08—09学年度上学期八年级数学整式的乘除与因式分解测试题[1]
《整式的乘法与因式分解》单元综合检测题含答案
A.a+3B.a-3C.a+1D.a-1
【答案】B
【解析】
a2-9= ,a2-3a= ,故选B.
8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()
A B.
C. D.
【答案】A
【解析】
【分析】
根据阴影部分面积的两种表示方法,即可解答.
【详解】图1中阴影部分的面积为: ,
22.已知:(x+y)2=6,(x-y)2=2,试求:
(1)x2+y2 值;
(2)xy的值.
23.如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.
(1)试用含a、b的式子表示绿化部分的面积(结果要化简).
A.5B.-5C. D.
【答案】B
【解析】
【分析】
把式子展开,找到所有x项的系数,令其为0,求解即可.
【详解】解:∵(x+1)(5x+a)=5x2+ax+5x+a=5x2+(a+5)x+a,
又∵乘积中不含x一次项,
∴a+5=0,解得a=-5.
故选B.
【点睛】本题主要考查了多项式乘多项式,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.
【答案】C
【解析】
试题分析:A、右边不是整式积的形式,不是因式分解,故本选项错误;
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、是符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误;
八年级整式的乘法与因式分解单元试卷(word版含答案)
八年级整式的乘法与因式分解单元试卷(word版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.8【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n次幂的计算总结规律,从而可得到结果.2.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011,b=2012x+2012,c=2012x+2013时,a-b=-1,b-c=-1,c-a=2,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选D.【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.3.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.4.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.5.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定【答案】A【解析】解:∵a2﹣4b=7,b2﹣4c=﹣6,c2﹣6a=﹣18,∴a2﹣4b+b2﹣4c+c2﹣6a=7﹣6﹣18,整理得:a2﹣6a+9+b2﹣4b+4+c2﹣4c+4=0,即(a﹣3)2+(b﹣2)2+(c﹣2)2=0,∴a=3,b=2,c=2,∴此三角形为等腰三角形.故选A.点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.6.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1)C.x-1=x(1-1x)D.(x-1)2=x2-2x+1【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;C、x-1=x(1-1x),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.7.下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a-1)=a2-1 B.a2-6a+9=(a-3)2C.x2+2x+1=x(x+2x)+1 D.-18x4y3=-6x2y2·3x2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C 、右边不是积的形式,错误;D 、左边是单项式,不是因式分解,错误.故选B .【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.8.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】 通过平移后,根据长方形的面积计算公式即可求解.【详解】 平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.12.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n.13.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.15.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.17.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.18.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.19.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()222-+=-+=-.36332131x x x x x故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.若m+n=3,则2m2+4mn+2n2-6的值为________.【答案】12【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=12.。
《整式的乘法与因式分解》单元检测卷(附答案)
m=-1或m=3.
故选C.
点睛:本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
二、填空题(每小题3分,共24分)
11.计算:-x2·x3=________; =________; ×22016=________.
A. B. C. D.
【答案】B
【解析】
设S=1+a+a2+a3+a4+…+a2016①,
在等式两边同乘以a得aS=a+a2+a3+a4+…+a2016+a2017②,
②-①得(a-1)S=a2017-1,
∴S= .
故选B
6.(-2)0等于( )
A. -2B. 0C. 1D. 2
【答案】C
【解析】
根据零指数的定义:a0=1(a≠0)可知:(-2)0=1.
(3)(-2ab3c2)4; (4)(-a3b)2÷(-3a5b2).
20.(8分)化简:
(1)(a+b-c)(a+b+c);
(2)(2a+3b)(2a-3b)-(a-3b)2.
21.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.
22.因式分解:
(1)6xy2-9x2y-y3; (2)(p-4)(p+1)+3p.
【答案】(1).y(x-1)(2).4(x-3)2
【解析】
(1)xy-y=y(x-1);
(2)4x2-24x+36=4(x2-6x+9)= 4(x-3)2.
15.计算:2016×512-2016×492的结果是________.
【答案】403200
【解析】
(常考题)人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(答案解析)(1)
一、选择题1.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-52.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13 3.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18 C .5 D .94.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )m﹣3 4 3 1nA .1B .2C .5D .7 5.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .210 6.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.757.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .58.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> 9.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽 10.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .611.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫-- ⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc - 12.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1 B .1- C .2 D .2-二、填空题13.10的整数部分是a .小数部分是b ,则2a b -=______.14.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____.15.已知有理数a ,b 满足0ab <,a b a b +=+,521a b b a ++=--,则()31222a b a b ⎛⎫++⋅- ⎪⎝⎭的值为______. 16.计算:32(2)a b -=________.17.已知,a b 满足1,2a b ab -==,则a b +=____________18.因式分解:24a b b -=______.19.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.20.若9m =4,27n =2,则32m ﹣3n =__.三、解答题21.如图,某长方形广场的四个角都有一块半径为r 米的四分之一圆形的草地,中间有一个半径为r 米的圆形水池,长方形的长为a 米,宽为b 米.(1)整个长方形广场面积为 ;草地和水池的面积之和为 ;(2)若a =70,b =50,r =10,求广场空地的面积(π取3.142,计算结果精确到个位).22.某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下: 外卖送单数量补贴(元/单) 每月不超过500单 6超过500但不超过m 单的部分()700900m ≤≤ 8超过m 单的部分 10(2)设5月份某“外卖小哥”送餐x 单()500x >,求他这个月的工资总额(用含x ,m 的代数式表示).23.先化简,再求值:()()()2222(2)x y y x x y x y x --++---,其中1,22x y =-=. 24.观察下列关于自然数的等式:(1)217295⨯+⨯= ①(2)2282106⨯+⨯= ②(3)2392117⨯+⨯= ③……根据上述规律解决下列问题:(1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.25.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯26.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.2.C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯--∴()2 49a b -=∴7a b -=±故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键. 3.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可.∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 4.D解析:D【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 5.B解析:B【分析】所求式子变形后,将已知等式变形代入计算即可求出值.【详解】25y x -=∴ 25x y -=-()2236x y x y --+ ()()2=322x y x y --- =()()2535--⨯-=25+15=40【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.6.D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】 2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.7.A解析:A【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5第2次输出的结果是16第3次输出的结果是8第4次输出的结果是4第5次输出的结果是2第6次输出的结果是1第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律8.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.C解析:C【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解.【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),由已知可得:我爱昭通,故选:C .【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键. 10.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 11.C解析:C【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案.【详解】解:由图知:0<a <1,b >1,c <0, ∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--< ⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C.【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.12.B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.6-16【分析】先估算确定ab 的值进而即可求解【详解】∵<<∴3<<4又∵a 是的整数部分b 是的小数部分∴a =3b =−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键. 14.3x -4【分析】利用面积公式计算即可得到答案【详解】设这条边上的高为a 由题意得:∴ay=3xy-4y ∴a=3x-4故答案为:3x-4【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单解析:3x -4【分析】利用面积公式计算即可得到答案.【详解】设这条边上的高为a , 由题意得:12342y a xy y ⋅⋅=-, ∴ay=3xy-4y ,∴a=3x-4,故答案为:3x-4.【点睛】 此题考查多项式除以单项式法则:用多项式中的每一项分别除以单项式,再把结果相加. 15.0【分析】分情况讨论或根据绝对值的性质化简得到即可求出结果【详解】解:①时(矛盾)舍去;②时原式故答案是:0【点睛】本题考查代数式的求值解题的关键是掌握绝对值的化简利用整体代入的思想求值解析:0【分析】分情况讨论,0a >,0b <或0a <,0b >,根据绝对值的性质化简,得到312022a b ++=,即可求出结果.【详解】解:①0a >,0b <时,()521a b b a b a b a ++=--=---=-⎡⎤⎣⎦,610a b ∴++=,0a b a b +=+≥,()61510a b a a b ∴++=+++>(矛盾),∴舍去;②0a <,0b >时,()521a b b a b a a b ++=--=--=-,4310a b ∴++=,312022a b ∴++=, ∴原式()00a b =-=.故答案是:0.【点睛】本题考查代数式的求值,解题的关键是掌握绝对值的化简,利用整体代入的思想求值. 16.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.17.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案.【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=,∴3a b +=±,故答案为:3±.【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 18.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 19.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出 解析:1【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可.【详解】原方程可整理为22(1)(1)80m x m x --++=.根据题意可知210m -=且10m +≠,所以1m =. 所以2008200811111m m --=--=.故答案为:1.【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.20.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂解析:2【分析】根据指数的运算,把32m ﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n÷=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 三、解答题21.(1)ab 平方米;22r π平方米,(2)2872平方米【分析】(1)根据长方形面积公式即可表示出广场面积;根据圆的面积公式即可表示草地和水池的面积;(2)长方形面积减去草地和水池的面积的和即可得到广场空地的面积,再代入求值即可.【详解】(1)整个长方形广场面积为ab 平方米;草地和水池的面积之和为214r 4π⨯⨯+2r π=22r π平方米,故答案是:ab 平方米;22r π平方米;(2)依题意得:空地的面积为 22ab r π-当a =70,b =50,r =10时,∴ 22270502 3.14210ab r π-=⨯-⨯⨯2871.62872=≈答:广场空地的面积约为2872平方米.【点睛】本题考查列代数式、求代数式的值,列出正确的代数式是正确解答的关键.22.(1)3400元;(2)当500<x≤m ,工资总额为8x ;当x >m ,工资总额为10x-2m【分析】(1)根据题意和表格中的数据可以求得若某“外卖小哥”4月份送餐400单,他这个月的工资总额;(2)根据题意和表格中的数据可以写出各段工资总额与x 的关系式;【详解】解:(1)工资总额=1000+400×6=3400元(2)当500<x≤m ,工资总额为:1000+500×6+8(x-500)=8x当x >m ,工资总额为:1000+500×6+8(m-500)+10(x-m )=10x-2m【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,分段分析解答.23.232+x xy ,54-. 【分析】利用平方差公式,和的完全平方公式,单项式乘以多项式法则化简,合并同类项后,代入求值即可.【详解】原式2222244 42x y x xy y xy x =-+++-+ 232x xy =+, 当1,22x y =-=时, 原式2115322224⎛⎫⎛⎫=⨯-+⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了运用乘法公式进行化简,熟练运用公式,正确合并同类项是解题的关键. 24.(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.25.①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.26.(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x 2y ﹣4xy +y=y (4x 2﹣4x +1)=y (2x ﹣1)2;(2)9a 2﹣4(a +b )2=[3a +2(a +b )][3a ﹣2(a +b )]=(5a +2b )(a ﹣2b ).本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
《整式的乘法与因式分解》单元测试题(含答案)
∴a2b8=(ab4)2=32=9.
故选B.
点睛:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.
9.下列各式中与 的相等的是
A. B. C. D.
【答案】B
【解析】
【分析】
根据完全平方公式进行选择即可.
14.若 , ,则 ________________.
【答案】-32
【解析】
分析:
先逆用“同底数幂 除法和幂的乘方的法则”把 转化为用含“ ”和“ ”的式子表达,再代值计算即可.
详解:
∵ ,
∴ .
故答案为: .
点睛:熟悉 和 ,并能逆用是解答本题的关键.
15.计算:(a-2b+c)2=________.
20.已知: ( 为多项式),则 ________________________.
三、解答题(共5小题;共60分)
21.计算:
(1) (2)
(3) (4)
22.因式分解:
(1) (2)
(3) (4)
23.先化简,再求值.
(1) ,其中 ,
(2) ,其中 ,
24.仔细阅读下面例题,然后按要求解答问题:
16.定义新运算: ,则 ___________________.
17.若代数式 2a- b 的值是 3,则多项式8- 6a3b的值是______.
18.计算: _________________.
19.如图,在边长为 的正方形中央剪去一边长为 的小正方形 ,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.
初二数学上整式乘除与因式分解知识汇总及测试与答案
整式乘除与因式分解知识汇总及测试题一.回顾知识点1、主要知识回顾:幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.= a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.(n 为正整数)积的乘方等于各因式乘方的积.= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .负指数幂的概念:a -p = (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:(m ≠0,n ≠0,p 为正整数) 单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a +b )(a -b )=a 2-b 2()nm a ()n n n b a ab =n m a a ÷p a 1pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2经典例题分析:例1、计算下列各式(1)(-x)2n+1·(-x)n+1(2)(-2)2004+(-2)2005例2、若(x2+px+q)(x2-3x+2)的乘积中不含x2和x3项,求p、q的值.分析:缺项就是多项式中此项的系数为零,此题中不含x2和x3项,也就是x2和x3项的系数为0. 解:∵(x2+px+q)(x2-3x+2)中x2项的系数为2-3p+q=0x3项的系数为p-3=0例3、计算:(1)98×102;(2)99×101×10001.解:(1)98×102=(100-2)(100+2)=10000-4=9996(2)99×101×10001=(100-1)(100+1)×10001=(10000-1)(10000+1)=100000000-1=99999999计算:(1)32a6÷4a2;(2)6x7y5z÷16x4y3;(4)-3a2x4y5÷(axy2)2计算:(1)32a6÷4a2;(2)6x7y5z÷16x4y3;(4)-3a2x4y5÷(axy2)2:(1)原式=(32÷4)(a6÷a2)=8a4;(2)原式=(6÷16)(x7÷x4)( y5÷y3)z(4)原式=-3a2x4y5÷a2x2y4=-3(a2÷a2)(x4÷x2)(y5÷y4)=-3x2y完成下列各题:(1)已知x m=8,x n=5,求x m-n的值;(2)已知x m=a,x n=b,求x2m-3n的值;(3)已知3m=6,9n=2,求32m-4n+1的值. 解:(1)∵x m=8,x n=5,∴x m-n= x m÷x n=8÷5=(2)∵x m=a,x n=b∴x2m-3n= x2m÷x3n=(x m)2÷(x n)3=a2÷b3=(3)∵3m=6,9n=32n=2∴32m-4n+1=(3m)2÷(32n)2×3=62÷22×3=36××3=27已知a+b=4,ab=2,不解方程组,求(1)(a-b)2;(2)a3b-2a2b2+ab3的值. 解:(1)(a-b)2=a2+b2-2ab=(a+b)2-4ab当a+b=4,ab=2时,(a-b)2=42-4×2=8(2)a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2= ab[(a+b)2-4ab]当a+b=4,ab=2时,原式=2×(42-4×2)=16整式乘除与因式分解测试题一、选择题1、括号内应填( )A 、B 、C 、D 、2、下列计算正确的是( )A 、B 、C 、D 、 3、在(4)中错误的有( )A 、1个B 、2个C 、3个D 、4个4、下列各式中,能用平方差公式计算的是( )A 、B 、C 、D 、5、如果:( )A 、B 、C 、D 、 6、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.96017、如果可运用完全平方公式进行因式分解,则k 的值是( )A 、8B 、16C 、32D 、648、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 () A 、p=0,q=0 B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=1 9、对于任何整数,多项式都能( )A 、被8整除B 、被整除C 、被-1整除D 、被(2-1)整除 44221625)(______)45(b a b a -=+-2245b a +2245b a +2245b a +-2245b a --22))((y x x y y x -=-+22244)2(y xy x y x +-=+-222414)212(y xy x y x +-=-2224129)23(y xy x y x +-=--2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+ab ab ab a b b a =-=--23)2)(3())((b a b a +--))((b a b a ---))((c b a c b a +---+-))((b a b a -+-=-==+-222)32,5,0168y x x y xy x 则(且4251662516302516225k x x ++82m 9)54(2-+m m m m10.已知多项式,且A+B+C=0,则C 为( )A 、B 、C 、D 、二、填空题11、 =(3+ )212、2012= , 48×52= 。
八年级上册数学 整式的乘法与因式分解综合测试卷(word含答案)
9.下列运算正确的是( )
A. a a2 a3
B. a6 a2 a3
C. 2a2 a2 2
D. 3a2 2 6a4
【答案】A 【解析】 【分析】 根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解; 【详解】
解: a • a2 a12 a3 ,A 准确; a6 a2 a62 a4 ,B 错误; 2a2 a2 a2 ,C 错误;
6.下列运算正确的是
A. b5 b3 b2
B. (b5 )2 b7
C. b2·b4 b8
【答案】A 【解析】
D. a(·a 2b) a2 2ab
选项 A, b5 b3 b2,正确;选项 B,
b5
2
b10
,错误;选项 C, b2·b4 b6 ,错误;
选项 D, a·a 2b a2 2ab ,错误.故选 A.
八年级上册数学 整式的乘法与因式分解综合测试卷(word 含答 案)
一、八年级数学整式的乘法与因式分解选择题压轴题(难)
1.248﹣1 能被 60 到 70 之间的某两个整数整除,则这两个数是( )
A.61 和 63
B.63 和 65
C.65 和 67
D.64 和 67
【答案】B
【解析】
【分析】
248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)
(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.
【详解】
解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)
八年级上册数学 整式的乘法与因式分解综合测试卷(word含答案)
八年级上册数学整式的乘法与因式分解综合测试卷(word含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是()A.x+2y+1 B.x+2y﹣1 C.x﹣2y+1 D.x﹣2y﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x2﹣4xy﹣2y+x+4y2=(x2﹣4xy+4y2)+(x﹣2y)=(x﹣2y)2+(x﹣2y)=(x﹣2y)(x﹣2y+1).故选:C.【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y),将其当成整体提出,进而得到答案.2.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( ) A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n【答案】B【解析】已知a与b互为相反数且都不为零,可得a、b的同奇次幂互为相反数,同偶次幂相等,由此可得选项A、C相等,选项B互为相反数,选项D可能相等,也可能互为相反数,故选B.3.因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)【答案】B【解析】【分析】【详解】因为(x+6)(x-1)=x2+5x-6,所以b=-6;因为(x-2)(x+1)=x2-x-2,所以a=1.所以x2-ax+b=x2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.4.下列运算正确的是 A .532b b b ÷= B .527()b b =C .248·b b b =D .2·22a a b a ab -=+()【答案】A 【解析】选项A , 532b b b ÷=,正确;选项B , ()25b =10b ,错误;选项C , 24·b b =6b ,错误;选项D , 2·22a a b a ab -=-,错误.故选A.5.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D 【解析】 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a 2+8a+16)-(a 2+2a+1) =a 2+8a+16-a 2-2a-1 =6a+15. 故选D .6.已知4y 2+my +9是完全平方式,则m 为( ) A .6 B .±6C .±12D .12【答案】C 【解析】 【分析】原式利用完全平方公式的结构特征求出m 的值即可.【详解】∵4y 2+my +9是完全平方式, ∴m =±2×2×3=±12. 故选:C . 【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( ) A .8 B .-8 C .0 D .8或-8【答案】B 【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.8.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B 【解析】 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.9.已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A.b>0,b2-ac≤0 B.b<0,b2-ac≤0C.b>0,b2-ac≥0 D.b<0,b2-ac≥0【答案】D【解析】【分析】根据题意得a+c=2b,然后将a+c替换掉可求得b<0,将b2-ac变形为()24a c-,可根据平方的非负性求得b2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b,∴a+2b+c=4b<0,∴b<0,∴a2+2ac+c2=4b2,即22 224a ac c b++=∴b2-ac=()22222220 444a ca ac c a ac cac-++-+-==≥,故选:D.【点睛】本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.已知a=96,b=314,c=275,则a、b、c的大小关系是( )A.a>b>c B.a>c>b C.c>b>a D.b>c>a【答案】C【解析】【分析】根据幂的乘方可得:a=69=312,c=527=315,易得答案.【详解】因为a=69=312,b=143,c=527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36. 【解析】 【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案. 【详解】由题意得: 2232,8x y x y -=+=∵22()()x y x y x y -=+-, ∴x -y=4,解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩,∴正方形ABCD 面积为236x =, 故填:36. 【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.x+1x=3,则x 2+21x =_____.【答案】7 【解析】 【分析】直接利用完全平方公式将已知变形,进而求出答案. 【详解】 解:∵x +1x=3, ∴(x +1x)2=9, ∴x 2+21x+2=9, ∴x 2+21x=7. 故答案为7. 【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.13.已知a-b=4,ab=6,则22a b += _________. 【答案】28 【解析】 【分析】对完全平方公式进行变形即可解答. 【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28. 【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.14.因式分解:225101a a -+=______________ 【答案】()251a - 【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -.故答案为:()251a -.15.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2. 【答案】m n+p+q 【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.16.222---x xy y =__________ 【答案】()2x y -+ 【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+.故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.17.因式分解:214y y ++=______ 【答案】212y ⎛⎫+ ⎪⎝⎭ 【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:2222111124222y y y y y ⎛⎫⎛⎫++=+⨯+=+ ⎪ ⎪⎝⎭⎝⎭.故答案为:212y ⎛⎫+ ⎪⎝⎭.18.分解因式2242xy xy x ++=___________ 【答案】22(1)x y +【解析】 【分析】原式提取公因式,再利用完全平方公式分解即可. 【详解】原式=2x (y 2+2y +1)=2x (y +1)2, 故答案为2x (y +1)2 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】 【分析】先提公因式3x ,然后利用平方差公式进行分解即可. 【详解】 3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2). 【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.20.已知8a b +=,224a b =,则222a b ab +-=_____________.【答案】28或36. 【解析】 【分析】 【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36. 【点睛】本题考查完全平方公式;分类讨论.。
八年级数学整式的乘除与因式分解单元测试题(含答案)
八年级数学整式的乘除与因式分解单元测试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学整式的乘除与因式分解单元测试题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学整式的乘除与因式分解单元测试题(含答案)的全部内容。
《整式的乘法》单元测试题一.选择题(10小题,每小题3分,共30分)1、下列运算正确的是( )A 、 B 、 C 、D 、2、计算()2003×1。
52002×(—1)2004的结果是( ) A 、B 、C 、-D 、—3、下列多项式乘法中可以用平方差公式计算的是( )A 、B 、C 、D 、 4、下列计算中:①x (2x 2﹣x+1)=2x 3﹣x 2+1;②(a+b )2=a 2+b 2;③(x ﹣4)2=x 2﹣4x+16;④(5a ﹣1)(﹣5a ﹣1)=25a 2﹣1;⑤(﹣a ﹣b)2=a 2+2ab+b 2,正确的个数有( )A 、2个 B 、1个 C 、3个 D 、4个5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( ).A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2ab +b 2C 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )26、(﹣a )3(﹣a )2(﹣a 5)=( ) A 、a 10 B 、﹣a 10 C 、a 30 D 、﹣a 307、已知a=8131,b=2741,c=961,则a ,b ,c 的大小关系是( ) A 、a >b >c B 、a >c >b C 、a <b <c D 、b >c >a933842x x x ÷=2323440a b a b ÷=22m m a a a ÷=2212()42a b c a b c ÷-=-3232233223))((b a b a -+-)2)(2(x x ++)31)(31(x y y x -+)1)(2(+-x x8、下列四个算式中正确的算式有( )①(a 4)4=a 4+4=a 8;②[(b 2)2]2=b 2×2×2=b 8;③[(﹣x)3]2=(﹣x)6=x 6;④(﹣y 2)3=y 6.A 、0个 B 、1个 C 、2个 D 、3个9、(2004•宿迁)下列计算正确的是( )A 、x 2+2x 2=3x 4B 、a 3•(﹣2a 2)=﹣2a 5C 、(﹣2x 2)3=﹣6x 6D 、3a •(﹣b )2=﹣3ab 210、如(x+m )与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、﹣3 B 、3 C 、0 D 、1 二.填空题(8小题,每小题3分,共24分)11、运用乘法公式计算:(a —b )(a+b)= (—2x —5)(2x —5)=12、计算: 13、若a+b=1,a —b=2006,则a ²—b ²=14、在多项式4x ²+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)15、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x ³y-2xy ²,商式必须是2xy ,则小亮报一个除式是 . 16、运用公式法计算(a+b+c)(a-b-c ) 17、若 是一个完全平方公式,则 k= _______; 18、请添加一项________,使得 是完全平方式. 三.解答题(7小题,共46分)19、(10分)计算(1)(2x+y-3)(2x —y+3) +3232534515a b c a b -÷=34223()()a b a b ÷42+k 228kx x ++(2)(3) (﹣9)3×(﹣)6×(1+)3(4)若 求20、(6分)已知是的三边,且,判断的形状。
《整式的乘法与因式分解》单元测试题带答案
【点睛】本题考查了幂的乘方与积的乘方,解决本题的根据是熟记幂的乘方与积的乘方的定义.
12.分解因式:4x2-2x=.
【答案】 .
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式2x即可: .
【答案】D
【解析】
【分析】
多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.依据法则运算,展开式不含关于字母a的一次项,那么一次项的系数为0,就可求m的值.
【详解】解:∵(a+m)(a+ )=a2+(m+ )a+ •m,
又∵不含关于字母a的一次项,
∴m+ =0,
∴m=- .
【解析】
【分析】
原式利用平方差公式计算即可求出值.
【详解】解:原式=(x2-1)(x2+1)-(x4+1)=x4-1-(x4+1)=-2,
故选C.
【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
9.计算(a+m) 的结果不含关于字母a的一次项,那么m等于()
A.2B.-2C. D.-
3.计算(2a)3·a2的结果是【】
A.2a5B.2a6C.8a5D.8a6
4.一个长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()
A.4a-3bB.8a-6b
C.4a-3b+1D.8a-6b+2
5.多项式a-b+c(a-b)因式分解的结果是()
A. (a-b)(c+1)B. (b-a)(c+1)
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知(19x ﹣31)(13x ﹣17)﹣(13x ﹣17)(11x ﹣23)可因式分解成(ax+b )(8x+c ),其中a ,b ,c 均为整数,则a+b+c=( )A 、﹣12B 、﹣32C 、38D 、722.利用因式分解计算:2100﹣2101=( )A 、﹣2B 、2C 、2100D 、﹣21003.设x 为正整数,若1x +是完全平方数,则它前面的一个完全平方数是( )A.xB.1x -C.1x -D.2x -4.如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )A.1a +B.21a +C.221a a ++D.1a +5.因式分解:1﹣4x 2﹣4y 2+8xy ,正确的分组是( )A 、(1﹣4x 2)+(8xy ﹣4y 2)B 、(1﹣4x 2﹣4y 2)+8xyC 、(1+8xy )﹣(4x 2+4y 2)D 、1﹣(4x 2+4y 2﹣8xy )6.观察下列各式:①abx ﹣adx ;②2x 2y+6xy 2;③8m 3﹣4m 2+2m+1;④a 3+a 2b+ab 2﹣b 3;⑤(p+q )x 2y ﹣5x 2(p+q )+6(p+q )2;⑥a 2(x+y )(x ﹣y )﹣4b (y+x ).其中可以用提公因式法分解因式的有( )A 、①②⑤B 、②④⑤C 、②④⑥D 、①②⑤⑥7.如果ax (3x ﹣4x 2y+by 2)=6x 2﹣8x 3y+6xy 2成立,则a 、b 的值为( )A 、a=3,b=2B 、a=2,b=3C 、a=﹣3,b=2D 、a=﹣2,b=38.把多项式ac ﹣bc+a 2﹣b 2分解因式的结果是( )A 、(a ﹣b )(a+b+c )B 、(a ﹣b )(a+b ﹣c )C 、(a+b )(a ﹣b ﹣c )D 、(a+b )(a ﹣b+c )9.下列哪项是x 4+x 3+x 2的因式分解的结果( )A 、x 2(x 2+x )B 、x (x 3+x 2+x )C 、x 3(x+1)+x 2D 、x 2(x 2+x+1)10.直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为( )A 、182B 、180C 、32D 、30二 、填空题(本大题共5小题,每小题3分,共15分)11.计算:332(3)_____a a ⋅=12.已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 .13.如果2(1)(5)x x ax a +-+的乘积中不含2x 项,则a 为_________.14.2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=15.若2310x x x +++=,那么220081x x x +++⋅⋅⋅+=三 、解答题(本大题共7小题,共55分)16.计算:⑴222(30.5)a b ab + ⑵2(1113)m n a b - ⑶2(25)(52)(25)x x x ----17.⑴化简:()()2121x x ++- ⑵化简:()()()12282a b a b b a b +---18.分解因式:⑴256x x ++⑵256x x -+ ⑶276x x ++ ⑷276x x -+19.分解因式:22(1)1a b b b b -+-+-20.分解因式:325153x x x --+21.比较n a 与2n a +(a 为正数,n 为正整数)的大小.22.分解因式:22()4a b ab c -+-人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一、选择题1.原式=(13x﹣17)(19x﹣31﹣11x+23)=(13x﹣17)(8x﹣8)∵可以分解成(ax+b)(8x+c),∴a=13,b=﹣17,c=﹣8,∴a+b+c=﹣12.故选A.2.D;2100﹣2101=2100﹣2100×2=2100(1﹣2)=﹣2100.故选D.3.D;设21y x=+,则y=22(1)21112y y y x x-=-+=+-=-,故选D.4.D;∵自然数a是一个完全平方数,∴a a的算术平方根大11,∴这个平方数为:21)1a=+.故选D.5.D;1﹣4x2﹣4y2+8xy=1﹣(4x2+4y2﹣8xy).6.D7.B8.A;ac﹣bc+a2﹣b2=c(a﹣b)+(a﹣b)(a+b)=(a﹣b)(a+b+c).9.D10.A;设另一条直角边的长度为x,斜边的长度z,则z2﹣x2=132,且z>x,∴(z+x)(z﹣x)=169×1,∴{z+x=169z﹣x=1,∴三角形的周长=z+x+13=169+13=182.故选A.二、填空题11.546a12.248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.13.解:原式=32(15)4x a x ax a +--+∵不含2x 项,∴150a -=,解得15a =14.原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.15.解:原式235232005231(1)(1)(1)1x x x x x x x x x x x x =+++++++++⋅⋅⋅++++=三 、解答题16.⑴222423324(30.5)930.25a b ab a b a b a b +=++;⑵222(1113)121286169m n m m n n a b a a n b -=-+;⑶22222(25)(52)(25)(25)(25)2(25)84050x x x x x x x x ----=----=--=-+-.17.⑴23x +;⑵ 212a ab -18.⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --19.222(1)1(1)(1)a b b b b a b b -+-+-=--+20.322251535(3)(3)(51)(3)x x x x x x x x --+=---=--或322225153(51)3(51)(51)(3)x x x x x x x x --+=---=--21.方法1∵0a >,n 为正整数,∴0n a >,∵22n n a a a +=⋅,∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=③当01a <<,则21a <,则2n n a a +<.方法2∵0a >,n 为正整数,∴0na >,∵22n n a a a +=, ∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=; ③当01a <<,则21a <,则2n n a a +<.22.22()4a b ab c -+- 22224a ab b ab c =-++-222222()a ab b c a b c =++-=+- ()()a b c a b c =+-++。
八年级数学上册 整式的乘法与因式分解综合测试卷(word含答案)
C. D.
【答案】B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.
【详解】
A.属于整式的乘法运算,不合题意;
B.符合因式分解的定义,符合题意;
C.右边不是乘积的形式,不合题意;
D.右边不是几个整式的积的形式,不合题意;
故选B
点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..
5.下列计算正确的是( )
A.3x2·4x2=12x2B.(x-1)(x—1)=x2—1C.(x5)2=x7D.x4÷x=x3
八年级数学上册 整式的乘法与因式分解综合测试卷(word含答案)
一、八年级数学整式的乘法与因式分解选择题压轴题(难)
1.若 的计算结果中不含x的一次项,则m的值是( )
A.1B.-1C.2D.-2.
【答案】A
【解析】
【分析】
根据多项式相乘展开可计算出结果.
【详解】
=x2+(m-1)x-m,而计算结果不含x项,则m-1=0,得m=1.
故选:B.
【点睛】
本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.
10.已知a=96,b=314,c=275,则a、b、c的大小关系是( )
A.a>b>cB.a>c>bC.c>b>aD.b>c>a
【答案】C
【解析】
【分析】
根据幂的乘方可得:a= =312,c= =315,易得答案.
【答案】D
八年级数学整式的乘法与因式分解检测题(WORD版含答案)
八年级数学整式的乘法与因式分解检测题(WORD 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.2.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.3.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.4.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.5.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.7.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( )A .120B .60C .80D .40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.8.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.9.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案. 【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.12.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.13.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.14.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.16.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.17.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+19.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
《整式的乘法与因式分解》单元综合检测(附答案)
人教版数学八年级上学期《整式的乘法与因式分解》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a42.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y23.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-154.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 86.计算:(a-b+3)(a+b-3)=()A. a2+b2-9B. a2-b2-6b-9C. a2-b2+6b-9D. a2+b2-2ab+6a+6b+97.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()学_科_网...学_科_网...A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b28.若m=2200,n=2550,则m,n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定9.多项式77x2-13x-30可分解成(7x+a)(bx+c),其中a,b,c均为整数,求a+b+c之值为何?()A. 0B. 10C. 12D. 2210.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;……请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66二、填空题(每小题3分,共24分)11.计算:(-5a4)·(-8ab2)=______.12.分解因式:ab4-4ab3+4ab2=_______.13.若(2x+1)0=(3x-6)0,则x的取值范围是_______.14.已知|x-y+2|+(x+y-2)2=0,则x2-y2的值为_____.15.已知a m=3,a n=2,则a2m-3n=_____.16.若一个正方形的面积为a2+a+,则此正方形的周长为______.17.已知△ABC的三边长为整数a,b,c,且满足a2+b2-6a-4b+13=0,则c为_____.18.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为______.三、解答题(共66分)19.计算:(1) y(2x-y)+(x+y)2;(2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘法公式计算:(1)982;(2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.25.已知a,b,c为△ABC的三条边的长,试判断代数式a2-2ac+c2-b2的值的符号,并说明理由.26.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选:D.2.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y2【答案】D【解析】【分析】根据积的乘方的运算法则即可解答.【详解】根据积的乘方的运算法则可得:(-x3y)2= x6y2.故选D.【点睛】本题主要考查了积的乘方的运算法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.3.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-15【答案】C【解析】【分析】根据零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则依次计算各项,即可解答.【详解】选项A,根据零指数幂的性质可得(-2)0=1,选项A正确;选项B,根据单项式除以单项式的运算法则可得28x4y2÷7x3=4xy2,选项B正确;选项C,根据多项式除以单项式的运算法则可得(4xy2-6x2y+2xy)÷2xy=2y-3x+1,选项C错误;选项D,根据多项式乘以多项式的运算法则可得(a-5)(a+3)=a2-2a-15,选项D正确.故选C.【点睛】本题考查了零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则,熟记法则是解题的关键.4.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】B【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B考点:因式分解-运用公式法;因式分解-提公因式法.5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 8【答案】B【解析】试题分析:把等式右边根据平方差公式去括号后即可得到结果。
《整式的乘法与因式分解》单元测试题(含答案)
A.2x(x+3)=2x2+6xB.24xy2=3x•8y2
C.x2+2xy+y2+1=(x+y)2+1D.x2﹣y2=(x+y)(x﹣y)
[答案]D
[解析]
[分析]
根据因式分解的定义逐个判断即可.
[详解]A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
[答案]9
[解析]
[分析]
根据幂的运算即可得到答案.
[详解]解:20182m-n=(2018m)2÷2018n=62÷4=36÷4=9,故答案为9.
[点睛]本题主要考查了幂 运算法则,解本题的要点在于利用已知条件求出答案.
14.如图,一块直径为A+B的圆形钢板,从中挖去直径分别为A与B的两个圆,则剩下的钢板的面积为_____.
C. 9D.以上答案都不对
3.如果A2n-1An+5=A16,那么n 值为( )
A.3B.4C.5D.6
4.计算(﹣4A2+12A3B)÷(﹣4A2)的结果是( )
A. 1﹣3A BB. ﹣3A BC. 1+3A BD. ﹣1﹣3A B
5.若等式x2+Ax+19=(x﹣5)2﹣B成立,则A+B的值为( )
18.若实数A、B、C满足A﹣B= ,B﹣C=1,那么A2+B2+C2﹣A B﹣B C﹣C A的值是_____
[答案]3+
[解析]
[分析]
利用完全平方公式将代数式变形:A2+B2+C2-A B-B C-C A= (2A2+2B2+2C2-2A B-2B C-2C A)= [(A-B)2+(B-C)2+(A-C)2],即可求代数式的值.
八年级数学上册整式的乘法与因式分解单元测试
⼋年级数学上册整式的乘法与因式分解单元测试 做⼋年级数学单元测试题⼀定要认真,马虎⼀点就容易出错。
以下是店铺为⼤家整理的⼋年级数学上册整式的乘法与因式分解单元测试,希望你们喜欢。
⼋年级数学上册整式的乘法与因式分解单元测试题 ⼀、选择题(共13⼩题) 1.下列运算正确的是( )A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 2.下列计算正确的是( )A.a3+a2=a5B.(3a﹣b)2=9a2﹣b2C.a6b÷a2=a3bD.(﹣ab3)2=a2b6 3.下列运算正确的是( )A.a2﹣a4=a8B.(x﹣2)(x﹣3)=x2﹣6C.(x﹣2)2=x2﹣4D.2a+3a=5a 4.下列各式计算正确的是( )A.(a﹣b)2=a2﹣b2B.(﹣a4)3=a7C.2a•(﹣3b)=6abD.a5÷a4=a(a≠0) 5.下列计算正确的是( )A.m3+m2=m5B.m3•m2=m6C.(1﹣m)(1+m)=m2﹣1D. 6.下列运算正确的是( )A.x6+x2=x3B.C.(x+2y)2=x2+2xy+4y2D. 7.图(1)是⼀个长为2a,宽为2b(a>b)的长⽅形,⽤剪⼑沿图中虚线(对称轴)剪开,把它分成四块形状和⼤⼩都⼀样的⼩长⽅形,然后按图(2)那样拼成⼀个正⽅形,则中间空的部分的⾯积是( )A.abB.(a+b)2C.(a﹣b)2D.a2﹣b2 8.若a+b=3,a﹣b=7,则ab=( )A.﹣10B.﹣40C.10D.40 9.下列各式的变形中,正确的是( )A.(﹣x﹣y)(﹣x+y)=x2﹣y2B. ﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)= +1 10.下列运算正确的是( )A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a8 11.下列运算正确的是( )A.a2•a3=a6B.(a2)3=a5C.2a2+3a2=5a6D.(a+2b)(a﹣2b)=a2﹣4b2 12.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是( )A.1﹣xn+1B.1+xn+1C.1﹣xnD.1+xn 13.有3张边长为a的正⽅形纸⽚,4张边长分别为a、b(b>a)的矩形纸⽚,5张边长为b的正⽅形纸⽚,从其中取出若⼲张纸⽚,每种纸⽚⾄少取⼀张,把取出的这些纸⽚拼成⼀个正⽅形(按原纸张进⾏⽆空隙、⽆重叠拼接),则拼成的正⽅形的边长最长可以为( )A.a+bB.2a+bC.3a+bD.a+2b ⼆、填空题(共13⼩题) 14.当m+n=3时,式⼦m2+2mn+n2的值为 . 15.定义为⼆阶⾏列式.规定它的运算法则为 =ad﹣bc.那么当x=1时,⼆阶⾏列式的值为 . 16.填空:x2+10x+ =(x+ )2. 17.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是 . 18.已知m+n=3,m﹣n=2,则m2﹣n2= . 19.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为 . 20.若a2﹣b2= ,a﹣b= ,则a+b的值为 . 21.已知a+b=4,a﹣b=3,则a2﹣b2= . 22.化简:(x+1)(x﹣1)+1= . 23.若m=2n+1,则m2﹣4mn+4n2的值是 . 24.已知a、b满⾜a+b=3,ab=2,则a2+b2= . 25.若a+b=5,ab=6,则a﹣b= . 26.若,则 = . 三、解答题 27.计算: (1) ﹣(﹣2)2+(﹣0.1)0; (2)(x+1)2﹣(x+2)(x﹣2). 28.(1)计算:sin60°﹣|1﹣ |+ ﹣1 (2)化简:(a+3)2﹣(a﹣3)2. ⼋年级数学上册整式的乘法与因式分解单元测试参考答案 ⼀、选择题(共13⼩题) 1.下列运算正确的是( )A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 【考点】平⽅差公式;幂的乘⽅与积的乘⽅;完全平⽅公式;整式的除法. 【分析】根据单项式的除法法则,以及幂的乘⽅,平⽅差公式以及完全平⽅公式即可作出判断. 【解答】解:A、2a3÷a=2a2,故选项错误; B、(ab2)2=a2b4,故选项错误; C、正确; D、(a+b)2=a2+2ab+b2,故选项错误. 故选C. 【点评】本题考查了平⽅差公式和完全平⽅公式的运⽤,理解公式结构是关键,需要熟练掌握并灵活运⽤. 2.下列计算正确的是( )A.a3+a2=a5B.(3a﹣b)2=9a2﹣b2C.a6b÷a2=a3bD.(﹣ab3)2=a2b6 【考点】完全平⽅公式;合并同类项;幂的乘⽅与积的乘⽅;整式的除法. 【分析】分别根据合并同类项法则以及完全平⽅公式和整式的除法以及积的乘⽅分别计算得出即可. 【解答】解:A、a3+a2=a5⽆法运⽤合并同类项计算,故此选项错误; B、(3a﹣b)2=9a2﹣6ab+b2,故此选项错误; C、a6b÷a2=a4b,故此选项错误; D、(﹣ab3)2=a2b6,故此选项正确. 故选:D. 【点评】此题主要考查了完全平⽅公式以及积的乘⽅和整式的除法等知识,熟练掌握运算法则是解题关键. 3.下列运算正确的是( )A.a2﹣a4=a8B.(x﹣2)(x﹣3)=x2﹣6C.(x﹣2)2=x2﹣4D.2a+3a=5a 【考点】完全平⽅公式;合并同类项;多项式乘多项式. 【分析】根据合并同类项的法则,多项式乘多项式的法则,完全平⽅公式对各选项分析判断后利⽤排除法求解. 【解答】解:A、a2与a4不是同类项,不能合并,故本选项错误; B、(x﹣2)(x﹣3)=x2﹣5x+6,故本选项错误; C、(x﹣2)2=x2﹣4x+4,故本选项错误; D、2a+3a=5a,故本选项正确. 故选D. 【点评】本题考查了合并同类项,多项式乘多项式,完全平⽅公式,属于基础题,熟练掌握运算法则与公式是解题的关键. 4.下列各式计算正确的是( )A.(a﹣b)2=a2﹣b2B.(﹣a4)3=a7C.2a•(﹣3b)=6abD.a5÷a4=a(a≠0) 【考点】完全平⽅公式;幂的乘⽅与积的乘⽅;同底数幂的除法;单项式乘单项式. 【分析】根据完全平⽅公式、积的乘⽅、单项式乘单项式的计算法则和同底数幂的除法法则计算即可求解. 【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故选项错误; B、(﹣a4)3=﹣a12,故选项错误; C、2a•(﹣3b)=﹣6ab,故选项错误; D、a5÷a4=a(a≠0),故选项正确. 故选:D. 【点评】考查了完全平⽅公式、积的乘⽅、单项式乘单项式和同底数幂的除法,熟练掌握计算法则是解题的关键. 5.下列计算正确的是( )A.m3+m2=m5B.m3•m2=m6C.(1﹣m)(1+m)=m2﹣1D. 【考点】平⽅差公式;合并同类项;同底数幂的乘法;分式的基本性质. 【分析】根据同类项的定义,以及同底数的幂的乘法法则,平⽅差公式,分式的基本性质即可判断. 【解答】解:A、不是同类项,不能合并,故选项错误; B、m3•m2=m5,故选项错误; C、(1﹣m)(1+m)=1﹣m2,选项错误; D、正确. 故选D. 【点评】本题考查了同类项的定义,以及同底数的幂的乘法法则,平⽅差公式,分式的基本性质,理解平⽅差公式的结构是关键. 6.下列运算正确的是( )A.x6+x2=x3B.C.(x+2y)2=x2+2xy+4y2D. 【考点】完全平⽅公式;⽴⽅根;合并同类项;⼆次根式的加减法. 【分析】A、本选项不能合并,错误; B、利⽤⽴⽅根的定义化简得到结果,即可做出判断; C、利⽤完全平⽅公式展开得到结果,即可做出判断; D、利⽤⼆次根式的化简公式化简,合并得到结果,即可做出判断. 【解答】解:A、本选项不能合并,错误; B、 =﹣2,本选项错误; C、(x+2y)2=x2+4xy+4y2,本选项错误; D、﹣ =3 ﹣2 = ,本选项正确. 故选D 【点评】此题考查了完全平⽅公式,合并同类项,以及负指数幂,幂的乘⽅,熟练掌握公式及法则是解本题的关键. 7.图(1)是⼀个长为2a,宽为2b(a>b)的长⽅形,⽤剪⼑沿图中虚线(对称轴)剪开,把它分成四块形状和⼤⼩都⼀样的⼩长⽅形,然后按图(2)那样拼成⼀个正⽅形,则中间空的部分的⾯积是( )A.abB.(a+b)2C.(a﹣b)2D.a2﹣b2 【考点】完全平⽅公式的⼏何背景. 【分析】中间部分的四边形是正⽅形,表⽰出边长,则⾯积可以求得. 【解答】解:中间部分的四边形是正⽅形,边长是a+b﹣2b=a﹣b, 则⾯积是(a﹣b)2. 故选:C. 【点评】本题考查了列代数式,正确表⽰出⼩正⽅形的边长是关键. 8.若a+b=3,a﹣b=7,则ab=( )A.﹣10B.﹣40C.10D.40 【考点】完全平⽅公式. 【专题】计算题. 【分析】联⽴已知两⽅程求出a与b的值,即可求出ab的值. 【解答】解:联⽴得:, 解得:a=5,b=﹣2, 则ab=﹣10. 故选A. 【点评】此题考查了解⼆元⼀次⽅程组,求出a与b的值是解本题的关键. 9.下列各式的变形中,正确的是( )A.(﹣x﹣y)(﹣x+y)=x2﹣y2B. ﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)= +1 【考点】平⽅差公式;整式的除法;因式分解-⼗字相乘法等;分式的加减法. 【分析】根据平⽅差公式和分式的加减以及整式的除法计算即可. 【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确; B、,错误; C、x2﹣4x+3=(x﹣2)2﹣1,错误; D、x÷(x2+x)= ,错误; 故选A. 【点评】此题考查平⽅差公式和分式的加减以及整式的除法,关键是根据法则计算. 10.下列运算正确的是( )A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a8 【考点】平⽅差公式;合并同类项;同底数幂的乘法;幂的乘⽅与积的乘⽅. 【分析】A:根据同底数幂的乘法法则判断即可. B:平⽅差公式:(a+b)(a﹣b)=a2﹣b2,据此判断即可. C:根据幂的乘⽅的计算⽅法判断即可. D:根据合并同类项的⽅法判断即可. 【解答】解:∵a2•a3=a5, ∴选项A不正确; ∵(﹣a+b)(a+b)=b2﹣a2, ∴选项B正确; ∵(a3)4=a12, ∴选项C不正确; ∵a3+a5≠a8 ∴选项D不正确. 故选:B. 【点评】(1)此题主要考查了平⽅差公式,要熟练掌握,应⽤平⽅差公式计算时,应注意以下⼏个问题:①左边是两个⼆项式相乘,并且这两个⼆项式中有⼀项完全相同,另⼀项互为相反数;②右边是相同项的平⽅减去相反项的平⽅;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运⽤这个公式计算,且会⽐⽤多项式乘以多项式法则简便. (2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. (3)此题还考查了幂的乘⽅和积的乘⽅,要熟练掌握,解答此题的关键是要明确:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数). (4)此题还考查了合并同类项的⽅法,要熟练掌握. 11.下列运算正确的是( )A.a2•a3=a6B.(a2)3=a5C.2a2+3a2=5a6D.(a+2b)(a﹣2b)=a2﹣4b2 【考点】平⽅差公式;合并同类项;同底数幂的乘法;幂的乘⽅与积的乘⽅. 【分析】根据同底数幂的乘法,可判断A,根据幂的乘⽅,可判断B,根据合并同类项,可判断C,根据平⽅差公式,可判断D. 【解答】解:A、底数不变指数相加,故A错误; B、底数不变指数相乘,故B错误; C、系数相加字母部分不变,故C错误; D、两数和乘以这两个数的差等于这两个数的平⽅差,故D正确; 故选:D. 【点评】本题考查了平⽅差,利⽤了平⽅差公式,同底数幂的乘法,幂的乘⽅. 12.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是( )A.1﹣xn+1B.1+xn+1C.1﹣xnD.1+xn 【考点】平⽅差公式;多项式乘多项式. 【专题】规律型. 【分析】已知各项利⽤多项式乘以多项式法则计算,归纳总结得到⼀般性规律,即可得到结果. 【解答】解:(1﹣x)(1+x)=1﹣x2, (1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3, …, 依此类推(1﹣x)(1+x+x2+…+xn)=1﹣xn+1, 故选:A 【点评】此题考查了平⽅差公式,多项式乘多项式,找出规律是解本题的关键. 13.有3张边长为a的正⽅形纸⽚,4张边长分别为a、b(b>a)的矩形纸⽚,5张边长为b的正⽅形纸⽚,从其中取出若⼲张纸⽚,每种纸⽚⾄少取⼀张,把取出的这些纸⽚拼成⼀个正⽅形(按原纸张进⾏⽆空隙、⽆重叠拼接),则拼成的正⽅形的边长最长可以为( )A.a+bB.2a+bC.3a+bD.a+2b 【考点】完全平⽅公式的⼏何背景. 【专题】压轴题. 【分析】根据3张边长为a的正⽅形纸⽚的⾯积是3a2,4张边长分别为a、b(b>a)的矩形纸⽚的⾯积是4ab,5张边长为b的正⽅形纸⽚的⾯积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正⽅形的⾯积公式即可得出答案. 【解答】解;3张边长为a的正⽅形纸⽚的⾯积是3a2, 4张边长分别为a、b(b>a)的矩形纸⽚的⾯积是4ab, 5张边长为b的正⽅形纸⽚的⾯积是5b2, ∵a2+4ab+4b2=(a+2b)2, ∴拼成的正⽅形的边长最长可以为(a+2b), 故选:D. 【点评】此题考查了完全平⽅公式的⼏何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,⽤到的知识点是完全平⽅公式. ⼆、填空题(共13⼩题) 14.当m+n=3时,式⼦m2+2mn+n2的值为 9 . 【考点】完全平⽅公式. 【分析】将代数式化为完全平⽅公式的形式,代⼊即可得出答案. 【解答】解:m2+2mn+n2=(m+n)2=9. 故答案为:9. 【点评】本题考查了完全平⽅公式的知识,解答本题的关键是掌握完全平⽅公式的形式. 15.(2013•永州)定义为⼆阶⾏列式.规定它的运算法则为 =ad﹣bc.那么当x=1时,⼆阶⾏列式的值为 0 . 【考点】完全平⽅公式. 【专题】新定义. 【分析】根据题中的新定义将所求式⼦化为普通运算,计算即可得到结果. 【解答】解:根据题意得:当x=1时,原式=(x﹣1)2=0. 故答案为:0 【点评】此题考查了完全平⽅公式,弄清题中的新定义是解本题的关键. 16.(2015•珠海)填空:x2+10x+ 25 =(x+ 5 )2. 【考点】完全平⽅式. 【分析】完全平⽅公式:(a±b)2=a2±2ab+b2,从公式上可知. 【解答】解:∵10x=2×5x, ∴x2+10x+52=(x+5)2. 故答案是:25;5. 【点评】本题考查了完全平⽅公式,两数的平⽅和,再加上或减去它们积的2倍,就构成了⼀个完全平⽅式.要求熟悉完全平⽅公式,并利⽤其特点解题. 17.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是 15 . 【考点】平⽅差公式. 【专题】计算题. 【分析】原式利⽤平⽅差公式化简,将已知等式代⼊计算即可求出值. 【解答】解:∵a+b=3,a﹣b=5, ∴原式=(a+b)(a﹣b)=15, 故答案为:15 【点评】此题考查了平⽅差公式,熟练掌握平⽅差公式是解本题的关键. 18.已知m+n=3,m﹣n=2,则m2﹣n2= 6 . 【考点】平⽅差公式. 【分析】根据平⽅差公式,即可解答. 【解答】解:m2﹣n2 =(m+n)(m﹣n) =3×2 =6. 故答案为:6. 【点评】本题考查了平⽅差公式,解决本题的关键是熟记平⽅差公式. 19.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为 ﹣3 . 【考点】平⽅差公式. 【专题】计算题. 【分析】原式利⽤平⽅差公式化简,将已知等式代⼊计算即可求出值. 【解答】解:∵a+b=3,a﹣b=﹣1, ∴原式=(a+b)(a﹣b)=﹣3, 故答案为:﹣3. 【点评】此题考查了平⽅差公式,熟练掌握平⽅差公式是解本题的关键. 20.若a2﹣b2= ,a﹣b= ,则a+b的值为 . 【考点】平⽅差公式. 【专题】计算题. 【分析】已知第⼀个等式左边利⽤平⽅差公式化简,将a﹣b的值代⼊即可求出a+b的值. 【解答】解:∵a2﹣b2=(a+b)(a﹣b)= ,a﹣b= , ∴a+b= . 故答案为: . 【点评】此题考查了平⽅差公式,熟练掌握平⽅差公式是解本题的关键. 21.已知a+b=4,a﹣b=3,则a2﹣b2= 12 . 【考点】平⽅差公式. 【专题】计算题. 【分析】根据a2﹣b2=(a+b)(a﹣b),然后代⼊求解. 【解答】解:a2﹣b2=(a+b)(a﹣b)=4×3=12. 故答案是:12. 【点评】本题重点考查了⽤平⽅差公式.平⽅差公式为(a+b)(a﹣b)=a2﹣b2.本题是⼀道较简单的题⽬. 22.化简:(x+1)(x﹣1)+1= x2 . 【考点】平⽅差公式. 【分析】运⽤平⽅差公式求解即可. 【解答】解:(x+1)(x﹣1)+1 =x2﹣1+1 =x2. 故答案为:x2. 【点评】本题主要考查了平⽅差公式,熟记公式是解题的关键. 23.若m=2n+1,则m2﹣4mn+4n2的值是 1 . 【考点】完全平⽅公式. 【专题】计算题. 【分析】所求式⼦利⽤完全平⽅公式变形,将已知等式变形后代⼊计算即可求出值. 【解答】解:∵m=2n+1,即m﹣2n=1, ∴原式=(m﹣2n)2=1. 故答案为:1 【点评】此题考查了完全平⽅公式,熟练掌握公式是解本题的关键. 24.已知a、b满⾜a+b=3,ab=2,则a2+b2= 5 . 【考点】完全平⽅公式. 【专题】计算题. 【分析】将a+b=3两边平⽅,利⽤完全平⽅公式化简,将ab的值代⼊计算,即可求出所求式⼦的值. 【解答】解:将a+b=3两边平⽅得:(a+b)2=a2+2ab+b2=9, 把ab=2代⼊得:a2+4+b2=9, 则a2+b2=5. 故答案为:5. 【点评】此题考查了完全平⽅公式,熟练掌握完全平⽅公式是解本题的关键. 25.若a+b=5,ab=6,则a﹣b= ±1 . 【考点】完全平⽅公式. 【分析】⾸先根据完全平⽅公式将(a﹣b)2⽤(a+b)与ab的代数式表⽰,然后把a+b,ab的值整体代⼊求值. 【解答】解:(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=1, 则a﹣b=±1. 故答案是:±1. 【点评】本题主要考查完全平⽅公式,熟记公式的⼏个变形公式对解题⼤有帮助. 26.若,则 = 6 . 【考点】完全平⽅公式;⾮负数的性质:偶次⽅;⾮负数的性质:算术平⽅根. 【专题】计算题;压轴题;整体思想. 【分析】根据⾮负数的性质先求出a2+ 、b的值,再代⼊计算即可. 【解答】解:∵, ∴ +(b+1)2=0, ∴a2﹣3a+1=0,b+1=0, ∴a+ =3, ∴(a+ )2=32, ∴a2+ =7; b=﹣1. ∴ =7﹣1=6. 故答案为:6. 【点评】本题考查了⾮负数的性质,完全平⽅公式,整体思想,解题的关键是整体求出a2+ 的值. 三、解答题 27.计算: (1) ﹣(﹣2)2+(﹣0.1)0; (2)(x+1)2﹣(x+2)(x﹣2). 【考点】完全平⽅公式;实数的运算;平⽅差公式;零指数幂. 【分析】(1)原式第⼀项利⽤平⽅根的定义化简,第⼆项表⽰两个﹣2的乘积,最后⼀项利⽤零指数幂法则计算即可得到结果; (2)原式第⼀项利⽤完全平⽅公式展开,第⼆项利⽤平⽅差公式化简,去括号合并即可得到结果. 【解答】解:(1)原式=3﹣4+1=0; (2)原式=x2+2x+1﹣x2+4=2x+5. 【点评】此题考查了完全平⽅公式,合并同类项,以及负指数幂,幂的乘⽅,熟练掌握公式及法则是解本题的关键. 28.(1)计算:sin60°﹣|1﹣ |+ ﹣1 (2)化简:(a+3)2﹣(a﹣3)2. 【考点】完全平⽅公式;实数的运算;负整数指数幂;特殊⾓的三⾓函数值. 【分析】(1)根据特殊⾓的三⾓函数值,绝对值,负整数指数幂分别求出每⼀部分的值,再代⼊求出即可; (2)先根据完全平⽅公式展开,再合并同类项即可. 【解答】解:(1)原式= ﹣( ﹣1)+2 = ﹣ +1+2 =﹣ +3; (2)原式=a2+6a+9﹣(a2﹣6a+9) =a2+6a+9﹣a2+6a﹣9 =12a. 【点评】本题考查了特殊⾓的三⾓函数值,绝对值,负整数指数幂,完全平⽅公式的应⽤,主要考查学⽣的计算能⼒.。
《整式的乘法与因式分解》单元测试题(带答案)
25.某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:
原式=a2+2ab﹣(a2﹣b2) (第一步)
=a2+2ab﹣a2﹣b2(第二步)
=2ab﹣b2(第三步)
(1)该同学解答过程从第几步开始出错,错误原因是什么;
(2)写出此题正确的解答过程.
【答案】
【解析】
【分析】
由1纳米=10-9米,可得出16纳米=1.6×10-8米,此题得解.
【详解】∵1纳米=10-9米,
∴16纳米=1.6×10-8米.
故答案为1.6×10-8.
【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.
13.因式分解: ______.
【答案】
【解析】
【详解】解:由图可知,大正方形减小正方形剩下的部分面积为a2−b2;
拼成的长方形的面积为:(a+b)(a−b),
所以验证的等式为:a2−b2=(a+b)(a−b),
故选:A.
【点睛】此题主要考查了平方差公式的几何背景,正确表示出阴影部分的面积是解题关键.
6.下面是一位同学做的四道题:① ;② ;③ ;④ ,其中做对的一道题的序号是()
A. B. C. D.
【答案】C
【解析】
分析:根据同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则、合并同类项的法则分别进行计算即可.
详解:A.a3•a2=a5,故原题计算错误;
B.(﹣a2)3=﹣a6,故原题计算错误;
C.a7÷a5=a2,故原题计算正确;
D.﹣2mn﹣mn=﹣3mn,故原题计算错误.
初二数学《整式的乘除与因式分解》习题(含答案)
整式的乘除与因式分解一、选择题1.下列计算中,运算正确的有几个()(1) a5+a5=a10(2) (a+b)3=a3+b3 (3) (-a+b)(-a-b)=a2-b2 (4) (a-b)3= -(b-a)3A、0个B、1个C、2个D、3个2.计算(-2a3)5÷(-2a5)3的结果是()A、— 2B、2 C、4 D、—4 3.若,则的值为()A. B.5 C. D.2 4.若x2+mx+1是完全平方式,则m=()。
A、2B、-2C、±2D、±4 5.如图,在长为a的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+2b)(a-b)=a2+ab-2b26.已知()b-2a3,则与的值分别=+2ba7, ()=是()A. 4,1B. 2,32C.5,1D. 10, 32二、填空题1.若2,3=-=+ab b a ,则=+22b a ,()=-2b a2.已知a -1a =3,则a 2+21a的值等于 · 3.如果x 2-kx +9y 2是一个完全平方式,则常数k =________________;4.若⎩⎨⎧-=-=+31b a b a ,则a 2-b 2= ;5.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y =________________;6、如果一个单项式与的积为-34a 2bc,则这个单项式为________________; 7、(-2a 2b 3)3 (3ab+2a 2)=________________;8、()()()()=++++12121212242n ________________;9、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm )。
八年级数学上册整式的乘法与因式分解单元练习(Word版 含答案)
八年级数学上册整式的乘法与因式分解单元练习(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.2.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定【答案】C【解析】【分析】 利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.4.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】 根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.5.规定一种运算:a*b=ab+a+b ,则a*(﹣b )+a*b 的计算结果为( )A .0B .2aC .2bD .2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b )+a*b=a (﹣b )+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B .考点:整式的混合运算.6.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.7.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y , 则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+- =1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.8.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】 分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.9.下列各式从左边到右边的变形是因式分解的是( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3)2C .x 2+2x +1=x (x +2x )+1D .-18x 4y 3=-6x 2y 2·3x 2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A 、是多项式乘法,不是因式分解,错误;B 、是因式分解,正确.C 、右边不是积的形式,错误;D 、左边是单项式,不是因式分解,错误.故选B .【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.10.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若a-b=1,则222a b b --的值为____________.【答案】1【解析】【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:222a b b --=(a+b )(a-b )-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.12.已知212()02a b -++=,则20192020a b =__________. 【答案】12 【解析】【分析】先利用绝对值和平方的非负性求得a 、b 的值,然后将20192020a b 转化为20192019()ab b ⋅的形式可求得.【详解】 ∵212()02a b -++= ∴a -2=0,12b +=0 解得:a=2,12b =- 20192020a b =20192019()a b b ⋅=()2019112⎛⎫-⨯- ⎪⎝⎭=1 2故答案为:12【点睛】 本题考查绝对值和平方的非负性,解题关键是利用非负性,先得出a 、b 的值.13.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.14.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.15.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.16.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.18.因式分解:=______. 【答案】2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解.19.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.20.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.。