二面角大小的求法的归类分析
立体几何二面角的求法
立体几何二面角的求法立体几何是数学的一个重要分支,研究的是空间中的图形和其性质。
其中,二面角是立体几何中的一个重要概念,它是由两个平面所围成的角。
本文将介绍二面角的定义、性质以及求法。
一、二面角的定义二面角是由两个平面所围成的角,其中一个平面称为顶面,另一个平面称为底面,二面角的两个边分别位于顶面和底面上。
二面角常用字母α表示。
二、二面角的性质1. 二面角的大小是以顶点为中心,两个边所围成的平面角的大小,即α=∠POQ。
2. 二面角的大小是由顶面和底面的位置关系决定的,与边的长度无关。
3. 二面角的度量范围是0到180度。
4. 如果两个平面平行,则它们所围成的二面角为0度。
5. 如果两个平面相互垂直,则它们所围成的二面角为90度。
6. 如果两个平面相交于一条直线,则它们所围成的二面角为180度。
三、二面角的求法1. 通过向量法求解二面角:设顶面的法向量为n1,底面的法向量为n2,二面角的余弦值可以通过两个法向量的点乘公式求解:cosα=n1·n2/(|n1||n2|),其中·表示点乘,|n1|和|n2|分别表示n1和n2的模。
2. 通过平面法向量求解二面角:设顶面的法向量为n1,底面的法向量为n2,二面角的余弦值等于两个法向量的模的乘积与它们的点乘的商:cosα=(|n1|·|n2|)/(n1·n2)。
3. 通过平面方程求解二面角:设顶面的平面方程为Ax+By+Cz+D1=0,底面的平面方程为Ax+By+Cz+D2=0,二面角的余弦值等于两个平面方程的D1、D2的差值与它们的模的乘积的商:cosα=(D1-D2)/(√(A^2+B^2+C^2)·√(A^2+B^2+C^2))。
四、二面角的应用1. 二面角常用于计算空间中的体积和表面积。
2. 在物理学中,二面角常用于描述力的方向和大小。
3. 在几何光学中,二面角常用于计算光的反射和折射。
4. 在工程中,二面角常用于计算材料的强度和稳定性。
二面角求法总结
二面角求法总结一、定义法定义法是求二面角的基本方法,它通过定义二面角的平面角来求解。
具体来说,如果两个平面相交,那么它们会在交线上形成一个角,这个角就是二面角的平面角。
通过找到这个角的两边,我们可以使用三角函数来求解这个角的大小。
二、垂线法垂线法是一种常用的求二面角的方法,它通过找到一个垂直于两个平面的交线的直线,并将这个直线延长到一个已知点,然后使用三角函数来求解这个角的大小。
这个方法的关键在于找到正确的垂线,并且这个垂线应该是垂直于交线的。
三、射影面积法射影面积法是一种利用射影面积定理求解二面角的方法。
通过找到两个平面上的两条射线和它们之间的夹角,我们可以使用射影面积定理来求解这个角的大小。
这种方法需要先找到正确的射线和夹角,然后使用射影面积定理来计算结果。
四、三垂线定理法三垂线定理法是一种利用三垂线定理来求解二面角的方法。
如果一个平面内的直线与另一个平面垂直,那么这个直线与第一个平面的交点与第二个平面的交点的连线与原直线的夹角就是要求的二面角。
这种方法的关键在于找到正确的三垂线定理的应用条件,并且正确地应用三垂线定理来计算结果。
五、角平分线法角平分线法是一种利用角平分线定理来求解二面角的方法。
如果一个平面内的角平分线与另一个平面垂直,那么角平分线与原直线的夹角就是要求的二面角。
这种方法的关键在于找到正确的角平分线的应用条件,并且正确地应用角平分线定理来计算结果。
六、向量法向量法是一种利用向量的数量积和向量积来求解二面角的方法。
通过找到两个平面上的两个向量,我们可以使用向量的数量积和向量积来计算这两个向量的夹角,这个夹角就是要求的二面角。
这种方法的关键在于正确地找到两个向量,并且正确地应用向量的数量积和向量积来计算结果。
七、坐标法坐标法是一种利用坐标系来求解二面角的方法。
通过建立适当的坐标系,我们可以将二面角的问题转化为求解一个几何量的值的问题。
这种方法的关键在于建立正确的坐标系,并且正确地使用代数方法来计算结果。
二面角四种求法_5个例题解决二面角难题
四法求二面角二面角是高考的热点内容之一,求二面角的大小应先作出它的平面角,下面介绍作二面角的平面角四种方法:定义法、垂面法、三垂线定理法、射影面积法。
(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ SA 图3αβO B lO图5β α l C B A例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。
(三垂线定理法)分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。
解∵ PC⊥平面ABC∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。
设PC=a,依题意知三角形ABC是边长为a的正三角形,∴ D是∵PC = CA=a,∠PCA=90°,∴∠PAC=45°∴在Rt△DEA评注本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解。
例2 在60°二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求点P到直线a的距离。
(图1-126)(垂面法)分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.同理,有PB⊥a,∵ PA∩PB=P,∴ a⊥面PAQB于Q又 AQ、BQ平面PAQB∴ AQ⊥a,BQ⊥a.∴∠AQB是二面角M-a-N的平面角。
二面角大小的求法的归类分析
三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直;已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α⊂a AO ⊥。
求证:a PO ⊥;证明: 说明:(1)线射垂直(平面问题)⇒线斜垂直(空间问题);(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理;(3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。
(4)直线a 与PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明:例1、判断下列命题的真假:(1)若a 是平面α的斜线,直线b 垂直于a 在平面α内的射影,则 a ⊥b ( )(2)若 a 是平面α的斜线,平面β内的直线b 垂直于a 在平面α内的射影,则 a ⊥b ( ) (3)若a 是平面α的斜线,直线b ⊂ α且b 垂直于a 在另一平面β内的射影,则a ⊥b ( ) (4)若a 是平面α的斜线,b ∥α,直线 b 垂直于a 在平面α内的射影,则 a ⊥b ( )例2、已知P 是平面ABC 外一点, PA ⊥平面ABC ,AC ⊥ BC , 求证: PC ⊥ BC 。
例3、在四面体ABCD 中,已知AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC 。
PP1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。
求证:PC BC ⊥。
2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。
求证:,PO BD PC BD ⊥⊥。
3.在正方体1AC 中,求证:11111,AC B D AC BC ⊥⊥;4.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。
求证:(1)AD BC ⊥;(2)点A 在底面BCD 上的射影是BCD ∆的垂心;5.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上二面角大小的求法的归类分析一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例1 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC —-D 的大小。
怎样求解二面角问题
二面角问题在立体几何中比较常见,常见的命题形式有求二面角的大小、求二面角的余弦值,证明两个平面互相垂直等.此类问题的难度一般较大,需综合运用立体几何知识、平面几何知识、解三角形知识、三角函数知识,才能顺利求得问题的答案.本文结合实例,重点探讨一下求解二面角问题的几种常用方法.一、定义法二面角是由从一条直线出发的两个半平面所组成的,而二面角的大小往往是用其平面角的大小来表示,因此在求二面角的大小时,通常要用到二面角的平面角的定义:过二面角的棱上的一点在两个半平面内作垂直于棱的射线,两射线所成的角.然后根据正余弦定理、勾股定理求得二面角的平面角的大小,即可求得二面角的大小.例1.如图1,已知空间中有三条射线CA 、CP 、CB ,且∠PCA =∠PCB =60°,∠ACB =90°,求二面角B -PC -A 的余弦值.图1解:在PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,连接EF ,所以∠EDF 为二面角B -PC -A 的平面角,设CD =a ,因为∠PCA =∠PCB =60°,所以CE =CF =2a ,DE =DF =3a ,因为∠ACB =90°,所以EF =22a ,在△DEF 中,根据余弦定理得:cos ∠EDF =3a 2+3a 2-8a 22∙3a2=-13.解答本题主要运用了定义法,需根据二面角的平面角的定义,在二面角B -PC -A 的棱PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,从而确定了二面角B -PC -A 的平面角∠EDF ,再根据余弦定理求得cos ∠EDF 的值.二、垂面法垂面法是指作一个垂直的平面,根据其中的垂直关系求得问题的答案.在求解二面角问题时,若题目中涉及的垂直关系较多,可过二面角棱上的一点在两个半平面内作棱的垂线;也可将两个半平面内的垂线平移,使其交于一点;还可过一条垂线上的一点作另一个平面的垂线,从而构成一个垂面,则垂面上的两条垂线或其平行线所形成的夹角即为二面角的平面角.最后根据勾股定理即可求得二面角的平面角的大小.例2.如图2,在四棱锥P -ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA =AB =a ,求二面角B -PC -D 的大小.图2解:因为PA ⊥平面ABCD ,ABCD 是正方形,所以PA ⊥BD ,BD ⊥AC ,所以BD ⊥平面PAC ,可得BD ⊥PC ,分别过B 、D 作DH ⊥PC ,BH ⊥PC ,则∠BHD 为二面角B -PC -D 的平面角,因为PA =AB =a ,所以BC =a ,PB =AC =2a ,所以PC =3a ,根据勾股定理可得∠PBC =90°,所以在△PBC 中,12PB ∙BC =S △PBC =12PC ∙BH ,则BH ,同理可得DH ,因为BD =2a ,所以在△BHD 中,由余弦定理可得:cos ∠BHD =ö÷2+ö÷2-2a 2-12,因为0<∠BHD <π,则∠BHD =2π3,即二面角B -PC -D 的大小为2π3.本题中的垂直关系较多,于是分别过B 、D 作DH ⊥PC ,BH ⊥PC ,得到PC 的垂面BHD ,据此确定二面角B -PC -D 的平面角∠BHD ,再在△BHD 中由怎样求解二面角问题方法集锦43余弦定理即可求得∠BHD 的大小,进而求得二面角B -PC -D 的大小.值得注意的是,二面角α的范围为:[0,π].三、三垂线法三垂线法是利用三垂线定理解题的方法.运用三垂线法求解二面角问题,需先找到平面的垂线,然后过垂线上的一点作平面的斜线,若平面内的一条直线与平面的斜线垂直,那么这条直线与斜线在平面内的射影垂直,根据这些垂直关系就可以确定二面角的平面角,最后根据勾股定理、正余弦定理即可求得平面角的大小.例3.如图3所示,在四棱锥P -ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA =AB =a ,∠ABC =30°,求二面角P -BC -A 的大小.图3解:如图3,过A 作AH ⊥BC 于H ,连接PH ,因为PA ⊥平面ABCD ,所以PA ⊥BC ,PA ⊥AH ,所以BC ⊥平面PHA ,所以BC ⊥PH ,可知∠PHA 是二面角P -BC -A 的平面角,在Rt△ABH 中,AB =a ,∠ABH =∠ABC =30°所以AH =AB sin ∠ABH =a sin 30°=12a ,因为PA ⊥AH ,所以在Rt△PHA 中,tan ∠PHA =PA AH=2,所以∠PHA =arctan 2,故二面角P -BC -A 的大小为arctan 2.根据题意作AH ⊥BC ,便可知AH 为PH 在平面ABCD 内的射影,由三垂线定理可得BC ⊥PH ,由此可确定∠PHA 是二面角P -BC -A 的平面角,再在Rt△PHA 中根据正切函数的定义求得∠PHA 的大小,进而可得到二面角P -BC -A 的大小.由此可见,求解二面角问题的关键有两步:第一步,根据二面角的平面角的定义、三垂线定理、垂面的性质,确定二面角的平面角;第二步,根据勾股定理、正余弦定理、三角函数的定义求得平面角的大小.(作者单位:江西省赣州市南康第三中学)二次函数是一种基本初等函数.二次函数问题的常见命题形式有求二次函数的解析式、最值、对称轴、单调区间、零点等.这类问题侧重于考查二次函数的图象和性质.下面重点谈一谈如何求解有关二次函数的最值问题、零点问题和不等式问题.一、二次函数的最值问题二次函数y =ax 2+bx +c 的图象是一条抛物线,若a >0,则抛物线的开口向上;若a <0,则抛物线的开口向下.当x =-b 2a 时,函数在R 上有最值b 2-4ac 4a.若函数的定义域为[m ,n ],则需分三种情况考虑:(1)当-b 2a ∈[m ,n ]时,函数在x =-b 2a 处取得最值;(2)当x =-b 2a,在[m ,n ]的左侧时,若a >0,则函数在x =m处取最小值,在x =n 处取最大值,若a <0,则相反;(3)当x =-b2a在[m ,n ]的右侧时,若a >0,则函数在x =m 处取最大值,在x =n 处取最小值;若a <0,则相反.例1.求y=-5x 2-6x +1的最大值.解:y =-5x 2-6x +1是二次函数,x 2的系数是-5,所以二次函数图象的开口向下,当x =-65时,函数有最大值1.利用二次函数的图象,即可确定二次函数在对称轴处取得最值.除了用图象法求解最值问题,还可以用配方法,比如y =x 2+4x +3=()x +22-1,可知当x =-2时函数的最小值为-1.例2.已知函数f (x )=x 2+(2a -1)x -3.方法集锦44。
立体几何二面角5种常见解法
立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC—B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.B 1AαA 1 LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PβαlCBA例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。
高中数学知识点二面角
高中数学知识点二面角二面角是解析几何中的重要概念,在高中数学课程中也占有一定的比重。
下面将对二面角的定义、性质、应用以及解题方法进行详细介绍。
一、二面角的定义:二面角是指在空间中,由两个不重合射线所确定的两个平面之间的角。
具体而言,设有两条射线OA和OB,这两条射线除了一个公共点O之外没有其他交点,那么我们就可以通过射线OA和射线OB来确定一个二面角。
二、二面角的性质:1.二面角的大小范围是0到π之间,即0<α<π。
2.如果射线OA与射线OB共面,则二面角的大小为0。
3.如果两个射线平行或共线,则二面角的大小为π。
4.二面角的大小与两个面之间的夹角有关,夹角小,二面角大;夹角大,二面角小。
三、二面角的应用:1.几何推理:在解决空间几何题目时,常常需要运用二面角的概念进行证明与推理。
2.几何计算:在三角学和立体几何的计算中,常常需要求解二面角的大小以完成问题的解答。
3.坐标几何:通过给定点的坐标,可以确定射线的方向,进而求解二面角的大小。
四、二面角的解题方法:1.直接法:通过已知条件,利用二面角的定义直接计算得出二面角的大小。
2.投影法:将二面角所在的两个平面进行坐标投影,然后利用向量的内积关系来求解二面角的大小。
3.解析法:利用解析几何的相关知识,将二面角所在的两个平面转化为方程,然后通过求解方程组来求解二面角的大小。
在具体的解题过程中,我们需要根据题目的要求选择合适的解题方法,然后通过运用相应的数学知识和技巧来计算和推导。
总之,二面角是高中数学中的重要知识点之一,理解二面角的定义、性质和应用,掌握求解二面角的解题方法,对于解决相关问题具有重要的意义。
通过深入学习和实践应用,相信同学们对于二面角的理解和运用能力会有所提高。
六种方法求二面角的大小
六种方法求二面角的大小河北省武邑县职教中心 053400 李凤迎 李洪涛求二面角的大小是高考立体几何题中的重要题型,它几乎涉及到了立体几何中的所有知识点,考查到了所有思想和方法,具有很强的综合性.我们要根据题目环境条件的不同灵活地采用适当的方法.下面总结一下二面角的常见求法,以供大家学习和参考.一、定义法例1. 在三棱锥A BCD -中,AB AC AD BC ===,CD BD =,90BAC ∠=,90BDC ∠=,求二面角A BC D --的大小.分析 因为ABC ∆和BCD ∆是有公共边的等腰三角形,此时宜采用“定义法”.解答 取BC 的中点O ,连接OA 、OD ,因为OA 、OD 分别为等腰ABC ∆和BCD ∆的中线,所以AO BC ⊥,DO BC ⊥,则AOD ∠即为所求二面角A BC D --的平面角.设AB a =,则AD a =,AO =,2OD a =,在AOD ∆中,因为2222a a ⎫⎛⎫+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,即222AO OD AD +=,所以90AOB ∠=,所以二面角A BC D --大小为90.说明 当二面角的两个面是有公共边的等腰三角形和矩形的组合时,可采用“定义法”;当二面角的两个面是关于公共边对称的两个全等三角形时,同时取公共边上的高,由定义可作出二面角的平面角.变式训练1 (2008年高考题)在四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =, CD =,AB AC =.设侧面ABC 为等边三角形,求二面角C AD E --的大小. 二、三垂线定理法例2. 在三棱锥P ABC -中,AP BP BC==,90APB ABC ∠=∠=,面APB ⊥面PBC .(1)求证:APB ABC ⊥面面;(2)求二面角P AC B --的大小.分析 由(1)中APB ABC ⊥面面可知,此时宜采用“三垂线定理法”作出二面角P AC B --的平面角.只需过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH ,则PHO∠即为所求. 解答 (1)略.(2)过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH .因为APB ABC ⊥面面,=APB ABC AB 面面,PO APB ⊂面,PO AB ⊥,所以DCO ABO HCA B PEGOB DCAPO ABC ⊥面,则OH 为斜线PH 在面ABC 内的射影.又因为AC OH ⊥,所以AC PH ⊥(三垂线定理),则PHO ∠即为所求.设AP a =,则PB BC a ==.在Rt APB ∆中2PO AO a ==,在Rt ABC ∆中AC =,由Rt AOH ∆∽Rt ABC ∆得OH BC AO AC=,所以BC OH AO AC =⋅2a ==,又因为PO ABC ⊥面,OH ABC ⊂面,所以PO OH ⊥,则在Rt ABC ∆中,tan PO PHO HO ∠===60PHO ∠=,即二面角P AC B --的大小为60.说明 当题目中有一条从一个半平面内的一点到另一个半平面的垂线段时,可采用“三垂线定理法”.垂线段可由题目中的线面垂直、面面垂直等条件作出.变式训练2 如图,三棱柱111ABC A B C -,底面是边长为的正三角形,点1A 在底面ABC 上的射影O 恰是BC 的中点.若侧棱1AA 和底面ABC 所成的角为45时,求二面角1A AC B --的正切值.三、垂面法例3. 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且3PA =,4PB =若ABC S ∆=l αβ--的度数为______.分析 由已知得l PAB ⊥面.设PAB l O =面,连接,OA OB ,则l OA ⊥,l OB ⊥,则AOB ∠即为二面角l αβ--的平面角,且180AOB P ∠+∠=.要想求AOB ∠,只需由ABC ∆的面积公式求出P ∠即可.解答 因为1sin 2ABC S PA PB P ∆=⋅⋅⋅∠134sin 2P =⋅⋅⋅∠=所以sin 2P ∠=,所以60P ∠=或120,又因为180AOB P ∠+∠=,从而=120AOB ∠或60.说明 180AOB P ∠+∠=可作为结论使用.若给出ABP ∆的三边,则可通过余弦定理l OA BPβαHC 1B 1A 1OC B A求出P ∠的度数.变式训练 3 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且7PA =,8PB =,13AB =,则二面角l αβ--的度数为______.四、面积射影法例4. 在三棱锥中P ABC -,,D E 分别为PBC ∆、ABC ∆的重心,若DE ABC ⊥∆面,PBC ABC ∆∆=S ,则二面角P BC A --的大小为______.分析 易证DE ∥PA ,则PA ABC ⊥面,则PBC ∆的射影为ABC ∆,此时宜采用“面积射影法”.解答 设二面角为θ,因为,D E 分别为PBC ∆、ABC ∆的重心,则可得=MD MEDP EA,所以DE ∥PA .又因为DE ABC ⊥面,所以PA ABC ⊥面.因为cos ABC PBC S θ∆∆=S ==45θ=. 说明 当题目中涉及斜面三角形面积和相应射影三角形面积时,可采用“面积射影法”求二面角的大小.变式训练4 若一正四棱锥的表面积与其底面积满足关系式21=x x S S x++表底,则其侧面与底面所成的二面角的范围是______.五、三正弦定理法例5. (2012年全国新课标卷)在直三棱柱ABC A B C '''-中,12AC BC AA '==,D 是棱AA '的中点,DC BD '⊥.(1)证明:DC BC '⊥;(2)求二面角A BD C ''--的大小.分析 考察面BDC '内的直线DC ',易求90BDC '∠=,即2sin 1θ=;取A B ''的中点N ,则C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角,且1sin 2C DN '∠=,即11sin 2θ=,最后代入公式即可求出二面角的大小.解答 因为DA C ''∆和DAC ∆均为等腰直角三角形,所以DC DC '⊥.又因为DC BC '⊥,所以DC DBC '⊥面,从而DC DB '⊥,即2sin sin 901θ==;取A B ''的中点N ,连接DN ,则C N A B '''⊥.又因为AA C N ''⊥,所以C N ABB A '''⊥面,则C DN'∠M EDC BAPB B'A'C'AD N即为直线DC '与ABB A ''面所成的角.设2AA a '=,则AC BC a ==,因为2C N a '=,D C '=,即11sin sin 2C N C DN CD θ''=∠==.由12sin sin sin θθθ=得1sin 2θ=,又据题意知所求二面角为锐二面角,所以30θ=.说明 当其中一个半平面内的一条直线与另一个半平面、二面角的棱所成的角的正弦值容易求出时,可采用“三正弦定理法”.变式训练 5 如图,平面角为锐角的二面角EF αβ--,若A EF ∈,AG α⊂,45GAE ∠=,若AG 与β所成的角为30,则该二面角的大小为______.六、向量法例6. 题目同例5.分析 由(1)可证BC CC A A ''⊥面,则BC CA ⊥,所以,,CA CB CC '两两互相垂直,此时可以采用“向量法”求二面角的大小.解答 (1) 略.(2)建立如图所示的空间直角坐标系.设所求二面角为θ,平面BDC '的法向量为()1,,n x y z =,又因为()101DC '=-,,,()012BC '=-,,,则1100DC n BC n ⎧'⋅=⎪⎨'⋅=⎪⎩,即020x z y z -+=⎧⎨-+=⎩,取1x =,则2y =,1z =,所以()11,2,1n =;同理设平面ABB A ''的法向量为2n ,取AB 的中点M ,则可知CM ABB A ''⊥面,所以取211==,022n CM ⎛⎫⎪⎝⎭,,又因为121212cos ,n n n n nn ⋅=32==,由题意知所求二面角为锐二面角,所以30θ=. 说明 向量法又俗称“万能法”.当题目中出现三条线段具有或可以证明存在两两互相垂直的位置关系时,可采用“向量法”.但计算时一定要认真,并且要根据所求二面角是锐二面角还是钝二面角合理取舍.变式训练 6 如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.求平面1ADC 与平面1ABA 所成二面角的正弦值.βαGE FA(参考答案:1.π- 2. 2;3.60;4.6090θ≤<;5.45;6.sinθ=.)。
六种方法求二面角的大小
六种方法求二面角的大小河北省武邑县职教中心 053400 李凤迎 李洪涛求二面角的大小是高考立体几何题中的重要题型,它几乎涉及到了立体几何中的所有知识点,考查到了所有思想和方法,具有很强的综合性.我们要根据题目环境条件的不同灵活地采用适当的方法.下面总结一下二面角的常见求法,以供大家学习和参考.一、定义法例1. 在三棱锥A BCD -中,AB AC AD BC ===,CD BD =,90BAC ∠=,90BDC ∠=,求二面角A BC D --的大小.分析 因为ABC ∆和BCD ∆是有公共边的等腰三角形,此时宜采用“定义法”.解答 取BC 的中点O ,连接OA 、OD ,因为OA 、OD 分别为等腰ABC ∆和BCD ∆的中线,所以AO BC ⊥,DO BC ⊥,则AOD ∠即为所求二面角A BC D --的平面角.设AB a =,则AD a =,AO =,2OD a =,在AOD ∆中,因为2222a a ⎫⎛⎫+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,即222AO OD AD +=,所以90AOB ∠=,所以二面角A BC D --大小为90.说明 当二面角的两个面是有公共边的等腰三角形和矩形的组合时,可采用“定义法”;当二面角的两个面是关于公共边对称的两个全等三角形时,同时取公共边上的高,由定义可作出二面角的平面角.变式训练1 (2008年高考题)在四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =, CD =,AB AC =.设侧面ABC 为等边三角形,求二面角C AD E --的大小. 二、三垂线定理法例2. 在三棱锥P ABC -中,AP BP BC==,90APB ABC ∠=∠=,面APB ⊥面PBC .(1)求证:APB ABC ⊥面面;(2)求二面角P AC B --的大小.分析 由(1)中APB ABC ⊥面面可知,此时宜采用“三垂线定理法”作出二面角P AC B --的平面角.只需过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH ,则PHO∠即为所求. 解答 (1)略.(2)过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH .因为APB ABC ⊥面面,=APB ABC AB 面面,PO APB ⊂面,PO AB ⊥,所以DCO ABO HCA B PEGOB DCAPO ABC ⊥面,则OH 为斜线PH 在面ABC 内的射影.又因为AC OH ⊥,所以AC PH ⊥(三垂线定理),则PHO ∠即为所求.设AP a =,则PB BC a ==.在Rt APB ∆中2PO AO a ==,在Rt ABC ∆中AC =,由Rt AOH ∆∽Rt ABC ∆得OH BC AO AC=,所以BC OH AO AC =⋅2a ==,又因为PO ABC ⊥面,OH ABC ⊂面,所以PO OH ⊥,则在Rt ABC ∆中,tan PO PHO HO ∠===60PHO ∠=,即二面角P AC B --的大小为60.说明 当题目中有一条从一个半平面内的一点到另一个半平面的垂线段时,可采用“三垂线定理法”.垂线段可由题目中的线面垂直、面面垂直等条件作出.变式训练2 如图,三棱柱111ABC A B C -,底面是边长为的正三角形,点1A 在底面ABC 上的射影O 恰是BC 的中点.若侧棱1AA 和底面ABC 所成的角为45时,求二面角1A AC B --的正切值.三、垂面法例3. 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且3PA =,4PB =若ABC S ∆=l αβ--的度数为______.分析 由已知得l PAB ⊥面.设PAB l O =面,连接,OA OB ,则l OA ⊥,l OB ⊥,则AOB ∠即为二面角l αβ--的平面角,且180AOB P ∠+∠=.要想求AOB ∠,只需由ABC ∆的面积公式求出P ∠即可.解答 因为1sin 2ABC S PA PB P ∆=⋅⋅⋅∠134sin 2P =⋅⋅⋅∠=所以sin 2P ∠=,所以60P ∠=或120,又因为180AOB P ∠+∠=,从而=120AOB ∠或60.说明 180AOB P ∠+∠=可作为结论使用.若给出ABP ∆的三边,则可通过余弦定理l OA BPβαHC 1B 1A 1OC B A求出P ∠的度数.变式训练 3 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且7PA =,8PB =,13AB =,则二面角l αβ--的度数为______.四、面积射影法例4. 在三棱锥中P ABC -,,D E 分别为PBC ∆、ABC ∆的重心,若DE ABC ⊥∆面,PBC ABC ∆∆=S ,则二面角P BC A --的大小为______.分析 易证DE ∥PA ,则PA ABC ⊥面,则PBC ∆的射影为ABC ∆,此时宜采用“面积射影法”.解答 设二面角为θ,因为,D E 分别为PBC ∆、ABC ∆的重心,则可得=MD MEDP EA,所以DE ∥PA .又因为DE ABC ⊥面,所以PA ABC ⊥面.因为cos ABC PBC S θ∆∆=S ==45θ=. 说明 当题目中涉及斜面三角形面积和相应射影三角形面积时,可采用“面积射影法”求二面角的大小.变式训练4 若一正四棱锥的表面积与其底面积满足关系式21=x x S S x++表底,则其侧面与底面所成的二面角的范围是______.五、三正弦定理法例5. (2012年全国新课标卷)在直三棱柱ABC A B C '''-中,12AC BC AA '==,D 是棱AA '的中点,DC BD '⊥.(1)证明:DC BC '⊥;(2)求二面角A BD C ''--的大小.分析 考察面BDC '内的直线DC ',易求90BDC '∠=,即2sin 1θ=;取A B ''的中点N ,则C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角,且1sin 2C DN '∠=,即11sin 2θ=,最后代入公式即可求出二面角的大小.解答 因为DA C ''∆和DAC ∆均为等腰直角三角形,所以DC DC '⊥.又因为DC BC '⊥,所以DC DBC '⊥面,从而DC DB '⊥,即2sin sin 901θ==;取A B ''的中点N ,连接DN ,则C N A B '''⊥.又因为AA C N ''⊥,所以C N ABB A '''⊥面,则C DN'∠M EDC BAPB B'A'C'AD N即为直线DC '与ABB A ''面所成的角.设2AA a '=,则AC BC a ==,因为2C N a '=,D C '=,即11sin sin 2C N C DN CD θ''=∠==.由12sin sin sin θθθ=得1sin 2θ=,又据题意知所求二面角为锐二面角,所以30θ=.说明 当其中一个半平面内的一条直线与另一个半平面、二面角的棱所成的角的正弦值容易求出时,可采用“三正弦定理法”.变式训练 5 如图,平面角为锐角的二面角EF αβ--,若A EF ∈,AG α⊂,45GAE ∠=,若AG 与β所成的角为30,则该二面角的大小为______.六、向量法例6. 题目同例5.分析 由(1)可证BC CC A A ''⊥面,则BC CA ⊥,所以,,CA CB CC '两两互相垂直,此时可以采用“向量法”求二面角的大小.解答 (1) 略.(2)建立如图所示的空间直角坐标系.设所求二面角为θ,平面BDC '的法向量为()1,,n x y z =,又因为()101DC '=-,,,()012BC '=-,,,则1100DC n BC n ⎧'⋅=⎪⎨'⋅=⎪⎩,即020x z y z -+=⎧⎨-+=⎩,取1x =,则2y =,1z =,所以()11,2,1n =;同理设平面ABB A ''的法向量为2n ,取AB 的中点M ,则可知CM ABB A ''⊥面,所以取211==,022n CM ⎛⎫⎪⎝⎭,,又因为121212cos ,n n n n nn ⋅=32==,由题意知所求二面角为锐二面角,所以30θ=. 说明 向量法又俗称“万能法”.当题目中出现三条线段具有或可以证明存在两两互相垂直的位置关系时,可采用“向量法”.但计算时一定要认真,并且要根据所求二面角是锐二面角还是钝二面角合理取舍.变式训练 6 如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.求平面1ADC 与平面1ABA 所成二面角的正弦值.βαGE FA(参考答案:1.π- 2. 2;3.60;4.6090θ≤<;5.45;6.sinθ=.)。
SXB141高考数学必修_二面角的几何求解思路
二面角的几何求解思路求二面角大小是立体几何,乃至整个高中数学的重点和难点内容之一,也是高考考察的热点.本文介绍二面角的几种几何求解思路,希望同学们能熟练掌握并能合理的加以选择.一、直接法用直接法求二面角时,应按“一作、二证、三求”的步骤进行.即根据已知条件, 先作出平面角,证 其即为所求二面角的平面角,再求平面角大小的方法.作二面角平面角的方法有:1.定义法:在棱上取一点,过该点分别在两个半平面内作垂直于棱的射线,则这两条射线所成的角即为二面角的平面角.2.垂面法:即找棱的垂面,则该垂面与两个半平面的交线所成的角即为二面角的平面角.3.三垂线定理法:过二面角的一个半平面内一点向另一个半平面作垂线,利用三垂线定理或其逆定理得其平面角.一般情况下,以上三种方法在解题中的选用顺序为:优先考虑“找棱的垂面”,若不行,则考虑三垂线定理,最后考虑定义法.典例分析例 1.如图1,在三棱锥,,,,S ABC SA ABC AB BC DE SC -⊥⊥中平面垂直平分分别交,AC SC 于D,E 两点,且,,SA AB SB BC E BD C ==--求二面角的大小.图1C 图1(1)C分析一:先找棱BD 的垂面,从BD 的垂线找起.解法一: ∵,DE SC 垂直平分且SB=BC ∴BE ⊥SC 又DE ⊥SC∴SC ⊥面BDE ∴BD ⊥SC又易证BD ⊥SA, ∴BD ⊥面ASC,即面ASC 为BD 的一个垂面 又,SAC BDE DE SAC BDC DC ==面面面面 ∴∠EDC 即为E BD C --二面角的平面角. 设SA=SB=a,则a,由,SA ABC ⊥平面得,SA BC ⊥又,BC AB ⊥ ∴BC SAB ⊥平面,故BC SB ⊥,故在SBC ∆中,SC =2a.在Rt SAC ∆中,SA=a, SC =2a,故SCA ∠=300.∴在Rt DEC ∆中,∠EDC=600.分析二: 若找不到BD 的垂面,则可考虑三垂线定理.解法二: 如图1(1),取AC 中点F,连结EF,则EF ⊥面BCD , 过点F 作FG ⊥BD 于点G,连结EG,则EG ⊥BD , ∴∠EGF 为E BD C --二面角的平面角. 余解略.例2.如图2,正方体ABCD-A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角A-BD 1-P 的大小.图2BB 1图2(1)BB 1图2(3)B1分析一:找到棱BD 1的垂面ACB 1,但面ACB 1与面ABD 1、面PBD 1的交线不易确定,故放弃该法,考虑三垂线定理. 解法一:如图2(1),∵AB ⊥面AD 1 ∴面AD 1⊥面ABD 1, 又面AD 1与面ABD 1的交线为AD 1,且点P 在面面AD 1内,∴过点P 作PM ⊥AD 1于M,则PM ⊥面ABD 1,过点M 作MN ⊥BD 1与N ,连结PN ,则PN ⊥BD 1, ∴∠MNP 即为二面角A-BD 1-P 的平面角. 余解略.分析二: 本题也可以考虑定义法.解法二:如图2(3),作PE ⊥BD 1于点E,则可证E 为BD 1的中点, 过点E 作EF ⊥AD 1于点F,垂足为E, 则∠PEF 即为二面角A-BD 1-P 的平面角. 余解略.计算过程比解法一麻烦. 评注:1.找棱的垂面是作二面角平面角的第一思路,其要点为:①,先找到棱的垂面;②,确定该垂面与两个半平面的交线.若找不到棱的垂面,或虽能找到棱的垂面但不易确定该垂面与两个半平面的交线,则应放弃该思路,转而考虑三垂线定理.2.利用三垂线定理求作二面角的平面角时,通常需观察、分析二面角的两个半平面,考察哪个半平面我们更熟悉,通常过不熟悉的半平面内的一特殊点向另一个相对熟悉的平面作垂线,然后在利用三垂线定理作出二面角的平面角.作线面垂直最关键.例3.已知如图,∠APB=∠APC=450,∠BPC=600,求二面角B -PA -C 的大小.分析:找棱的垂面或利用三垂线定理均不够直观,故考虑定义法.解:如图3,在棱AP 上取点D,作DE ⊥AP 于点D,交PB 与点E ,作DF ⊥PA 于点D,交PC 于点F,连结EF , 则∠EDF 即为二面角B -PA -C 的平面角. 余解略.二、间接法 所谓间接法,就是不直接作出二面角的平面角.常利用面积射影定理(设二面角l αβ--的大小为θ,面α内有一个面积为S 的封闭图形, 该图形在面β内的射影面积为S ’,则|cos θ|=SS ')来求,有时也可先求其补角. 图4EC 1FO图5BCAEDD 1C 1B 1A 1例4.如图4,设E 为正方体的边CC 1的中点,则平面AB 1E 和底面A 1B 1C 1D 1所成角的余弦值为________.分析:图中并没有直接画出平面AB 1E 和底面A 1B 1C 1D 1的交线,即二面角的棱不明确,要作出二面角的平面角,必须先求作二个平面的交线,这给解题带来一定的难度,所以不妨利用面积射影定理求解.略解:显然△AB 1E 在底面A 1B 1C 1D 1上的射影为△A 1B 1C 1,故这两个平面所成二面角的平面角的余弦值为111123A B C AB ES S ∆∆=.例5.如图5,在正方体AC 1中,E ,F 分别为对角线BD1与棱CC 1的中点,求平面EFD 1与底面所成锐角的余弦值.解:11,,,,,1,2D E F D O CE EF D F ===1在下底面的射影分别为设正方体的棱长为易求得:D1111,,41cos D EF DOC DOC D EF D EF S S S S θθ∆∆∆∆∴∆====为直角三角形设所求的角为则 也可以先延长D 1F 交DC 的延长线于点Q,连接BQ,则BQ 为所求二面角的棱,再借助于直接法作出二面角的平面角,解略.评注: 例4,例5均属无棱二面角类型. 解法有:1.找或作出二面角的棱,将问题转化为有棱二面角,通过作出其平面角来求解(如例5).2.利用面积射影定理(cos α=SS ')来求(如例4,例5). 例6.如右图,正方体1111D C B A ABCD -中,E 为1AA 的中点,求二面角B DE B --1的大小。
高考中二面角大小的求法
高考中二面角大小的求法高考中二面角大小的求法发表日期:2008年10月8日 编辑:fuli 有599位读者读过此文河南省汝南幼儿师范学校(河南省汝南幼儿师范学校(463300463300463300)) 史松勇史松勇摘要摘要 本文结合高考试题谈了二面角的大小的求法,分为定义法、三垂线法、垂面法和空间本文结合高考试题谈了二面角的大小的求法,分为定义法、三垂线法、垂面法和空间向量法。
向量法。
关键字关键字 二面角二面角二面角 平面角平面角平面角 定义法定义法定义法 三垂线法三垂线法三垂线法 垂面法垂面法垂面法 空间向量法空间向量法空间向量法二面角的大小,是高中数学的重点与难点,同时也是高考的热点,常考常新,其求法各式二面角的大小,是高中数学的重点与难点,同时也是高考的热点,常考常新,其求法各式各样,尤其是向量法出现之前的高考,得凭借某些技巧,根据定义构造平面角,有时难度还是很大的,但通过现象看本质,我们也可以引申出一些求二面角大小的模式——定义法、三垂线法、垂面法等,另外还有求二面角大小的通法——向量法。
本文结合高考题,来谈谈这几种方法的应用,希望大家在考试过程中迅速识别模式,快速求出二面角的大小。
一、定义法一、定义法一、定义法二面角平面角的定义有三个条件:二面角平面角的定义有三个条件:二面角平面角的定义有三个条件:11、顶点在棱上;、顶点在棱上;22、边分别在两个半平面内。
、边分别在两个半平面内。
33、边与棱垂直。
因为空间的两条垂直不直观,难以识别,且顶点在棱上没有固定位置,具有开放性,这就造成了平面角位置的变化多端,这就造成了平面角位置的变化多端,不易作出,不易作出,但高考中的易作出的平面角顶点往往在特殊的位置,比如等腰三角形底边的中点;以棱为全等三角形公共边的垂足等。
只举两例说明: 例例1(2004年全国理)如右图,已知四棱锥P —ABCD ABCD,PB⊥AD,侧面,PB⊥AD,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°。
例谈求解二面角大小的几种方法
例谈求解二面角大小的几种方法解㊀曼㊀㊀房维维(哈尔滨师范大学ꎬ黑龙江哈尔滨150025)摘㊀要:求解二面角大小是高中数学立体几何中的重要内容ꎬ有利于丰富学生的数学知识ꎬ提升数学学科核心素养ꎬ激发学生数学学习的动力ꎬ培养学生的空间想象能力ꎬ所以对于高中生来讲ꎬ如何求解成为了重中之重.本文以普通高中教科书为基础ꎬ例谈运用定义法㊁补形法㊁摄影面积法和向量法求解二面角.关键词:定义法ꎻ补形法ꎻ摄影面积法ꎻ向量法中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0037-04收稿日期:2023-04-05作者简介:解曼(1997.7-)ꎬ女ꎬ硕士研究生ꎬ从事数字教学研究ꎻ房维维(1980.9-)ꎬ女ꎬ硕士ꎬ副教授ꎬ从事数学教学研究.㊀㊀中学数学中的二面角是立体几何的基础概念ꎬ值得学生思考重视ꎬ对于学生而言ꎬ只有在平时学习中多多积累求解二面角的方法ꎬ才能在问题探索中不断提高解题能力ꎬ提高数学核心素养.本文对求解二面角的方法进行归纳和总结ꎬ以供读者借鉴和参考.1定义法在定义法中ꎬ二面角的大小是用二面角的平面角来衡量的ꎬ就是在平面α和平面β的交线l上找一点ꎬ过该点在平面α和平面β内分别作垂直于棱的两条射线.如图1ꎬ射线OA与射线OB所夹的角øAOB就是所求的二面角.在定义法中ꎬ二面角的大小是用二面角的平面角来衡量的.适用范围:定义法是最直接的做法ꎬ它适用于比图1二面角图较明显的两个平面相交图形ꎬ在解题时只需要找出两个平面㊁两个射线及射线夹角即可ꎬ对于不太容易找出射线的图形可以借助辅助线来解决ꎬ如例1中的图形[1].例1㊀如图2ꎬ在三棱锥S-ABC中ꎬøSAB=øSAC=øABC=90ʎꎬSA=ABꎬSB=BCꎬ求二面角A-SC-B的平面角的正弦值.解析㊀如图3ꎬ取SC中点Eꎬ连接BEꎬ因为SB=BCꎬ所以әSBC是等腰三角形.图2㊀例1图㊀㊀㊀㊀㊀图3㊀例1定义法解析由等腰三角形三线合一知BEʅSC.过点A作AFʅSC于点Fꎬ过点E作EMʊAF交AC于点Mꎬ连接BMꎬ此时øMEB就是所求的二面角的平面角.设SA=2ꎬ则AB=2.因为øSAB=90ʎꎬ所以SB=22.因为øABC=90ʎꎬ所以AC=BC2+AB2=23.因为øSAC=90ʎꎬ所以SC=SA2+AC2=4.所以øSCA=30ʎꎬCE=2ꎬEM=233.由面积相等ꎬ知AF=SA ACSC=2ˑ234=3.因为әCEMʐәCFAꎬ所以EMAF=CMCA.所以CM=433ꎬAM=233.在RtәBEC中ꎬBE=BC2-CE2=2.由余弦定理ꎬ知cosøCAB=AC2+AB2-BC22AC AB=12+4-82ˑ23ˑ2=33ꎬBM2=AM2+AB2-2AM ABcosøCAB=129+4-2ˑ233ˑ2ˑ33=249ꎬcosøMEB=ME2+BE2-BM22ME BE=12/9+4-24/92ˑ2ˑ23/3=33.所以sinøMEB=63.所以二面角的正弦值为63.2补形法这种方法也是求解二面角大小的重要方法ꎬ通过补形能够顺利地作出二面角的平面角ꎬ从而整体上把握点㊁线㊁面之间的关系ꎬ与定义法有异曲同工之妙.适用范围:补形法顾名思义适用规则不完整的图形ꎬ利用辅助线将平面的图形完整化ꎬ使之有明确的交线ꎬ然后进行解题[2].例2㊀如图4ꎬ四棱锥P-ABCD中ꎬPAʅ平面ABCDꎬ四边形ABCD是一个直角梯形ꎬ其中PA=AD=CD=1ꎬAB=12ꎬøBAD=øADC=90ʎꎬ求平面PAD和平面PBC所成二面角的余弦值.图4㊀例2图㊀㊀㊀㊀㊀㊀㊀图5㊀例2解析图解析㊀如图5ꎬ延长DA和BC交于一点Eꎬ连接PEꎬ因为AB=12ꎬCD=1ꎬ四边形ABCD是一个直角梯形ꎬ所以ABʊCDꎬCDʅADꎬABʅADꎬAE=AD=1.因为PAʅ平面ABCDꎬ所以PAʅABꎬPAʅADꎬDE=AE+AD=2.所以PE=AE2+PA2=2ꎬPD=PA2+AD2=2.所以DE2=PE2+PD2.即PEʅPD.因为PAɘAD于点Aꎬ所以ABʅ平面PEDꎬCDʅ平面PED.所以CDʅPEꎬCDʅPD.因为PDɘCD于点Dꎬ所以PEʅ平面PCD.所以PEʅPC.又因为PEʅPDꎬ所以øCPD就是平面PAD和平面PBC所成的二面角.因为PC=PD2+CD2=3ꎬ所以cosøCPD=PDPC=63.所以平面PAD和平面PBC所成二面角的余弦值为63.以上是在图形中找二面角的平面角从而求出二面角的大小ꎬ除此之外ꎬ还可以用公式法来求解二面角ꎬ公式法的特点是代入公式中就可直接求出二面角的大小ꎬ使用方便ꎬ下面给出两种用公式求二面角的方法[3].3射影面积法利用公式cosθ=S射S原找出其中一个半平面内的多边形在另一个半平面内的射影ꎬ从而利用射影面积与原来面积的比值求出二面角的大小.适用范围:这种方法适合一个面在另一个面内的投影确定的图形[4]ꎬ对于这种方法我们依旧看例1.解析㊀如图6ꎬ过点B作BDʅAC于点Dꎬ图6㊀例1射影面积法图因为øSAB=øSAC=øABC=90ʎꎬ所以SAʅABꎬSAʅAC.所以SAʅ平面ABC.所以SAʅBD.又因为BDʅACꎬ所以BDʅ平面SAC.所以әSDC是әSBC在平面SAC内的投影.设SA=AB=2ꎬ则SB=BC=22ꎬAC=AB2+BC2=23ꎬDB=AB BCAC=2ˑ2223=263ꎬCD=BC2-BD2=22()2-263æèçöø÷2=433.设二面角A-SC-B的平面角为θꎬ则cosθ=SәSDCSәSBC=DC SA/2BC SB/2=43ˑ2/322ˑ22=33.所以sinθ=63.所以二面角的正弦值为63.4向量法在建立空间直角坐标系后ꎬ找出平面α和平面β的法向量n1ꎬn2ꎬ设二面角为θꎬθɪ0ꎬπ[]ꎬ利用公式cosθ=cos‹n1ꎬn2›=n1 n2n1 n2进行求解ꎬ注意‹n1ꎬn2›与二面角大小的关系ꎬ是相等还是互补ꎬ需要结合图形进行判断ꎬ如图7所示ꎬ当两条法向量的方向相同时ꎬ所成的二面角的平面角θ与法向量夹角大小互补ꎬ即cosθ=-cos‹n1ꎬn2›ꎬ当两条法向量的方向相反时ꎬ如图8所示ꎬ所成的二面角的平面角θ与法向量夹角大小相等ꎬ即cosθ=cos‹n1ꎬn2›.图7㊀两条法向量方向相同时㊀㊀图8㊀两条法向量方向相反时适用范围:向量法适用于所有能作平面直角坐标系的图形ꎬ通过找出两个半平面的法向量进而解出题目.其中ꎬ直角坐标系的建立是基础ꎬ而判断两平面的法向量是相等还是互补是难点和关键[5].例3㊀如图9所示ꎬ正方体ABCD-A1B1C1D1的棱长为1ꎬ求二面角A1-BD-C1的余弦值.图9㊀例9图解析㊀如图9ꎬ以D为坐标原点ꎬDAң的方向为x轴ꎬDCң的方向为y轴ꎬDD1ң的方向为Z轴建立空间直角坐标系ꎬ因为棱长为1ꎬ则D0ꎬ0ꎬ0()ꎬA11ꎬ0ꎬ1()ꎬB1ꎬ1ꎬ0()ꎬC10ꎬ1ꎬ1().所以DA1ң=1ꎬ0ꎬ1()ꎬDBң=1ꎬ1ꎬ0()ꎬDC1ң=0ꎬ1ꎬ1().设平面DA1B的法向量为m=xꎬyꎬz()ꎬ则DA1ңm=0.DBңm=0.{即x+z=0ꎬx+y=0.{所以m=1ꎬ-1ꎬ-1().设平面DBC1的法向量为n=aꎬbꎬc()ꎬ则DBңn=0ꎬDC1ңn=0.{即a+b=0ꎬb+c=0.{所以n=-1ꎬ1ꎬ-1().设平面DA1B和平面DBC1所成的二面角为θꎬ则cosθ=m nm n=13.所以二面角A1-BD-C1的余弦值为13[6].以上就是求解二面角大小的四种方法即相应的例题ꎬ在求解二面角的大小时可以根据不同的题型采取不同的方法ꎬ其中有的题型可以用多种方法来进行解决ꎬ需要视情况而定.参考文献:[1]王永军.精解二面角[J].科学咨询(教育科研)ꎬ2022(03):164-167.[2]吴壁章.浅谈二面角大小的求解方法[J].科教文汇(下旬刊)ꎬ2011(07):109-110.[3]杨竞达.求解二面角的策略初探[J].广西教育学院学报ꎬ2003(05):131-135.[4]王治伟.求解二面角问题的策略[J].数学教学通讯ꎬ2009(12):43-46.[5]张东.从2020年一道高考题谈二面角的求法[J].理科考试研究ꎬ2021ꎬ28(17):17-19.[6]郭兴甫.一道2020年全国高考立体几何题的多解及教学反思[J].理科考试研究ꎬ2021ꎬ28(01):5-9.[责任编辑:李㊀璟]。
求二面角的方法
解题宝典空间角主要包括异面直线所成的角、直线与平面所成的角、二面角.二面角是指从一条直线出发的两个半平面所组成的图形.求二面角的大小是一类常见的问题.本文重点介绍求二面角大小的四种方法:定义法、向量法、面积投影法、三垂线定理法.一、定义法过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.一般地,要求得二面角的大小只需要求出二面角的平面角的大小即可.在求二面角的大小时,我们可以根据二面角的平面角的定义来求解.首先在二面角的棱上选取一点,在两个面内作棱的垂线,则两条垂线的夹角,即为二面角的平面角,求得平面角的大小即可得到二面角的大小.例题:如图1,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥EB1C1;(2)若AE=A1E,求二面角B-EC-C1正弦值.图1图2解:(1)略;(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.如图2所示,在平面BCE内过B点作BM⊥CE于点M,取棱CC1的中点N,连结MN,EN.因为EC1=EC,所以EN⊥CC1,所以ΔCEN为直角三角形.因为BC⊥BE,所以ΔCEB为直角三角形.令AB=1,则BC=NC=1,BE=EN=2,CE=3,所以RtΔBEC≌RtΔNEC,所以MN⊥EC,则∠BMN即为二面角B-EC-C1的平面角.在RtΔBEC中,sin∠BCE=BE CE=BM BC,所以BM=,MN.在ΔBMN中,cos∠BMN=BM2+MN2-BN22BM∙MN=-12,则sin∠BMN=,故二面角B-EC-C1正弦值.利用定义法求二面角的大小的关键是作出二面角的平面角.在作图的过程中要充分利用题目条件中隐含的垂直关系,如等腰三角形三线合一的性质、菱形或正方形的对角线相互垂直、直角三角形中勾股定理及其逆定理等.另外在构造二面角的平面角时,常用的方法还有垂面法,即经过两个面的垂线的平面与两个平面的交线所夹的角即为二面角的平面角.二、三垂线法三垂线法是指利用三垂线定理求作二面角的平面角,求得二面角大小的方法.在求作二面角的平面角时,需过其中一个面内的一点作另一个面的垂线,再经过垂足作棱的垂线,连接该点与棱上的垂足,进而构造出与二面角的平面角相关的角,再结合图形中的垂直关系求得二面角的大小.以上述例题为例.解:如图3,连接BD,AC,交点为O,过点O作CE的垂线,垂足为P,连接BP.由三垂线定理可知BP垂直于CE,所以∠BPO即为所求二面角平面角的补角.设AB=1,由(1)可知AE=1,所以BE=2,CE=3.因为BC⊥BE,所以ΔBCE为直角三角形,所以RtΔBCP∽RtΔBCE.陈秀林图342解题宝典所以BP.在Rt△BOP 中,sin ∠BPO =BC BP=,即所求二面角正弦值为.此法与定义法的不同之处是将所求二面角的相关角置于直角三角形中,从而使解题的过程更加简洁.三、向量法向量法是通过空间向量的坐标运算,将所求的二面角转化为两个平面的法向量的夹角的方法.解题的思路是通过建立空间直角坐标系,求出两个平面的法向量,根据向量的数量积公式求出夹角,再利用法向量的夹角与二面角的关系来确定二面角的大小.值得说明的是,二面角的平面角与法向量的夹角的关系是相等或互补.以上述例题为例.解:(2)由(1)知∠BEB 1=90°.由题设知Rt△ABE ≌Rt△A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,建立如图4所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),所以 CB =(1,0,0),CE =(1,-1,1),CC 1=(0,0,2).设平面BCE 的法向量为n =(x ,y ,z ),则ìíî CB ∙n =0,CE ∙n =0,即{x =0,x -y +z =0,令y =-1,得n =(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则ìíî CC 1∙m =0,CE ∙m =0,即{2z =0,x -y +z =0,令x =1得m=(1,1,0).于是cos m,n =m ∙n |m |∙|n |=-12.所以二面角B -EC-C 1平面角正弦值为.向量的引入降低了立体几何问题的难度,但对同学们的运算能力提出了更高的要求.求法向量的原则是先找后求,即如果存在一条已知的直线与二面角的某一个平面垂直,则该直线的方向向量即可视为此平面的法向量.四、投影法投影法,即为构造出二面角的两个平面中的一个平面在另外一个平面内的投影,从而利用此平面与其投影的夹角θ来判断所求二面角的大小的方法.若该平面与其投影的面积分别为S 1,S 2,则cos θ=S 1S 2.θ与所求二面角的关系有两种,即相等或互补.以上述例题为例.解:如图5,连接BD 交AC 于点O ,连接EO .因为四边形ABCD 为正方形,所以BD ⊥AC ,所以点B 在面C 1CE 内的投影,三角形EOC 为ECB 的投影.设棱AB =1,由(1)可知AE =1,则AC =BE =2,EC =3,所以三角形OCE 的面积为S 1=12∙OC ∙AE =12,三角形BCE 的面积为S 2=12BC ∙BE =12×1×2.所以S 2S 1=42=12.所以面BCE 与面ECC 1所成锐二面角的余弦值为12,故二面角的正弦值为.在本题中,三角形ECB 与其在面ECC 1上的投影EOC 的夹角即为所求二面角的补角,而两角互补,则其正弦值相等,所以可直接利用投影法来求解.一般地,求二面角的问题主要有两类,即求有棱二面角的大小和无棱二面角的大小,虽然图形有所不同,但解题的方法基本上一致.同学们在解题的过程中要注意仔细审题,择优而用.(作者单位:江苏省大丰高级中学)图5图443。
求二面角大小的常用方法
cos
H3 - cosH1cos sinH1sinH2
H2,
其中 H为图6 中二
面角 A- l - B 的平面 角.
H1 = NABD ,
H2 = N CBD ,
图6
H3 = NABC,
当 H = 90b 时, 即 得 公 式 cos H3 = cosH1cosH2( 新教材, 高二下 B)
( 实质为二面角余弦定理的变形)
式变形即得本结论), A 、
图7
B 为 l 1 上的两点. AC L l 2, BD L l 2, 垂足分别为 C 、D 且
AC = m, BD = n, CD = d , AB = l ( 证明略)
=例 6> 如图8, 在二面角 A- l - B中A ,
B I A, C、DБайду номын сангаасI l , ABCD 为矩形, P I B, PA
定理都成立. 限于篇幅, 请同学们自己完成它
的证明.
5. 利用结论: / 过空间一点 P 分别向二面
角两个面引垂线, 若 P 在该二面角内或在其
对顶二面角内, 则二垂线所夹的角与所对二
面角的平面角互补; 若 P 在该二面角的补二
面角内, 则两垂线所夹的角与所对二面角的
平面角相等. 0 来快速解题.
仍以例 4 为例. 用此结论解答过程如下:
BC SB
=
2 2
故所求二面角的正切值为 22. 注意: 此法的关键是找到一个平面垂直
于一半平面, 要尽量在原图中找出. 同时, 当
所求二面角/ 无棱0 时, 要作出它的棱.
4. 运用射影定理 cosH =
S影 S原
.
=例 4> 如 图 4, 在 正 三棱 柱 ABC -
最新版,二面角求法及经典题型归纳
最新版,二面角求法及经典题型归纳立体几何中,二面角是指从一条直线出发的两个半平面所组成的图形,其中这条直线称为二面角的棱,而这两个半平面则被称为二面角的面。
二面角的平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角。
二面角的大小范围在0°到180°之间。
在求解二面角时,可以使用三垂线定理,即平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直。
此外,还可以使用二面角的平面角的定义法、垂面法和三垂线法。
其中,定义法是在棱上取一点,在两个半平面内作垂直于棱的两条射线,这两条射线所夹的角即为二面角的平面角。
垂面法是做垂直于棱的一个平面,这个平面与两个半平面分别有一条交线,这两条交线所成的角即为二面角的平面角。
三垂线法则是过一个半平面内一点(记为A)做另一个半平面的一条垂线,过这个垂足(记为B)再做棱的垂线,记垂足为C,连接AC,则∠ACB即为该二面角的平面角。
两个平面的法向量的夹角与这两个平面所成的二面角的平面角有着密切的关系。
在实际求解中,可以使用定义法来解题,并利用三角函数、正弦定理和余弦定理进行计算。
例如,在正方体ABCD-A1B1C1D1中,可以通过在二面角S-AMB中半平面ABM上的一已知点(B)向棱AM作垂线,得到垂足(F),然后在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,最后使用直角三角函数、正弦定理和余弦定理求解即可。
过正方形ABCD的顶点A作PA平面ABCD,设PA=AB=a,求二面角BPCD的大小。
三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
通常当点P在一个半平面上,就可以用三垂线定理法求二面角的大小。
本定理也提供了另一种添辅助线的一般规律。
例如,过二面角B-FC-C中半平面BFC上的已知点B作另一半平面FC的垂线,得垂足O;再过该垂足O作棱FC的垂线,得垂足P,连结起点与终点得斜线段PB,便形成了三垂线定理的基本构图(斜线PB、垂线BO、射影OP)。
二面角题型归纳及解题方法
αβa O A B 二面角题型归纳及解题方法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,我们分为三类问题六种解题方法。
从而给出二面角的通性通法。
第一类:有棱二面角的平面角的方法方法1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1、(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点 (II )求二面角的余弦值。
证(I )略解(II ):利用二面角的定义。
在等边三角形中过点作交于点,则点为AM 的中点,过F 点在平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB ∠FG∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角的大小为)36arccos(-举一反三:空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B -PC -A 的大小。
高考中二面角大小的求法
高考中二面角大小的求法二面角的大小,是高中数学的重点与难点,同时也是高考的热点,常考常新,其求法各式各样,尤其是向量法出现之前的高考,得凭借某些技巧,根据定义构造平面角,有时难度还是很大的,但通过现象看本质,我们也可以引申出一些求二面角大小的模式——定义法、三垂线法、垂面法等,另外还有求二面角大小的通法——向量法。
本文结合高考题,来谈谈这几种方法的应用,希望大家在考试过程中迅速识别模式,快速求出二面角的大小。
一、定义法二面角平面角的定义有三个条件:1、顶点在棱上;2、边分别在两个半平面内。
3、边与棱垂直。
因为空间的两条垂直不直观,难以识别,且顶点在棱上没有固定位置,具有开放性,这就造成了平面角位置的变化多端,不易作出,但高考中的易作出的平面角顶点往往在特殊的位置,比如等腰三角形底边的中点;以棱为全等三角形公共边的垂足等。
只举两例说明:例1(2004年全国理)如右图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°。
(1)求点P到平面ABCD的距离。
(2)求面APB与面CPB所成二面角的大小解:我们只求二面角的大小(以下例题同),即第2问。
取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG∥BC,FG= BC,∵AD⊥⊥PB,∴BC⊥PB,FG⊥PB,∴∠AGF是所求二面角的平面角。
∵AD⊥面POB,∴AD⊥EG,又PE=BE= ,∴EG⊥PB,且PEG=60°。
在Rt△PEG中,EG=PE?cos60°= ,在Rt△GAE中,AE= AD=1,于是tan∠GAE= = ,又∠AGF=π—∠GAE,所以所求二面角的大小为π—arctan= .本题就是利用等腰三角形底边上的中点与顶点的连线垂直于底边,以及平移垂直于棱的射线到中点构造二面角的平面角,利用平面角的定义使问题得以解决的。
解答二面角问题的三种措施
备考指南理能力.结合实例进行探讨.一、利用定义法一般地,在二面角的棱上选取一点,垂直于棱的射线,的平面角.面角的平面角;角形,根据正余弦定理、例1.如图1,四棱锥S -底面ABCD ,AD =2,DC =SD 点,∠ABM =60°,求二面角S -图1解:过B 点作BF ⊥AM ,过AC ,如图2所示,因为SD ⊥底面ABCD ,所以∠ADS =∠ADC =90°,因为DC =SD =2,所以Δ所以AC =AS ,因为AM ⊥SC ,GF ⊥AM ,中点,的中位线,点G 为AS 的中点,S -AM -B 的平面角,SA =AC =6,BM =2,3,=BF =3,GF 2+BF 2-GB 22GF ∙BF =,-B 的余弦值为最重要的一步便是找到二面角首先要根据二面角的平面角、AMB 及其棱AM ;然后在两BF ,GF ,则∠GFB 即为所求二将问题转.首先需根据题目中给出的来建立空间直角坐标系;然后求m 、n ;再根<m ,n >=m ∙n |m |∙|n |;最后还需根据.P -ABCD 中,PA ⊥平面ABCD ,∠BAD =120°,PA =AD =1,AB苏其亮54备考指南=2,M 、N(1)(2)解:(线为x 、y 则A N 12则 CM 设m则{令x 1设n则{n n 令x 2cos <直线为x 要先根据题意寻找垂其与二面然后根据平面几何知识,三角形的性质、平行四边形即可解题.棱锥S -ABC 中,SA ⊥平面垂直平分AC 、SC ,且交AC 、SC =BC ,求二面角E -BD -C 的、DB ,E 是SC 中点,SBC 的中线,则BE ⊥SC ,⋂DE =E ,BE 、DE ⊂平面BDE ,,所以SC ⊥BD .,BD ⊂平面ABC ,、SA ⊂平面SAC ,,平面BDE =DE ,平面SAC ⋂平⊥DC ,E -BD -C 的平面角,,所以SA ⊥AB ,SA ⊥AC ,2,SB =BC =22,AC =23,∠ACS =30°,所以∠EDC =60°,-C 的大小为60°..,DE 垂直平分AC 、SC ,即可.再在直角三角形SAB 、SAC 、即可解题.向量法、垂面法都是解答二面向却比较便捷,能有效.甘肃省白银市靖远县第一中学)55。
二面角的求法总结
二面角的求法总结
嘿,朋友们!今天咱就来好好聊聊二面角的求法总结!咱就说,这二面角啊,那可是立体几何里的一块儿硬骨头呀!
比如说,想象一下,有两个平面,就像两面墙似的,它们相交的那个角,那就是二面角啦!那怎么求这个角呢?咱可以用定义法呀!就像你要找到一个秘密宝藏的入口一样,得仔细去找那个关键的角。
比如有个图形,你通过仔细分析找到那两个平面的交线,然后在交线上找个点,向两个面做垂线,这垂线和交线组成的角不就是咱要找的二面角嘛!
还有三垂线法呢!你看,这就好比有个侦探在找线索,通过一些蛛丝马迹,运用三垂线定理来找到二面角。
比如说有个立体图形摆在那,你得开动脑筋,找出那些隐藏的垂线,然后顺着这个线索求出二面角,是不是很神奇?
再来说说射影面积法!哇哦,这可有意思啦!就像给一个物体照影子,通过影子的大小和形状来推断物体本身。
比如有个复杂的图形,你通过求出某个面在另一个面上的射影面积,再结合它们之间的关系,就能求出二面角啦,多有意思呀!
向量法你们可不能忘啊!这就像拥有了超能力一样,可以用向量这个强大的工具来解决二面角问题。
想象你是个超级英雄,拿着向量这个武器,勇敢地冲向那个复杂的立体图形,几下子就把二面角给搞定了!
总之,求二面角的方法那可真是多种多样啊!我们得像探险家一样,根据不同的情况选择合适的方法,不断去探索,去发现!我觉得吧,只要我们用心去学,认真去钻研,就没有搞不定的二面角!大家一起加油哦,让我们在数学的世界里尽情遨游吧!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二面角大小的求法的归类分析
一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;
例1在空间四边形ABCD中, AB=AC, DB=DC, 求二面角A-BC-D的大小.
例2.如图, 过正方形ABCD的顶点A作P A⊥平面ABCD, 设P A=A B=a,求二面角B-PC-D的大小.
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;
例2 在四棱锥P-ABCD中,ABCD是平
行四边形,PA⊥平面ABCD,PA=AB=a,
∠ABC=30°,求二面角P-BC-A的大小。
三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;
例3 在四棱锥P-ABCD中,ABCD是正方形,
PA⊥平面ABCD,PA=AB=a,求B-PC-D的大小。
p
A B
L
H
A
P
H
N 四、射影法:利用面积射影公式S
射
=S
原
cosθ,其中θ为平面角的大小,此
方法不必在图形中画出平面角;
例3 在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,
求平面PBA与平面PDC所成二面角的大小。
五、:对于一类没有给出棱的二面角,应先延伸两个
半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
例5、在四棱锥P-ABCD中,ABCD为正方形,
PA⊥平面ABCD,PA=AB=a,
求平面PBA与平面PDC所成二面角
的大小。
(补形化为定义法)
二面角的类型和求法可用框图展现如下:
l
A
B
P。