6.BPSK(DPSK)调制解调_标准实验报告

合集下载

实验三 二相BPSK(DPSK)调制解调实验(已完成)

实验三   二相BPSK(DPSK)调制解调实验(已完成)

实验三二相BPSK(DPSK)调制解调实验一. 实验目的1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。

2.了解载频信号的产生方法。

3.掌握二相绝对码与相对码的码变换方法。

二. 实验电路工作原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相位键控。

图9-1是二相PSK(DPSK)调制器电路框图。

图9-2是它的电原理图。

DPSK调制是采用码型变换法加绝对调相来实现,按键SW301,用来将D触发器Q 端输出置“1”。

DPSK是利用前后相邻码元对应的载波相对相移来表示数字信息的一种相移键控方式。

(二)解调实验:二相PSK(DPSK)解调器的总电路方框图如图9-6所示。

二相PSK(DPSK)的载波为1.024MHz,数字基带信号的码元速率有32Kbit/s。

从图9-6可见,该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。

1.二相(PSK,DPSK)信号输入电路由BG701(3DG6)组成射随器电路,对发送端送来的二相(PSK、DPSK)信号进行前后级隔离,由U701(LM311)组成模拟信号放大电路,进一步对输入小信号的二相(PSK、DPSK)信号进行放大后送至鉴相器1与鉴相器2分别进行鉴相。

图9-6 解调器总方框图三. 实验内容1.二相BPSK调制实验用内载波发生器产生的信号作输入载波信号来观察TP301~TP307各测量点的波形。

2.二相DPSK调制实验加入差分编码器电路来传输二相DPSK信号,即将开关K302置成2脚与3脚相连,其它开关设置不变,重做上述内容。

3.二相BPSK解调实验4.二相DPSK解调实验5.PSK解调载波提取实验四. 实验步骤及注意事项1.按下按键开关:K01、K02、K700。

2.跳线开关设置:K3012–3、K3021–2、K3031-2与3-4、K3042–3、K7012-3。

bpsk 实验报告

bpsk 实验报告

bpsk 实验报告BPSK实验报告引言BPSK(Binary Phase Shift Keying)是一种常用的数字调制方式,它将二进制数据转换成相位的变化来进行传输。

在本次实验中,我们将研究BPSK调制的原理、性能以及在通信系统中的应用。

一、BPSK调制原理BPSK调制是一种相位调制方式,它将二进制数据转换成两个相位状态:0对应0°相位,1对应180°相位。

这种相位变化可以通过正弦波进行表示。

在发送端,二进制数据经过调制器转换成相应的相位信号,然后通过信道传输到接收端。

在接收端,接收到的信号经过解调器解调,得到原始的二进制数据。

二、实验步骤1. 准备工作:搭建BPSK调制与解调实验电路。

将信号源与调制器连接,调制器与解调器连接,解调器与示波器连接。

2. 生成二进制数据:通过信号源生成一串二进制数据,作为待调制的信号。

3. BPSK调制:将二进制数据输入到调制器中,调制器将其转换成相应的相位信号。

通过示波器观察调制后的信号波形。

4. 信号传输:将调制后的信号通过信道传输到接收端。

5. BPSK解调:接收端的解调器将接收到的信号解调,得到原始的二进制数据。

通过示波器观察解调后的信号波形。

6. 性能评估:比较解调后的二进制数据与原始数据,计算误码率(Bit Error Rate, BER),并分析BER与信噪比(Signal-to-Noise Ratio, SNR)之间的关系。

三、实验结果与分析通过实验,我们观察到了BPSK调制与解调的波形,得到了解调后的二进制数据。

根据实验结果,我们计算出了不同SNR下的误码率。

通过绘制误码率-SNR曲线,我们可以看到误码率随着SNR的增加而逐渐减小。

这是因为较高的信噪比可以提高信号的质量,减少误码率。

在实际通信系统中,BPSK调制广泛应用于低速率的数字通信系统,特别是在低信噪比环境下。

由于BPSK调制只有两个相位状态,相对于其他调制方式,它的复杂度较低,抗干扰性能较好。

BPSK调制及解调实验报告

BPSK调制及解调实验报告

BPSK调制及解调实验报告实验目的:1.了解二进制调制的基本原理和BPSK调制的工作原理;2.掌握BPSK调制的实际操作步骤;3.了解BPSK解调的原理和实际操作步骤;4.通过实验,验证BPSK调制及解调系统的性能。

实验仪器:1.函数发生器2.1MHz双踪示波器3.BPSK调制及解调实验装置实验原理:二进制调制(Binary Phase Shift Keying,BPSK)是一种常用的数字调制方法,通过改变载波的相位来表示二进制数字0和1、在BPSK调制中,当输入信号为1时,调制后的信号发生180度的相位移动;当输入信号为0时,调制后的信号保持相同的相位。

1.产生基带二进制信号;2.将基带二进制信号进行调制,得到BPSK信号;3.通过载波和BPSK信号相乘,得到带载波的BPSK信号。

BPSK解调的基本原理是将接收到的信号与本地载波进行乘积运算,并通过低通滤波器滤除高频成分,得到解调后的二进制信号。

实验步骤:1.连接实验仪器,按照实验电路图将实验装置连接起来;2.在函数发生器上设置合适的频率、幅度和偏置,作为输入信号;3.调节函数发生器的频率和幅度,观察函数发生器输出信号和示波器上的波形;4.调节函数发生器的频率和幅度,使得示波器上的波形呈现BPSK调制后的波形特征;5.开始数据传输,通过改变输入信号的二进制位来模拟数据的传输;6.通过实时观察带载波的BPSK信号波形,验证BPSK调制的效果;7.将接收到的信号输入到解调器中,观察解调后的二进制信号的波形;8.通过比较发送的数据和接收的数据,验证BPSK解调的正确性和可靠性。

实验结果:经过实验,我们成功实现了BPSK调制及解调系统的搭建,并通过观察波形和比较数据的方法验证了其正确性和可靠性。

在BPSK调制过程中,输入为0和1时,输出的波形相位有明显的反转;在解调过程中,通过滤波器的处理,成功地恢复了输入信号的二进制数据。

实验总结:通过本次实验,我们深入了解了BPSK调制及解调的原理和实际操作步骤。

BPSK调制及解调实验报告

BPSK调制及解调实验报告

实验五BPSK调制及解调实验一、实验目的1、掌握BPSK调制和解调的基本原理;2、掌握BPSK数据传输过程,熟悉典型电路;3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念;4、熟悉BPSK调制载波包络的变化;5、掌握BPSK载波恢复特点与位定时恢复的基本方法;二、实验器材1、主控&信号源、9号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、BPSK调制解调(9号模块)实验原理框PSK调制及解调实验原理框图2、BPSK调制解调(9号模块)实验框图说明基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。

四、实验步骤实验项目一 BPSK调制信号观测(9号模块)概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。

本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。

将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。

3、此时系统初始状态为:PN序列输出频率32KHz。

4、实验操作及波形观测。

(1)以9号模块“NRZ-I”为触发,观测“I”;(2)以9号模块“NRZ-Q”为触发,观测“Q”。

(3)以9号模块“基带信号”为触发,观测“调制输出”。

思考:分析以上观测的波形,分析与ASK有何关系实验项目二 BPSK解调观测(9号模块)概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。

观测解调中间观测点TP8,深入理解BPSK解调原理。

1、保持实验项目一中的连线。

BPSK(DPSK)调制解调实验指导书

BPSK(DPSK)调制解调实验指导书

电子科技大学通信学院《二相BPSK(DPSK)调制解调实验指导书》二相BPSK(DPSK)调制解调实验班级学生学号教师二相BPSK(DPSK)调制解调实验指导书二相BPSK(DPSK)调制解调实验一、实验目的1、掌握二相BPSK(DPSK)调制解调的工作原理。

2、掌握二相绝对码与相对码的变换方法。

3、熟悉BPSK(DPSK)调制解调过程中各个环节的输入与输出波形。

4、了解载波同步锁相环的原理与构成,观察锁相环各部分工作波形。

5、了解码间串扰现象产生的原因与解决方法,能够从时域和频域上分析经过升余弦滚降滤波器前后的信号。

6、掌握Matlab软件的基本使用方法,学会Simulink环境的基本操作与应用。

二、实验原理数字信号载波调制有三种基本的调制方式:幅移键控(ASK),频移键控(FSK)和相移键控(PSK)。

它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。

PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优于ASK幅移键控和FSK频移键控。

由于PSK调制具有恒包络特性,频带利用率比FSK高,并在相同的信噪比条件下误码率比FSK低。

同时PSK调制的实现也比较简单。

因此,PSK技术在中、高数据传输中得到了十分广泛的应用。

BPSK是利用载波相位的变化来传递数字信息,而振幅和频率保持不变。

在BPSK中,通常用初始相位0和π分别表示二进制“1”和“0”。

其调制原理框图如图1所示,解调原理框图如图2所示。

图1 BPSK的模拟调制方式由于在BPSK 信号的载波恢复过程中存在着载波相位0 和180 的不确定性反向,所以在实际的BPSK 通信系统设计中,往往采用差分编解码的方法克服这个问题。

差分编解码是利用前后信号相位的跳变来承载信息码元,不再是以载波的绝对相位传输码元信息。

差分编解码的原理可用下式描述。

1n n n d b d -=⊕ 1ˆˆˆn n n b d d -=⊕ 其中第一个公式为差分编码原理,第二个公式为差分解码原理。

二相BPSK(DPSK)调制解调实验

二相BPSK(DPSK)调制解调实验

电子科技大学通信学院《通信原理及同步技术系列实验八》二相BPSK(DPSK)调制解调实验班级学生学号教师二相BPSK(DPSK)调制解调实验指导书二相BPSK(DPSK)调制解调实验一、实验目的1、掌握二相BPSK(DPSK)调制解调的工作原理。

2、掌握二相绝对码与相对码的变换方法。

3、熟悉BPSK(DPSK)调制解调过程中各个环节的输入与输出波形。

4、了解载波同步锁相环的原理与构成,观察锁相环各部分工作波形。

5、了解码间串扰现象产生的原因与解决方法,能够从时域和频域上分析经过升余弦滚降滤波器前后的信号。

6、掌握Matlab软件的基本使用方法,学会Simulink环境的基本操作与应用。

二、实验原理数字信号载波调制有三种基本的调制方式:幅移键控(ASK),频移键控(FSK)和相移键控(PSK)。

它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。

PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优于ASK幅移键控和FSK频移键控。

由于PSK调制具有恒包络特性,频带利用率比FSK高,并在相同的信噪比条件下误码率比FSK低。

同时PSK调制的实现也比较简单。

因此,PSK技术在中、高数据传输中得到了十分广泛的应用。

BPSK是利用载波相位的变化来传递数字信息,而振幅和频率保持不变。

在BPSK中,通常用初始相位0和π分别表示二进制“1”和“0”。

其调制原理框图如图1所示,解调原理框图如图2所示。

图1 BPSK的模拟调制方式由于在BPSK 信号的载波恢复过程中存在着载波相位0 和180 的不确定性反向,所以在实际的BPSK 通信系统设计中,往往采用差分编解码的方法克服这个问题。

差分编解码是利用前后信号相位的跳变来承载信息码元,不再是以载波的绝对相位传输码元信息。

差分编解码的原理可用下式描述。

1n n n d b d -=⊕ 1ˆˆˆn n n b d d -=⊕ 其中第一个公式为差分编码原理,第二个公式为差分解码原理。

通信原理教案实验六二相BPSKDOSK调制解调实验

通信原理教案实验六二相BPSKDOSK调制解调实验

通信原理教案实验六二相BPSKDOSK调制解调实验一、实验目的1.学习二相(BPSK/DPSK)调制的原理和方法。

2.掌握二相调制信号的产生与解调方法。

3.通过实验验证二相调制的正确性。

二、实验设备1.计算机2.MATLAB软件三、实验原理1.二相调制原理二相调制是根据调制信号的不同进行两种相位的选择,BPSK(二进制位移键控)是一种最常用的二相调制方式之一,其原理如下:-数据信号经过二进制调制器产生调制信号。

-如果数据为1,调制器选择正弦波相位为0度;-如果数据为0,调制器选择正弦波相位为180度。

2.二相解调原理二相解调是将接收到的信号与本地振荡器产生的相干载波相乘,通过相乘后的信号的正弦波频率成分提取出调制信号。

-接收信号与本地振荡器产生的正弦波进行相乘。

-通过低通滤波器滤除高频部分。

-得到解调后的信号。

四、实验步骤1.生成调制信号-设置数据序列为[101101]。

-设置数据比特率为1MHz。

-创建二进制调制器对象。

-通过调制器对象将数据序列调制为二进制调制信号。

-设置调制载波频率为10MHz。

2.信号调制以及绘图-将调制信号与本地振荡器产生的正弦波进行相乘。

-根据采样频率绘制调制信号的频谱图。

3.生成解调信号-将调制信号与本地振荡器产生的正弦波进行相乘。

-使用低通滤波器滤除高频部分。

-得到解调后的信号。

-绘制解调信号的频谱图和时域图。

4.实验结果分析-分析调制信号和解调信号的频谱图和时域图。

五、实验结果及分析实验结果可以通过MATLAB绘制的频谱图和时域图进行分析。

通过观察频谱图,可以看到调制信号和解调信号是否在正确的频率上。

通过观察时域图,可以分析调制信号和解调信号是否包含了正确的数据序列。

六、实验小结通过本次实验,我们学习了二相BPSK/DPSK调制的原理和方法,并且通过MATLAB实现了二相调制信号的产生和解调方法。

通过实验结果的分析,我们可以验证二相调制的正确性。

通过本次实验,我们对通信原理中的二相调制有了更深入的了解,并且掌握了实际操作的方法。

bpsk调制及解调原理实验报告

bpsk调制及解调原理实验报告

bpsk调制及解调原理实验报告BPSK 调制及解调原理实验报告一、实验目的本实验旨在深入理解二进制相移键控(BPSK)调制及解调的原理,通过实际操作和观测,掌握 BPSK 信号的产生、传输和恢复过程,分析其性能特点,并探讨相关参数对系统性能的影响。

二、实验原理(一)BPSK 调制原理BPSK 是一种最简单的相移键控方式,它使用两个相位(通常为 0和π)来表示二进制数字信息。

在 BPSK 中,当输入的二进制数字为“0”时,调制后的载波相位为 0;当输入的二进制数字为“1”时,调制后的载波相位为π。

假设输入的二进制序列为{an},载波信号为cos(ωct),则 BPSK 调制后的信号可以表示为:s(t) =an cos(ωct +φn)其中,当 an = 0 时,φn = 0;当 an = 1 时,φn =π。

(二)BPSK 解调原理BPSK 的解调通常采用相干解调的方法。

相干解调需要一个与发送端同频同相的本地载波。

接收到的 BPSK 信号与本地载波相乘后,通过低通滤波器滤除高频分量,再进行抽样判决,恢复出原始的二进制数字信息。

具体的解调过程如下:接收信号 r(t) = s(t) + n(t) (其中 n(t) 为加性高斯白噪声)与本地载波cos(ωct) 相乘得到:r(t) cos(ωct) =an cos(ωct +φn) +n(t) cos(ωct)= 1/2 an 1 +cos(2ωct +φn) +n(t) cos(ωct)经过低通滤波器后,滤除2ωc 频率成分,得到:1/2 an +n(t) cos(ωct)对其进行抽样判决,若抽样值大于 0,则判决为“0”;若抽样值小于0,则判决为“1”。

三、实验内容与步骤(一)实验内容1、产生 BPSK 调制信号2、加入高斯白噪声3、进行相干解调4、分析不同信噪比下的误码率性能(二)实验步骤1、利用编程语言(如 MATLAB)生成随机的二进制数字序列作为输入信号。

实验报告书PSK(DPSK)调制与解调实验

实验报告书PSK(DPSK)调制与解调实验

电子信息学院实验报告书课程名:《通信原理》题目:PSK(DPSK)调制与解调实验评语:成绩:指导教师:杨宇批阅时间:年月日1、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2、掌握产生PSK(DPSK)信号的方法。

3、掌握PSK(DPSK)信号的频谱特性。

2、实验内容1、观察绝对码和相对码的波形。

2、观察PSK(DPSK)信号波形。

3、观察PSK(DPSK)信号频谱。

4、观察PSK(DPSK)相干解调器各点波形。

3、实验原理1、2PSK(2DPSK)调制原理2PSK 信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图13-1所示。

设二进制单极性码为a n ,其对应的双极性二进制码为b n ,则2PSK 信号的一般时域数学表达式为: t nT t g b t S c n s n PSK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑(13-1)其中: ⎩⎨⎧=-=P a Pa b n n n -时,概率为=当+时,概率为当11101则(13-1)式可变为:()()⎪⎪⎩⎪⎪⎨⎧=+⎥⎦⎤⎢⎣⎡-=+⎥⎦⎤⎢⎣⎡-∑∑10cos )(0cos )(2n c ns n c n s PSK a t nT t g a t nT t g t S 当当)=(ωπω (13-2) 图13-1 2PSK 信号的时域波形示意图由(13-1)式可见,2PSK 信号是一种双边带信号,其双边功率谱表达式与2ASK 的几乎相同,即为: +⎥⎦⎤⎢⎣⎡-++-=222)()()1()(c f f G c f f G P P f f P s PSK [])()()0()1(41222c c s f f f f G P f -++-ζζ (13-3)2PSK 信号的谱零点带宽与2ASK 的相同,即 s s s c s c PSK T R R f R f B /22)()(2==--+=(Hz ) (13-4)我们知道,2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。

BPSK调制及解调实验报告

BPSK调制及解调实验报告

BPSK调制及解调实验报告实验报告一、实验目的1.了解BPSK调制及解调原理;2.掌握BPSK调制器和解调器的搭建方法;3.能够通过实验验证BPSK调制及解调的可行性。

二、实验器材1.信号源;2.信号调制器;3.信号解调器;4.示波器;5.各种连接线。

三、实验原理BPSK(Binary Phase Shift Keying)是一种基础的数字调制方式,也是最简单的相位调制方式之一、在BPSK调制中,通过将二进制数码1和0映射到不同的相位上来表示数字信号。

调制原理:1.将数字信号经过码元映射器将二进制数据转化为模拟信号;2.采用相位调制的方法,将数据信号的1和0分别对应到不同的相位上;3.将调制好的信号经过信号源发送出去。

解调原理:1.收到经过BPSK调制的信号;2.根据接收到的信号相位的变化来判断接收到的数据位是1还是0。

四、实验步骤1.搭建BPSK调制系统:将信号源连接到信号调制器,设置调制方式为BPSK,并设置合适的调制参数;2.搭建BPSK解调系统:将已调制的信号通过信号解调器接收并解调,将解调后的信号传送到示波器;3.调节信号源的参数,观察示波器上的波形变化,并记录下相应的数据;4.分析记录的数据,验证BPSK调制及解调的可行性。

五、实验结果与分析在实验中,通过调节信号源的参数和观察示波器上的波形变化,我们记录了一系列数据,如表格所示:调制参数,解调参数,实际发送数据,解调数据---------,---------,-------------,---------...,...,...,......,...,...,......,...,...,...根据记录的数据,我们可以对BPSK调制及解调的可行性进行分析。

通过观察解调数据与实际发送数据是否一致,可以评估解调器的正确性和精确度。

此外,还可以通过波形图的形状和幅度变化来验证调制及解调过程中信号的完整性和准确性。

六、实验总结BPSK调制及解调是一种基础的数字调制技术,通过将二进制数据映射到不同的相位来实现信号传输。

实验报告 bpsk

实验报告 bpsk

实验报告 bpsk实验报告:BPSK调制技术在通信系统中的应用摘要:本实验报告旨在介绍二进制相移键控(BPSK)调制技术在通信系统中的应用。

首先,我们将介绍BPSK调制技术的原理和特点,然后详细描述实验过程和结果,并分析实验数据。

最后,我们将讨论BPSK调制技术在现实通信系统中的应用前景。

一、引言随着信息技术的迅猛发展,通信系统的需求日益增长。

调制技术作为通信系统中的关键环节,对信息传输的质量和效率起着至关重要的作用。

BPSK调制技术作为一种简单而有效的调制技术,被广泛应用于数字通信系统中。

二、BPSK调制技术的原理和特点BPSK调制技术是一种基于相位的调制技术,将二进制信号转换为相位的变化。

具体而言,BPSK调制技术将“0”和“1”两个二进制信号分别映射为相位为0和相位为π的两个载波,通过改变相位来传输信息。

相比于其他调制技术,BPSK调制技术具有以下几个特点:1. 抗噪声能力强:BPSK调制技术通过相位的变化来传输信息,相位的变化幅度较小,因此在噪声环境下具有较好的抗干扰能力。

2. 简单实现:BPSK调制技术的实现相对简单,只需对载波进行相位的调整即可。

3. 高效传输:BPSK调制技术可以实现高效的信息传输,每个信号元素可以携带1个比特的信息,从而提高了传输效率。

三、实验过程和结果为了验证BPSK调制技术在通信系统中的应用效果,我们进行了一系列实验。

实验中,我们使用Matlab软件进行仿真,并搭建了一个简单的通信系统。

首先,我们生成了一组随机的二进制信号,并将其进行BPSK调制。

然后,我们通过信道模型进行信号传输,并在接收端进行解调。

最后,我们对接收到的信号进行解码,得到原始的二进制信号。

实验结果显示,经过BPSK调制和解调后,接收端得到的信号与发送端的信号基本一致,证明了BPSK调制技术的有效性和可靠性。

此外,我们还通过实验数据分析了不同信噪比下的误码率和传输速率,验证了BPSK调制技术在不同环境下的性能。

bpsk调制及解调实验报告

bpsk调制及解调实验报告

BPSK调制及解调实验报告实验目的本实验旨在通过实践,深入理解二进制相移键控(BPSK)调制及解调的原理和实现方法。

实验原理BPSK是一种常用的调制技术,它将二进制数字0和1分别映射为相位0度和180度的信号。

调制器通过改变载波信号的相位来实现信号的调制,解调器通过检测信号的相位来实现信号的解调。

实验步骤1.准备工作:搭建实验所需的硬件平台,包括信号发生器、混频器、示波器等设备。

2.设置信号发生器:将信号发生器的频率设置为所需的载波频率,幅度设置为适当的数值。

3.设置混频器:将混频器的输入端连接到信号发生器的输出端,输出端连接到示波器的输入端。

4.调制信号:将二进制数据流输入到调制器,根据数据流的值选择相应的相位(0度或180度)来调制载波信号。

5.发送信号:将调制后的信号发送到混频器,混频器将调制信号与载波信号相乘,并输出到示波器上进行观察。

6.解调信号:在接收端,将接收到的信号输入到解调器中进行解调。

解调器根据信号的相位来判断数据流的值(0或1)。

7.观察解调结果:将解调器的输出连接到示波器上,观察解调后的信号波形是否与原始数据相匹配。

实验结果通过以上步骤,我们成功实现了BPSK调制及解调的过程,并获得了正确的解调结果。

观察示波器上的波形,我们可以清晰地看到调制信号的相位变化以及解调信号的恢复过程。

实验分析BPSK调制及解调是一种简单直观的调制技术,它在数字通信系统中得到了广泛应用。

通过本次实验,我们更加深入地了解了BPSK调制及解调的原理和实现过程,同时也对数字通信系统的工作原理有了更清晰的认识。

实验总结本次实验通过实际操作,深入理解了BPSK调制及解调的原理和实现方法。

通过观察示波器上的波形,我们成功地验证了BPSK调制及解调的正确性。

这对于我们进一步学习和实践数字通信系统具有重要意义。

参考文献暂无注意:该实验报告仅为参考样例,具体内容和格式要根据实际情况进行调整。

BPSK,DBPSK调制及解调、载波同步实验报告

BPSK,DBPSK调制及解调、载波同步实验报告

实验十一BPSK调制及解调实验一、实验目的1、掌握BPSK调制和解调的基本原理2、掌握BPSK数据传输过程,熟悉典型电路3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念;4、熟悉BPSK调制载波包络的变化5、掌握BPSK载波恢复特点与位定时恢复的基本方法二、实验器材1、主控&信号源、9号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理2、BPSK调制解调(9号模块)实验框图说明基带信号的1电平和电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。

四、实验步骤实验项目一BPSK调制信号观测(9号模块)1、连线2、开电、设置主控菜单3、此时系统初始状态为:PN序列输出频率32KHz4、实验操作及波形观测。

(1)以9号模块“NRZ-I”为触发,观测“T”;(2)以9号模块“NRZ-Q”为触发,观测“Q”。

(3)以9号模块“基带信号”为触发,观测“调制输出”。

思考:分析似上观测的波形,分析与ASK有何关系?ASK基带中带有直流分量,与载波相乘后有载波分量;BPSK反相后基带信号由单极性变成双极性,相乘后,就没有载波分量,也就是没有频谱中没有尖峰。

实验项目二BPSK解调观测(9号模块)概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。

观测解调中间观测点TP8,深入理解BPSK解调原理。

1、保持实验项目一中的连线。

将9号模块的S1拨为“0000”2、以9号模块的“基带信号”为触发,观测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。

3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。

观测“BPSK解调输出”的变化。

bpsk调制解调实验报告

bpsk调制解调实验报告

bpsk调制解调实验报告BPSK调制解调实验报告引言BPSK(Binary Phase Shift Keying)调制解调是一种常用的数字通信调制技术,它广泛应用于无线通信、卫星通信以及数字电视等领域。

本实验旨在通过实际操作,深入理解BPSK调制解调的原理和过程,并通过实验结果进行验证和分析。

一、实验目的本实验的主要目的如下:1. 理解BPSK调制解调的基本原理;2. 掌握BPSK调制解调的实现方法;3. 通过实验验证BPSK调制解调的性能。

二、实验原理BPSK调制解调是基于二进制信号的调制解调技术,它将数字信号转换为连续的正弦波信号,并通过正弦波信号的相位来表示二进制信号的“0”和“1”。

具体原理如下:1. BPSK调制BPSK调制将二进制信号转换为相位不同的正弦波信号。

当二进制信号为“0”时,相位不变;当二进制信号为“1”时,相位反转180度。

这样,通过正弦波信号的相位变化,就能够表示二进制信号的“0”和“1”。

2. BPSK解调BPSK解调是将接收到的正弦波信号转换为对应的二进制信号。

解调过程中,通过检测正弦波信号的相位变化,判断二进制信号的“0”和“1”。

如果相位变化为180度,则判断为“1”;如果相位不变,则判断为“0”。

三、实验步骤1. 实验准备连接信号发生器、BPSK调制解调器和示波器,确保各设备正常工作。

2. BPSK调制实验a. 设置信号发生器的频率和幅度,生成二进制信号。

b. 将二进制信号输入到BPSK调制器中,进行调制。

c. 将调制后的信号输出到示波器,观察波形变化。

3. BPSK解调实验a. 调整信号发生器的频率和幅度,生成BPSK调制后的信号。

b. 将接收到的信号输入到BPSK解调器中,进行解调。

c. 将解调后的信号输出到示波器,观察波形变化。

四、实验结果与分析通过实验观察和测量,得到了BPSK调制解调的波形图。

根据波形图,可以得出以下结论:1. BPSK调制波形BPSK调制后的波形图呈现出两种状态:相位不变和相位反转180度。

通信原理教案 实验六 二相 BPSK DOSK 调制解调实验

通信原理教案 实验六  二相 BPSK DOSK 调制解调实验

实验六二相BPSK、DPSK调制解调实验(理论课:教材第七章P188)实验内容1.二相BPSK调制解调实验2.二相DPSK调制解调实验3.PSK解调载波提取实验实验目的1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。

2.了解载频信号的产生方法。

3.掌握二相绝对码与相对码的码变换方法。

一、二相BPSK、DPSK调制实验(一)、重点概念回顾关于调制的概念,所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。

广义的调制分为基带调制和带通调制(也成为载波调制)在无线通信中和其他场合,调制一词均指载波调制。

载波调制,就是用调制信号去控制载波的参数的过程,使载波的某一个或某几个参数按照调制信号的规律而变化。

调制信号是指来自信息源的消息信号(基带信号)这些信号可以是模拟的,也可以是数字的。

未受调制的周期性振荡信号称为载波,它可以是正弦波,也可以是非正弦波(如周期性脉冲序列)。

载波调制后称为已调信号,它含有调制信号的全部特征。

解调(也称检波)则是调制的逆过程,其作用是将已调信号中的调制信号恢复出来。

1调制方式有很多,主要分两大类:连续波调制和脉冲调制。

连续波调制包括三类有:线性调制,非线性调制,数字调制。

1、线性调制里有:AM常规双边带调制、DSB双边带调制、SSB单边带调制、VSB残留边带调制。

2、非线性调制里有:FM频率调制、PM相位调制两种3、数字调制里有:ASK振幅键控、FSK频率键控和PSK、DPSK、QPSK相移键控。

脉冲调制方式里有两大类:脉冲模拟调制和脉冲数字调制、1、脉冲模拟调制有三种:PAM脉冲幅度调制、PDM(PWM)脉冲宽度调制和PPM脉位调制2、脉冲数字调制有四种:PCM脉码调制、增量调制、DPCM差分脉码调制和ADOCM其它话音编码方式。

本节课程主要讲的是数字调制里的相移键控调制PSK DPSK方式。

首先几个名词介绍:1、绝对移相调制(BPSK):二相绝对移相调制(PSK或BPSK):是采用直接调相法来实现的,就是用基带信号直接控制载波相位的变化来实现相位调制的。

bpsk实验报告

bpsk实验报告

bpsk实验报告BPSK实验报告引言:在现代通信系统中,调制技术是非常重要的一环。

调制技术可以将数字信号转换为模拟信号,以便在传输过程中进行有效的传输和接收。

二进制相移键控(Binary Phase Shift Keying,BPSK)是一种常见的调制技术,本实验将通过搭建BPSK调制解调系统来深入了解其原理和性能。

一、实验目的本实验的主要目的是通过搭建BPSK调制解调系统,掌握BPSK调制解调的原理和过程,并测量其性能参数,包括误码率和信噪比。

二、实验原理BPSK调制是一种基带数字调制技术,它将二进制数字信号转换为相位的变化。

在BPSK调制中,数字“1”和“0”分别对应着不同的相位,通常为0°和180°。

在发送端,将输入的二进制信号转换为相应的相位,然后通过信道传输。

在接收端,通过解调器将接收到的信号转换为二进制信号。

三、实验器材和步骤1. 实验器材:- 信号发生器- BPSK调制解调器- 示波器- 信道模型- 计算机2. 实验步骤:1) 将信号发生器设置为产生二进制数字信号。

2) 将信号输入到BPSK调制解调器的发送端。

3) 将BPSK调制解调器的接收端连接到示波器。

4) 调整信号发生器的参数,观察示波器上的输出波形。

5) 测量误码率和信噪比,记录实验结果。

四、实验结果与分析通过实验,我们得到了一系列的实验结果。

首先,我们观察到示波器上的输出波形,可以清晰地看到相位的变化。

当输入为“1”时,波形相位发生180°的变化;当输入为“0”时,波形相位保持不变。

这验证了BPSK调制的原理。

接下来,我们进行了误码率和信噪比的测量。

通过对接收到的信号进行解调,并与发送端的信号进行比较,我们可以计算出误码率。

同时,我们还测量了信噪比,即信号与噪声的比值。

这些参数是评估调制解调系统性能的重要指标。

根据实验数据,我们可以分析误码率和信噪比之间的关系。

当信噪比较高时,误码率较低,说明系统的抗干扰能力较强。

《移动通信--BPSK调制与解调》报告

《移动通信--BPSK调制与解调》报告

移动通信--BPSK调制与解调1. 引言移动通信是现代通信技术的重要组成部分,其中调制和解调技术是信号的传输和接收过程中的关键环节。

本报告将重点讨论二进制相移键控(Binary Phase Shift Keying,BPSK)调制和解调技术。

2. BPSK调制原理BPSK调制是一种基于相位的调制技术,它将输入的二进制数据流转换为相位差为180度的正弦信号。

具体来说,逻辑1和逻辑0分别对应不同相位的正弦信号,经过BPSK调制后的信号可以被传输至接收端进行解调。

BPSK调制可以用如下的数学表示:$$s(t) = A \\cdot \\cos(2\\pi f_c t + \\pi m)$$其中,$A$表示幅度,$f_c$表示载波频率,$t$表示时间,$m$表示输入信号。

对于BPSK调制,$m$的值只能为逻辑1或逻辑0。

3. BPSK解调原理BPSK解调是将接收到的BPSK调制信号恢复为原始的二进制数据流的过程。

解调过程基于相位差的改变来判断接收到的信号是逻辑1还是逻辑0。

BPSK解调可以用如下的数学表示:$$\\hat{m} = \\begin{cases}1, & \\text{if} \\ \\Delta\\phi > 0 \\\\0, & \\text{if} \\ \\Delta\\phi < 0\\end{cases}$$其中,$\\hat{m}$表示解调后的输出,$\\Delta\\phi$表示接收到的相位差。

如果相位差大于0,则认为接收到的是逻辑1;如果相位差小于0,则认为接收到的是逻辑0。

4. BPSK调制与解调的实现BPSK调制与解调可以通过软件仿真或硬件电路来实现。

在软件仿真方面,可以利用MATLAB等工具进行实现。

通过BPSK调制信号和加入噪声模拟信道,然后进行BPSK解调,可以得到解调后的输出。

在硬件电路方面,可以利用电子元器件进行设计和实现。

通过使用相位锁定环路电路和时钟恢复电路等技术来实现BPSK解调。

bpsk调制实验报告

bpsk调制实验报告

bpsk调制实验报告BPSK调制实验报告引言BPSK(Binary Phase Shift Keying)是一种数字调制技术,常用于无线通信中。

本实验旨在通过搭建BPSK调制系统,验证其性能和可靠性,并对调制信号进行分析和解读。

一、实验目的本实验的主要目的有以下几点:1. 理解BPSK调制原理及其在数字通信中的应用;2. 搭建BPSK调制系统,实现信号的调制和解调;3. 分析调制信号的频谱特性和误码率。

二、实验设备和方法1. 实验设备:本实验使用的设备包括信号发生器、混频器、低通滤波器、示波器等。

2. 实验方法:(1)搭建BPSK调制系统:将信号发生器的输出信号与待调制信号相乘,然后经过混频器进行调制,再通过低通滤波器进行信号滤波。

(2)设置信号发生器的频率和幅度,调整混频器和滤波器的参数,使得调制后的信号能够在示波器上观察到。

(3)通过示波器观察调制信号的波形,并进行分析和解读。

(4)通过调整信号发生器的频率和幅度,观察调制信号的频谱特性。

(5)通过改变信道中的噪声水平,观察解调后的信号的误码率。

三、实验结果与分析1. 调制信号波形观察:通过示波器观察到的调制信号波形如图1所示。

可以看出,BPSK调制后的信号在两个相位上进行切换,分别对应二进制的0和1。

这种相位切换的方式使得信号的频谱较窄,能够提高信号的抗干扰能力。

2. 调制信号频谱特性:通过改变信号发生器的频率和幅度,观察到的调制信号频谱如图2所示。

可以看出,调制信号的频谱主要集中在载波频率附近,且具有明显的对称性。

这是由于BPSK调制中只有两个相位,相位切换导致频谱的集中和对称性。

3. 误码率分析:通过改变信道中的噪声水平,观察到的误码率如图3所示。

可以看出,当信道噪声较小时,解调后的信号几乎没有误码;但当信道噪声增加时,误码率逐渐上升。

这是由于噪声的存在导致接收信号与发送信号之间存在误差,从而引起误码。

四、实验总结通过本实验的搭建和观察,我们对BPSK调制的原理和性能有了更深入的了解。

bpsk调制及解调实验报告

bpsk调制及解调实验报告

bpsk调制及解调实验报告BPSK调制及解调实验报告引言无线通信技术的快速发展使得我们能够随时随地进行无线通信,而调制和解调技术则是无线通信中的重要环节。

本实验旨在通过实际操作,深入了解二进制相移键控(BPSK)调制与解调的原理和方法。

一、实验目的1. 了解BPSK调制与解调的基本原理;2. 掌握BPSK调制与解调的实验操作方法;3. 通过实验验证BPSK调制与解调的正确性。

二、实验原理BPSK调制是一种基本的数字调制方式,其原理是将二进制数字序列转换为相位信息,通过改变载波的相位来传输信息。

在BPSK调制中,二进制数字“0”和“1”分别对应载波相位的0度和180度。

BPSK解调的原理与调制相反,将接收到的信号与参考信号进行相乘,然后通过低通滤波器去除高频成分,得到原始的二进制数字序列。

三、实验器材1. 信号发生器:用于产生载波信号;2. BPSK调制解调器:用于进行BPSK调制与解调;3. 示波器:用于观察调制信号和解调信号。

四、实验步骤1. 连接实验器材:将信号发生器的输出与BPSK调制解调器的输入相连,将BPSK调制解调器的输出与示波器相连;2. 设置信号发生器:将信号发生器的频率设置为合适的数值,使其能够产生所需的载波信号;3. 进行BPSK调制:在BPSK调制解调器中设置二进制数字序列,观察示波器上的调制信号;4. 进行BPSK解调:将调制信号输入到BPSK调制解调器中,观察示波器上的解调信号;5. 调整参数:根据实际情况,适当调整信号发生器的频率和BPSK调制解调器的参数,观察调制信号和解调信号的变化。

五、实验结果与分析通过实验操作,我们成功地进行了BPSK调制与解调。

观察示波器上的调制信号和解调信号,可以清晰地看到载波相位的变化,以及解调信号中的二进制数字序列。

在实验过程中,我们发现调制信号的频率和相位与信号发生器的设置有关,通过调整信号发生器的频率,我们可以改变调制信号的频率;通过调整BPSK调制解调器的参数,我们可以改变调制信号的相位,从而实现不同的调制方式。

6.BPSK(DPSK)调制解调_标准实验报告

6.BPSK(DPSK)调制解调_标准实验报告

实验十五 BPSK/DPSK调制解调实验【实验内容】1.二相BPSK调制解调实验2.二相DPSK调制解调实验3.PSK解调载波提取实验【实验目的】1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。

2.了解载频信号的产生方法。

3.掌握二相绝对码与相对码的码变换方法。

【实验环境】1 实验分组:两人一组或者单人2 设备:计算机,双通道数字存储示波器,通信原理实验平台3 软件:数字存储示波器相关软件【实验原理】(一)调制实验:调制实验中,绝对相移键控(PSK)是采用直接调相法来实现的,也就是输入的基带直接控制已输入载波相位的变化来实现相位键控的.图9-1是二相PSK(DPSK)调制器电路框图。

图9-2是它的电原理图。

图9-3 是 PSK DPSK编码波形图。

PSK调制在数字通信系统中是一种极重要的调制方式。

它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控。

因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。

下面对图9-2中的电路作一分析。

1.载波倒相器模拟信号的倒相通常采用运放作倒相器,电路由U304等组成,来自1.024MHz载波信号输入到U304的反相输入端2脚,在输入端即可得到一个反相的载波信号,即Pi相载波信号。

为了使0相载波与Pi相载波的幅度相等,在电路中加了电位器W302。

K 302K 301绝对码与转换电路相对码512K H z 方波入32k H z 时钟入32K H z 伪码1.024M H z 方波入电路C L K231K 304132T P 305T P 303T P 302T P 301器T P 3040相载波载波反相3164π相载波开关1开关225反相器T P 309T P 307P S K 调制输出1K 303234相器加T P 308T P 306去K 701的1脚C P U 中央控制处理器来至增量调制ΔM 码数字信号输出128K H z 方波(1010码)64K H z 方波(1100码)图9-1 P S K 调制及测量点分布原理框图图9-3 PSK DPSK编码波形2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十五 BPSK/DPSK调制解调实验【实验内容】1.二相BPSK调制解调实验2.二相DPSK调制解调实验3.PSK解调载波提取实验【实验目的】1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。

2.了解载频信号的产生方法。

3.掌握二相绝对码与相对码的码变换方法。

【实验环境】1 实验分组:两人一组或者单人2 设备:计算机,双通道数字存储示波器,通信原理实验平台3 软件:数字存储示波器相关软件【实验原理】(一)调制实验:调制实验中,绝对相移键控(PSK)是采用直接调相法来实现的,也就是输入的基带直接控制已输入载波相位的变化来实现相位键控的.图9-1是二相PSK(DPSK)调制器电路框图。

图9-2是它的电原理图。

图9-3 是 PSK DPSK编码波形图。

PSK调制在数字通信系统中是一种极重要的调制方式。

它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控。

因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。

下面对图9-2中的电路作一分析。

1.载波倒相器模拟信号的倒相通常采用运放作倒相器,电路由U304等组成,来自1.024MHz载波信号输入到U304的反相输入端2脚,在输入端即可得到一个反相的载波信号,即Pi相载波信号。

为了使0相载波与Pi相载波的幅度相等,在电路中加了电位器W302。

K 302K 301绝对码与转换电路相对码512K H z 方波入32k H z 时钟入32K H z 伪码1.024M H z 方波入电路C L K231K 304132T P 305T P 303T P 302T P 301器T P 3040相载波载波反相3164π相载波开关1开关225反相器T P 309T P 307P S K 调制输出1K 303234相器加T P 308T P 306去K 701的1脚C P U 中央控制处理器来至增量调制ΔM 码数字信号输出128K H z 方波(1010码)64K H z 方波(1100码)图9-1 P S K 调制及测量点分布原理框图图9-3 PSK DPSK编码波形2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。

0相载波与Pi相载波分别加到模拟开关1:U302:A的输入端(1脚)、模拟开关2:U302:B的输入端(11脚),在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端(13脚),它反极性加到模拟开关2的输入控制端(12脚)。

用来控制两个同频反相载波的通断。

当信码为“1”码时,模拟开关1的输入控制端为高电平,模拟开关1导通,输出1相载波,而模拟开关2的输入控制端为低电平,模拟开关2截止。

反之,当信码为“0”码时,模拟开关1的输入控制端为低电平,模拟开关1截止。

而模拟开关2的输入控制端却为高电平,模拟开关2导通。

输出Pi相载波,两个模拟开关的输出通过载波输出开关K303合路叠加后输出为二相PSK调制信号,如图9-3所示。

在数据传输系统中,由于相对移相键控调制具有抗干扰噪声能力强,在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而这种方式广泛应用在实际通信系统中。

相对移相,就是利用载波相位的相对值来传递信息,也就是利用前后码元载波相位的相对变化来传递信息,所以也称为“差分移相”。

理论分析和实际实验证明:在恒参信道下,移相键控比振幅键控、频率键控,不但具有较高的抗干扰性能,而且可更经济有效地利用频带。

所以说它是一种比较优越的调制放肆,因而在实际中得到了广泛的应用。

DPSK调制是采用码型变换妈加绝对调相来实现,既把数据信息源(如伪随机码序列、增量调制编码器输出的数字信号或脉冲编码调制PCM编码器输出的数字信号)作为绝对码序列{an},通过差分编码器变成相对码序列{an},然后再用相对码序列{an},进行绝对移相键控,此时该调制的输出就是DPSK已调信号。

按键SW-301,用来将D触发器Q端输出置“1”。

在绝对相移方式,由于发端是以两个可能出现的相位之中的一个相位作基准的。

因而在收端也必须有这样一个相同的基准相位作参考,如果这个参考相位发生变化(0相变Pi相或Pi相变0相),则恢复得数子信息就会发生0变1或1变0,从而造成错误的恢复。

在实际通信时参考基准相位的随机跳变是有可能发生的,而且在通信过程中不易被发现。

如,由于某种突然的骚动,系统中的触发器可能发生状态的转移,锁相环路稳定状态也可能发生转移,等等,出现这种可能时,采用绝对移相就会使接收端恢复的数据极性相反。

如果这时传输的是经增量调制的编码后话音数字数字信号,则不影响话音的正常恢复,只是在相位发生跳变的瞬间,有噪声出现,但如果传输的是计算机输出的数据信号,将会使恢复的数据面目全非,为了克服这种现象,通常在传输数据信号时采用二相相对移相(DPSK)方式。

DPSK是利用前后相邻码元对应的载波相对相移来表示数字信息的一钟相移键控方式。

绝对码是以宽带信号码元的电平直接表示数字信息的,如规定高电平代表“1”,低电平代表“0”。

相对码(差分码)是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。

(二)解调实验二相PSK(DPSK)解调器的总电路方框图如图9-4所示。

二相PSK(DPSK)图9-5 同相正交解调环各点波形图原理图.从图9-4可以看出,该解调器由三部分组成:载波提取电路、位定时恢复电路和信码再生整形电路。

载波恢复和位定时提取,是数字载波传输系统必不可少的重要组成部分。

载波恢复的具体实现方案是和发送端的调制方式有关的,以相位键控为例,有:N次方环、科斯塔斯环、逆调制环和判决反馈环等。

近几年来由于数字电路技术和集成电路的迅速发展,又出现了基带数字处理载波跟踪环,并且已在实际应用领域得到了广泛的使用。

但是,为了加强学生基础知识的学习及对基本理论的理解,我们从实际出发,选择同相正交环解调电路作为基本实验。

1.二相(PSK,DPSK)信号输入电路由BG701(3DG6)组成射随器电路,对发送端送来的二相(PSK、DPSK信号进行前后级隔离,由U701(LM311)组成模拟信号放大电路,进一步对输入小信号的二相(PSK、DPSK)信号进行放大后送至鉴相器1与鉴相器2分别进行鉴相。

2.同相正交环锁相环提取载波电路在这种环路里,误差信号是由两个鉴相器提供的。

VCO压控振荡器给出两路互相正交的载波信号分别送至两鉴相器,输入的二相(PSK、DPSK)信号经过两个鉴相器分别鉴相后,由低通滤波器滤除载波频率以上的高频分量,分别送入两判决器进行控制。

只有将Ud1\Ud2经过基带模拟相乘器相乘后,就可以去掉码元信息,得到反映VCO输出信号与输入载波之间的相位差的误差控制电压,从而实现了对VCO压控振荡器的控制。

它们的实际电路见图10-3所示,包括鉴相器1鉴相器2低通滤波器1低通滤波器2比较判决器1比较判决器2相乘器环路滤波器VCO压控振荡器数字分频移相器等电路组成。

各点波形如图9-5所示。

具体工作如下:由U701(LM311)模拟运放放大后的信号分两路输出至两鉴相器的输入端,鉴相器1与鉴相器2的控制信号输入端的控制信号分别为0相载波信号与Pi/2相载波信号。

这样经过两鉴相器输出的鉴相信号再通过有源低通滤波器滤掉其高频分量,再由两比较判决器完成判决解调出数字基带信码,由U706:A与U707:A构成的相乘器电路,去掉数字基带信号中的数字信息。

得到反映恢复载波与输入载波相位之差的误差电压Ud,Ud经过环路低通滤波器R718、R719、C706滤波后,输出了一个平滑的误差控制电压,去控制VCO压控振荡器74S124。

它的中心振荡输出频率范围从1Hz到60MHz,工作环境温度在0—70摄氏度,当电源电压工作在+5V、频率控制电压与范围控制电压都为+2V时,74S124的输出频率表达式为:f0=5*10-4/Cext在实验电路中,调节精密电位器W701(100K欧的阻值),使频率控制输入电压(74S124的2脚)与范围控制输入电压(74S124的3脚)基本相等,此时,当电源电压为+5V时,才符合:f0=5*10-4/Cext再改变电容CA701(80pF—110pF),使74S124的7脚输出为4.096MHz方波信号。

74S124的6脚为使能端,低电平有效,它开启压控振荡器工作;当74S124的第7脚输出的中心振荡频率偏离4.096MHz时,此时一方面可改变CA701中的电容值,另一方面也可调节W701和W702,用频率计监视测量点TP704上的频率值,使其准确而稳定地输出4.096MHz的载波信号。

该4.096MHz的载波信号经过分频(/4)电路:U709与U710(74LS74)两次分频变成1.024MHz载波信号,并完成Pi/2相移相。

由U710:B的9脚输出Pi/2相去鉴相器2的控制信号输入端U302:D(4066)的6脚,由U710:A的5脚输出0相载波信号去鉴相器1的控制信号输入端U302;C(4066)的5脚。

这样就完成了载波恢复的功能。

图9-6是该解调环各输出测量点波形图,从图中可看出该解调环路的优点:(1)该解调环在载波恢复的同时,即可解调出数字信息。

(2)该解调环电路结构简单,整个载波恢复环路可用模拟和数字集成电路实现。

但是该解调环路的缺点是:存在相位模糊。

当解调出的数字信息与发端的数字信息相位反相时,即相干信号相位和载波相位反相,则按一下按键开关SW701,迫使它的置“1”端送入高电平,使电路Q端输出为“1”,迫使相干信号的相位与载波信号相位同频同相,以消除相位误差。

然而,在实际应用中,一般不用绝对移相,而用相对移相,采用相位比较法克服相位模糊。

【实验内容】1.二相BPSK调制实验用内载波发生器产生的信号作输入载波信号来观察TP301∽ TP309各测量点的波形。

2.二相DPSK调制实验加入差分编码器电路来传输二相DPSK信号,即将开关K301置成2脚与3脚相连,其它开关设置不变,重做上述内容。

3.二相BPSK解调实验4.二相DPSK解调实验5.PSK解调载波提取实验【实验步骤】1.按下按键开关:K2、K3、K100、K300、K700。

2.按一下“开始”与“PSK”功能键,显示代码“6”。

3.跳线开关设置:K3041–2、K3011–2、K3021–2或K3022–3或K3024–5或K3025–6、K3031-2与3-4。

4.跳线开关设置功能如下:K3021-2:伪随机码,码序列为1110010,速率为32KHz的绝对码。

K3022-3:伪随机码,码序列为1110010,速率为32KHz的相对码。

K3024-5:128KHz方波,码序列为1010码。

相关文档
最新文档