据放⼤显⽰,⼀旦对应的影像数据下载到当前客户端后再更新成精细的数据。
Cesium中对地形也采⽤了这样的思路。
下⾯我们具体介绍其中的详细内容。
上图是⼀个⼤概流程,在创建Tile的时候(prepareNewTile),第⼀时间会获取该Tile⽗节点的地形数据(upsampleTileDetails),然后构造出upsampledTerrain对象,它是TileTerrain对象,只是⼀个包含⽗类地形信息的空壳。
接着,开始创建地形⽹格(processTerrainStateMachine)。
这⾥就有两个逻辑,如果当前没有地形数据,也就是EllipsoidTerrainProvider的情况,这样会直接创建HeightmapTerrainData。
因此状态是TerrainState.RECEIVED,这种情况下不需要重采样;如果请求了真实的地形数据,⽐如CesiumTerrainProvider,⽆论是请求⾼度图还是STK,只要有异步请求,则会执⾏processUpsampleStateMachine韩式,最终实现重采样(sourceData.upsample)。
HeightmapTerrainData.prototype.upsample我们先了解⼀下⾼度图下的实现。
⾼度图,顾名思义也是⼀种图了,所以这个重采样的⽅式和普通的图⽚拉伸算法⼀致。
⽐如⼀个2*2的图⽚,放⼤⾄4*4的⼤⼩,这⾥就有⼀个插值的过程。
⽐如线性差值,会取相邻的两个像素颜⾊,加权求值,或者双线性插值,取周边四个像素,加权求值。
CE3引擎之简单刷树教程
CE3引擎之简单刷树教程
玩《刺客信条4》,感觉其实用CE3也可以刷出来,现在就尝试刷简单的场景供大家学习。
如下图:
1 、地形建立
创建新地形
利用Terrain的Flatten和Smooth功能,开恳一片海滩出来
如下图:
打开terrain texture面板,把beach_white_sand材质赋给地形,,选择贴图
2、增加石块
3、刷水草
使用vegetation的功能来增加水草。
新建刷子,使用来增加草的模型。
这里,我用了2种草的模型,如下图:
,他们的模型属性分别勾选上,如下图:
参数设置如上图:
size:(尺寸大小) sizevar(尺寸大小范围变化)randomrotation(随机旋转) growonbrushes(刷子范围显示)growonterrain(贴着地形)bending(随动力而摆动的幅度)density(密度)
然后点击进行刷草,效果如下图:
4、后期调整。
发现海水较浅,那就把海水整体变高,通过来调整。
由于是近海,我们再调整海水的颜色,通过time of day 的
属性进行调整。
结束
[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Terrain Decimation through Quadtree MorphingDavid Cline and Parris K.Egbert,Member,IEEEAbstractÐWe present a new terrain decimation technique called a Quadtree Morph,or Q-morph.The new approach eliminates the usual popping artifacts associated with polygon reduction,replacing them with less objectionable smooth morphing.We show thatQ-morphing is fast enough to create a view-dependent terrain model for each frame in an interactive environment.In contrast to most Geomorph algorithms,Q-morphing does not use a time step to interpolate between geometric configurations.Instead,the geometry motion in a Q-morph is based solely on the position of the viewer.Index TermsÐPolygon decimation,terrain rendering,Geomorph.æ1T ERRAIN D ECIMATIONA digital elevation model,or DEM,is a rectangular arrayof height samples taken from terrain data or some other scalar-valued2D function.One common way to view a DEM is to render a set of triangles that approximates the terrain surface.Unfortunately,the obvious triangulation yields y nm triangles,where n and m are the dimensions of the height grid.For large DEMs,this can run into millions of polygons,too many to be rendered in real time even by specialized graphics hardware.Terrain Decimation addresses the issue of rendering efficiency by producing a terrain model with significantly fewer triangles that is visually similar to the full resolution model.While terrain decimation is a widely studied topic,the majority of decimation algorithms in use today suffer from the so-calledªpoppingºartifact.Popping occurs in an animation when successive frames show different approx-imate models that are visually discontinuous.Decimation algorithms that allow geometric discontinuities between successive approximations are referred to as discrete level-of-detail algorithms.Q-morphing avoids popping artifacts by using a continuous level-of-detail algorithm instead of a discrete level-of-detail algorithm.Continuous level-of-detail algorithms are able to produce a near infinite number of approximations such that the visual difference between successive models approaches zero.2P REVIOUS W ORK IN T ERRAIN D ECIMATION Several approaches to surface simplification in the setting of terrain models have been proposed.In this section,we will discuss four of these,namely,the application of general polygon decimation algorithms to terrains,TIN methods, voxelized terrains,and algorithms that use semiregular subdivision.2.1General Polygon Decimation Methods Although not intended specifically to work on terrain models,methods designed for general polygon decima-tion can be applied to triangulated DEMs.General methods have the advantage that they can be used for any polygonal objects in the scene,not just terrains.On the other hand,these methods cannot exploit the regular structure of the DEM.Terrain models have several display characteristics that make some types of decimation algorithms more attractive than others.First,terrain models often consume a large amount of memory.Thus,decimation algorithms that allow progressive transmission of geometry can avert long startup times.Additionally,terrain models are often viewed at close range so that only a small portion of the DEM is visible in any particular view.Thus,algorithms that perform view-dependent simplification are of particular interest in terrain settings.Luebke and Erikson[15]describe one general method that simplifies complex polygonal environments in a view-dependent fashion.The system works by grouping vertices into hierarchical clusters and then collapsing clusters into single vertices during animation.Another method that addresses the need for incremental transmission is the progressive mesh[9].Progressive Meshes,introduced by Hoppe,represent polygonal objects as a small base mesh plus vertex-split transformations.Since the vertex splits can be added incrementally to the model,a progressive representation results.Hoppe later showed how Progres-sive Meshes can be used for view-dependent simplification and how they can eliminate popping artifacts by using Geomorphs[10].2.2TIN MethodsMethods that produce TINs,or Triangulated Irregular Networks,form a large class of terrain decimation algorithms.In general,TIN methods attempt to create a mesh which contains the fewest possible triangles that satisfies some error criteria.Examples of basic TIN methods are found in[5],[21],and[20].TIN algorithms can produce near optimal results in terms of the number of triangles needed to satisfy a particular error threshold,but most do not operate in real-time.. D.Cline is with Sterling Wentworth Corp.,3470South200East,Salt LakeCity,UT84115.E-mail:dcline@.P.K.Egbert is with the Computer Science Department,3328TMCB,Brigham Young University,Provo,UT84602.E-mail:egbert@.Manuscript received27Jan.2000;accepted12July2000.For information on obtaining reprints of this article,please send e-mail to:tvcg@,and reference IEEECS Log Number111329.1077-2626/01/$10.00ß2001IEEESince the end goal is often to create a model that will be viewed interactively,TINs can be built off line and stored as triangle meshes.The stored meshes can then be rendered in real-time as long as they contain few enough triangles.One simple approach to detail management in terrains is to use a set of TINs with differing error thresholds as discrete level-of-detail models.Two drawbacks to this approach are that popping can occur when model levels switch and view-dependent simplification of the terrain is not possible in the individual TINs because the viewpoint is not known at TIN creation time.Some researchers have suggested extensions to the basic TIN idea that make TINs more suitable for real-time display.Taylor and Barrett[22]address the problem of popping by defining aªTIN morphºthat interpolates between TIN models.Their approach does not address the need for view-dependent model refinement,however. Consequently,the transformations to the terrain geometry must be done on a global scale;local simplification is not possible.Without the ability to simplify local regions in the terrain,the models become too complex for real-time display as the viewer approaches the terrain.DeBerg and Dobrindt[4]and Cohen-Or and Levanoni[3]extend the basic concept of TIN morphing to allow local refinement to the detail level.Both of these algorithms work by creating hierarchical versions of a Delaunay triangulation.A new tessellation is made for each viewpoint that allows different levels of the hierarchy to coexist on the same model. Another TIN algorithm that uses a hierarchical Delaunay triangulation is discussed by Rabinovich and Gotsman[19]. Besides being able to produce a view-dependent simplifica-tion,this algorithm allows piece-wise terrain updates during scene interaction.In more recent work,Hoppe[11] describes a terrain decimation approach that produces terrain models based on a hierarchy of predecimated terrain blocks.The system uses run-time geomorphs to eliminate popping artifacts.2.3Voxel MethodsVoxel methods do not use polygons to represent the terrain.Instead,the terrain is converted to a grid of discrete voxels and rendering is done by ray casting.One problem with this approach is that graphics hardware is usually designed to accelerate scan line algorithmsÐnot ray casting.On the other hand,ray casting over terrains lends itself to software optimization based on ray coherence and parallel rendering.Cohen-Or et al.[2]describe a real-time fly-through engine based on ray casting of a voxelized terrain.Real-time performance is obtained by exploiting ray coherence and rendering in parallel.The system uses a multiresolution version of the terrain similar to a mip-map and the lower resolution versions of the terrain are substituted for high resolution as the terrain recedes into the distance. Pagleroni and Petersen[17]use a different approach to accelerate ray casting for voxelized terrains.A virtual cone of empty space is placed on top of each voxel cell and rays cast into the scene can then skip over the volumes defined by the cones.2.4Semiregular SubdivisionWe classify terrain decimation algorithms that cover the ground plane with45-45-90triangles asªsemiregular subdivisionºmethods.Like TIN methods,algorithms that use semiregular subdivision produce triangular models of the terrain.Unlike TIN methods,semiregular subdivision restricts the placement of vertices in the terrain model to a large degree.Thus,semiregular subdivision cannot expect to achieve the level of optimality obtained using TINs.At the same time,however,the regularity imposed on the models has several advantages.Most importantly,semi-regular subdivision is invariably simpler and runs faster than comparable TIN algorithms.Semiregular subdivision methods often run fast enough to create a completely new model from the full resolution height grid for each frame of interaction.For this reason,view-dependent simplification is the rule rather than the exception for these methods. For the most part,semiregular subdivision decimates terrain by subsampling the height grid in a piece-wise fashion.The amount of subsampling for each area of the terrain can be determined by a number of metrics.Falby et al.[7]and Oborn[16]use simple distance cutoffs to determine the level of subdivision.LeClerc and Lau[12]use a metric based on sampling the terrain at a uniform screen frequency.Hitchner and McGreevy[8]use a distance metric augmented by a user-specifiedªlevel of interestºfor different parts of the terrain being viewed.Lindstrom et al.[13]base the subdivision level on an estimate of the screen error for small pieces of the terrain.One approach to semiregular subdivision that has become widespread in the last few years is the bintree or restricted quadtree triangulation.First popularized as a terrain decimation algorithm by Lindstrom et al.[14],the bintree approach is based on a particular tessellation of right triangles that allows dense and sparse triangulations to be mixed seamlessly.More recent work has extended the algorithm to allow incremental model updates[6],caching of terrain data,and the use of geomorphs to eliminate popping[18].2.5The Need for More ResearchDespite the large number of algorithms extant in the literature to simplify terrains,terrain decimation remains an area of active research.Perhaps the most obvious reason for this continued popularity is the widespread need for fast terrain rendering.Additionally,since the range of datasets and hardware used for terrain rendering varies so widely, implementors faced with a terrain rendering problem often find that previous algorithms lack some essential feature. (In the case of Q-morphing,we needed an algorithm that would mesh well with the texturing framework that we had chosen.)Finally,view-dependent simplification,progres-sive transmission of geometry,geometry caching,and Geomorphs still are not mature disciplines.Thus,more research in these areas is justified.3O VERVIEW OF THE A LGORITHMA Quadtree Morph builds a view-dependent terrain model by decomposing a DEM into quadtrees.The quadtrees are subdivided so that the final quadtree nodes have a screensize as close as possible to some predetermined value.Fig.1 shows the quadtrees generated for a hypothetical Q-morph. After the quadtree nodes have been chosen,the algorithm subdivides each node into triangles based on an indepen-dently calculated LOD parameter.To prevent cracking, neighboring nodes are forced to have a common boundary. Popping between frames is eliminated using a position-based morph.3.1Position-Based MorphingMost current geomorph methods utilize time-based morph-ing.That is,the rate of geometry motion is controlled by a time step.A position-based morph,on the other hand, controls geometry motion by defining a real-valued LOD parameter based on the view position.The integer part of the LOD value determines the base model that will be used and the mantissa determines the level of morphing.For example,for an LOD parameter of3.7,the base model would be model3and the final geometry would lie seven-tenths of the distance between models3and4.A major advantage of a position-based morph over a time-based morph is that no geometry motion occurs unless the viewer is moving.Additionally,a position-based morph does not have to guess at how much time to allot to a morph.A disadvantage of the position-based morph is that the geometry of the entire object is always in flux,which may slow rendering.Also,it is easier to use a time-based morph to modify individual vertices and edges in a model.4D ATA S TRUCTURESIn addition to the original DEM,the Q-morph algorithm uses three data structures to build a terrain modelÐthe gridlet quadtrees,the temporary DEM,and the Metagrid.These are defined in the next sections.4.1The GridletsThe quadtree nodes in a Q-morph,called gridlets,corre-spond to P n I Â P n I square regions within the DEM that overlap by one sample.We will refer to the smallest gridlets(the leaf nodes of the quadtrees)as base gridlets.For the examples presented here,the size of the base gridlets was set to WÂW samples.We found this to be a good compromise between gridlet memory usage and localiza-tion of the screen error.As mentioned,the gridlets are arranged into a group of quadtrees.The current implementation requires the gridlet quadtrees to be full;however,abutting quadtrees fit together seamlessly as long as the base gridlets have the same dimensions.When the terrain model is built,a set of gridlets that covers the terrain in the view frustum is chosen based on the viewing parameters.The model is made by subsam-pling these final gridlets independently based on a screen-space error metric.To eliminate popping,a position-based morph is applied to each of the final gridlets.4.2The Temporary DEMThe temporary DEM is aªscratch arrayºof floating point numbers that has the same dimensions as the original height grid.In contrast to the original DEM,which is static, the temporary DEM contains height values that may change at each frame.Because morphing is used to interpolate between approximation levels,the entire terrain model gets rebuilt in the Temporary DEM for each frame.4.3The MetagridThe Metagrid is an array of integers used to coordinate rendering of the gridlet edges.The size of the Metagrid is eÂf,where e and f are the dimensions of the DEM in base gridlets.5T HE A LGORITHMThe process by which Q-morphing builds a view-depen-dent terrain model can be summarized as follows:1)de-termine the list of gridlets that will be drawn,2)calculate the step and morph values for the gridlets,and3)tessellate the gridlets into the temporary DEM.Sections5.1to5.4 discuss these steps in detail.Fig.9gives pseudocode for the steps.5.1Determining the List of Gridlets to be Drawn The gridlet screen radius.The gridlet screen radius,r g, gives an upper bound on the screen size of a gridlet.This value helps determine the list of gridlets that will form the terrain model and is calculated on a per-gridlet basis byr gh2ÂrdY Iwhere r g is the gridlet screen radius,h is the height of the viewport in pixels,2is the vertical field of view in radians, r is the gridlet world radius(1/2the diagonal of the gridlet bounding box),and d is the distance from the viewer to the gridlet center.The final gridlets.Recursive subdivision is used to determine the final list of gridlets that will be drawn. Starting with the root nodes of the gridlet quadtrees,the algorithm descends until either the gridlet is outside the view frustum and can be culled,or the screen radius falls below some threshold,r m x.The choice of r m x is a vital part of the algorithm.If it is too small,an abundance of final gridlets will result,slowing the rendering process because of gridlet overhead.On the other hand,if r m x is too large,Fig.1.The quadtree nodes of a hypothetical Q-morph.Clipping is done by eliminating quadtree nodes that are outside the view frustum. Subdivision of the quadtrees occurs in a top-down fashion,continuing until the resulting nodes are smaller than a predetermined size in screen space.the screen error will not be localized well and poor qualityor a high polygon count will result.Our studies indicate that values of r m x between about 60and 120pixels work well for standard sized graphics screens.5.2The Step and Morph ValuesEach of the final gridlets is constructed based on two numbers called the step value ,s f ,and the morph value ,m f .The step value determines the amount of subsampling used to reconstruct the gridlet and the morph value determines the extent of interpolation between subsampling levels.Section 5.4explains in detail how the step and morph values are used to make the terrain model.s f and m f are defined in terms of a final LOD value ,t f .Given t f ,the step and morph values are calculated as follows:s f P t fm f t f À t f XP5.2.1The Linear LOD ValueEach gridlet traversed during the Q-morph calculates a linear LOD value ,t l ,that encodes the reconstruction quality needed to satisfy a particular error threshold.t l is called linear because it maps the reconstruction quality onto a linear scale.A value of zero corresponds to a perfect reconstruction and higher values successively decrease in fidelity.Several variables are used in the computation of t l ,namely the height disparity list ,the screen disparity multiplier ,and the screen error tolerance .The height disparity list.Each gridlet contains a height disparity list,r ,for its region of the DEM.r is used to estimate the terrain roughness at differing resolutions.r i is defined as the maximum,or mean,vertical disparity between tessellating the gridlet at full resolution and subsampling at resolution P i .In practice,the definition is modified as follows to prevent popping and rapid morph-ing artifacts:r H k h H r I .1For i b I , r i Àr i ÀI !k r r i ÀI Àr i ÀP k .2The screen disparity multiplier.Before the LOD value for a gridlet can be determined,the vertical disparities in r must be converted to screen space.Q-morphing approx-imates this operation by calculating a screen disparity multiplier,h s ,for each gridlet.h s converts verticaldisparity in height units to screen error in pixels and is calculated byh sh 2Âsin dY Qwhere h is the viewport height in pixels,2is the vertical field of view angle in radians, is the angle between the terrain ªUpºvector and the vector from the gridlet center to the viewpoint,and d is the distance from the viewpoint to the gridlet center.The screen error tolerance.Q-morphing relies on a user-specified screen error tolerance to determine the amount of error allowed in the finished model.Depending on the definition of the height disparity list,the error tolerance is interpreted as either the approximate average or maximum deviation in screen space between the desired model and the Q-morph model.Calculation of the linear LOD value.Let e be the screen error tolerance in pixels and let i log P qridlet ide ÀI . l is calculated by mapping e onto the height disparity list scaled by h s .Fig.3shows the mapping.Equation (4)defines t l formally.t l H if e `h r Hiif e b h r iotherwisej ÀIe Àr j ÀI h s r j Àr j ÀI h sh s r j ÀI `e h s r j XV b b `b b X R5.2.2The Final LOD ValueAs explained in Section 5.1,when the screen radius of a gridlet exceeds the value r m x ,the children of the gridlet are used for rendering.Since LOD values calculated for the child and parent gridlets are,in general,different at the transition between levels,popping could result.To elim-inate this popping,the final LOD value ,t f ,is interpolated between linear LOD values that are calculated for the parent and child gridlets.Conceptually,t f is a weighted sum of the linear LOD values of the gridlet to be drawn and its parent.t f is computed as:t f mt g I Àm t p YSwhere1.We used a value of I a Q for k h H .2.k assures that r is strictly increasing.k r makes surethat morphing does not take place too quickly.Fig.2.The screen disparity multiplier estimates the screen space error ofone unit of vertical disparity on a per-gridlet basis.Fig.3.The linear LOD value is defined by mapping e onto the height disparity list,r ,scaled by h s .Applying (4),t l for the example shown in the figure is j ÀI eag .mIIÀfIIÀfI IÀee r m x ar pf rg ar m xt f he fin l vyh v lue Xt p vine r vyh v lue of p rent gridlet Xt g vine r vyh v lue of gridlet to e dr wn Xr p reen r dius of p rent gridlet Xr g reen r dius of gridlet to e dr wn XOf course,t g is used as the final LOD value if the gridlet tobe drawn has no parent or if r g b r m x.5.3Setup ProceduresBefore the height values in the temporary DEM can be set,several setup steps must be done to coordinate gridletrendering.These steps are sorting the gridlets,clearing thegridlet borders,and setting values in the Metagrid. Sorting the gridlets.The gridlets are sorted in descend-ing order of final LOD value to coordinate edge drawing.Without the sorting,gaps would be introduced on gridletedges.Clearing the Gridlet Borders.Prior to building theterrain model,the final gridlet borders are cleared in thetemporary DEM using s f,defined in Section5.2,as a stepvalue.When the terrain model gets built,the border valueswill be set only once and this will eliminate tears betweengridlets.However,it is still possible for T-junctions to occur.Although we have not taken steps to eliminate the minutecracks caused by the T-junctions,they are usually notnoticeable on textured terrain.Moreover,the cracks couldbe eliminated fully by adding a few triangles to weld thegridlet edges together.Setting the values in the Metagrid.To coordinaterendering,the final gridlet step values(s f)are copied tothe Metagrid.When a gridlet is processed,the smallestneighboring step value on each side is used to determine ifinterpolation is necessary.Interpolation forces neighboringgirdlets to a common edge,eliminating cracking.5.4Making the Terrain ModelThe terrain model is built by tessellating the final gridlets into the temporary DEM.To process a gridlet,the algorithm needs the step value for the gridlet,s f,the morph value,m f, and the minimum step values of the neighboring gridlets, s l,s r,s t,and s .Setting the edges.As mentioned,the gridlet edges are processed in decreasing order of final LOD value to avoid introducing gaps into the model.Since a vertex in the temporary DEM is set only once,the height calculation of an edge vertex is bypassed if a value for that location has already been set in the temporary DEM.The edges of the final gridlets are processed as follows: First,edge vertices with coordinates that are even multiples of s f are copied directly from the original DEM.Next,edge vertices lying on odd multiples of s f are morphed using the equationt o m ftÀsf t sfPIÀm f h o Y T where t o is the computed height of the vertex at an odd position,m f is the morph value for the gridlet,tÀsf and t sf are the heights of the neighboring vertices in the temporary DEM,and h o is the height of the vertex as specified in the original DEM.Note that,while h o comes from the original DEM,tÀsf and t sf are taken from the temporary DEM.A special case occurs when s f is the same as the gridlet width. In this case,the gridlet corners must be morphed using values outside the gridlet boundaries.In all other respects, however,the calculation proceeds normally.After the morphed vertices are set,points that lie on step values of neighboring gridlets are set by linear interpolation.Fig.4 shows the calculation of the gridlet edges in the terrain model.The gridlet interiors.Vertices interior to the gridlets are set similarly to the edges.Points having x and y coordinates that are both even multiples of s f are copied from the original DEM.Other points are calculated using(6).Fig.5 shows the morphing directions used in the gridlet interior, that is,the directions to the vertices used as tÀsf and t sf.6D RAWING THE T ERRAIN M ODELTriangle strips.Our current implementation renders the terrain model as a set of triangle strips.Each horizontal strip of polygons in a gridlet is turned into one triangle strip.putation of the gridlet edges.Height values for vertices on even multiples of s f are copied directly from the original DEM(filled circles). Vertices on odd multiples of s f(diamonds)are computed using(6).Vertices lying on neighboring step values are set by linear interpolation(hollow circles).Large textures.To create a convincing terrain simulation,detailed texture must be added to the polygonal model created in a Q-morph.We use the caching algorithm described in [1]to manage this detail.Since the texture caching scheme and Q-morphing both use a quadtree as the underlying structure,the geometry and texture can be aligned so that each gridlet covers exactly one texture tile.Furthermore,since Q-morphing bounds the screen size of the final gridlets,texture LOD decisions can be made on a per-gridlet basis.7R ESULTSTo test the Q-morphing algorithm,we used a dataset of the Wasatch Front in northern Utah containing several sites that will be used in the 2002Winter Olympics.The original DEM for the Wasatch Front dataset is ITHI ÂQHUQ samples in size with 31.875meters between samples.The DEM for the scene is divided into 76,800W ÂW base gridlets and contains 102,357gridlets in total.7.1Number of TrianglesWe performed several flybys of the Wasatch Front dataset using different error thresholds to determine the correlation between the error threshold and the number of triangles in the final model.Fig.6shows the number of triangles generated by three flybys using the same camera path but different error thresholds.Note the strong similarity that exists between the shapes of the curves in the graph.Thisindicates a multiplicative relationship between the error threshold and the resulting number of triangles.Fig.7gives the framerate sustained for a flyby of the South Wasatch dataset by an SGI Reality Station with a single R10000processor.7.2FramerateAs can be seen in Figs.6and 7,the number of polygons produced by a Q-morph and the framerate in the resulting animation are not at all constant.Real-time applications require algorithms that complete within a specified amount of time,however.For modern graphics hardware,constant time often equates to constant polygon count.Thus,a useful extension to Q-morphing would be to allow the error threshold to float to produce models having a near constant number of polygons.The current implementation achieves a near constant polygon count by using the polygon count in an animationFig.5.Morphing directions for a Q ÂQ section in the interior of a gridlet.Vertices , ,e ,and g are copied from the original DEM.Other vertices are calculated using (6)with and f being morphed vertically,d and h morphed horizontally,andi morphed diagonally between and e .Fig.6.The number of triangles generated by a Q-morph under different error thresholds.Results are calculated for a flyby of the Wasatch Front dataset with error thresholds of 1.0,2.0,and4.3pixels on a TRH ÂRVH viewport.Fig.7.Framerates achieved by the Q-morphing algorithm.The screen size for this trial was TRHÂRVH and the error threshold was 2.0pixels.Fig.8.Results of the Q-morphing algorithm.The images shown were captured from a WHH ÂUHH screen.Left images show the models produced using different error thresholds.The images on the right are textured versions of the same models.From top to bottom,the error threshold is 1.0,2.0,and 4.3pixels.The models have 28,460,10,520,and 3,536triangles,respectively.。