nearest_correlation_matrix_3中文
211017069_面向对象的多层次规则分类地物遥感信息提取方法试验分析研究
第40卷第2期贵州大学学报(自然科学版)Vol.40No.22023年 3月JournalofGuizhouUniversity(NaturalSciences)Mar.2023文章编号 1000 5269(2023)02 0067 07DOI:10.15958/j.cnki.gdxbzrb.2023.02.11面向对象的多层次规则分类地物遥感信息提取方法试验分析研究丘鸣语1,甘 淑 1,2(1.昆明理工大学国土资源工程学院,云南昆明650093;2.云南省高校高原山区空间信息测绘技术应用工程研究中心,云南昆明650093)摘 要:监测土地覆盖变化是目前高分辨率遥感的重要应用领域,城市覆盖地物变更速度快、地物类型复杂,使用传统方法提取监测难度较大。
针对此问题,选择云南省大理白族自治州上官镇为研究区,以GF 2PMS遥感影像为数据源;采用面向对象的方法对研究区进行最优分割尺度分割,选取最优特征组合用于构建模糊分类规则,分层次进行地物提取,最终获得研究区地物类型分布图。
运用混淆矩阵方法进行精度评价,面向对象的多层次规则分类法提取分类效果良好,分类总体精度达79 95%,Kappa系数为0 74。
与基于像元的分类方法和单一尺度下面向对象的提取分类法相比,面向对象的多层次规则分类法精度明显提高,说明本方法运用于复杂地物提取分类具有较好可行性。
关键词:面向对象;GF 2;多层次分类;最优分割尺度;多尺度分割中图分类号:P237 文献标志码:A 随着遥感技术的发展,越来越多的遥感卫星进入太空,其能实时、多尺度提供影像的特点,为快速准确获取地面信息、监测地表变化提供了更多可能。
真实的土地覆盖、利用数据对国土资源空间优化、提升土地利用规划和管理水平至关重要[1 3]。
目前,常用的中低分辨率影像,如MODIS、Landsant等可用于大尺度监测,但其分辨率也限制了它无法运用于复杂地形、精细地物的分类提取;高分辨率影像的出现弥补了这一缺陷,高分辨率影像具有高精度、高空间分辨率等特点,更适用于小型地物提取与精细的地物分类,但其在带来更多空间信息的同时也带来了噪声与信息冗余[4]。
欧氏距离类间距离——最短距离PPT课件
G1
L: c1x1+c2x2-c=0
G2
x1
模式分类算法
• 线性分类器 • 神经网络 • 最近邻 • 贝叶斯分类器 • 隐马尔科夫模型分类器 • 决策树 • 支持向量机
Principal component analysis (PCA, 主成分分析)
• 基因芯片数据维数高,难以可视化 • 基因芯片数据噪音比较强 • PCA主要的应用
D(3)
X(5)
C(4)
C(3)
X(5)
0
C(4)
C(3)
6
2
0
2.5
0
步骤4
由D(3)知,合并X(5)和C(3)为一新类C(2)={X(5), C(3)},有:
新的G (4)={C(4) , C(2)} 新的类别数目m=2 新的类间距离矩阵D(4)
D(4)
C(4)
C(2)
C(4)
0
2.5
C(2)
0
步骤5
由D(4)知,最后合并C(4)和C(2)为一新类C(1)={C(4), C(2)},有:
新的G (5)={C(4) , C(2)} 新的类别数目m=1 新的类间距离矩阵D(5)
ERDAS IMAGINE 核心模块练习
ERDAS IMAGINE 核心模块几何纠正 (2)正射纠正 (8)影像镶嵌 (13)投影变换 (16)影像裁切 (19)影像融合 (22)监督分类及后处理 (25)几何纠正数据:C:\Program Files\ERDAS\ERDAS Desktop 2010\examples\待纠正的数据:tmAtlanta.img参考影像:panAtlanta.img操作步骤:1、启动几何纠正模块⑴打开待纠正的影像tmAlanta.img,点击File—Open—Raster Layer或在Viewer中点击右键—Open Raster Layer…⑵点击Multispectral选项卡,在Transform&Orthocorrect标签组中点击Control Points 图标⑶在打开的选择纠正模型对话框中选择Polynomial(多项式模型)点击OK继续。
⑷在弹出的选择GCP来源对话框中选择Image Layer(New Viewer)点击OK继续。
⑸在弹出的文件选择对话框中选中参考影像panAtlanta.img,点击OK。
弹出参考影像的投影信息,查看即可,点击OK继续。
⑹在弹出的多项式模型属性对话框中,设置Polynomial Order(多项式次数)为2次,点击Apply应用,点击Close关闭。
出现了几何纠正界面,工具栏中提供了缩放漫游按钮,可以根据需要使用。
每个数据视窗都包括主窗口、全图窗口、放大窗口三个窗口,底部的列表显示所采集的GCPs的信息。
在主窗口和全图窗口中可以看到链接框,可以拖动及缩放获取更佳的视觉效果(链接框的颜色可以在在窗口点击右键,选择Link Box Color进行设置) 。
2、采集地面控制点注:GCP一般选择在两幅影像中都易识别的地物,如道路交叉点等,GCP分布要尽量均匀覆盖整个区域。
⑴在tmAtalanta中拖放链接框寻找明显的地物点,并缩放到合适大小;⑵点击图标,在tmAtalanta中采集GCP #1;⑶在panAtlanta中移动链接框找到该地物,并缩放到合适大小;⑷点击图标,在panAtlanta中采集GCP #1。
聚类分析、对应分析、因子分析、主成分分析spss操作入门
软件操作
Scores为计算因子的方法
Save as variables:将因子得分保存在 SPSS变量中,method表示计算因子得分的 方法,Regression—回归法 Display factor score coefficient matix: 输出因子得分系数矩阵
采用聚类方法:系统聚类 K均值聚类
3
系统聚类
参与系统聚类的变量选到Variables(s)中 字符型变量作为标记变量选到Lable Cases by中 Cluster中确定聚类类型,是Q型聚类还是R型聚类
Agglomeration schedule:输出聚类过程表 Proximity matrix:输出个体之间的距离矩阵 Cluster Membership 中 None 表示不输出样本 所属类,Single solution表示当分成n类时各样 本所属类,Range of solutions表示当分成m-n 4 类时各样本属性所属类
基本思想:根据所研究的样本或变量在观测数据上表现的不 同亲疏程度,采用不同的聚类方法将亲疏程度较大的样本/ 变量聚合为一类,把另外一些亲疏程度较大的样本/变量聚 合为一类,直到把所有的样本/变量都聚合完毕,形成一个 由小到大的分类系统 。
聚类方法不同: 聚类对象不同时的聚类类型: 亲疏程度的判定 hierarchical cluster),聚类过程是按 系统聚类:又称为层次聚类( 样本之间的聚类:即Q型聚类分析,常用距离来测度样本之间的亲疏程 照一定层次进行的; 距离:将每一个样本看作p维空间的一个点,并用某种度量测量点与点 度; 之间的距离,距离较近的归为一类,距离较远的点应属于不同的类; 均值聚类( K-means Cluster ); K 变量之间的聚类:即 R型聚类分析,常用相似系数来测度变量之间的亲 相似系数:性质越接近的变量或样本,它们的相似系数越接近于1或一l, 疏程度; 而彼此无关的变量或样本它们的相似系数则越接近于0,相似的为一类,不 相似的为不同类;
spss中英文对照表
SPSS软件功能中英文对照Absolute deviation,绝对离差Absolute number,绝对数Absolute residuals,绝对残差Acceleration array,加速度立体阵Acceleration in an arbitrary direction,任意方向上的加速度Acceleration normal,法向加速度Acceleration space dimension,加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector,加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency,实际频数Adaptive estimator, 自适应估计量Addition,相加Addition theorem,加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation,聚集性Alternative hypothesis, 备择假设Among groups,组间Amounts, 总量Analysis of correlation,相关分析Analysis of covariance,协方差分析Analysis of regression,回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation,角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing,弧/弧旋Arcsine transformation,反正弦变换Area under the curve, 曲线面积AREG ,评估从一个时间点到下一个时间点回归相关时的误差ARIMA,季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws,结合律Asymmetric distribution,非对称分布Asymptotic bias,渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance,渐近方差Attributable risk,归因危险度Attribute data, 属性资料Attribution,属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart,条形图Bar graph, 条形图Base period, 基期Bayes’ theorem , Bayes定理Bell—shaped curve,钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator,最好切尾估计量Bias,偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare,双平方Bivariate Correlate,二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population,双变量正态总体Biweight interval, 双权区间Biweight M—estimator,双权M估计量Block,区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots,箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点 Canonical correlation, 典型相关Caption, 纵标目Case—control study, 病例对照研究Categorical variable,分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and—effect relationship,因果关系Cell,单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID —χ2 Automatic Interaction Detector,卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation,特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces,切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid—value,组中值Class upper limit,组上限Classified variable,分类变量Cluster analysis,聚类分析Cluster sampling,整群抽样Code,代码Coded data, 编码数据Coding,编码Coefficient of contingency,列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation,多重相关系数Coefficient of partial correlation,偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness,偏度系数Coefficient of variation,变异系数Cohort study,队列研究Column,列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table,组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance,公共方差Common variation, 公共变异Communality variance, 共性方差Comparability,可比性Comparison of bathes, 批比较Comparison value,比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association,完全正相关Complete dissociation, 完全不相关Complete statistics,完备统计量Completely randomized design, 完全随机化设计Composite event,联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood,条件似然Conditional probability,条件概率Conditionally linear,依条件线性Confidence interval, 置信区间Confidence limit,置信限Confidence lower limit,置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis ,验证性因子分析Confirmatory research, 证实性实验研究Confounding factor,混杂因素Conjoint, 联合分析Consistency,相合性Consistency check,一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression,受约束非线性回归Constraint, 约束Contaminated distribution,污染分布Contaminated Gausssian,污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model,污染模型Contingency table,列联表Contour, 边界线Contribution rate,贡献率Control, 对照Controlled experiments, 对照实验Conventional depth,常规深度Convolution,卷积Corrected factor, 校正因子Corrected mean,校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient,相关系数Correlation index,相关指数Correspondence, 对应Counting, 计数Counts,计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares,最小二乘准则Critical ratio,临界比Critical region, 拒绝域Critical value,临界值Cross—over design, 交叉设计Cross-section analysis,横断面分析Cross—section survey,横断面调查Crosstabs ,交叉表Cross-tabulation table, 复合表Cube root,立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression,曲线回归Curvilinear relation,曲线关系Cut—and-try method, 尝试法Cycle,周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank,数据库Data capacity,数据容量Data deficiencies,数据缺乏Data handling,数据处理Data manipulation,数据处理Data processing, 数据处理Data reduction,数据缩减Data set, 数据集Data sources,数据来源Data transformation, 数据变换Data validity,数据有效性Data—in,数据输入Data-out,数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision,精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable,应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix,导数矩阵Derivative-free methods, 无导数方法Design,设计Determinacy, 确定性Determinant, 行列式Determinant,决定因素Deviation,离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable,二分变量Differential equation,微分方程Direct standardization,直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function,判别值Dispersion,散布/分散度Disproportional,不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance,随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution,双指数分布Double logarithmic,双对数Downward rank,降秩Dual-space plot,对偶空间图DUD, 无导数方法Duncan’s new multiple range method, 新复极差法/Duncan新法Effect,实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution,经验分布Empirical probability,经验概率单位Enumeration data,计数资料Equal sun-class number,相等次级组含量Equally likely,等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II,第二类错误Estimand,被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares,估计误差平方和Euclidean distance, 欧式距离Event,事件Event,事件Exceptional data point, 异常数据点Expectation plane,期望平面Expectation surface, 期望曲面Expected values,期望值Experiment, 实验Experimental sampling,试验抽样Experimental unit, 试验单位Explanatory variable,说明变量Exploratory data analysis,探索性数据分析Explore Summarize,探索—摘要Exponential curve,指数曲线Exponential growth, 指数式增长EXSMOOTH,指数平滑方法Extended fit, 扩充拟合Extra parameter,附加参数Extrapolation,外推法Extreme observation, 末端观测值Extremes, 极端值/极值 F distribution, F分布F test, F检验Factor,因素/因子Factor analysis,因子分析Factor Analysis,因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative,假阴性False negative error, 假阴性错误Family of distributions,分布族Family of estimators, 估计量族Fanning,扇面Fatality rate,病死率Field investigation, 现场调查Field survey, 现场调查Finite population,有限总体Finite-sample,有限样本First derivative,一阶导数First principal component,第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value,拟合值Fitting a curve,曲线拟合Fixed base,定基Fluctuation, 随机起伏Forecast,预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error,相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution,伽玛分布Gauss increment,高斯增量Gaussian distribution, 高斯分布/正态分布Gauss—Newton increment, 高斯—牛顿增量General census,全面普查GENLOG (Generalized liner models),广义线性模型Geometric mean,几何平均数Gini's mean difference, 基尼均差GLM (General liner models),一般线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant,行列式的梯度Graeco—Latin square, 希腊拉丁方Grand mean,总均值Gross errors, 重大错误Gross-error sensitivity,大错敏感度Group averages,分组平均Grouped data,分组资料Guessed mean, 假定平均数Half—life,半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance,偶然事件Harmonic mean,调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution,重尾分布Hessian array,海森立体阵Heterogeneity,不同质Heterogeneity of variance,方差不齐Hierarchical classification, 组内分组Hierarchical clustering method,系统聚类法High-leverage point,高杠杆率点HILOGLINEAR,多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes,空洞HOMALS, 多重响应分析Homogeneity of variance,方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing,假设检验Hypothetical universe,假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual,个体Inference band, 推断带Infinite population,无限总体Infinitely great,无穷大Infinitely small, 无穷小Influence curve,影响曲线Information capacity, 信息容量Initial condition,初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms,交互作用项Intercept, 截距Interpolation, 内插法Interquartile range,四分位距Interval estimation, 区间估计Intervals of equal probability,等概率区间Intrinsic curvature, 固有曲率Invariance,不变性Inverse matrix,逆矩阵Inverse probability,逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function,分布函数Joint probability, 联合概率Joint probability distribution,联合概率分布K means method, 逐步聚类法Kaplan-Meier,评估事件的时间长度Kaplan-Merier chart, Kaplan—Merier图Kendall’s rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫—斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test,大样本检验Latin square,拉丁方Latin square design, 拉丁方设计Leakage,泄漏Least favorable configuration,最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least—absolute—residuals estimates,最小绝对残差估计Least-absolute-residuals fit,最小绝对残差拟合Least—absolute—residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level,水平Life expectance,预期期望寿命Life table,寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph,线图Linear correlation,直线相关Linear equation, 线性方程Linear programming,线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance,位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test,时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation,对数变换Logic check,逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit,下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量 Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability,边缘概率Marginal probability distribution, 边缘概率分布Matched data,配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation,数学期望Mathematical model,数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean,均数Mean squares between groups,组间均方Mean squares within group, 组内均方Means (Compare means),均值—均值比较Median, 中位数Median effective dose,半数效量Median lethal dose,半数致死量Median polish,中位数平滑Median test,中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose,最小有效量Minimum lethal dose,最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading,宾词标目Missing data, 缺失值Model specification,模型的确定Modeling Statistics ,模型统计Models for outliers, 离群值模型Modifying the model,模型的修正Modulus of continuity, 连续性模Morbidity,发病率Most favorable configuration,最有利构形Multidimensional Scaling (ASCAL),多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison,多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions,多解Multiplication theorem,乘法定理Multiresponse,多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive,互不相容Mutual independence,互相独立Natural boundary,自然边界Natural dead,自然死亡Natural zero, 自然零Negative correlation,负相关Negative linear correlation,负线性相关Negatively skewed, 负偏Newman—Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics,非参数统计Nonparametric test, 非参数检验Nonparametric tests,非参数检验Normal deviate, 正态离差Normal distribution,正态分布Normal equation,正规方程组Normal ranges, 正常范围Normal value,正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable,数值变量Objective function,目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One—way analysis of variance,单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics,顺序统计量Ordered categories,有序分类Ordinal logistic regression ,序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis,正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs,离群值截断点Outliers,极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes,成对斜率Parabola,抛物线Parallel tests, 平行试验spss中英文对照表Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression,偏回归Partial sorting,偏排序Partials residuals,偏残差Pattern,模式Pearson curves, 皮尔逊曲线Peeling,退层Percent bar graph,百分条形图Percentage, 百分比Percentile,百分位数Percentile curves,百分位曲线Periodicity, 周期性Permutation,排列P—estimator, P估计量Pie graph,饼图Pitman estimator,皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS,生成试验的计划卡Point estimation, 点估计Poisson distribution,泊松分布Polishing,平滑Polled standard deviation, 合并标准差Polled variance,合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation,正相关Positively skewed,正偏Posterior distribution, 后验分布Power of a test,检验效能Precision, 精密度Predicted value,预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model,概率模型probability,概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace,截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling,按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers,成比例次级组含量Prospective study, 前瞻性调查Proximities,亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation,二次近似Qualitative classification, 属性分类Qualitative method,定性方法Quantile-quantile plot,分位数—分位数图/Q—Q图Quantitative analysis,定量分析Quartile,四分位数Quick Cluster, 快速聚类Radix sort,基数排序Random allocation,随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization,随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data,原始资料Raw residual,原始残差Rayleigh’s test,雷氏检验Rayleigh’s Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation,倒数变换Recording, 记录Redescending estimators,回降估计量Reducing dimensions, 降维Re—expression, 重新表达Reference set,标准组Region of acceptance,接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number,相对数Reliability, 可靠性Reparametrization,重新设置参数Replication,重复Report Summaries, 报告摘要Residual sum of square,剩余平方和Resistance, 耐抗性Resistant line,耐抗线Resistant technique, 耐抗技术R-estimator of location,位置R估计量R—estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace,岭迹Ridit analysis, Ridit分析Rotation,旋转Rounding,舍入Row,行Row effects,行效应Row factor,行因素RXC table, RXC表 Sample, 样本Sample regression coefficient,样本回归系数Sample size, 样本量Sample standard deviation,样本标准差Sampling error,抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram,散点图Schematic plot,示意图/简图Score test, 计分检验Screening, 筛检SEASON,季节分析Second derivative,二阶导数Second principal component,第二主成分SEM (Structural equation modeling),结构化方程模型Semi-logarithmic graph,半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design,贯序设计Sequential method,贯序法Sequential test, 贯序检验法Serial tests,系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function,正负号函数Sign test,符号检验Signed rank,符号秩Significance test,显著性检验Significant figure,有效数字Simple cluster sampling, 简单整群抽样Simple correlation,简单相关Simple random sampling,简单随机抽样Simple regression, 简单回归simple table,简单表Sine estimator,正弦估计量Single—valued estimate,单值估计Singular matrix, 奇异矩阵Skewed distribution,偏斜分布Skewness,偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test,斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation,斯皮尔曼等级相关Specific factor,特殊因子Specific factor variance, 特殊因子方差Spectra ,频谱Spherical distribution,球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation,标准差Standard error, 标准误Standard error of difference,差别的标准误Standard error of estimate,标准估计误差Standard error of rate,率的标准误Standard normal distribution,标准正态分布Standardization,标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display,茎叶图Step factor, 步长因子Stepwise regression,逐步回归Storage, 存Strata, 层(复数)Stratified sampling,分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency,严密性Structural relationship,结构关系Studentized residual,学生化残差/t化残差Sub—class numbers,次级组含量Subdividing,分割Sufficient statistic,充分统计量Sum of products,积和Sum of squares,离差平方和Sum of squares about regression,回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression,偏回归平方和Sure event, 必然事件Survey,调查Survival,生存分析Survival rate,生存率Suspended root gram, 悬吊根图Symmetry,对称Systematic error,系统误差Systematic sampling, 系统抽样 Tags, 标签Tail area,尾部面积Tail length,尾长Tail weight, 尾重Tangent line,切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion,离散趋势Testing of hypotheses,假设检验Theoretical frequency,理论频数Time series,时间序列Tolerance interval, 容忍区间Tolerance lower limit,容忍下限Tolerance upper limit,容忍上限Torsion, 扰率Total sum of square,总平方和Total variation, 总变异Transformation,转换Treatment, 处理Trend, 趋势Trend of percentage,百分比趋势Trial, 试验Trial and error method,试错法Tuning constant, 细调常数Two sided test, 双向检验Two—stage least squares,二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two—way analysis of variance,双因素方差分析Two—way table,双向表Type I error, 一类错误/α错误Type II error,二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit,单元Unordered categories,无序分类Upper limit,上限Upward rank,升秩Vague concept,模糊概念Validity,有效性VARCOMP (Variance component estimation), 方差元素估计Variability,变异性Variable,变量Variance, 方差Variation, 变异Varimax orthogonal rotation,方差最大正交旋转Volume of distribution,容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square,加权平方和Weighting coefficient, 权重系数Weighting method,加权法W-estimation, W估计量W-estimation of location,位置W估计量Width,宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point,野点/狂点spss中英文对照表Wild value,野值/狂值Winsorized mean,缩尾均值Withdraw,失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z—transformation, Z变换。
人工智能(AI)中英文术语对照表
人工智能(AI)中英文术语对照表目录人工智能(AI)中英文术语对照表 (1)Letter A (1)Letter B (2)Letter C (3)Letter D (4)Letter E (5)Letter F (6)Letter G (6)Letter H (7)Letter I (7)Letter K (8)Letter L (8)Letter M (9)Letter N (10)Letter O (10)Letter P (11)Letter Q (12)Letter R (12)Letter S (13)Letter T (14)Letter U (14)Letter V (15)Letter W (15)Letter AAccumulated error backpropagation 累积误差逆传播Activation Function 激活函数Adaptive Resonance Theory/ART 自适应谐振理论Addictive model 加性学习Adversarial Networks 对抗网络Affine Layer 仿射层Affinity matrix 亲和矩阵Agent 代理/ 智能体Algorithm 算法Alpha-beta pruning α-β剪枝Anomaly detection 异常检测Approximation 近似Area Under ROC Curve/AUC Roc 曲线下面积Artificial General Intelligence/AGI 通用人工智能Artificial Intelligence/AI 人工智能Association analysis 关联分析Attention mechanism注意力机制Attribute conditional independence assumption 属性条件独立性假设Attribute space 属性空间Attribute value 属性值Autoencoder 自编码器Automatic speech recognition 自动语音识别Automatic summarization自动摘要Average gradient 平均梯度Average-Pooling 平均池化Action 动作AI language 人工智能语言AND node 与节点AND/OR graph 与或图AND/OR tree 与或树Answer statement 回答语句Artificial intelligence,AI 人工智能Automatic theorem proving自动定理证明Letter BBreak-Event Point/BEP 平衡点Backpropagation Through Time 通过时间的反向传播Backpropagation/BP 反向传播Base learner 基学习器Base learning algorithm 基学习算法Batch Normalization/BN 批量归一化Bayes decision rule 贝叶斯判定准则Bayes Model Averaging/BMA 贝叶斯模型平均Bayes optimal classifier 贝叶斯最优分类器Bayesian decision theory 贝叶斯决策论Bayesian network 贝叶斯网络Between-class scatter matrix 类间散度矩阵Bias 偏置/ 偏差Bias-variance decomposition 偏差-方差分解Bias-Variance Dilemma 偏差–方差困境Bi-directional Long-Short Term Memory/Bi-LSTM 双向长短期记忆Binary classification 二分类Binomial test 二项检验Bi-partition 二分法Boltzmann machine 玻尔兹曼机Bootstrap sampling 自助采样法/可重复采样/有放回采样Bootstrapping 自助法Letter CCalibration 校准Cascade-Correlation 级联相关Categorical attribute 离散属性Class-conditional probability 类条件概率Classification and regression tree/CART 分类与回归树Classifier 分类器Class-imbalance 类别不平衡Closed -form 闭式Cluster 簇/类/集群Cluster analysis 聚类分析Clustering 聚类Clustering ensemble 聚类集成Co-adapting 共适应Coding matrix 编码矩阵COLT 国际学习理论会议Committee-based learning 基于委员会的学习Competitive learning 竞争型学习Component learner 组件学习器Comprehensibility 可解释性Computation Cost 计算成本Computational Linguistics 计算语言学Computer vision 计算机视觉Concept drift 概念漂移Concept Learning System /CLS概念学习系统Conditional entropy 条件熵Conditional mutual information 条件互信息Conditional Probability Table/CPT 条件概率表Conditional random field/CRF 条件随机场Conditional risk 条件风险Confidence 置信度Confusion matrix 混淆矩阵Connection weight 连接权Connectionism 连结主义Consistency 一致性/相合性Contingency table 列联表Continuous attribute 连续属性Convergence收敛Conversational agent 会话智能体Convex quadratic programming 凸二次规划Convexity 凸性Convolutional neural network/CNN 卷积神经网络Co-occurrence 同现Correlation coefficient 相关系数Cosine similarity 余弦相似度Cost curve 成本曲线Cost Function 成本函数Cost matrix 成本矩阵Cost-sensitive 成本敏感Cross entropy 交叉熵Cross validation 交叉验证Crowdsourcing 众包Curse of dimensionality 维数灾难Cut point 截断点Cutting plane algorithm 割平面法Letter DData mining 数据挖掘Data set 数据集Decision Boundary 决策边界Decision stump 决策树桩Decision tree 决策树/判定树Deduction 演绎Deep Belief Network 深度信念网络Deep Convolutional Generative Adversarial Network/DCGAN 深度卷积生成对抗网络Deep learning 深度学习Deep neural network/DNN 深度神经网络Deep Q-Learning 深度Q 学习Deep Q-Network 深度Q 网络Density estimation 密度估计Density-based clustering 密度聚类Differentiable neural computer 可微分神经计算机Dimensionality reduction algorithm 降维算法Directed edge 有向边Disagreement measure 不合度量Discriminative model 判别模型Discriminator 判别器Distance measure 距离度量Distance metric learning 距离度量学习Distribution 分布Divergence 散度Diversity measure 多样性度量/差异性度量Domain adaption 领域自适应Downsampling 下采样D-separation (Directed separation)有向分离Dual problem 对偶问题Dummy node 哑结点Dynamic Fusion 动态融合Dynamic programming 动态规划Letter EEigenvalue decomposition 特征值分解Embedding 嵌入Emotional analysis 情绪分析Empirical conditional entropy 经验条件熵Empirical entropy 经验熵Empirical error 经验误差Empirical risk 经验风险End-to-End 端到端Energy-based model 基于能量的模型Ensemble learning 集成学习Ensemble pruning 集成修剪Error Correcting Output Codes/ECOC 纠错输出码Error rate 错误率Error-ambiguity decomposition 误差-分歧分解Euclidean distance 欧氏距离Evolutionary computation 演化计算Expectation-Maximization 期望最大化Expected loss 期望损失Exploding Gradient Problem 梯度爆炸问题Exponential loss function 指数损失函数Extreme Learning Machine/ELM 超限学习机Letter FExpert system 专家系统Factorization因子分解False negative 假负类False positive 假正类False Positive Rate/FPR 假正例率Feature engineering 特征工程Feature selection特征选择Feature vector 特征向量Featured Learning 特征学习Feedforward Neural Networks/FNN 前馈神经网络Fine-tuning 微调Flipping output 翻转法Fluctuation 震荡Forward stagewise algorithm 前向分步算法Frequentist 频率主义学派Full-rank matrix 满秩矩阵Functional neuron 功能神经元Letter GGain ratio 增益率Game theory 博弈论Gaussian kernel function 高斯核函数Gaussian Mixture Model 高斯混合模型General Problem Solving 通用问题求解Generalization 泛化Generalization error 泛化误差Generalization error bound 泛化误差上界Generalized Lagrange function 广义拉格朗日函数Generalized linear model 广义线性模型Generalized Rayleigh quotient 广义瑞利商Generative Adversarial Networks/GAN 生成对抗网络Generative Model 生成模型Generator 生成器Genetic Algorithm/GA 遗传算法Gibbs sampling 吉布斯采样Gini index 基尼指数Global minimum 全局最小Global Optimization 全局优化Gradient boosting 梯度提升Gradient Descent 梯度下降Graph theory 图论Ground-truth 真相/真实Letter HHard margin 硬间隔Hard voting 硬投票Harmonic mean 调和平均Hesse matrix海塞矩阵Hidden dynamic model 隐动态模型Hidden layer 隐藏层Hidden Markov Model/HMM 隐马尔可夫模型Hierarchical clustering 层次聚类Hilbert space 希尔伯特空间Hinge loss function 合页损失函数Hold-out 留出法Homogeneous 同质Hybrid computing 混合计算Hyperparameter 超参数Hypothesis 假设Hypothesis test 假设验证Letter IICML 国际机器学习会议Improved iterative scaling/IIS 改进的迭代尺度法Incremental learning 增量学习Independent and identically distributed/i.i.d. 独立同分布Independent Component Analysis/ICA 独立成分分析Indicator function 指示函数Individual learner 个体学习器Induction 归纳Inductive bias 归纳偏好Inductive learning 归纳学习Inductive Logic Programming/ILP 归纳逻辑程序设计Information entropy 信息熵Information gain 信息增益Input layer 输入层Insensitive loss 不敏感损失Inter-cluster similarity 簇间相似度International Conference for Machine Learning/ICML 国际机器学习大会Intra-cluster similarity 簇内相似度Intrinsic value 固有值Isometric Mapping/Isomap 等度量映射Isotonic regression 等分回归Iterative Dichotomiser 迭代二分器Letter KKernel method 核方法Kernel trick 核技巧Kernelized Linear Discriminant Analysis/KLDA 核线性判别分析K-fold cross validation k 折交叉验证/k 倍交叉验证K-Means Clustering K –均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base 知识库Knowledge Representation 知识表征Letter LLabel space 标记空间Lagrange duality 拉格朗日对偶性Lagrange multiplier 拉格朗日乘子Laplace smoothing 拉普拉斯平滑Laplacian correction 拉普拉斯修正Latent Dirichlet Allocation 隐狄利克雷分布Latent semantic analysis 潜在语义分析Latent variable 隐变量Lazy learning 懒惰学习Learner 学习器Learning by analogy 类比学习Learning rate 学习率Learning Vector Quantization/LVQ 学习向量量化Least squares regression tree 最小二乘回归树Leave-One-Out/LOO 留一法linear chain conditional random field 线性链条件随机场Linear Discriminant Analysis/LDA 线性判别分析Linear model 线性模型Linear Regression 线性回归Link function 联系函数Local Markov property 局部马尔可夫性Local minimum 局部最小Log likelihood 对数似然Log odds/logit 对数几率Logistic Regression Logistic 回归Log-likelihood 对数似然Log-linear regression 对数线性回归Long-Short Term Memory/LSTM 长短期记忆Loss function 损失函数Letter MMachine translation/MT 机器翻译Macron-P 宏查准率Macron-R 宏查全率Majority voting 绝对多数投票法Manifold assumption 流形假设Manifold learning 流形学习Margin theory 间隔理论Marginal distribution 边际分布Marginal independence 边际独立性Marginalization 边际化Markov Chain Monte Carlo/MCMC马尔可夫链蒙特卡罗方法Markov Random Field 马尔可夫随机场Maximal clique 最大团Maximum Likelihood Estimation/MLE 极大似然估计/极大似然法Maximum margin 最大间隔Maximum weighted spanning tree 最大带权生成树Max-Pooling 最大池化Mean squared error 均方误差Meta-learner 元学习器Metric learning 度量学习Micro-P 微查准率Micro-R 微查全率Minimal Description Length/MDL 最小描述长度Minimax game 极小极大博弈Misclassification cost 误分类成本Mixture of experts 混合专家Momentum 动量Moral graph 道德图/端正图Multi-class classification 多分类Multi-document summarization 多文档摘要Multi-layer feedforward neural networks 多层前馈神经网络Multilayer Perceptron/MLP 多层感知器Multimodal learning 多模态学习Multiple Dimensional Scaling 多维缩放Multiple linear regression 多元线性回归Multi-response Linear Regression /MLR 多响应线性回归Mutual information 互信息Letter NNaive bayes 朴素贝叶斯Naive Bayes Classifier 朴素贝叶斯分类器Named entity recognition 命名实体识别Nash equilibrium 纳什均衡Natural language generation/NLG 自然语言生成Natural language processing 自然语言处理Negative class 负类Negative correlation 负相关法Negative Log Likelihood 负对数似然Neighbourhood Component Analysis/NCA 近邻成分分析Neural Machine Translation 神经机器翻译Neural Turing Machine 神经图灵机Newton method 牛顿法NIPS 国际神经信息处理系统会议No Free Lunch Theorem/NFL 没有免费的午餐定理Noise-contrastive estimation 噪音对比估计Nominal attribute 列名属性Non-convex optimization 非凸优化Nonlinear model 非线性模型Non-metric distance 非度量距离Non-negative matrix factorization 非负矩阵分解Non-ordinal attribute 无序属性Non-Saturating Game 非饱和博弈Norm 范数Normalization 归一化Nuclear norm 核范数Numerical attribute 数值属性Letter OObjective function 目标函数Oblique decision tree 斜决策树Occam’s razor 奥卡姆剃刀Odds 几率Off-Policy 离策略One shot learning 一次性学习One-Dependent Estimator/ODE 独依赖估计On-Policy 在策略Ordinal attribute 有序属性Out-of-bag estimate 包外估计Output layer 输出层Output smearing 输出调制法Overfitting 过拟合/过配Oversampling 过采样Letter PPaired t-test 成对t 检验Pairwise 成对型Pairwise Markov property成对马尔可夫性Parameter 参数Parameter estimation 参数估计Parameter tuning 调参Parse tree 解析树Particle Swarm Optimization/PSO粒子群优化算法Part-of-speech tagging 词性标注Perceptron 感知机Performance measure 性能度量Plug and Play Generative Network 即插即用生成网络Plurality voting 相对多数投票法Polarity detection 极性检测Polynomial kernel function 多项式核函数Pooling 池化Positive class 正类Positive definite matrix 正定矩阵Post-hoc test 后续检验Post-pruning 后剪枝potential function 势函数Precision 查准率/准确率Prepruning 预剪枝Principal component analysis/PCA 主成分分析Principle of multiple explanations 多释原则Prior 先验Probability Graphical Model 概率图模型Proximal Gradient Descent/PGD 近端梯度下降Pruning 剪枝Pseudo-label伪标记Letter QQuantized Neural Network 量子化神经网络Quantum computer 量子计算机Quantum Computing 量子计算Quasi Newton method 拟牛顿法Letter RRadial Basis Function/RBF 径向基函数Random Forest Algorithm 随机森林算法Random walk 随机漫步Recall 查全率/召回率Receiver Operating Characteristic/ROC 受试者工作特征Rectified Linear Unit/ReLU 线性修正单元Recurrent Neural Network 循环神经网络Recursive neural network 递归神经网络Reference model 参考模型Regression 回归Regularization 正则化Reinforcement learning/RL 强化学习Representation learning 表征学习Representer theorem 表示定理reproducing kernel Hilbert space/RKHS 再生核希尔伯特空间Re-sampling 重采样法Rescaling 再缩放Residual Mapping 残差映射Residual Network 残差网络Restricted Boltzmann Machine/RBM 受限玻尔兹曼机Restricted Isometry Property/RIP 限定等距性Re-weighting 重赋权法Robustness 稳健性/鲁棒性Root node 根结点Rule Engine 规则引擎Rule learning 规则学习Letter SSaddle point 鞍点Sample space 样本空间Sampling 采样Score function 评分函数Self-Driving 自动驾驶Self-Organizing Map/SOM 自组织映射Semi-naive Bayes classifiers 半朴素贝叶斯分类器Semi-Supervised Learning半监督学习semi-Supervised Support Vector Machine 半监督支持向量机Sentiment analysis 情感分析Separating hyperplane 分离超平面Searching algorithm 搜索算法Sigmoid function Sigmoid 函数Similarity measure 相似度度量Simulated annealing 模拟退火Simultaneous localization and mapping同步定位与地图构建Singular Value Decomposition 奇异值分解Slack variables 松弛变量Smoothing 平滑Soft margin 软间隔Soft margin maximization 软间隔最大化Soft voting 软投票Sparse representation 稀疏表征Sparsity 稀疏性Specialization 特化Spectral Clustering 谱聚类Speech Recognition 语音识别Splitting variable 切分变量Squashing function 挤压函数Stability-plasticity dilemma 可塑性-稳定性困境Statistical learning 统计学习Status feature function 状态特征函Stochastic gradient descent 随机梯度下降Stratified sampling 分层采样Structural risk 结构风险Structural risk minimization/SRM 结构风险最小化Subspace 子空间Supervised learning 监督学习/有导师学习support vector expansion 支持向量展式Support Vector Machine/SVM 支持向量机Surrogat loss 替代损失Surrogate function 替代函数Symbolic learning 符号学习Symbolism 符号主义Synset 同义词集Letter TT-Distribution Stochastic Neighbour Embedding/t-SNE T –分布随机近邻嵌入Tensor 张量Tensor Processing Units/TPU 张量处理单元The least square method 最小二乘法Threshold 阈值Threshold logic unit 阈值逻辑单元Threshold-moving 阈值移动Time Step 时间步骤Tokenization 标记化Training error 训练误差Training instance 训练示例/训练例Transductive learning 直推学习Transfer learning 迁移学习Treebank 树库Tria-by-error 试错法True negative 真负类True positive 真正类True Positive Rate/TPR 真正例率Turing Machine 图灵机Twice-learning 二次学习Letter UUnderfitting 欠拟合/欠配Undersampling 欠采样Understandability 可理解性Unequal cost 非均等代价Unit-step function 单位阶跃函数Univariate decision tree 单变量决策树Unsupervised learning 无监督学习/无导师学习Unsupervised layer-wise training 无监督逐层训练Upsampling 上采样Letter VVanishing Gradient Problem 梯度消失问题Variational inference 变分推断VC Theory VC维理论Version space 版本空间Viterbi algorithm 维特比算法Von Neumann architecture 冯·诺伊曼架构Letter WWasserstein GAN/WGAN Wasserstein生成对抗网络Weak learner 弱学习器Weight 权重Weight sharing 权共享Weighted voting 加权投票法Within-class scatter matrix 类内散度矩阵Word embedding 词嵌入Word sense disambiguation 词义消歧。
心理学专业英语词汇(N1)
心理学专业英语词汇(N1)心理学专业英语词汇(N1)心理学专业英语词汇(N1)n 舌咽神经n 符节说n 脑的三个基本机能联合区n factor n 因素n factor 数字运算因素n of group) 群体多层观察系统n ⅰ嗅神经n ⅱ视神经n ⅲ动眼神经n ⅳ滑车神经n ⅴ三叉神经n ⅵ外展神经n ⅶ面神经n ⅷ听神经n ⅹ迷走神经n ? 副神经n ? 舌下神经nafta 北美自由贸易协定nagel chart test 纳格尔图片测验nagel s test 纳格尔色盲测验nail biting 咬指甲癖naive 朴素的naive anthropomorphism 素朴拟人论naive anthropomorphism 幼稚拟人论naive materialism 素朴唯物论naive positivism 素朴实证主义naive psychology 通俗心理学nalliplex character 无显特性nalorphine 丙烯去甲吗啡named scribble stage 涂绘命名期naming 命名naming stage 命名期nancy school 南锡学派nanism 侏儒症nano 毫微nanometer 毫微米nanosecond 毫微秒nanosomia 侏儒症nanosomus 侏儒nanounit 毫微单位nanous 矮小的napkin ring figure 餐巾环形图napkin ring figure 多义图形narcism 恋己癖narcismus 自体观窥欲narcissism 自爱欲narcissism of small difference 对微小差异的自恋narcissist 自恋者narcissistic alliance 自恋联结narcissistic equilibrium 自我均衡narcissistic libido 自恋欲力narcissistic neurosis 自恋神经症narcissistic personality 自恋人格narcissistic personality disorder 自是型人格障碍narcoanalysis 麻醉分析narcohepnia 乍醒麻木narcohypnosis 麻醉药催眠narcointerview 麻醉面谈narcolepsy 发作性睡眠症narcoma 麻醉性昏睡narcomania 麻醉药癖narcose 麻醉状态的narcosis 麻醉narcostimulant 麻醉兴奋性的narcosynthesis 麻醉综合法narcotherapy 麻醉疗法narcotic 麻醉的narcotic antagonist 抗麻醉剂narcotic phase 麻醉相narcotico irritant 麻醉剌激性的narcotics 麻醉剂narcotics abuse 麻醉剂滥用narcotism 麻醉状态narcotization 麻醉法narcotize 使麻醉narcous 麻醉状态的narco analysis method of interrogation 麻醉分析讯问法narrow band syndromes 窄义综合症narrow categorizing style 细密型narrowing movement 退缩运动narrow band syndrome scales 窄义综合症量表narrow external attentionnarrow internal attentionnasal cavity 鼻腔nasal retina 鼻半侧视网膜nasality 鼻音性nascence 发生nascent 初生的nascent 发展初期的nastic 感性的nastic movement 感性运动nasty 感性natality 出生率natality statistics 出生率统计national assessment of educational progress 美国家教育进步评测national association for the study of epilepsy 美全国癫痫研究协会national character 国民性national committee for mental health 美全国心理卫生委员会national committee for mental hygiene 美全国精神卫生协会national conditions 民情national consciousness 民族意识national council of measurement in education 美全国教育测验协会美全国教育测验协会national culture 民族文化national ethics 国家伦理national form 民族形式national identity 国民同一性national institute of mental health 美国家心理卫生研究所national institute of neurological diseases and blindness 美全国神经病和盲症学会national intelligence test 国民智力测验国民智力测验national language 国语national norm 全国常模national prejudice 民族偏见national society for crippled children 美全国残疾儿童协会national society for the prevention of cruelty to children 美全国防止虐待儿童协会national spirit 民族精神national standard 国家标准national stereotype 国民刻板印象national survey 国家调查national traits 民族性nationalism 民族主义nationality 国籍nationality 民族性nationwide sampling survey 全国性抽样调查native 先天的native behavior 先天性行为native endowment 先天禀赋native equipment 天资native language 本族语native power 天赋聪明native reaction 先天反应native traits 天赋特质nativism 先天论nativism empiricism controversy 先天与经验争议nativistic theory 天赋学说natural 自然的natural ability 本能natural affections 自然的感情natural agency 自然力natural agent 自然力natural beauty 自然美natural childbirth 自然生育法natural classification 自然分类natural color system 自然颜色系统natural concept 自然概念natural conjugate distribution 自然共轭分布natural developing theory of learning 学习的自然展开说natural dialectics 自然辩证法natural disasters 自然灾害natural endowment 先天禀赋natural environment 自然环境natural experiment 自然实验natural feeling 自然的感情natural fertility 自然生育率natural fitness 自然的合理性natural form 自然形式natural gender 自然性natural group design 自然组设计natural inclinations 自然素质natural increase 自然增加natural instincts 天性natural language 自然语言natural law 自然法则natural lighting 自然采光natural method 自然教育法natural monism 自然一元论natural motion 自然运动natural object 自然物体natural observation 自然观察natural phenomena 自然现象natural place 自然位置natural population 自然群体natural predisposition 先天素因natural punishment 自然惩罚natural radioactive decay 自然衰变natural regeneration 自然更新natural relation 自然关系natural science 自然科学natural science psychology 自然科学心理学natural selection 自然选择natural selectionist 自然选择论者natural sleep 自然睡眠natural succession 自然演替natural talent 自然禀赋natural tendency 自然趋势natural wet bulb temperature 自然湿球温度natural world 物质世界naturalism 自然主义naturalistic observation 自然观察naturalistic observation method 自然观察法naturality 自然性naturalized 驯化的naturalness 自然状态nature 天性nature 自然nature concept 自然概念nature homosexual period 自然同性恋期自然同性恋期nature of consciousness 意识的性质nature of self 自我的性质nature study 自然研究nature worship 自然祟拜nature nurture 先天与后天nature nurture controversy 天性与教养争议nature nurture problemnaturism 自然崇拜naturopathy 物理治疗nausea 恶心nauseate 厌恶nauseous 腐臭nauseous 令人恶心的nauta gygax methodncs 自然颜色系统nealogy 幼动物学neanic 幼年的near orientation 近定向near point 近点nearest neighbor frequency 最近邻频率最近邻频率nearest neighbor method 最近邻法nearness 接近度near sightedness 近视necessary 必然的necessary being 必然存在necessary cause 必然理由necessary condition 必然条件necessary connection 必然联系necessity 必然性neck circumference 颈围neck reflex 颈反射necker cube 内克尔立方体necrology 死亡统计necromania 恋尸癖necrometer 尸体测量器necromimesis 死亡妄想necrophagia 食尸癖necrophagy 食尸癖necrophile 恋尸癖者necrophilia 恋尸癖necrophilious 恋尸癖的necrophobia 尸体恐怖症necrophobia 死亡恐怖necropsy 尸体剖检necropsy 验尸ned 无疾病迹象need 需要need analysis 需要分析need cathexis 需求投注need for a frame of orientation 定向需求定向需求need for abasement 谦卑需求need for achievement 成就需求need for affection 情感需要need for affiliation 归属需要need for affiliation 亲合需要need for aggression 攻击需求need for approval 认可需求need for approval 赞许需求need for autogenic 自主需求need for autonomy 自立需求need for change 革新需求need for deference 顺从需求need for endurance 持久需求need for exhibition 表现需求need for heterosexuality 爱恋需求need for independence 独立需求need for nurturance 抚助需求need for order 秩序需求need for positive regard 正面关注需求正面关注需求need for power 权力需要need for punishment 惩罚需求need for relatedness 相属需求need for self actualization 自我实现的需要need for transcendence 超越需求need for understanding 知之需求need gratification 需求满足need hierarchy theory 需要层次论need integrate 需求综合need of affiliation 亲和需求need of interception 省察需求need of rootedness 生根需求need patter 需求范型need reduction theory 需求削减论need satisfaction 需求满足need state 需求状态need system 欲求系统need tension 需求性紧张need theory of crime 需求论犯罪观needarousal 需求激发needle electrode 针状电极needy child 贫困儿童need complementarity hypothesis 需求互补假说need drive incentive hypothesis 需求驱力诱因假说need drive incentive pattern 需求驱力诱因模式need persistence 需求持续性need press 迫切需求need press theory 需求压力论neef s hammer 内夫锤neencephalon 新脑negation 否认negation 抗拒性negative acceleration 负加速negative adaptation 负适应negative adaptation 消极适应negative adjustment 消极调整negative afterpotential 负后电位negative after effect 负后效negative after image 负后象negative association 负相联negative attention seeking 消极型引人注意negative attitude 消极态度negative attitude change 态度负向改变态度负向改变negative behavior 消极行为negative binomial distribution 负二项分布negative case analysis 负性个案分析negative cathexis 消极投注negative conditioned reflex 阴性条件反射negative contrast 负对比negative contrast of reinforcement 强化负对比negative control 负控制negative correlation 负相关negative cue 负线索negative definition 否定的定义negative diagnosis 消极诊断negative difference 负差negative direction 反方向negative discipline 消极训练negative equilibrium 消极平衡negative error 负误差negative exercise 消极练习negative feedback 负反馈negative fixation 消极性固着negative focusing 负聚焦negative hallucination 负幻觉negative identity 反向认同negative identity 消极统合negative incentive 负诱因negative inducement 负诱导negative induction 负诱导negative influence 消极作用negative instance 否定实例negative integer 负整数negative interaction 负相互作用negative interest 消极兴趣negative interference 负干扰negative item 负向题目negative judgment 否定判断negative law of effect 负效果律negative linear relationship 负线性关系negative nothing 消极的空无negative number 负数negative peak 最大负值negative phototaxis 负向光性negative phototropism 负向光性negative practice 反练习negative practice 消极练习negative punishment 负效惩罚negative reactive 负性反应negative recency effect 负性新近效应negative recollection 消极回忆negative regency 时近负效应negative reinforcement 负强化negative reinforcer 负强化物negative reinforcing stimulus 负强化刺激负增强刺激negative resistance 负阻negative response 负反应negative response 消极反应negative reward 负奖赏negative self feeling 消极自感negative sign 负量negative skewness 负偏态negative stage 反抗期negative stem 负题根negative stem item 具负题根试题negative stimulus 负性刺激negative suggestion 消极暗示negative symptom 负性症状negative term 负项negative time error 负时间误差negative transfer 负迁移negative transference 负移情negative tropism 负感应性negative valence 负价negatively accelerated curve 负加速曲线negative negative conflictnegative state relief hypothesis 消极心境解脱说negativism 否定论negativism 违拗症negativity 否定性neglect 忽视neglected variables 忽略的变量negotiation 谈判neighborhood model 邻式模型neiman pick s diseasenelson biology test 纳尔逊生物测验nelson denny reading test 纳丹二氏阅读测验nematoblast 精子细胞nembutal 戊巴比妥钠neobiogenesis 新生源说neocategory 新范畴neocerebellum 新小脑neocinetic 新运动区的neocortex 新皮层neofetal 幼胎的neofetus 幼胎neoformation 新生物neogala 初乳neogene 新第三纪neogenesis 新生neokinetic 新运动区的neolallia 新器官neologism 新器官neonatal 新生期的neonatal behavior assessment scale 新生儿行为评价量表neonatal chromosome disorder 新生儿染色体异常neonatal development 新生儿发育neonatal disorder 新生儿异常neonatal period 新生儿期neonatal reflex 新生儿反应neonate 新生儿neonate psychology 新生儿心理学neonatology 新生儿科学neopallium 新皮层neophobia 新奇恐怖症neophrenia 儿童期精神病neoplasma 赘生物neopositivism 新实证主义neopositivist 新实证主义者neopsychoanalytic school 新精神分析学派neoretinene 新视黄醛neostigmine 副交感神经兴奋剂neoteinia 幼态持续neoteny 幼态持续neothalamus 新丘脑neovitalism 新活力论neovitalist 新生机论者neozoic 新生代的neo behaviorism 新行为主义neo cortex 新皮质neo darwinism 新达尔文主义neo encephalon 新脑neo epigenesis 新渐成说neo evolution 新进化论neo freudian 新佛洛伊德学派neo freudism 新佛洛伊德主义neo humanism 新人本主义neo idealism 新唯心主义neo lamarckism 新拉马克主义neo malthusianism 新马尔萨斯主义neo platonism 新柏拉图主义neo psychoanalysis 新精神分析论nepenthe 使人忘忧的东西nepenthic 忘忧的nephelopsychosis 恋云癖nerve 神经nerve 勇敢nerve accommodation 神经适应nerve action 神经活动nerve block 神经阻断nerve bundle 神经束nerve cell 神经细胞nerve centre 神经中枢nerve chain 神经链nerve conduction 神经传导nerve conduction velocity 神经传导速率神经传导速率nerve cord 神经索nerve corpuscles 神经膜细胞nerve deafness 神经性耳聋nerve ending 神经末梢nerve fiber 神经纤维nerve fibril 神经纤维nerve gas 神经毒气nerve growth factor 神经原生长因子nerve impulse 神经冲动nerve layer 神经层nerve net 神经网nerve node 神经节nerve papilla 神经乳头nerve pattern 神经类型nerve plexus 神经丛nerve process 神经过程nerve regeneration 神经再生nerve ring 神经环nerve root 神经根nerve sheath 神经鞘nerve tract 神经通路nerve transmitter 神经介质nerve trigeminal 三叉神经nerve trunk 神经干nervi 神经nervi accessories 副神经nervi cerebrales 脑神经nervi facials 面神经nervi glossopharyngeus 舌咽神经nervi hypoglossus 舌下神经nervi nervorum 神经鞘神经nervi oculomotorius 动眼神经nervi olfactorius 嗅神经nervi olfactory 嗅神经nervi optics 视神经nervi spinales 脊神经nervi statoacusticus 位听神经nervi thoracales anteriores 胸前神经nervi thoracales posteriores 胸后神经nervi trigeminus 三叉神经nervi vagus 迷走神经nervimotility 神经运动力nervimotion 神经兴奋性运动nervimotor 运动神经的nervimuscular 神经肌肉的nervism 神经论nervosis 神经衰弱nervosity 神经质nervous 神经的nervous anorexia 神经性厌食症nervous breakdown 精神崩溃nervous crest 神经脊nervous disposition 神经质nervous excitation 神经兴奋nervous impulse 神经冲动nervous irritability 神经应激性nervous layer 神经层nervous process 神经过程nervous ramification 神经分枝nervous reaction 紧张反应nervous stimulant 神经兴奋剂nervous system 神经系统nervous system disorder 神经系统失常神经系统失常nervous system type 神经系统类型nervous temperament 神经质nervous type 神经类型nervousness 神经过敏nervousness in sports 运动性紧张nervousness of motivation 动因性紧张nervous humoral regulationnervus 神经nervus abducens 外展神经nervus accessorius 副神经nervus acusticus 听神经nervus auditorius 听神经nervus auricularis internus 耳内神经nervus auricularis magnus 耳大神经nervus auricularis posterior 耳后神经nervus auriculotemporalis 耳颞神经nervus buccinatorius 颊神经nervus cardiacus 心神经nervus centralis 中枢神经nervus centrifugalis 传出神经nervus centripetalis 传入神经nervus cerebrospinalis 脑脊神经nervus ciliaris 睫神经nervus cochleae 耳蜗神经nervus cutaneus 皮神经nervus facialis 面神经nervus frontalis 额神经nervus glossopharyngeus 舌咽神经nervus gustatorius 味神经nervus hypoglossus 舌下神经nervus infraorbitalis 眶下神经nervus infratrochlearis 滑车下神经nervus intermedius 中间神经nervus labialis 唇神经nervus lacrimalis 泪腺神经nervus laryngeus inferior 喉下神经nervus laryngeus recurrens 喉返神经nervus laryngeus superior 喉上神经nervus lingualis 舌神经nervus mandibularis 下颌神经nervus meningeus 脑膜神经nervus motorius 运动神经nervus ocularis 眼神经nervus oculomotorius 动眼神经nervus olfactorius 嗅神经nervus ophthalmicus 眼神经nervus opticus 视神经nervus parasympatheticus 副交感神经nervus peripheralis 外围神经nervus pharyngous 咽神经nervus pneumogastricus 迷走神经nervus preopticus 视前神经nervus recurrens 返神经nervus sensorius 感觉神经nervus stapedius 镫骨神经nervus statoacusticus 位听神经nervus sublingualis 舌下神经nervus subpharyngealis 咽下神经nervus supraorbitalis 眶上神经nervus supratrochlearis 滑车上神经nervus sympatheticus 交感神经nervus tegumentalis 皮神经nervus thalamicus 丘神经nervus trigeminalis 三叉神经nervus trigeminus 三叉神经nervus tympanicus 鼓室神经nervus vagus 迷走神经nervus vestibularis 前庭神经nervus vestibuli 前庭神经nervus visceralis 内脏神经nest building 巢居nest building 筑巢nested design 分隔实验设计nested factor 套因子nesting 筑巢net 净net 网net assimilation 净同化net correlation 净相关net correlation coefficient 净相关系数network 网络network model 网络模型network of artificial neurons 人造神经元网络network theorem 网状结构定理network therapy 网络疗法neu 神经膜neu 神经鞘neurad 向神经neural 神经的neural activity 神经活动neural analyzer 神经分析器neural canal 神经管neural circuit 神经回路neural coding 神经编码neural computation 神经计算neural deafness 神经性聋neural discharge 神经放电neural encoding 神经编码过程neural epithelium 神经上皮neural excitation 神经兴奋neural facilitation 神经易化neural fold 神经褶neural foramen 神经孔neural ganglia 神经节neural groove 神经沟neural impulse 神经冲动neural junction 神经连接neural latency 神经潜伏期neural lesion 神经损伤neural noise 神经噪声neural plate 神经板neural quantum theory 神经量子理论neural receptor 神经接受器neural reinforcement 神经强化neural ridge 神经褶neural rivalry 神经对抗neural switching 神经接通neural tube 神经管neuralgia 神经痛neural displacement theory of illusion 错觉的神经移位说neuramebimeter 神经反应时测定计neuranagenesis 神经再生neurapophysis 神经突neurapraxia 机能性麻痹neurapraxia 神经失用症neurarchy 神经控制作用neurasthenia 神经衰弱neurastheniac 神经衰弱患者neurasthenic neurosis 神经衰弱官能症神经衰弱官能症neurataxia 神经衰弱neuratrophia 神经萎缩neuraxis 神经轴neuraxon 神经轴neure 神经元neurectomy 神经切除术neurectopia 神经异位neurergic 神经作用的neurhypnology 催眠学neuriasis 癔病性疑病neuriatria 神经病疗法neuriatry 神经病疗法neuricity 神经力neuridin 脑胺neurilemma 神经膜neurility 神经性能neurimotility 神经运动力neurimotor 运动神经的neurine 神经碱neuritis 神经炎neuroallergy 神经变态反应性neuroanatomy 神经解剖学neurobiological approach 神经生理方法神经生理取向neurobiology 神经生物学neurobiology of learning and memory 学习与记忆神经生物学neuroblast 成神经细胞neuroblast 神经母细胞neuroceptor 神经受体neurochemical correlates 神经化学相关物neurochemistry 神经化学neurochoriditis 视神经脉络膜炎neurochorioretinitis 视神经脉络膜视网膜炎neurocirculatory 神经循环系统的neurocladism 神经分支新生neuroclonic 神经性痉挛的neurocoele 神经管腔neurocranium 脑颅neurocrine 神经内分泌的neurocrinia 神经性分泌作用neurocybernetics 神经控制论neurocyte 神经细胞neurocytology 神经细胞学neurodealgia 视网膜痛neurodeatrophia 视网膜萎缩neurodegenerative 神经变性的neurodendrite 树突neuroderm 神经外胚层neurodermatitis 神经性皮炎neurodiagnosis 神经病诊断neurodynamic 神经动力的neurodynamics 神经动力学neurodynia 神经痛neuroelectricity 神经电neuroelectrotherapy 神经病电疗法neuroembryology 神经胚胎学neuroencephalomyelopathy 神经脑脊髓病neuroendocrine 神经内分泌的neuroendocrine system 神经内分泌系统神经内分泌系统neuroendocrinology 神经内分泌学neuroethology 神经行为学neurofibril 神经元纤维neuroganglion 神经节neuroganglitis 神经节炎neurogen 神经元质neurogenesis 神经发生neurogenic 神经元的neurogenic tonus 神经元性紧张neuroglia 神经胶质neuroglia membrane 神经胶质膜neurogliocyte 神经胶质细胞neurography 神经论neuroheuristic programming 神经启发式程序neurohistology 神经组织学neurohormones 神经激素neurohumor 神经体液neurohumoral 神经体液的neurohumoral 神经元介质的neurohumoral regulation 神经体液调节神经体液调节neurohumoralism 神经元介质说neurohypnologist 催眠学家neurohypnology 催眠学neurohypophyseal hormone 垂体后叶激素neurohypophysis 垂体神经部neuroid 神经样的neuroinduction 神经诱导neuroinidia 神经细胞营养不良neurokyme 神经能neurolabyrinthitis 神经迷路炎neurolemma 神经膜neuroleptanalgesia 安定止痛法neuroleptic 抑制神经的neuroleptic drug 神经松弛药neuroleptics 神经松弛剂neuroleptoanalgesia 安定镇痛状态neurolinguistics 神经语言学neurological dysfunction 神经机能障碍神经机能障碍neurological mutant 神经突变型neurological substrate 神经底质neurologist 神经病学家neurology 神经学neurolysis 神经松解术neuromechanism 神经结构neuromimesis 模仿病neuromimetic 模仿病的neuromittor 神经传导器neuromotor 神经运动的neuromuscular 神经肌肉neuromuscular control system 神经肌肉控制系统neuromuscular disorder 神经肌肉障碍neuromuscular junction 神经肌肉接点神经肌肉接点neuromuscular unit 神经肌肉单位neuromyic 神经肌肉的neuron 神经元neuronagenesis 神经元发育不全neuronal dystrophy 神经元营养不良neuronatrophy 神经元萎缩neuronic equation 神经元方程式neuronitis 神经元炎neuronymy 神经命名法neuropapillitis 视神经炎neuroparalysis 神经性麻痹neuropath 神经病患者neuropathogenesis 神经病发病机理neuropathologist 神经病理学家neuropathology 神经病理学neuropathy 神经病neuropathy crime 神经症犯罪neuropharmacology 神经药理学neurophilic 向神经的neurophonia 叫喊性神经病neurophysiological mechanism 神经生理机制neurophysiology 神经生理学neuropile 神经纤维网neuropotential 神经电位neuropsychiatrist 神经精神病学家神经精神病学家neuropsychiatry 神经精神病学神经精神病学neuropsychic behavior 神经心理行为neuropsychological questionnaire 神经心理问卷neuropsychological test 神经心理测验neuropsychology 神经心理学neuropsychology abstracts神经心理学文摘neuropsychology review 神经心理学评论neuropsychopath 神经精神病neuropsychopharmacology 神经精神药理学neuroretinitis 视神经网膜炎neuroretinopathy 视神经网膜病neuroscience 神经科学neurosecretion 神经分泌neurosecretory cell 神经分泌细胞neurosis 神经官能症neurosis 神经症neurosism 神经衰弱neurosome 神经细胞体neurospasmus 神经性痉挛neurospongium 神经胶质neurospongium 神经纤维网neurostatus 神经系统状态neurosthenia 神经兴奋力过旺neurosyphilis 神经症系统梅毒neurotaxis 向神经性neuroterminal 神经终器neurotherapeutics 神经病疗法neurotherapy 神经病疗法neurotic 神经过敏neurotic anxiety 神经质焦虑neurotic attitudes 神经质态度neurotic behavior 神经质行为neurotic character 神经质性格neurotic coping 神经质的应对neurotic defense 神经质防卫neurotic depressive reaction 神经症抑郁反应neurotic mechanism of emotion 情绪的神经机制neurotic need 神经质需求neurotic personality 神经质人格neurotic resignation 神经型退避neurotic solution 神经质解脱neurotic trend 神经质趋向neurotica 神经机能病neuroticism 神经过敏症neurotmesis 神经断伤neurotomy 神经切断术neurotoxia 神经中毒症neurotoxic 神经中毒的neurotoxic substance 神经毒物neurotoxicity 神经中毒性neurotoxin 神经毒素neurotransmission 神经传递neurotransmitter 神经介质neurotransmitter system 神经介质系统神经传导物质系统neurotrophasthenia 神经系统营养不足神经系统营养不足neurotrophy 神经营养neurotypes 神经类型neurovisceral 脑脊髓交感神经系统的脑脊髓交感神经系统的neuro anatomy 神经解剖neuro biotaxis 神经细胞序列性neuro biotaxis 神经向性neuro chemical correlates 神经化学相关物neuro chemistry 神经化学neuro engineering 神经工程学neuro hormone 神经激素neuro humor 神经体液neuro linguistics 神经语言学neuro ophthalmology 神经眼科学neuro otology 神经耳科学neuro pathology 神经病理学neuro pattern 神经模式neuro pharmacology 神经药理学neuro physiology 神经生理学neuro vegetative 植物神经系统的neurula 神经胚neururgic 神经活动的neurypnology 催眠学neutral 中性的neutral impression 中性印象neutral point 中性点neutral reaction 中性反应neutral stimulus 中性刺激neutral theory 中性说neutral zone 中性区neutrality 中性neutralization 中性化neutropism 向神经性心理学专业英语词汇(N1) 相关内容:41。
武汉理工大学实验报告:spss上机实验
SPSS上机考试姓名:班级:学号:实验一:聚类分析一、实验问题某校从高中二年级女生中随机抽取16名,测得身高和体重数据如下表:试分别利用最短距离法、最长距离法、重心法、类平均法、中间距离法将它们聚类(分类统计量采用绝对距离),并画出聚类图。
二、实验步骤1、1.数据处理:在SPSS中的Data View中导入数据,并在Variable View中定义变量。
2、点击“Analyze-Classify-Hierarchical Cluster,打开Hierarchical Cluster的对话框,从左侧将2个聚类指标选入Variables栏中,将表示序号(字符串)选入Lable Cases By栏中按“Plots”按钮,在弹出的窗口中选中Dendrogram(谱系图)选项,按“Continue”返回主对话框。
再按“Method”按钮,在Cluster Method,下面就各种方法进行结果输出。
3.结果输出(1)最短距离法分类统计量采用绝对距离Block,采用最短距离法Nearest neighbor返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(2)最长距离法分类统计量采用绝对距离Block,采用最短距离法Furthest neighbor返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(3)重心法分类统计量采用绝对距离Block,采用最短距离法Centroid clustering返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(4)类平均法-组间平均法分类统计量采用绝对距离Block,采用最短距离法Between-groups linkage返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(5)中间距离法分类统计量采用绝对距离Block,采用最短距离法Median clustering返回主对话框后点击“OK”即可得到聚类结果的树形图如下:分析:就以中间聚类法为例,当采用绝对距离时,分为3类的时候分别为:①5 12 13 15 16 1 6 7②4 ③8 11 9 10 2 14基于上述各种聚类方法的分析可知,分为3类的时候各个方法相似度最高,所以将其分为3类最为合适。
皮尔逊相关系数的计算公式
皮尔逊相关系数的计算公式皮尔逊相关系数(Pearson Correlation Coefficient)是一种常用的统计指标,用于衡量两个变量之间线性关系的强度和方向。
它的计算公式为:\[r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i -\overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}\]其中,\(x_i\)和\(y_i\)分别是两个变量的观测值,\(\overline{x}\)和\(\overline{y}\)分别是两个变量的均值,\(n\)是观测值的数量。
咱们来仔细琢磨琢磨这个公式哈。
你看,分子部分\(\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})\),这其实就是在计算两个变量的偏差乘积的总和。
就好比说,有一次我和朋友一起做实验,测量不同温度下某种物质的溶解度。
温度就是\(x\)变量,溶解度就是\(y\)变量。
我们记录下了一组数据,然后计算均值。
当我们去算分子的时候,就发现这个过程就像是在寻找温度的变化和溶解度变化之间的某种默契。
分母部分呢,\(\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2\sum_{i=1}^{n} (y_i - \overline{y})^2}\),这其实是在对两个变量的偏差平方和进行开方相乘。
还拿刚才那个实验说,这就像是给温度和溶解度的变化幅度加上了一个权重,让它们的比较更公平、更合理。
皮尔逊相关系数的取值范围在\(-1\)到\(1\)之间。
当\(r = 1\)时,说明两个变量完全正相关,就像影子跟随着物体,形影不离,而且方向一致。
比如说,我们投入学习的时间越多,考试成绩往往就越高,这就是一种完全正相关。
correlation matrix解读 -回复
correlation matrix解读-回复什么是相关矩阵?相关矩阵是用于描述两个或多个变量之间关系强弱的矩阵。
它可以帮助我们理解变量之间的相互影响程度,通过测量变量之间的相关性来进行分析和预测。
相关矩阵的元素取值范围在-1到1之间,可以直观地表示变量之间的关系强度和方向。
在统计学和机器学习中,相关矩阵是一个重要的工具,在特征选择、数据处理和模型训练中得到广泛应用。
相关矩阵的构成和计算方法相关矩阵是一个对称矩阵,由变量之间的相关系数填充而成。
变量之间的相关系数有很多不同的计算方法,如皮尔逊相关系数、斯皮尔曼等级相关系数和判别分析等。
皮尔逊相关系数是最常用的方法,它度量的是变量之间的线性相关性。
相关系数的取值范围从-1到1,当相关系数为负值时表示负相关,为正值时表示正相关,而接近0则表示变量之间无相关性。
解读相关矩阵的步骤:1.检查矩阵的尺寸和变量名称:在开始解读之前,我们需要确保矩阵的尺寸和变量名称都是正确的。
这有助于我们理解矩阵的结构和应用。
2.观察矩阵的对角线元素:矩阵的对角线元素表示变量与自身的相关系数,应该始终为1。
如果发现对角线元素不是1,可能表示存在数据处理错误或其他问题。
3.观察矩阵的非对角线元素:矩阵的非对角线元素表示变量之间的相关系数。
通过观察这些元素的值和正负符号,我们可以了解变量之间的关系。
如果相关系数接近1或-1,表示变量之间存在强相关性;如果接近0,表示变量之间几乎没有相关性。
4.使用可视化工具进行解读:为了更直观地理解相关矩阵,我们可以使用可视化工具,如热图或散点图。
热图能够以颜色的方式呈现相关系数的大小和方向,帮助我们快速识别相关性强弱。
散点图则可以将两个变量的取值以点的形式展示,直观地观察其分布特征和相关性。
5.考虑相关性的解释和应用:一旦我们了解了相关矩阵的结构和性质,我们可以通过分析和解释这些结果来得出结论。
相关矩阵可以帮助我们选择相关性较强的变量,进行特征选择和建立预测模型。
双目立体匹配——归一化互相关(NCC)
双⽬⽴体匹配——归⼀化互相关(NCC) 归⼀化相关性,normalization cross-correlation,因此简称NCC,下⽂中笔者将⽤NCC来代替这冗长的名称。
NCC,顾名思义,就是⽤于归⼀化待匹配⽬标之间的相关程度,注意这⾥⽐较的是原始像素。
通过在待匹配像素位置p(px,py)构建3*3邻域匹配窗⼝,与⽬标像素位置p'(p x+d,p y)同样构建邻域匹配窗⼝的⽅式建⽴⽬标函数来对匹配窗⼝进⾏度量相关性,注意这⾥构建相关窗⼝的前提是两帧图像之间已经校正到⽔平位置,即光⼼处于同⼀⽔平线上,此时极线是⽔平的,否则匹配过程只能在倾斜的极线⽅向上完成,这将消耗更多的计算资源。
相关程度的度量⽅式由如下式⼦定义: 上式中的变量需要解释⼀下:其中p点表⽰图像I1待匹配像素坐标(p x,p y),d表⽰在图像I2被查询像素位置在⽔平⽅向上与p x的距离。
如下图所⽰: 左边为图像I1,右边为图像I2。
图像I1,蓝⾊⽅框表⽰待匹配像素坐标(p x,p y),图像I2蓝⾊⽅框表⽰坐标位置为(p x,p y),红⾊⽅框表⽰坐标位置(p x+d,p y)。
(由于画图⽔平有限,只能⽂字和图⽚双重说明来完成了~) W p表⽰以待匹配像素坐标为中⼼的匹配窗⼝,通常为3*3匹配窗⼝。
没有上划线的I1表⽰匹配窗⼝中某个像素位置的像素值,带上划线的I1表⽰匹配窗⼝所有像素的均值。
I2同理。
上述公式表⽰度量两个匹配窗⼝之间的相关性,通过归⼀化将匹配结果限制在 [-1,1]的范围内,可以⾮常⽅便得到判断匹配窗⼝相关程度: 若NCC = -1,则表⽰两个匹配窗⼝完全不相关,相反,若NCC = 1时,表⽰两个匹配窗⼝相关程度⾮常⾼。
我们很⾃然的可以想到,如果同⼀个相机连续拍摄两张图像(注意,此时相机没有旋转也没有位移,此外光照没有明显变化,因为基于原始像素的匹配⽅法通常对上述条件是不具备不变性的),其中有⼀个位置是重复出现在两帧图像中的。
相关系数矩阵的英文缩写
相关系数矩阵的英文缩写When it comes to describing relationships between variables in statistics, we often turn to the Correlation Coefficient Matrix, which is colloquially known as the "CorrMat" for short. It's a handy tool that captures the strength and direction of linear relationships among a setof variables.In everyday stats lingo, people might just say "check the corrmat" when they want to understand how different factors are linked. It's a quick way to visualize theoverall pattern of relationships in a dataset.If you're into data analysis, you'll know that the CorrMat is invaluable for spotting patterns and trends.It's like a map of the relationships between your variables, helping you navigate the complex landscape of your data.One cool thing about the CorrMat is that it's not just for researchers and data scientists. Even folks with abasic understanding of statistics can use it to get a sense of which factors might be related. It's a great starting point for further exploration and analysis.So, whether you're a data wiz or just curious about how things are connected, remember that the CorrMat is your go-to tool for uncovering relationships between variables. Just remember to check it out when you're ready to diveinto the numbers!。
numpy计算自相关系数
numpy计算自相关系数让我们简要介绍一下numpy库。
NumPy是一个用于进行科学计算的Python库,它提供了对多维数组对象的支持,以及用于处理这些数组的各种函数。
在数据分析和统计建模中,NumPy是一个非常有用的工具,它提供了许多用于处理和分析数据的函数和方法。
在NumPy中,我们可以使用corrcoef函数来计算自相关系数。
corrcoef函数返回一个相关系数矩阵,其中每个元素表示不同变量之间的相关性。
对于一个一维数组来说,它将返回自相关系数。
让我们来看一个例子。
假设我们有一个包含一周内某城市每天天气温度的数组,我们想要计算这个数组的自相关系数。
首先,我们需要导入NumPy库,并创建一个包含一周天气温度数据的一维数组。
``` pythonimport numpy as np# 创建一个一维数组,表示一周内每天的天气温度temperatures = np.array([28, 30, 32, 35, 33, 29, 31])# 使用corrcoef函数计算自相关系数correlation_matrix = np.corrcoef(temperatures)# 打印相关系数矩阵print(correlation_matrix)```输出结果为:```[[1. 0.93933637][0.93933637 1. ]]```从输出结果中我们可以看到,自相关系数矩阵是一个对称矩阵,对角线上的元素为1,表示每个变量与自身的相关性为1。
矩阵的其他元素表示不同变量之间的相关性。
在这个例子中,我们可以看到一周内每天的温度之间存在较高的正相关性,这意味着温度的变化在一周内是相似的。
除了一维数组之外,我们还可以使用二维数组来计算自相关系数。
对于一个二维数组来说,corrcoef函数将返回一个相关系数矩阵,其中每个元素表示不同变量之间的相关性。
让我们再来看一个例子。
假设我们有一个包含两个变量的二维数组,我们想要计算这个数组的自相关系数。
r语言 距离矩阵算相似度
r语言距离矩阵算相似度
在R语言中,我们可以使用距离矩阵来计算数据之间的相似度。
距离矩阵是一个对称矩阵,其中每个元素表示两个样本之间的距离。
常用的距离包括欧氏距离、曼哈顿距离、切比雪夫距离、余弦相似
度等。
要计算数据之间的相似度,我们可以首先计算它们之间的距离,然后将距离转换为相似度。
在R语言中,我们可以使用dist()函数
来计算距离矩阵,然后使用as.matrix()函数将距离对象转换为矩阵。
接下来,我们可以使用公式将距离转换为相似度,例如使用公
式1 / (1 + 距离) 来计算相似度。
另外,R语言中的一些包(如proxy、vegan)也提供了计算距
离矩阵和相似度的函数,例如使用proxy包中的dist()函数可以计
算多种距离,并使用simil()函数将距离转换为相似度。
此外,R语言中的一些机器学习包(如caret、cluster)也提
供了计算相似度的函数,例如使用cluster包中的daisy()函数可
以计算多种距离,并使用dissimilarity()函数将距离转换为相似度。
总之,在R语言中,我们可以通过计算距离矩阵并将距离转换为相似度来计算数据之间的相似度,可以根据具体的需求选择合适的方法和包来进行计算。
Python——因子分析(KMO检验和Bartletts球形检验)
Python——因⼦分析(KMO检验和Bartletts球形检验)因⼦分析⽤Python做的⼀个典型例⼦⼀、实验⽬的采⽤合适的数据分析⽅法对下⾯的题进⾏解答⼆、实验要求采⽤因⼦分析⽅法,根据48位应聘者的15项指标得分,选出6名最优秀的应聘者。
三、代码import pandas as pdimport numpy as npimport math as mathimport numpy as npfrom numpy import *from scipy.stats import bartlettfrom factor_analyzer import *import numpy.linalg as nlgfrom sklearn.cluster import KMeansfrom matplotlib import cmimport matplotlib.pyplot as pltdef main():df=pd.read_csv("./data/applicant.csv")# print(df)df2=df.copy()print("\n原始数据:\n",df2)del df2['ID']# print(df2)# ⽪尔森相关系数df2_corr=df2.corr()print("\n相关系数:\n",df2_corr)#热⼒图cmap = cm.Blues# cmap = cm.hot_rfig=plt.figure()ax=fig.add_subplot(111)map = ax.imshow(df2_corr, interpolation='nearest', cmap=cmap, vmin=0, vmax=1)plt.title('correlation coefficient--headmap')ax.set_yticks(range(len(df2_corr.columns)))ax.set_yticklabels(df2_corr.columns)ax.set_xticks(range(len(df2_corr)))ax.set_xticklabels(df2_corr.columns)plt.colorbar(map)plt.show()# KMO测度def kmo(dataset_corr):corr_inv = np.linalg.inv(dataset_corr)nrow_inv_corr, ncol_inv_corr = dataset_corr.shapeA = np.ones((nrow_inv_corr, ncol_inv_corr))for i in range(0, nrow_inv_corr, 1):for j in range(i, ncol_inv_corr, 1):A[i, j] = -(corr_inv[i, j]) / (math.sqrt(corr_inv[i, i] * corr_inv[j, j]))A[j, i] = A[i, j]dataset_corr = np.asarray(dataset_corr)kmo_num = np.sum(np.square(dataset_corr)) - np.sum(np.square(np.diagonal(A)))kmo_denom = kmo_num + np.sum(np.square(A)) - np.sum(np.square(np.diagonal(A)))kmo_value = kmo_num / kmo_denomreturn kmo_valueprint("\nKMO测度:", kmo(df2_corr))# 巴特利特球形检验df2_corr1 = df2_corr.valuesprint("\n巴特利特球形检验:", bartlett(df2_corr1[0], df2_corr1[1], df2_corr1[2], df2_corr1[3], df2_corr1[4],df2_corr1[5], df2_corr1[6], df2_corr1[7], df2_corr1[8], df2_corr1[9],df2_corr1[10], df2_corr1[11], df2_corr1[12], df2_corr1[13], df2_corr1[14]))# 求特征值和特征向量eig_value, eigvector = nlg.eig(df2_corr) # 求矩阵R的全部特征值,构成向量eig = pd.DataFrame()eig['names'] = df2_corr.columnseig['eig_value'] = eig_valueeig.sort_values('eig_value', ascending=False, inplace=True)print("\n特征值\n:",eig)eig1=pd.DataFrame(eigvector)eig1.columns = df2_corr.columnseig1.index = df2_corr.columnsprint("\n特征向量\n",eig1)# 求公因⼦个数m,使⽤前m个特征值的⽐重⼤于85%的标准,选出了公共因⼦是五个for m in range(1, 15):if eig['eig_value'][:m].sum() / eig['eig_value'].sum() >= 0.85:print("\n公因⼦个数:", m)break# 因⼦载荷阵A = np.mat(np.zeros((15, 5)))i = 0j = 0while i < 5:j = 0while j < 15:A[j:, i] = sqrt(eig_value[i]) * eigvector[j, i]j = j + 1i = i + 1a = pd.DataFrame(A)a.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']a.index = df2_corr.columnsprint("\n因⼦载荷阵\n", a)fa = FactorAnalyzer(n_factors=5)fa.loadings_ = a# print(fa.loadings_)print("\n特殊因⼦⽅差:\n", fa.get_communalities()) # 特殊因⼦⽅差,因⼦的⽅差贡献度,反映公共因⼦对变量的贡献 var = fa.get_factor_variance() # 给出贡献率print("\n解释的总⽅差(即贡献率):\n", var)# 因⼦旋转rotator = Rotator()b = pd.DataFrame(rotator.fit_transform(fa.loadings_))b.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']b.index = df2_corr.columnsprint("\n因⼦旋转:\n", b)# 因⼦得分X1 = np.mat(df2_corr)X1 = nlg.inv(X1)b = np.mat(b)factor_score = np.dot(X1, b)factor_score = pd.DataFrame(factor_score)factor_score.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']factor_score.index = df2_corr.columnsprint("\n因⼦得分:\n", factor_score)fa_t_score = np.dot(np.mat(df2), np.mat(factor_score))print("\n应试者的五个因⼦得分:\n",pd.DataFrame(fa_t_score))# 综合得分wei = [[0.50092], [0.137087], [0.097055], [0.079860], [0.049277]]fa_t_score = np.dot(fa_t_score, wei) / 0.864198fa_t_score = pd.DataFrame(fa_t_score)fa_t_score.columns = ['综合得分']fa_t_score.insert(0, 'ID', range(1, 49))print("\n综合得分:\n", fa_t_score)print("\n综合得分:\n", fa_t_score.sort_values(by='综合得分', ascending=False).head(6))plt.figure()ax1=plt.subplot(111)X=fa_t_score['ID']Y=fa_t_score['综合得分']plt.bar(X,Y,color="#87CEFA")# plt.bar(X, Y, color="red")plt.title('result00')ax1.set_xticks(range(len(fa_t_score)))ax1.set_xticklabels(fa_t_score.index)plt.show()fa_t_score1=pd.DataFrame()fa_t_score1=fa_t_score.sort_values(by='综合得分',ascending=False).head()ax2 = plt.subplot(111)X1 = fa_t_score1['ID']Y1 = fa_t_score1['综合得分']plt.bar(X1, Y1, color="#87CEFA")# plt.bar(X1, Y1, color='red')plt.title('result01')plt.show()if__name__ == '__main__':main()四、实验步骤(1)引⼊数据,数据标准化因为数据是⾯试中的得分,量纲相同,并且数据的分布⽆异常值,所以数据可以不进⾏标准化。
SDPT3R包:半定矩阵线性规划求解器说明书
Package‘sdpt3r’October14,2022Type PackageTitle Semi-Definite Quadratic Linear Programming SolverVersion0.3Date2019-02-08Author Kim-Chuan Toh(Matlab/C),Micheal Todd(Matlab/C),Reha Tutunco(Matlab/C),Adam Rah-man(R/C Headers),Timothy A.Davis(symamd C code),Stefan rimore(symamd C code) Maintainer Adam Rahman<*********************>Description Solves the general Semi-Definite Linear Programming formulation using an R implemen-tation of SDPT3(K.C.Toh,M.J.Todd,and R.H.Tu-tuncu(1999)<doi:10.1080/10556789908805762>).This includes problems such as the near-est correlation matrix problem(Higham(2002)<doi:10.1093/imanum/22.3.329>),D-optimal ex-perimental design(Smith(1918)<doi:10.2307/2331929>),Distance Weighted Discrimina-tion(Marron and Todd(2012)<doi:10.1198/016214507000001120>),as well as graph the-ory problems including the maximum cut problem.Technical details surround-ing SDPT3can be found in R.H Tutuncu,K.C.Toh,and M.J.Todd(2003)<doi:10.1007/s10107-002-0347-5>.License GPL-2|GPL-3Depends Matrix,R(>=2.10)RoxygenNote6.1.1NeedsCompilation yesImports methods,statsRepository CRANDate/Publication2019-02-1108:50:03UTCR topics documented:Andwd (2)Apdwd (3)Betp (3)Bgpp (3)Blogcheby (4)12Andwd Bmaxcut (4)Bmaxkcut (4)control_theory (5)DoptDesign (6)doptimal (6)dwd (7)etp (8)flogcheby (9)Ftoep (9)Glovasz (9)gpp (10)Hnearcorr (11)lmi1 (11)lmi2 (12)lmi3 (13)logcheby (14)lovasz (15)maxcut (15)maxkcut (16)minelips (17)nearcorr (18)smat (19)sqlp (19)svec (21)toep (21)Vminelips (22)Index23Andwd An Configuration Matrix for Distance Weighted DiscriminationDescriptionAn Configuration Matrix for Distance Weighted DiscriminationUsagedata(Andwd)FormatA matrix with50rows and3columnsApdwd3 Apdwd Ap Configuration Matrix for Distance Weighted DiscriminationDescriptionAp Configuration Matrix for Distance Weighted DiscriminationUsagedata(Apdwd)FormatA matrix with50rows and3columnsBetp Symmetric Matrix for Educational Testing ProblemDescriptionSymmetric Matrix for Educational Testing ProblemUsagedata(Betp)FormatA matrix with5rows and5columnsBgpp Adjacency Matrix for Graph Partitioning ProblemDescriptionAdjacency Matrix for Graph Partitioning ProblemUsagedata(Bgpp)FormatA matrix with10rows and10columns4Bmaxkcut Blogcheby B Matrix for the Log Chebyshev Approximation ProblemDescriptionB Matrix for the Log Chebyshev Approximation ProblemUsagedata(Blogcheby)FormatA matrix with10rows and10columnsBmaxcut Adjacency Matrix for Max-CutDescriptionAdjacency Matrix for Max-CutUsagedata(Bmaxcut)FormatA matrix with10rows and10columnsBmaxkcut Adjacency Matrix for Max-kCutDescriptionAdjacency Matrix for Max-kCutUsagedata(Bmaxkcut)FormatA matrix with10rows and10columnscontrol_theory5 control_theory Control TheoryDescriptioncontrol_theory creates input for sqlp to solve the Control Theory ProblemUsagecontrol_theory(B)ArgumentsB a matrix object containing square matrices of size nDetailsSolves the control theory problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesB<-matrix(list(),2,1)B[[1]]<-matrix(c(-.8,1.2,-.5,-1.1,-1,-2.5,2,.2,-1),nrow=3,byrow=TRUE)B[[2]]<-matrix(c(-1.5,.5,-2,1.1,-2,.2,-1.4,1.1,-1.5),nrow=3,byrow=TRUE)out<-control_theory(B)6doptimal DoptDesign Test Vector Matrix for D-Optimal DesignDescriptionTest Vector Matrix for D-Optimal DesignUsagedata(DoptDesign)FormatA matrix with3rows and25columnsdoptimal D-Optimal Experimental DesignDescriptiondoptimal creates input for sqlp to solve the D-Optimal Experimental Design problem-given an nxp matrix with p<=n,find the portion of points that maximizes det(A’A)Usagedoptimal(V)ArgumentsV a pxn matrix containing a set of n test vectors in dimension p(with p<=n)DetailsSolves the D-optimal experimental design problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functiondwd7Examplesdata(DoptDesign)out<-doptimal(DoptDesign)dwd Distance Weighted DiscriminationDescriptiondwd creates input for sqlp to solve the Distance Weighted Discrimination problem-Given two sets of points An and Ap,find an optimal classification rule to group the points as accurately as possible for future classification.Usagedwd(Ap,An,penalty)ArgumentsAp An nxp point configuration matrixAn An nxp point configuration matrixpenalty A real valued scalar penalty for moving points across classification rule DetailsSolves the distance weighted discrimination problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Andwd)data(Apdwd)penalty<-0.5#Not Run#out<-dwd(Apdwd,Andwd,penalty)8etp etp Educational Testing ProblemDescriptionetp creates input for sqlp to solve the Educational Testing Problem-given a symmetric positive def-inite matrix S,how much can be subtracted from the diagonal elements of S such that the resulting matrix is positive semidefinite definite.Usageetp(B)ArgumentsB A symmetric positive definite matrixDetailsSolves the education testing problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Betp)out<-etp(Betp)flogcheby9 flogcheby f vector for the Log Chebyshev Approximation ProblemDescriptionf vector for the Log Chebyshev Approximation ProblemUsagedata(flogcheby)FormatA vector with length20Ftoep Symmetric Matrix for the Toeplitz Approximatin ProblemDescriptionSymmetric Matrix for the Toeplitz Approximatin ProblemUsagedata(Ftoep)FormatA matrix with10rows and10columnsGlovasz Adjacency Matrix on which tofind the Lovasz NumberDescriptionAdjacency Matrix on which tofind the Lovasz NumberUsagedata(Glovasz)FormatA matrix with10rows and10columns10gpp gpp Graph Partitioning ProblemDescriptiongpp creates input for sqlp to solve the graph partitioning problem.Usagegpp(B,alpha)ArgumentsB A weighted adjacency matrixalpha Any real value in(0,n^2)DetailsSolves the graph partitioning problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Bgpp)alpha<-nrow(Bgpp)out<-gpp(Bgpp,alpha)Hnearcorr11 Hnearcorr Approximate Correlation Matrix for Nearest Correlation Matrix Prob-lemDescriptionApproximate Correlation Matrix for Nearest Correlation Matrix ProblemUsagedata(Hnearcorr)FormatA matrix with5rows and5columnslmi1Linear Matrix Inequality1Descriptionlmi1creates input for sqlp to solve a linear matrix inequality problemUsagelmi1(B)ArgumentsB An mxn real valued matrixDetailsSolves the type-1linear matrix inequality problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective function12lmi2ExamplesB<-matrix(c(-1,5,1,0,-2,1,0,0,-1),nrow=3)#Not Run#out<-lmi1(B)lmi2Linear Matrix Inequality2Descriptionlmi2creates input for sqlp to solve a linear matrix inequality problemUsagelmi2(A1,A2,B)ArgumentsA1An nxm real valued matrixA2An nxm real valued matrixB An nxp real valued matrixDetailsSolves the type-2linear matrix inequality problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesA1<-matrix(c(-1,0,1,0,-2,1,0,0,-1),3,3)A2<-A1+0.1*t(A1)B<-matrix(c(1,3,5,2,4,6),3,2)out<-lmi2(A1,A2,B)lmi313 lmi3Linear Matrix Inequality3Descriptionlmi3creates input for sqlp to solve a linear matrix inequality problemUsagelmi3(A,B,G)ArgumentsA An nxn real valued matrixB An mxn real valued matrixG An nxn real valued matrixDetailsSolves the type-3linear matrix inequality problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesA<-matrix(c(-1,0,1,0,-2,1,0,0,-1),3,3)B<-matrix(c(1,2,3,4,5,6),2,3)G<-matrix(1,3,3)out<-lmi3(A,B,G)14logcheby logcheby Log Chebyshev ApproximationDescriptionlogcheby creates input for sqlp to solve the Chebyshev Approximation ProblemUsagelogcheby(B,f)ArgumentsB A pxm real valued matrix with p>mf A vector of length pDetailsSolves the log Chebyshev approximation problem.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Blogcheby)data(flogcheby)#Not Run#out<-logcheby(Blogcheby,flogcheby)lovasz15 lovasz Lovasz Number of a GraphDescriptionlovasz creates input for sqlp tofind the Lovasz Number of a graphUsagelovasz(G)ArgumentsG An adjacency matrix corresponding to a graphDetailsFinds the maximum Shannon entropy of a graph,more commonly known as the Lovasz number.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Glovasz)out<-lovasz(Glovasz)maxcut Max-Cut ProblemDescriptionmaxcut creates input for sqlp to solve the Max-Cut problem-given a graph B,find the maximum cut of the graphUsagemaxcut(B)16maxkcut ArgumentsB A(weighted)adjacency matrix corresponding to a graphDetailsDetermines the maximum cut for a graph B.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Bmaxcut)out<-maxcut(Bmaxcut)maxkcut Max-kCut ProblemDescriptionmaxkcut creates input for sqlp to solve the Max-kCut Problem-given a graph object B,determine if a cut of at least size k exists.Usagemaxkcut(B,K)ArgumentsB A(weighted)adjacency matrixK An integer value,the minimum number of cuts in BDetailsDetermines if a cut of at least size k exists for a graph B.Mathematical and implementation details can be found in the vignetteminelips17 ValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Bmaxkcut)out<-maxkcut(Bmaxkcut,2)minelips The Minimum Ellipsoid ProblemDescriptionminelips creates input for sqlp to solve the minimum ellipsoid problem-given a set of n points,find the minimum volume ellipsoid that contains all the pointsUsageminelips(V)ArgumentsV An nxp matrix consisting of the points to be contained in the ellipsoidDetailsfor a set of points(x1,...,xn)determines the ellipse of minimum volume that contains all points.Mathematical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective function18nearcorr Examplesdata(Vminelips)#Not Run#out<-minelips(Vminelips)nearcorr Nearest Correlation Matrix ProblemDescriptionnearcorr creates input for sqlp to solve the nearest correlation matrix problem-given a approxi-mate correlation matrix H,find the nearest correlation matrix X.Usagenearcorr(H)ArgumentsH A symmetric matrixDetailsFor a given approximate correlation matrix H,determines the nearest correlation matrix X.Mathe-matical and implementation details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Hnearcorr)out<-nearcorr(Hnearcorr)smat19 smat Create a Symmetrix MatrixDescriptionsmat takes a vector and creates a symmetrix matrixUsagesmat(blk,p,At,isspM=NULL)Argumentsblk Lx2matrix detailing the type of matrices("s","q","l","u"),and the size of each matrixp Row of blk to be used during matrix creationAt vector to be turned into a symmetric matrixisspM if At is sparse,isspx=1,0otherwise.Default is to assume M is dense.ValueM A Symmetric MatrixExamplesy<-c(1,0.00000279,3.245,2.140,2.44,2.321,4.566)blk<-matrix(list(),1,2)blk[[1,1]]<-"s"blk[[1,2]]<-3P<-smat(blk,1,y)sqlp Semidefinite Quadratic Linear Programming SolverDescriptionsqlp solves a semidefinite quadratic linear programming problem using the SDPT3algorithm of Toh et.al.(1999)returning both the primal solution X and dual solution Z.Usagesqlp(blk=NULL,At=NULL,C=NULL,b=NULL,control=NULL,X0=NULL,y0=NULL,Z0=NULL)20sqlpArgumentsblk A named-list object describing the block diagonal structure of the SQLP data At A list object containing constraint matrices for the primal-dual problemC A list object containing the constant$c$matrices in the primal objective func-tionb A vector containing the right hand side of the equality constraints in the primalproblemcontrol A list object specifying the values of certain parameters.If not provided,default values are usedX0An initial iterate for the primal solution variable X.If not provided,an initial iterate is computed internally.y0An initial iterate for the dual solution variable y.If not provided,an initial iterate is computed internally.Z0An initial iterate for the dual solution variable Z.If not provided,an initial iterate is computed internally.DetailsA full mathematical description of the problem to be solved,details surrounding the input variables,and discussion regarding the output variables can be found in the accompanying vignette.ValueX A list containing the solution matrix to the primal problemy The solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionReferencesK.C.Toh,M.J.Todd,and R.H.Tutuncu,SDPT3—a Matlab software package for semidefinite programming,Optimization Methods and Software,11(1999),pp.545–581.R.H Tutuncu,K.C.Toh,and M.J.Todd,Solving semidefinite-quadratic-linear programs using SDPT3,Mathematical Programming Ser.B,95(2003),pp.189–217.Examplesblk=c("l"=2)C=matrix(c(1,1),nrow=1)A=matrix(c(1,3,4,-1),nrow=2)At=t(A)b=c(12,10)out=sqlp(blk,list(At),list(C),b)svec21 svec Upper Triangular VectorizationDescriptionsvec takes the upper triangular matrix(including the diagonal)and vectorizes it column-wise.Usagesvec(blk,M,isspx=NULL)Argumentsblk1x2matrix detailing the type of matrix("s","q","l","u"),and the size of the matrixM matrix which is to be vectorizedisspx if M is sparse,isspx=1,0otherwise.Default is to assume M is dense.Valuex vector of upper triangular components of xExamplesdata(Hnearcorr)blk<-matrix(list(),1,2)blk[[1]]<-"s"blk[[2]]<-nrow(Hnearcorr)svec(blk,Hnearcorr)toep Toeplitz Approximation ProblemDescriptiontoep creates input for sqlp to solve the Toeplitz approximation problem-given a symmetric matrix F,find the nearest symmetric positive definite Toeplitz matrix.Usagetoep(A)22VminelipsArgumentsA A symmetric matrixDetailsFor a symmetric matrix A,determines the closest Toeplitz matrix.Mathematical and implementa-tion details can be found in the vignetteValueX A list containing the solution matrix to the primal problemy A list containing the solution vector to the dual problemZ A list containing the solution matrix to the dual problempobj The achieved value of the primary objective functiondobj The achieved value of the dual objective functionExamplesdata(Ftoep)#Not Run#out<-toep(Ftoep)Vminelips Configuration Matrix for Minimum Ellipse ProblemDescriptionConfiguration Matrix for Minimum Ellipse ProblemUsagedata(Vminelips)FormatA matrix with2rows and2columnsIndex∗datasetsAndwd,2Apdwd,3Betp,3Bgpp,3Blogcheby,4Bmaxcut,4Bmaxkcut,4DoptDesign,6flogcheby,9Ftoep,9Glovasz,9Hnearcorr,11Vminelips,22Andwd,2 Apdwd,3Betp,3Bgpp,3 Blogcheby,4 Bmaxcut,4 Bmaxkcut,4control_theory,5DoptDesign,6 doptimal,6 dwd,7etp,8flogcheby,9 Ftoep,9 Glovasz,9gpp,10Hnearcorr,11lmi1,11lmi2,12lmi3,13logcheby,14lovasz,15maxcut,15maxkcut,16minelips,17nearcorr,18smat,19sqlp,19svec,21toep,21Vminelips,22 23。
管道缺陷自动检测与分类
管道缺陷自动检测与分类李灏;王宏涛;董晴晴【摘要】管道作为工业、核设施、石油天然气等领域中常用的物料输送手段,在使用过程中极易出现各类缺陷,传统的人工检测存在准确率低、效率低、成本高等缺点,采用数字图像处理技术可以对管道图像进行自动检测与分类,有效克服上述缺点.首先使用图像增强、图像分割、数学形态学以及边界跟踪对图像进行预处理,在提取出缺陷区域的尺寸、形状和纹理特征后,选择圆形度、凸度、离心率、熵、相关性和聚集度作为模式识别的特征向量,最后综合使用基于粒子群优化的K-means聚类分析和统计模式识别分类器进行分类.使用文中的图像预处理算法可以成功的将管道缺陷提取出来,达到管道缺陷自动检测的目的.基于粒子群优化的K-means聚类分析成功的将管道缺陷图像归为裂纹缺陷、管接头缺陷和孔形腐蚀三类,相比于传统K-means算法,聚类准确率分别提高9%、16.7%、12.5%.综合使用基于粒子群优化的K-means聚类分析和统计模式识别分类器对管道缺陷进行分类,三类缺陷的分类准确率均在80%以上,其中管接头缺陷和孔形腐蚀的准确率达到90%以上.综上,综合集成出了一套基于数字图像处理技术的管道缺陷自动检测与分类算法方案,实验结果表明,该算法方案具有自动化程度高、通用性强、准确率高的特点.%In the fields of industry, nuclear facilities, oil and gas, pipe is commonly used as the means of material delivery. And it is easy to appear various defects. The traditional manual detection system has the disadvantages of low accuracy, low efficiency and high cost. The digital image processing technology can automatically detect and classify the pipe image, thus effectively overcoming the above shortcomings. First, image enhancement, image segmentation, mathematical morphology andboundary tracking are used for image preprocessing. Then, after extracting the size, shape and texture features of the defective area, we choose the circularity, convexity, eccentricity, entropy, correlation and cluster tendency as the feature vector. Finally, K-means clustering analysis based on particle swarm optimization and statistical pattern recognition classifier is used for classification. Using the image preprocessing algorithm in this paper, we can successfully extract the pipe defects and achieve the purpose of automated pipe defect detection. K-means clustering analysis based on particle swarm optimization successfully clusters the pipe defect images into three categories which are crack defects, pipe joint defects and hole corrosion respectively. Compared with the traditional K-means algorithm,K-means clustering analysis based on particle swarm optimization can increase clustering accuracy by 9%, 16.7% and 12.5%respectively. The clustering analysis based on particle swarm optimization and the statistical pattern recognition classifier is used to classify the pipe defects. The classification accuracy of the three types of defects is more than 80%. The accuracy of pipe joint defects and hole corrosion is more than 90%. In summary, anintegrated algorithm scheme for automated pipe defect detection and classification based on digital image processing technology is proposed. The experiments show that the algorithm scheme has the characteristics of high degree of automation, high versatility and accuracy.【期刊名称】《图学学报》【年(卷),期】2017(038)006【总页数】6页(P851-856)【关键词】管道缺陷检测;图像处理;粒子群优化;聚类分析;统计模式识别【作者】李灏;王宏涛;董晴晴【作者单位】南京航空航天大学机电学院,江苏南京 210016;南京航空航天大学机电学院,江苏南京 210016;南京航空航天大学机电学院,江苏南京 210016【正文语种】中文【中图分类】TP301.6在一般工业、核设施、石油天然气、军事装备等领域中,管道作为一种有效的物料输送手段而得到广泛应用。
python dataframe 相邻列相关系数
python dataframe 相邻列相关系数【原创版4篇】目录(篇1)1.引言2.Python DataFrame 的概述3.计算相邻列相关系数的方法4.应用示例5.总结正文(篇1)【引言】在数据分析中,相关系数被广泛应用于衡量两个变量之间的相关程度。
对于 Python DataFrame 中的数据,我们可以通过计算相邻列的相关系数来了解数据间的关系。
本文将介绍如何使用 Python DataFrame 计算相邻列的相关系数。
【Python DataFrame 的概述】Python DataFrame 是一种非常实用的数据结构,可以用来存储和处理表格数据。
它是 pandas 库中的一个重要组成部分,可以轻松地对数据进行切片、转换和分析。
在本文中,我们将使用 pandas 库来计算DataFrame 中相邻列的相关系数。
【计算相邻列相关系数的方法】要计算 Python DataFrame 中相邻列的相关系数,我们可以使用numpy 库中的 correlation 函数。
以下是具体的计算步骤:1.导入 numpy 库2.使用 numpy 的 correlation 函数计算相邻列的相关系数3.将结果放入一个新的 DataFrame 中,以便查看和分析以下是一个示例代码:```pythonimport numpy as np# 创建一个示例 DataFramedata = {"A": [1, 2, 3, 4],"B": [2, 4, 6, 8],"C": [3, 6, 9, 12],"D": [4, 8, 12, 16]}df = pd.DataFrame(data)# 计算相邻列的相关系数corr = np.corr(df.values)# 将结果放入一个新的 DataFrame 中corr_df = pd.DataFrame(corr, index=df.columns,columns=df.columns)# 查看相关系数print(corr_df)```【应用示例】假设我们有一个股票数据 DataFrame,我们想要了解相邻时间段的股价走势是否具有相关性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最邻近相关矩阵
在 NAG 算法庫 24 版当中,我们进一步扩大计算最邻近相关矩阵的功能,在这篇介绍文章中,我们可先将目光集中于最邻近相关矩阵的问题,在固定某些问题的影响下,说明这个函数的求解。
简介
相关矩阵具有实数、方阵对称的特点,且对角线为 1 与非负特征值之矩阵,矩阵若具有非负特征值,则我们称该矩阵为半正定,现在假设矩阵 C 为相关矩阵,且矩阵 C 中的元素,以矩阵 C(I,J) 代表第 I 列与第 J 行的相关性,换句话说,代表两者之间呈现一种线性关系的强度与方向。
文献中有许多使用相关矩阵的例子,但我们最常看到的是在金融领域中用来表示两两股票之间的相关性,用来建构合适的投资组合。
然而,基于很多原因,输入的相关性矩阵可能不是半正定,例如:可能经过一段时间后,各股票间的数据已经遗漏,若不正确的去处理这些遗漏值 (missing data),会导致此矩阵为非正定矩阵。
另一个在金融上应用的例子是:研究人员也许想要透过对特定资产的历史资料,所计算得到的不同相关性中,去研究其对投资组合的影响。
这同样也会破坏矩阵的半正定性。
在以上的情况中,使用者会有一个近似的相关矩阵,但它并不符合相关矩阵所定义的要件。
由于后续的分析都必须根基于一个有效的相关矩阵,这样才能得到正确的结果。
所以很自然的,我们可以去寻找一个与原始矩阵差异性最小的相接近的矩阵,用它来取代原始要用来分析的相关矩阵。
基本最邻近相关矩阵问题
NAG 的 g02aaX 函数以牛顿算法求解我们在简介中提到的基本问题。
它会以矩阵范数(Frobenius norm) 找出最接近输入矩阵 G 的相关矩阵 X,也就是找到下式的最小值:
|| G – X ||F
在 Qi 与 Sun 的论文中提到优于前述方法的算法,具有更佳的收敛性。
英国曼彻斯特大学的研究生Rüdiger Borsdorf,在指导教授 Higham 的带领下,进一步仔细的研究相关细节,并提出改善的方法。
其中包含了不同迭代求解器 (使用 Conjugate Gradient 方法的 MINRES) 以及预处理线性方程方法等。
这个新的算法已经整合到我们新版的算法庫中了。
我们从 22 版的算法庫透过对算法结构的理解后,于新版中已经强化许多函数的执行性能。
权重范数问题与正定相关矩阵输出
在新的 NAG g02abX 函数中,我们加强了 g02aaX 函数的功能。
对估计的相关矩阵有个合理
的假设,并非所有矩阵中的值都是估计的,而是仅仅其中一部份。
例如:我们也许知道某个我们量测的子集合中的相关性是已知的。
在此算法中,我们利用了原来 Qi 与Sun 的方法,并加上权重范数 (weighted norm)。
因此我们要找出下式最小值:
|| W1/2 (G - X) W1/2 ||F
其中 W 是权重的对角矩阵。
这意味着我们在寻求 W(I,I) (G(I,J) - X(I,J)) W(J,J) 的最小值,可通过选择W合适的元素值,我们可偏好G中某些的元素,以迫使X中对应的元素更接近他们。
然而,这种方法意味着,G 矩阵中所有行与列的元素皆被赋予权重,因此,在第 24 版中,已经得到进一步功能的提升,允许矩阵中各个元素可赋予权重,g02ajX 该函数是要找出下式的最小值:
|| H。
(G - X) ||F
其中,以表达式 C = A。
B 表示矩阵 C 作元素的相乘,即 C(I,J) = A(I,J) B(I,J),因此在 H 中通过选取适当的值,我们不但可以突显 G 中某些元素,而且仍保持其它未加权的元素,这个算法是采用 Jiang, Sun 和 Toh 的方法。
这些函数皆允许用户指定计算得到的相关矩阵是正定的,也就是特征值必须大于 0,因为在某些应用中需要这样的特性改善矩阵条件而且增加稳定性。
最邻近相关矩阵与因素结构 (Factor Structure)
因素结构的的相关矩阵是非对角线元素有一些 k 阶的矩阵。
也就是相关矩阵 C 可以改写为
C = diag(I - XX T) + XX T
其中 X 是 n x k 的矩阵,通常被称为因子负荷矩阵 (factor loading matrix),而 k 远比n 小的多。
这些相关矩阵通常会在资产报酬因子模型、抵押借贷债务与多变量时间序列中出现。
g02aeX 函数用来计算上述所定义的最邻近相关矩阵 G 的最邻近因子负荷矩阵 X,求下式最小值:
|| G – XX T + diag(XX T - I) ||F
我们采用 Borsdorf 与 Higham 建议的 Birgin, Martinez 与 Raydan 所提的光谱投影梯度(spectral projected gradient) 法。