【教育资料】小升初数学总复习资料(3.3解方程)学习专用
小升初数学复习要点内容总结
小升初数学复习要点内容总结小升初数学复习要点内容总结有知识不等于有智慧,知识积存得再多,若没有智慧加以应用,知识就失去了价值。
下面是小编给大家分享的一些小升初复习要点内容,欢迎阅读,希望对大家有所帮助。
小升初复习要点内容1:方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程。
小升初复习要点内容2:一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。
也就是该方程的解了。
小升初复习要点内容3:一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。
小升初复习要点内容4:韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a,也可以表示为x1+x2=-b/a,x1x2=c/a。
(完整版)小升初专题:解方程
小升初数学专题之解方程一.字母的运算=+x x 2 =-x x 312 =-x x %3543=+x x 56=-x x 5.0%75 =+a a 5.23 =+x x %33%25 =-x x 533=++x t x 543 =-+t x t 243 =+--t x t x 27326 =-+x x 5367二.去括号(主要是运用乘法的分配律和加减法的运算性质) 1.=+)(c b a2.=++)(c b a =-+)(c b a3.=+-)(c b a =--)(c b a应用上面的性质去掉下面各个式子的括号,能进行运算的要进行运算。
=-)3(3x =-)326(21x =++)23(12x=-+)3261(65x =--)3(5x =+-)1(27x =++)123(4183x x =--)312(36x x x =+++)62(31)43(21x x =--+)212(21)58(41x x三.等式的性质1.等式的定义: ,叫做等式;2.等式的性质:(1)等号的两边同时加上或减去同一个数,等号的左右两边仍相等; 用字母表示为:若a=b ,c 为任意一个数,则有a+c=b+c(a-c=b-c);(2)等号的两边同时乘以同一个数,等号的左右两边仍相等; 用字母表示为: ; (3)等号的两边同时除以同一个不为零的数,等号的左右两边仍相等。
用字母表示为: ; 四.方程1.方程的定义:含有未知数的等式叫做方程;2.方程的解:满足方程的未知数的值,叫做方程的解;3.解方程:求方程的解的过程,叫做解方程。
五.解方程1.运用等式的性质解简单的方程,257575575=-=-=-+=+x x x x 解:3399345345443543=÷==+=+=+-=-x x x x x x 解: 如果把画框的部分省略,我们把一个数从等号的左边移到右边的过程,叫做移项,注意把一个数从方程的左边移到右边时,原来是加的变成减,原来是减的变成加号。
小升初数学《解方程》完整知识点讲解与专项练习题及答案
小升初《解方程》专题知识点整理+列方程解应用题专项训练《解方程》知识点列方程解应用题题型汇总练习1、0.3乘以14的积比这个数的3倍少0.6,求这个数是多少?2、甲数比乙数多34,甲数是乙数的3倍,甲乙各是多少?3、今年10月份,李明家用电131度,王强家用电120度,王强家少缴电费5.5元。
平均每度电多少元?4、长方形养鸡场的栅栏长400米,长是宽的3倍,求养鸡场的面积是多少?5、鸡兔同笼,头共有20个,腿共有56条,鸡兔各有多少只?6、鸡兔数量相同,鸡腿比兔腿少30条,鸡兔各有多少只?7、爷爷比小明大52岁,今天爷爷的年龄是小明的5倍,爷爷和小明今年各是多少岁?8、甲乙两地相距360km,张三由甲地开往乙地,李四以45km/时的速度由乙地开往甲地,3个小时后,两人相距15km,张三的速度是多少千米?9、沈阳与北京相距约700km,土豆与地瓜分别从沈阳和北京出发,相向而行,土豆每小时行驶80km,地瓜每小时行驶70km。
土豆出发5个小时后,地瓜才出发,在经过多少小时才能相遇?10、长方形养鸡场的一个长面靠墙,栅栏长400米,长是宽的2倍,养鸡场的面积是多少?11、甲乙两人骑自行车,同时从相距65km的两地相向而行,甲车每小时行驶17.5km,1小时候,两人相距32.5km,乙车每小时行驶多少千米?12、一个三层书架共有书159本,第一层比第二层的4倍少2本,第三层比第二层的3倍多1本。
第三层书架有多少本书?13、土豆和地瓜同时分别从两地相向而行,8小时相遇。
如果他们每小时多行2.5km,那么就6小时相遇。
问两地相距多少千米?14、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本?15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时。
求甲乙两地的距离?16、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?17、三个连续的一位小数的和是1.5,这三个小数分别是多少?18、甲乙两个书架,若从甲书架取出8本放入乙书架,两个书架的本数就一样多;如果从乙书架取出13本放入甲书架,甲书架的书就是乙书架的2倍。
小升初数学简单方程知识复习重点
小升初数学简单方程知识复习重点小升初题目来源主要是招生学校七年级第一学期或七
年级第二学期的期末考试试题。
下面是为大家收集的小升初数学简单方程知识复习,供大家参考。
简单方程
代数式:用运算符号(加减乘除)连接起来的字母或者数字。
方程:含有未知数的等式叫方程。
列方程:把两个或几个相等的代数式用等号连起来。
列方程关键问题:用两个以上的不同代数式表示同一个数。
等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。
移项:把数或式子改变符号后从方程等号的一边移到另一边;
移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。
加去括号规则:在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理。
移项关键问题:运用等式的性质,移项规则,加、去括号规则。
乘法分配率:a(b+c)=ab+ac
解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解;
方程组:几个二元一次方程组成的一组方程。
解方程组的步骤:①消元;②按一元一次方程步骤。
消元的方法:①加减消元;②代入消元。
以上是查字典数学网为大家准备的小升初数学简单方程知识复习,希望对大家有所帮助。
六年级数学小升初复习3.3 解方程(小考复习精编专项练习)第三章 式与方程(含知识点、练习与答案)
3.3 解方程(小考复习精编专项练习)六年级数学小升初复习系列:第三章式与方程(含知识点、练习与答案)一、方程,是指含有未知数的等式。
方程必须具备以下两个要素:一是含有未知数;二是等式。
式子同时具备这两个因素,才能称为方程。
二、解方程,是求出方程中未知数的值的过程,是求方程的解的具体方法。
其步骤是:(1)写“解”字;(2)方程最终化为ax=b(a≠0)的形式;(3)方程两边同时除以a,求出未知数的值。
类型一:简单的方程(1) 4x-5=27 (2) 1.6x=4.8-1.6(3) 1.5X-1.5=7.5 (4) 3x+5=20(5) 5x-2x=90 (6) 28-3x=10(7) 32+4x=48 (8) 3.5-2x=2.1类型二:含括号的方程(9) 3x+(2.2+2.3)=11.2(10) 4x-(0.8+1.2)=5.2(11)(32-x)+5=35(12) 3x+(2x-5)=125(13)(x-3)×6=24(14) 18+24÷x=66类型三:较复杂的方程(15)x ÷2+2×8=16(16)22-10+4÷x =32(17)4×(3.2+x )=20(18)3×(4x -5)=12x(19)6.2x +32=3.4x +40.4(20)133x =269(21)13x +25=34(22)712x÷25 =4.2(23)5+4.5÷x=190÷2(24)4×(1.5+x)=32×14×(x-3)=3x (25)2.5×75(26)16x÷8-1.5×4=36类型一:简单的方程(1)4x-5=27解:4x=27+54x=32x=8(2)1.6x=4.8-1.6解:1.6x=3.2x=3.2÷1.6x=2(3)1.5x-1.5=7.5解:1.5x=7.5+1.51.5x=9x=9÷1.5x=6(4)3x+5=20解:3x=20-53x=15x=15÷3x=5(5)5x-2x=90解:3x=90x=90÷3x=30(6)28-3x=10解:28-10=3x18=3xx=18÷3x=6(7)32+4x=48解:4x=48-324x=16x=16÷4x=4(8)3.5-2x=2.1解:3.5-2.1=2x1.4=2xx=1.4÷2x=0.7类型二:含括号的方程(9)3x+(2.2+2.3)=11.2解:3x+5.5=11.23x=11.2-5.53x=5.7x=1.9(10)4x-(0.8+1.2)=5.2解:4x-2=5.24x=5.2+24x=7.2x=1.8(11)(32-x)+5=35解:32+5-x=3537-x=3537-35=x2=xx=2(12)3x+(2x-5)=125解:3x+2x-5=1255x-5=1255x=125+55x=130x=26(13)(x-3)×6=24解:x-3=24÷6x-3=4x=4+3x=7(14)18+24÷x=66解:24÷x=66-1824÷x=4824÷48=x0.5=xx=0.5类型三:较复杂的方程(15)x÷2+2×8=16解:x÷2+16=16x÷2=16-16x÷2=0x=0(16)22-10+4÷x=32 解:12+4÷x=324÷x=32-124÷x=204÷x=204÷20=xx=0.2(17)4×(3.2+x)=20 解:3.2+x=32÷43.2+x=8x=8-3.2x=4.8(18)3×(4x-5)=12x 解:4x-5=12x÷44x-5=3x4x-3x=5x=5(19)6.2x+32=3.4x+40.4 解:6.2x-3.4x=40.4-32 2.8x=8.4x=3(20)133x=269解:÷133×313(21)13x+25=34解:1x-25 1x×3(22)712x÷25=4.2解:712x=4.2×25712x=1.68x=1.68×127x=2.88(23)5+4.5÷x=190÷2 解:4.5÷x=95-54.5÷x=904.5÷90=x0.05=xx=0.05(24)4×(1.5+x)=32×14解:6+4x=84x=8-24x=6x=6÷4x=1.5×(x-3)=3x (25)2.5×75解:3.5×(x-3)=3x3.5x-10.5=3x3.5x-3x=10.50.5x=10.5x=10.5÷0.5x=21(26)16x÷8-1.5×4=36 解:2x-6=362x=36+62x=42x=42÷2x=21。
小升初数学总复习课件第三章式与方程ppt
(4)12×(x-1)=288 解 x-1=288÷12
x-1=24 x=24+1 x=25
例3 看图列方程。
【解】 (1)2x+12=132
4 (2)1-7x=24
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
下课了,谢谢观看
2021/小升初数学/总复习/专题复习/教学课件 主讲教师:数学老师
3.运算法则 a c ac
(1)分数乘法的法则可写成:b×d=bd(b,d 均不为 0) a b a±b
(2)同分母分数相加、减的计算法则可以写成:c±c= c (a, b,c 均为自然数,且 c 不为 0)
a c ad±bc (3)异分母分数加、减法可以写成:b±d= bd (b,d 均不为 0)
第三章 式与方程
用字母表示数 简易方程
考点一 用字母表示数及规则
在含有字母的式子里: 1.加号、减号、除号及括号要写出来。 2.除号、比号有时写成分数形式,用分数线表示。 3.数字和字母、字母和字母中间的乘号可以记作“·”或者 省略不写,但要记住,在省略乘号时数字应当写在字母的前面。 如:a×n 可以写作 a·n 或 an;π×4 可以写作 4·π或 4π。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
目录
CONTENTS
01 考点梳理 Knowledge network
02
考点解析
Question type analysis
03 课时训练 Real exercise
04 知识小结 Knowledge summary
小升初数学总复习知识手册:简单方程
小升初数学总复习知识手册:简单方程
特地为大家整理的小升初数学总复习知识手册:简单方程,希望对大家有所帮助!
单方程
代数式:用运算符号(加减乘除)连接起来的字母或者数字。
方程:含有未知数的等式叫方程。
列方程:把两个或几个相等的代数式用等号连起来。
列方程关键问题:用两个以上的不同代数式表示同一个数。
等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。
移项:把数或式子改变符号后从方程等号的一边移到另一边;
移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。
加去括号规则:在只有加减运算的算式里,如果括号前面是+号,则添、去括号,括号里面的运算符号都不变;如果括号前面是-号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有+或-的,都按有+处理。
移项关键问题:运用等式的性质,移项规则,加、去括号规则。
乘法分配率:a(b+c)=ab+ac
解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤
求解;
方程组:几个二元一次方程组成的一组方程。
解方程组的步骤:①消元;②按一元一次方程步骤。
消元的方法:①加减消元;②代入消元。
以上就是由为您提供的小升初数学总复习知识手册:简单方程,希望您阅读愉快!。
小升初数学总复习资料(3.4列方程解应用题)
小升初数学总复习资料(3.4列方程解应用题) 编者小语:小升初的压力始终贯穿于六年级的学习生活,为了成功升学,准备好每一门科目的考验势在必行!数学网为同学们整理了小升初数学总复习资料(3.4列方程解
应用题),供同学们复习参考,并祝各位同学在小升初考试中取得优异成绩!!!
四、列方程解应用题
1 列方程解应用题的意义
* 用方程式去解答应用题求得应用题的未知量的方法。
2 列方程解答应用题的步骤
* 弄清题意,确定未知数并用x表示;
* 找出题中的数量之间的相等关系;
* 列方程,解方程;
* 检查或验算,写出答案。
3列方程解应用题的方法
* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,
其思考方向是从未知到已知。
4列方程解应用题的范围
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d 分数、百分数应用题;
e 比和比例应用题。
小升初数学必考知识点列方程解应用题素材
小升初数学必考知识点:列方程解应用题
1.方程解应用题的意义
* 用方程式去解答应用题求得应用题的未知量的方法。
2.方程解答应用题的步骤
* 弄清题意,确定未知数并用x表示;
* 找出题中的数量之间的相等关系;
* 列方程,解方程;
* 检查或验算,写出答案。
3.方程解应用题的方法
* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4.方程解应用题的范围
小学范围内常用方程解的应用题:
a.般应用题;
b.倍、差倍问题;
c.何形体的周长、面积、体积计算;
d.数、百分数应用题;
e.和比例应用题。
小升初数学必备知识点汇总
小升初数学必备知识点汇总1.等式是指等号左右两边的数值相等的式子。
等式的基本性质是,等式两边同时乘以或除以一个相同的数,等式仍然成立。
2.含有未知数的等式叫做方程式。
3.一元一次方程式是指含有一个未知数,且未知数的次数是一次的等式。
学会一元一次方程式的例法及计算,即例出代有χ的算式并计算。
4.代数就是用字母代替数。
5.代数式是指用字母表示的式子,例如3x = ab + c。
1.数量关系计算公式包括单价×数量=总价、单产量×数量=总产量、速度×时间=路程、工效×时间=工作总量、加数+加数=和、一个加数=和-另一个加数、被减数-减数=差、减数=被减数-差、被减数=减数+差、因数×因数=积、一个因数=积÷另一个因数、被除数÷除数=商、除数=被除数÷商、被除数=商×除数。
2.这些公式可以用于解决各种数量关系问题,例如计算商品总价、生产总量、行驶路程、工作总量等等。
1.三角形的面积可以用底×高÷2的公式计算,公式为S=a×h÷2.2.正方形的面积可以用边长×边长的公式计算,公式为S= a^2.3.长方形的面积可以用长×宽的公式计算,公式为S= a×b。
4.平行四边形的面积可以用底×高的公式计算,公式为S= a×h。
5.梯形的面积可以用(上底+下底)×高÷2的公式计算,公式为S=(a+b)h÷2.6.三角形的内角和为180度。
7.长方体的表面积可以用(长×宽+长×高+宽×高)×2的公式计算,公式为S=(a×b+a×c+b×c)×2.8.正方体的表面积可以用棱长×棱长×6的公式计算,公式为S=6a^2.9.长方体的体积可以用长×宽×高的公式计算,公式为V=abh。
《小升初解方程专项练习》
《小升初,解方程专题》一.字母的运算=+x x 2 =-x x 312 =-x x %3543=+x x 56 =-x x 5.0%75 =+a a 5.23 =+x x %33%25 =-x x 533=++x t x 543 =-+t x t 243 =+--t x t x 27326 =-+x x 5367二.去括号(主要是运用乘法的分配律和加减法的运算性质) =+)(c b a =++)(c b a =-+)(c b a =+-)(c b a =--)(c b a应用上面的性质去掉下面各个式子的括号,能进行运算的要进行运算=-)3(3x =-)326(21x =++)23(12x =-+)3261(65x=--)3(5x =+-)1(27x =++)123(4183x x =--)312(36x x x三.等式的性质.1.等式的定义: ,叫做等式;2.等式的性质:(1).等号的两边同时加上或减去同一个数,等号的左右两边仍相等; 用字母表示为:若a=b ,c 为任意一个数,则有a+c=b+c(a-c=b-c); (2).等号的两边同时乘以同一个数,等号的左右两边仍相等;用字母表示为: ; (3).等号的两边同时除以同一个不为零的数,等号的左右两边仍相等. 用字母表示为: ;四.方程1.方程的定义:含有未知数的等式叫做方程;2.方程的解:满足方程的未知数的值,叫做方程的解;3.解方程:求方程的解的过程,叫做解方程.四则运算:加——加数+加数=和乘——因数×因数=积→→加数=和-另一个加数→→因数=积÷另一个因数减——被减数-减数=差除——被除数÷除数=商被减数=减数+差被除数=除数×商减数=被减数-差除数=被除数÷商差=被减数-减商=被除数÷除数一、求加数或求因数的方程7+x=19 x+120=176 58+x=907 x=63 x × 9=4.5 4.4x=444二、求被减数或求被除数的方程x-6=19 x-3.3=8.9 x-25.8=95.4x÷4.4=10 x÷78=10.5三、求减数或除数的方程-x=4.5 73.2-x=52.5 87-x=22÷x=0.3 8.8÷x=4.4 9÷x=0.03四、带括号的方程(先将小括号内的式子看作一个整体来计算,然后再来求方程的解)3×(x-4)=46 (8+x) ÷5=15先把(x-4)当作因数算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学总复习资料(3.3解方程) 编者小语:小升初的压力始终贯穿于六年级的学习生活,为了成功升学,准备好每一门科目的考验势在必行!数学网为同学们整理了小升初数学总复习资料(3.3解方程),供同学们复习参考,并祝各位同学在小升初考试中取得优异成绩!!!
三、解方程
解方程,求方程的解的过程叫做解方程。
⒈含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
⒉使等式成立的未知数的值,称为方程的解,或方程的根。
⒊解方程就是求出方程中所有未知数的值的过程。
⒋方程一定是等式,等式不一定是方程。
不含未知数的等式不是方程。
⒌验证:一般解方程之后,需要进行验证。
验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。
如果相等,那么所求得的值就是方程的解。
⒍注意事项:写解字,等号对齐,检验。
⒎方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数因数=积,积一个因数=另一个因数,被除数除数=商,被除数商=除数,
商除数=被除数)
同步练习题解方程
一、在○里填上运算符号,( )里填上合适的数。
1、X+4=10,X+4-4=10○ ( )
2、X-12=34,X-12+12=34○ ( )
3、X8=96,X8○ ( )=96○ ( )
4、X10=5.2,X10○ ( )=5.2○ ( )
二、解方程:
54-X=24 7X=49 126X=42
三、解下列方程(要求写出检验过程)
13+A=28.5 2.4X=26.4
四、列方程解答:
1、一个数减去43,差是28,求这个数。
2、一个数与5的积是125,求这个数。
3、X的3.3倍减去1.2与4的积,差是11.4,求X.
五、在下面括号里填上、或=。
1、当X=2.5时,4X ( )10
10X ( )10
2、当X=4时,6.2+X ( )11
54 ( )200X
根据题意把方程写完全,再解出来。
1、一条路,已经修了600米,还剩下1000米没修,这条路全长多少米?
=1000
当X大于 ( )时,5X的值大于22
在 ( )里填上适当的数,使每个方程的解都是X=10。
X+ ( )=91 X- ( )=8.9
( )X=5.1 ( )X=63。