5-定积分习题课

合集下载

数学《定积分》讲义

数学《定积分》讲义

第九章 定 积 分1 定积分的定义一、背景1、曲边梯形的面积1()ni i i S f x ξ=≈∆∑2、变力所做的功 1()ni i i W F x ξ=≈∆∑上述问题均可归结为一个特定形式的和式逼近,思想方法:分割、近似求和、取极限.二、定积分的定义定义 1 设闭区间[],a b 内有1n -个点,依次为0121n n a x x x x x b -=<<<⋅⋅⋅<<=,其把[],a b 分成n 个小区间[]1,,1,i i i x x i n -∆==⋅⋅⋅.称这些点或小闭子区间构成[],a b 的一个分割,记为{}01,,n T x x x =⋅⋅⋅或{}12,,n ∆∆⋅⋅⋅∆,小区间i ∆的长度为1i i i x x x -∆=-,同时记{}1max i i nT x ≤≤=∆,称为分割T 的模(或细度).注1 ||||,1,i x T i n ∆≤=⋅⋅⋅. 因而,||||T 可用来刻画[],a b 被分割的细密程度,同时,若T 给定,则||||T 确定,而对同一细度(模), 相应的分割却有无穷多个.定义 2 设f 为[],a b 上的函数,对[],a b 上的分割{}12,,n T =∆∆⋅⋅⋅∆,任取点,i i ξ∈∆1,i n =⋅⋅⋅,作和式1()niii f x ξ=∆∑,称为函数f 在[],a b 上的一个积分和,也称为Riemann 和.注2. Riemann 和与分割T 及i ξ的取法有关. 对同一个分割T ,相应的Riemann 和有无穷多个.定义 3 设f 是[],a b 上的函数,J 为一个确定的数. 若对任给正数0ε>,存在正数0δ>,使得对[],a b 上的任何分割T ,以及其上任选的i ξ,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称f 在[],a b 上可积(或Riemann 可积) ,数J 称为f 在[],a b 上的定积分(或Riemann 积分) ,记作()baJ f x dx =⎰. 其中f 称为被积函数,x 称为积分变量,[],a b 称为积分区间,,a b 分别称为积分的下限、上限.注.1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰⇔0,0,,,,i i T T εδδξ∀>∃>∀<∀∈∆1()()nbi i ai f x f x dx ξε=∆-<∑⎰定积分的几何意义(f 可积)(1) 0f ≥时,()ba f x dx ⎰就是以,,x a xb x ==轴及()y f x =围成的曲边梯形的面积.(2) 0f ≤时,()baf x dx ⎰为x 轴下方的曲边梯形面积的相反数(负面积) .(3) ()baf x dx ⎰是曲线()y f x =在x 轴上方部分所有曲边梯形的正面积与下方所有曲边梯形的负面积的代数和. (4) 注.()()()bb baaaf x dx f t dt f u du ==⎰⎰⎰,定积分与积分变量无关.三、举例例 1 已知函数2()f x x =在区间[]0,1上可积,求120x dx ⎰.例 2 已知1()1f x x=+,()sin g x x π=在[]0,1上可积. 利用定积分的定义说明 1) 10111lim()1221n dx n n n x→∞++⋅⋅⋅+=+++⎰. 2) 10012(1)1lim (sin sin sin )sin sin n n xdx x dx n n n n ππππππ→∞-++⋅⋅⋅+==⎰⎰.给出一般公式().......ba f x dx =⎰例 3 讨论Dirichlet 函数1()0x D x x ⎧=⎨⎩,为有理数,为无理数 在[]0,1上的可积性.四、 定积分的计算 定理 (微积分基本定理)设[]:,f a b R →可积,存在可导函数[]:,F a b R →,使F f '=,则()()|()()bx bx a af x dx F x F b F a ====-⎰上式也称为Newton-Leibniz 公式.例 4 求例2中定积分的值.例 5 1) 211(ln )eex dx x⎰;2) 2⎰;3) 求11()f x dx -⎰,其中210()0x x x f x e x --<⎧=⎨≥⎩, ,;4) 0⎰;5) 221lim nn i in i→∞=+∑;6) 112lim[(1)(1)(1)]n n n n n n→∞++⋅⋅⋅+.2 可积性条件一、可积的必要条件定理1 若函数f 在[],a b 上可积,则f 在[],a b 上有界.注 有界仅是f 可积的必要条件,而非充分条件. 如[]0,1上的()D x . 定理2 设函数f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点. [ 若函数f 在[],a b 上处处不连续,则f 必不可积. ] 二、可积的充要条件设{}12,,n T =∆∆⋅⋅⋅∆为[],a b 上的一个分割,设f 在[],a b 上有界,则f 在每个i ∆上必有上下确界,记{}sup ()ii x M f x ∈∆=,{}inf ()ii x m f x ∈∆=,1,i n =⋅⋅⋅.作和式1()n i i i S T M x ==∆∑,1()ni i i s T m x ==∆∑,分别称为f 关于T 的上和和下和(Darboux 上下和) , 从而i i ξ∀∈∆,1,i n =⋅⋅⋅,1()()()ni i i s T f x S T ξ=≤∆≤∑. (作图几何意义)注 当分割T 确定后,则上和与下和完全确定.性质1 对同一分割T ,上和()S T 是所有积分和1()ni i i f x ξ=∆∑的上确界(相对于i ξ取),下和()s T 是所有积分和1()ni i i f x ξ=∆∑的下确界, 即{}1()inf ()i i n i i i s T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑, {}1()sup ()i i n i i i S T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑,且 1()()()()()ni i i m b a s T f x S T M b a ξ=-≤≤∆≤≤-∑,其中,M m 分别为f 在[],a b 上的上、下确界.性质2 设T '为分割T 添加p 个新分点后所得到的分割. 则()()()()s T s T s T p M m T '≤≤+- ()()()()S T S T S T p M m T '≥≥--即分点增加后,下和不减,上和不增.性质3 若T 与T '为任意两个分割,T ''为T 与T '所有分点合并组成的分割,记为T T T '''=+,则 ()()s T s T ''≥, ()()S T S T ''≤;()()s T s T '''≥, ()()S T S T '''≤.性质4 对任意两个分割T 、T ',总有()()s T S T '≤.即:对任何两个分割,下和总不大于上和. 因而,所有的上和有下界,所有的下和有上界,从而分别有下、上确界,记为S 和s . 即{}inf ()TS S T =,{}sup ()Ts s T =,称S 和s 分别为f 在[],a b 上的上、下积分,记为()ba S f x dx -=⎰,()b a s f x dx -=⎰.性质5 ()()()()bbaa mb a f x dx f x dx M b a ---≤≤≤-⎰⎰性质6. [Darboux 定理] 0lim ()()b a T S T f x dx -→=⎰,0lim ()()ba T s T f x dx →-=⎰.定理 3 (第一充要条件) [],a b 上的有界函数f 可积⇔()()bb a a f x dx f x dx --=⎰⎰定理4 (可积的第二充要条件)[],a b 上的有界函数f 可积⇔ 0ε∀>,存在分割T ,使得()()S T s T ε-<.由于11()()()nni i i i i i i S T s T M m x x ω==-=-∆=∆∑∑,其中i i i M m ω=-称为f 在i ∆上的振幅. 从而有定理4' [],a b 上的有界函数f 可积⇔0ε∀>,存在分割T ,使得1ni i i x ωε=∆<∑.定理4'的几何意义:若f 可积,则曲线()y f x =可用总面积任意小的一系列小矩形覆盖. 反之亦然.三、可积函数类(充分条件)定理 5. 若f 在[],a b 上连续,则f 在[],a b 上可积.定理 6. 若f是[],a b上仅有有限个间断点的有界函数,则f在[],a b上可积.注.改变可积性函数在某些点处的值, 不改变可积性, 也不改变积分值. 定理7. 若f为[],a b上的单调函数,则f在[],a b上可积.例1试用两种方法证明函数0 0()1111xf xxn n n=⎧⎪=⎨<≤⎪+⎩,,,1,2n=⋅⋅⋅在[]0,1上可积.例2 设f 在[],a b 上有界,{}[],n a a b ⊂,lim n na c =.证明:若f 仅在{}n a 上间断,则f 在[],a b 上可积.例3 f 在[],a b 上可积,[][],,a b αβ⊂,则f 在[],αβ上可积.例4 证明定理2: 若f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点(从而有无穷多个连续点) .例5 证明: Riemann 函数[]1, ()0 0,10,1p x p q q p q q f x x ⎧=>⎪=⎨⎪=⎩,和互素,,或中的无理数 在[]0,1上可积,且1()0f x dx =⎰.(第三充要条件)3 定积分的性质一、定积分的性质 1. 线性性质定理 1 设f 在[],a b 上可积,k 为常数,则kf 在[],a b 上可积,且 ()()bbaakf x dx k f x dx =⋅⎰⎰.定理 2 设,f g 在[],a b 上可积,则f g ±在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.推论. 设,f g 在[],a b 上可积,,αβ为常数,则f g αβ+在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx αβαβ+=+⎰⎰⎰.2. 乘积可积性定理 3 设,f g 在[],a b 上可积,则f g ⋅在[],a b 上可积. 注 一般情形下,()()()()b b baaaf xg x dx f x dx g x dx ⋅≠⋅⎰⎰⎰.定理 4 有界函数f 在[],a c 和[],c b 上可积f ⇔在[],a b 上可积,且()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰规定 1) ()0aa f x dx =⎰.2)()()baab f x dx f x dx =-⎰⎰,()b a <.则对任何,,a b c 均有 ()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.4. 关于函数的单调性定理5 设,f g 在[],a b 上可积,且()()f x g x ≤,[],x a b ∀∈,则()()bbaaf x dxg x dx ≤⎰⎰.推论 (积分值的估计) 设f 在[],a b 上可积,,M m 分别为f 在[],a b 上的上、下确界,则 ()()()ba mb a f x dx M b a -≤≤-⎰.定理6 若函数f 在[],a b 上可积,则f 在[],a b 上可积,且|()||()|bbaaf x dx f x dx ≤⎰⎰.注. 定理 6的逆不真.6. 积分第一中值定理定理 7 若函数f 在[],a b 上连续,则至少存在一点[],a b ξ∈,使得()()()baf x dx f b a ξ=-⎰.几何意义: 称1()ba f x dxb a -⎰为f 在[],a b 上的平均值.定理7' (推广的第一中值定理) 若,f g 在[],a b 上连续,且()g x 在[],a b 上不变号,则至少存在一点[],a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.[()1g x ≡时,即为定理7.]二、应用举例例 1 求11()f x dx -⎰. 其中2110() 01x x x f x e x ---≤<⎧=⎨≤<⎩, ,.例 2 求()sin f x x =在[]0,π上的平均值.例 3 若f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,则()0ba f x dx >⎰.例 4比较积分1⎰和21x e dx ⎰的大小.例 5证明:22ππ<<⎰.例 6 若f 在[],a b 上可积,()0f x >,则()0ba f x dx >⎰.例 7 若,f g 在[],a b 上可积,则{}()max (),()M x f x g x =在[],a b 上可积.*例 8 设f 在[],a b 上可积,且()0f x m >>,则1f可积.*例 9 证明:若f 在[],a b 上连续,且()()0b baaf x dx xf x dx ==⎰⎰,则在(),a b 内至少存在两点12,x x 使12()()0f x f x ==. 又若2()0bax f x dx =⎰,此时,f 在(),a b 内是否至少有三个零点?*例 10 设f 在[],a b 上二阶可导,且()0f x ''>,证明: 1) 1()()2ba ab f f x dx b a+≤-⎰ 2) 又若()0f x ≤,[],x a b ∈,则又有2()()ba f x f x dxb a ≥-⎰,[],x a b ∈.*例11证明:(1)11ln(1)11ln2n nn+<++⋅⋅⋅+<+(2)1112lim1lnnnn→∞++⋅⋅⋅+=*例13若f可积,m f M≤≤,g在[,]m M上连续,则复合函数h g f=可积.由此, 若f可积, 则2f,13,f||f, ()f xe, (0)f≥,1(inf0)ff>可积.4 微积分基本定理 定积分的计算一、微积分基本定理 1. 变限积分的可微性设f 在[],a b 上可积,则任何[],x a b ∈,f 在[],a x 上也可积,从而()()xa x f t dt Φ=⎰,[],x ab ∈定义了一个以x 为积分上限的函数, 称为变上限积分.定理1 若f 在[],a b 上可积,则()()xa x f t dt Φ=⎰在[],ab 上连续.定理 2 (原函数存在定理,微积分学基本定理)若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰,[],x a b ∈.注. 1) 当f 在[],a b 上连续,则()()xax f t dt Φ=⎰为f 的一个原函数,且f 的任一原函数()()xaF x f t dt C =+⎰. 令x a =,则()F a C =. 从而()()()xaf t dt F x F a =-⎰——Newton-Leibniz .2) 定理2. 揭示了导数和定积分之间的深刻联系,同时证明了连续函数必有原函数,并说明变上限积分就是一个原函数. 由于它的重要作用而被称为微积分基本定理.3) 同样可定义变下限积分()()bxxbf t dt f t dt =-⎰⎰. 且当f 连续时,有()()bxd f t dt f x dx =-⎰ 4) 变上限积分()xaf t dt ⎰一般不写作()xaf x dx ⎰.例 1 1)⎰2) 220sin cos t tdt π⎰例 2 设f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,证明: ()0baf x dx >⎰.例 3 设f 为连续函数,,u v 均为可导函数,且复合f u ,f v 均有意义,证明()()()(())()(())()v x u x d f t dt f v x v x f u x u x dx''=⋅-⋅⎰.例 4 求1) 230limx x x +→⎰2) 222010cos limx x x t dtx →-⎰二、定积分的换元法定理 3 设f 在[],a b 上连续,Φ满足条件1) ()a αΦ=,()b βΦ=. [](),,a t b t αβ≤Φ≤∈ 2) ()t Φ在[],αβ上有连续导函数,则()(())()baf x dx f t t dt βα'=Φ⋅Φ⎰⎰.例 5 1)⎰2) 220sin cos t tdt π⎰3)10x x dx e e -+⎰4)3212(1)dx x x -+⎰5)120ln(1)1x dx x ++⎰6) 已知32()4f x dx =-⎰,求21(1)xf x dx +.注 在换元法计算定积分时,一要注意积分上下限的变化(这里只需要求,a b 的对应值为,αβ,而不计较,αβ的大小) . 二是要注意代入新变量,直接求定积分的值,而无需变量还原. (此与不定积分是不一样的. 这是因为不定积分求的是被积函数的原函数,其变量应一致,而定积分的结果是一个数值,只需求出即可) .注 定理3换元积分条件,f 可减弱为f 可积,ϕ可减弱为()t ϕ'在[],αβ上可积,且除有限个点外()0t ϕ'>(或()0t ϕ'<) . (保证[][]:,,a b ϕαβ→是11-的.) 例 6 设f 为[],a a -(对称区间) 上的连续奇(偶) 函数,则()0aaf x dx -=⎰(0()2()a aaf x dx f x dx -=⎰⎰) .如求22223(sin3cos 5arctan 1)x x x x x e x dx ππ--⋅+⋅--⎰.例 7 设f 为(,)-∞+∞上以T 为周期的可积函数,证明:对任何实数a R ∈,有()()a TTaf x dx f x dx +=⎰⎰.例 8 设f 为连续函数,则1) 22(sin )(cos )f x dx f x dx ππ=⎰⎰;2)(sin )(sin )2xf x dx f x dx πππ=⎰⎰.由此计算2sin sin cos xdx x x π+⎰和20sin 1cos x x dx xπ⋅+⎰.例 9 设f 在[],a b 上连续,求证:()()bbaaf x dx f a b x dx =+-⎰⎰.由此计算362cos (2)xdx x x πππ-⎰.三、分部积分定理 4 若(),()u x v x 为[],a b 上的连续可导函数,则有定积分分部积分公式()()()()()()bbb a aau x v x dx u x v x u x v x dx ''⋅=⋅-⋅⎰⎰或()()()()()()bb b a aau x dv x u x v x v x du x =⋅-⎰⎰例 10 1) 10x xe dx ⎰ 2)21ln ex xdx ⎰3) 1ln eexdx ⎰4) 1arcsin xdx ⎰5) 2sin x x e dx π⋅⎰6)4⎰例 11 求20sin nxdx π⎰和2cos n xdx π⎰.注 由前两式可推出著名的Wallis 公式:2(2)!!1lim 2(21)!!21m m m m π→∞⎡⎤=⋅⎢⎥-+⎣⎦.四、Taylor 公式的积分型余项 推广的分部积分公式设(),()u t v t 在[,]a b 上有1n +阶连续导函数,则(1)()(1)()()()()()()()(1)()()bn n n n n baau t v t dt u t v t u t v t u t v t +-'⎡⎤⋅=⋅-⋅+⋅⋅⋅+-⋅⎣⎦⎰1(1)(1)()()bn n au t v t dt +++-⋅⎰.设f 在0x 处的某邻域0()U x 有1n +阶连续导函数,0()x U x ∈,则有(1)()1(1)()()()()()()!()0()xxn n n n n n xx x x x t ft dt x t f t n x t f t n f t f t dt +--⎡⎤-=-+-+⋅⋅⋅++⋅⎣⎦⎰⎰()00000()!()![()()()()]!n n f x n f x n f x f x x x x x n '=-+-+⋅⋅⋅+-!()n n R x =(1)1()()()!x n n n x R x f t x t dt n +⇒=-⎰ ——积分型余项注 1) 由推广的第一积分中值定理((1)()n f t +连续,()n x t -在[]0,x x 或[]0,x x 上保持同号) ,则(1)1()()()!x n n n x R x f x t dt n ξ+=-⎰(1)101()()(1)!n n f x x n ξ++=-+ ——Lagrange 型余项2) 直接由积分第一中值定理,有(1)01()()()()!n n n R x f x x x n ξξ+=-- (1)10001(())(1)()!n n n f x x x x x n θθ++=+--- 00x =时,(1)11()()(1)!n n n n R x f x x n θθ++=-, 01θ≤≤——Cauchy 型余项五、积分第二中值定理 定理 5 设f 在[],a b 上可积,1) 若g 在[],a b 上减,且()0g x ≥,则存在[],a b ξ∈,使()()()()baaf xg x dx g a f x dx ξ=⎰⎰.2) 若g 在[],a b 上增,且()0g x ≥,则存在[],a b η∈,使()()()()bbaf xg x dx g b f x dx η=⎰⎰.推论. 设f 在[],a b 上可积,g 为单调函数,则存在[],a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰.例 12 设()f x 为[]0,2π上的单调递减函数,证明:对任何正整数n ,恒有20()sin 0f x nxdx π≥⎰.定理 6 设函数f 在闭区间[],a b 上连续,函数g 在[],a b 上可导,且导函数()g x '在[],a b 上非负且连续,则存在[],c a b ∈,使得()()()()()()bc baacf xg x dx g a f x dx g b f x dx =+⎰⎰⎰.例 13 证明:当0x >时,有不等式21sin x cxt dt x+≤⎰(0)c >.例 14 设()y f x =为[],a b 上严格增的连续曲线,试证:存在(),a b ξ∈使图中阴影部分面积相同.习 题1. 求)0(F '及)4(πF '. 其中⎰-=202sin )(x t tdt e x F2. 求下列极限(1) ⎰→xx dt t x 020cos 1lim (2) dxe dt e x txt x ⎰⎰∞→020222)(lim3. 求下列积分(1) ⎰⋅2042sin cos πxdx x (2)dx x ⎰-224(3) dx xx⎰+202sin 1cos π (4) dx xx ⎰+411(5) dx x x ⎰-1122)2( (6)dx x a x a2202-⎰(7)dx xx ⎰++311 (8)xdx x 3sin][3π⎰4. 求下列积分 (1) dx xe x⎰-2ln 0(2) ⎰210arccos xdx(3) ⎰-adx x a 022 (4) dx x x⎰-1221(5)⎰-2ln 01dx e x(6)dx ax x aa⎰-+222(7)dx xb x a xx ⎰+⋅202222sin cos cos sin π(8)dx x x ee⎰1ln(9)⎰+20cos sin cos πdx xx x(10)⎰+-adx xa xa 0arctan(11)dx e x x ⎰-⋅202sin π(12)dx xa xa x a⎰+-025. 求下列极限 (1) ∑=+∞→nk n nk 123lim (2) 2213lim k n nk nk n -∑=∞→6. 证明 (1)⎰⎰-=-11)1()1(dx x x dx x x m n n m(2) 若f 在R 上连续, 且⎰=x adt t f x f )()(, 则.0)(≡x f (3) 0sin sin ,m n mx nxdx m n N m nπππ-≠⎧=∈⎨=⎩⎰,(4)⎰-=ππ0cos sin nx mx(5) 设f 在],0[π上连续,且⎰⎰⎰===πππ0cos )(sin )()(xdx x f xdx x f dx x f求证f 在),0(π内至少两个零点.定积分1、定积分的定义1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰0,0,,,,di i T T εδδξ⇔∀>∃>∀<∀∈∆1()ni i i f x J ξε=∆-<∑. (())baJ f x dx =⎰2、可积函数(充要) 条件1) f 在[],a b 上可积⇒f 在[],a b 上有界⇒f 在(),a b 内至少有一个连续点2) f 在[],a b 上可积⇔()()b ba a f x dx f x dx --=⎰⎰⇔0,,()()T S T s T εε∀>∃-< ⇔10,,ni i i T w x εε=∀>∃∆<∑3) f 在[],a b 上连续⇒f 在[],a b 上可积f 在[],a b 上单调⇒f 在[],a b 上可积f 在[],a b 上仅有限个间断点(或间断点仅有限个聚点) ,则f 在[],a b 上可积. f 在[],a b 上可积,g 与f 仅有限个点处不相等,则g 在[],a b 上可积,且()()bbaag x dx f x dx =⎰⎰4) 可积函数复合未必可积.3、定积分性质1) 线性性质 2) 子区间可积性 3) 乘积可积 4) 区间可加性 5) 单调性 6) 绝对可积性4、微积分基本定理与Newton-Leibniz 公式定理. 若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰. 由此可得()()()baf x dx F b F a =-⎰.注. 若f '可积,则()()()b af x dx f b f a '=-⎰.定理. 若f 在[],a b 上可积,则()()xax f t dt Φ=⎰在[],a b 上连续.结论 (变限积分的导数)()()(())(())()(())()h x g x f t dt f h x h x f g x g x '''=⋅-⋅⎰5、定积分的积分方法 1) 换元设()y f x =在[],a b 上可积,()x t ϕ=满足ϕ'在[],αβ上可积,且在[],αβ上至多除有限个点使()0t ϕ'=,其余点()0t ϕ'>,(),()a b ϕαϕβ==,则()(())()baf x dx f t t dt βαϕϕ'=⋅⎰⎰[ 注意:积分上下限只需对应,而不管大小. ] 2) 分部积分 (注意具体被积函数的形式) 设,u v ''为[],a b 上可积函数, 则 bbb a aaudv uv vdu =-⎰⎰.6、Taylor 公式与积分中值定理. 1) 可积函数未必有原函数.1, 01;() 1 , 1 2.x f x x -≤≤⎧=⎨<<⎩ 2) 有原函数的函数也未必可积.22211cos 2sin , 0;()0, 0.x x f x x x xx ⎧-+≠⎪=⎨⎪=⎩在[1,1]-上有原函数220, 0;()1sin , 0.x x F x x x =⎧⎪=⎨⋅≠⎪⎩ 但f 在[0,1]上不可积.3) 可积不连续的函数也可能有原函数.习 题 课一、定积分的计算 例 1 1)20πθ⎰2) 1t x t dt -⎰, (1,0,01)x x x ><≤≤3)arctana⎰4) 10(1)xdx x α+⎰5)10ln(1dx ⎰6)0⎰7)121⎰8)2-⎰9) 21,0() , 0x x x f x e x -⎧+<⎪=⎨>⎪⎩ , 求31(2)f x dx -⎰.10) 1(2)2f =,(2)0f '=,20()1f x dx =⎰. 求120(2)x f x dx ''⎰.二、利用定积分定义求和式极限11111()lim ()lim ()nn i i T n i i f x dx f x f n n ξ→→∞===∆=∑∑⎰1()lim ()n ban i b a b af x dx f a i n n→∞=--=+∑⎰例 2 1) 221lim nn i i n i→∞=+∑2) 11lim[(1)]n n n k k n -→∞=+∏3) 12lim 1knnn k n k→∞=+∑4) 444333124lim (12)5n n n n →∞++⋅⋅⋅+=++⋅⋅⋅+三、变限积分的导数例 3 1)2sin b a d x dx dx⎰ 2) 2sin x a d tdt dx ⎰3) 10(arctan )t x e tdt '⋅⎰4)23ln t t d dxdt x⎰ 例 4 1) 设0x ≥时,()f x 连续,且230()x f t dt x =⎰,求()f x .2) 设f 连续,31()x f t dt x c -=+⎰,求c 与(7)f .例 5 1) 设f 在[],a b 上连续,0()()()xF x f t x t dt =-⎰,[],x a b ∈.求证:()()F x f x ''=.2) 设f 在[)0,+∞上连续,且()0f x >,00()()()xx tf t dt x f t dtϕ=⎰⎰.试证:ϕ在()0,+∞上严格增.3) f 为连续可导函数. 试求:()()xa d x t f t dt dx'-⎰.四、求含变限积分未定型极限 例 6 1) 20cos limsin xx x x t dttdt→⎰⎰2) 222020()limxt x x t e dt e dt→∞⎰⎰例 7 1) 设f 在[],a b 上连续,求证:(),x a b ∈时,1lim ()()()()xa h f t h f t dt f x f a n+→+-=-⎰.2) ()f x 在R 上连续,且以T 为周期,求证:0011lim ()()x Tx f t dt f t dt x T→∞=⎰⎰.3)1lim bb -→⎰,(01)b << 存在.4) 设f 在[]0,A (0)A ∀>上可积,lim ()x f x a →+∞=,则01lim()xx f t dt a x →+∞=⎰.五、定积分的极限例 8 1) 求证: 1) 10lim 1nnx dx x +⎰ 2) 120lim (1)n n x dx →∞-⎰3) 2lim sin n n xdx π→∞⎰2) 设f 在[]0,2π上单调,求证:20lim ()sin 0f x xdx πλλ→∞⋅=⎰.六、某些积分不等式1、利用积分关于被积函数的单调性证明不等式.例 9 证明不等式 11201413n x dx n x x n-≤≤-+⎰,n ∈.例 10 证明:1) 211<⋅⋅⋅+< 2) 11ln(1)11ln 2n n n+<++⋅⋅⋅+<+[由此证明11lim(1ln )2n n n ++⋅⋅⋅+-存在,一般称此极限为Euler 常数,记为C ]2、某些不等式的积分形式设函数,f g 在[],a b 上可积,对[],a b 上n 等分, 取[]1,i i i x x ξ-∈,若对任何n ,1i n ≤≤,有11()()nn i i i i b a b af g n n ξξ==--⋅≤⋅∑∑,则有()()b b a a f x dx g x dx ≤⎰⎰. 例 11 1) 证明Schwarz 不等式.设,f g 在[],a b 上可积, 则222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⋅⎢⎥⎣⎦⎰⎰⎰.而当,f g 连续时, 等号成立⇔c ∃,g cf =.2) 设f 在[],a b 上连续,且0f >,则21()()()bba af x dx dx b a f x ⋅≥-⎰⎰.3) 设f 在[]0,1上可积,证明:21120()()f x dx f x dx ≤⎰⎰.4) 设,f g 在[],a b 上可积,则有Minkowski 不等式()111222222()()()()b b b a a a f x g x dx f x dx g x dx ⎡⎤⎡⎤⎡⎤+≤+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰.例 12 若ϕ在[]0,a 上连续,f 二阶可导,且()0f x ''≥, 则有Jesen 不等式0011(())(())a af t dt f t dt a a ϕϕ≥⎰⎰.3、其它不等式例13 1) 设f 在[]0,1上连续可导,证明:10()()()f x f t f t dt '≤+⎰,[]0,1x ∈.2) 设0a >,f 在[]0,a 上连续可导,则01(0)()()aa f f x dx f x dx a '≤+⎰⎰.3) 设f 在[]0,1上连续可导, 且(0)0,(1)1f f ==, 求证:110()()f x f x dx e -'-≥⎰.4) 设f 二阶可导, 求证:3()()()()224baa b Mf x dx b a f b a +--≤-⎰. 其中[],sup ()x a b M f x ∈''=.。

高等数学 第五章 定积分 习题课

高等数学 第五章  定积分 习题课

x
x
∴ ∵

Q( x ) ≡ c , Q ( 0) = 0 ,
Q( x ) ≡ 0 . 证毕 .
d x f (t)(x −t)dt 0 d x∫ = f (x) (x − x) =0?
13
例 6 . 设 f ( x ) 在 [ a , b ] 上连续且 f ( x ) > 0 ,
F ( x ) = ∫ f ( t ) dt + ∫
(1) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 ∫ f ( x ) dx = 0 ,
a
b
则在 [ a , b ] 上 f ( x ) ≡ 0 .
( 2) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 f ( x ) ≡ 0 , /
则 ∫ f ( x ) dx > 0 .
由于 f ( x ) 连续 ,
2h
h
对于 ε = h , ∃δ > 0 , 当 x − c < δ 时 ,
f ( x ) − f (c ) < ε
b
c −δ
a
b
(
c
)
f (c ) − ε < f ( x ) < f (c ) + ε 成立 ,
即 h < f ( x ) < 3h .
∫a f ( x ) dx = ∫a
∫a f = ∫a f + ∫c f ∫a
b b c b b b
b
5 . 在[a , b]上
f ( x) ≥ 0 f ( x) ≤ 0
⇒ ⇒
f ( x ) ≥ g( x ) ⇒
∫a f ≥ 0 b ∫a f ≤ 0 b b ∫a f ≥ ∫a g

高等数学第五章定积分及其应用

高等数学第五章定积分及其应用

⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。

定积分概念的课程设计

定积分概念的课程设计

定积分概念的课程设计一、教学目标本节课的教学目标是让学生掌握定积分的概念及其应用。

具体来说,知识目标包括:了解定积分的定义、性质和计算方法;理解定积分在实际问题中的应用。

技能目标则要求学生能够运用定积分解决简单的问题,如计算曲线下的面积、求解弯曲物体的质心等。

情感态度价值观目标则是培养学生的数学思维能力,提高他们对数学的兴趣和自信心。

二、教学内容本节课的教学内容主要包括定积分的定义、性质和计算方法。

首先,引导学生回顾不定积分的基本概念,为学生引入定积分做铺垫。

然后,详细讲解定积分的定义,通过实例让学生理解定积分的概念。

接着,介绍定积分的性质,如线性性质、保号性等,并通过例题让学生掌握这些性质的应用。

最后,讲解定积分的计算方法,如牛顿-莱布尼茨公式、分部积分法等,并通过练习让学生熟练运用这些方法。

三、教学方法为了达到本节课的教学目标,我将采用多种教学方法相结合的方式进行教学。

首先,运用讲授法,清晰、系统地讲解定积分的概念、性质和计算方法。

其次,采用讨论法,引导学生分组讨论定积分在实际问题中的应用,激发学生的思考。

此外,还将运用案例分析法,通过分析具体案例,让学生更好地理解定积分的应用。

最后,适时进行实验法,让学生在实验中感受定积分的作用,提高他们的实践能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我将准备以下教学资源:教材、参考书、多媒体资料、实验设备。

教材和参考书将作为主要教学资源,为学生提供系统的理论知识。

多媒体资料则用于辅助教学,以图片、动画等形式展示定积分的概念和应用,增强学生的学习兴趣。

实验设备则用于进行实验教学,让学生在实践中掌握定积分的方法。

五、教学评估为了全面、客观地评估学生的学习成果,本节课的评估方式包括平时表现、作业和考试三个部分。

平时表现主要考察学生在课堂上的参与程度、提问回答等情况,以鼓励学生积极思考和提问。

作业则包括定积分的计算练习和应用问题,以此检验学生对知识的掌握程度。

定积分

定积分

第五章定积分一、教材分析定积分起源于求图形的面积和体积等实际问题。

古希腊阿基米德用“穷竭法”,我国古代刘徽用“割圆术”,都曾解决过一些面积和体积问题,这些都是定积分的雏形。

直到17世纪中叶,牛顿和莱布尼兹先后提出了定积分的概念,并发现了积分与微分之间的内在联系,给出了计算定积分的N—L公式,从而才使定积分成为解决有关实际问题的有力工具。

定积分是积分学的一个基本概念,后续的重积分、曲线积分和曲面积分都是在定积分基础上的推广。

因此,本章在积分学中占有重要的基础地位。

定积分概念的形成反映了微积分的重要思想,定积分的计算则依赖于N—L公式。

二、教学要求1、理解定积分的概念及性质2、熟练掌握定积分的换元法和分部积分法。

3、理解积分上限函数及其求导定理。

熟悉牛顿(Newton)-莱布尼兹(Leibniz)公式。

4、了解反常积分的概念5、知道定积分的近似计算法(梯形法和抛物线法)三、教学重点与难点重点:定积分的概念及性质、N—L公式、定积分的换元法和分部积分法难点:积分上限函数及其求导定理、反常积分。

四、教学内容及课时划分§5—1 定积分的概念与性质 3课时§5—2 微积分基本公式 2课时§5—3 定积分的换元法和分部积分法 3课时§5—4 反常积分 2课时习题课 2课时合计 12课时五、本章知识结构图第一节 定积分的概念与性质教学目的:1.理解定积分的定义 2.掌握定积分的性质 教学重点、难点:1.重点:定积分的概念的形成 2.难点:用定积分定义求定积分 教学课时:3 教学过程:一、定积分问题举例:1、曲边梯形面积设)(x f y =在 []b a ,上非负、连续,由直线x = a, x = b, y = 0 及曲线)(x f y =所围成的图形,称为曲边梯形。

求曲边梯形的面积:在区间 [a,b] 中任意插入若干个分点b x x x x x a n n =<<<<=-1210 ,把[a,b]分成n 个小区间[10,x x ],[21,x x ], … [n n x x ,1-],它们的长度依次为: 1122011,,,--=∆-=∆-=∆n n n x x x x x x x x x经过每一个分点作平行于y 轴的直线段,把曲边梯形分成n 个窄曲边梯形,在每个小区间[i i x x ,1-]上任取一点i ξ,以[i i x x ,1-]为底,)(i f ξ为高的窄边矩形近似替代第i 个窄边梯形(i=1,2,…,n ),把这样得到的n 个窄矩形面积之和作为所求曲边梯形面积A 的近似值,即n n i x f x f x f A ∆++∆+∆≈)()()(221ξξξ =∑=∆ni i i x f 1)(ξ设{}0,,,max 21→∆∆∆=λλn x x x 时,可得曲边梯形的面积∑=→∆=ni i i A x f A 10)(lim ξ2、变速直线运动的路程设某物体作直线运动,已知速度)(t v v =是时间间隔[21,T T ]上t 的连续函数,且)0(≥t v ,计算在这段时间内物体所经过的路程S在[21,T T ]内任意插入若干个分点212101T t t t t t T n n =<<<<=-把[21,T T ]分成n 个小段 [10,t t ],[21,t t ],…, [n n t t ,1-]各小段时间长依次为:,,,,1122011--=∆-=∆-=∆n n n t t t t t t t t t 相应各段的路程为:n S S S ∆∆∆,,,21在[i i t t ,1-]上任取一个时刻1()i i i i t t ττ-≤≤,以i τ时的速度()i v τ来代替[i i t t ,1-]上各个时刻的速度,则得:()i i i S v t τ∆≈∆ ),,2,1(n i = 进一步得到:1122()()()n n S v t v t v t τττ≈∆+∆++∆ =1()ni i i v t τ=∆∑设{}0,,,,max 21→∆∆∆=λλ当n t t t 时,得: 01l i m ()ni i i S v tλτ→==∆∑ 二、定积分的定义由上述两例可见,虽然所计算的量不同,但它们都决定于一个函数及其自变量的变化区间,其次它们的计算方法与步骤都相同,即归纳为一种和式极限,即面积∑=→∆=ni i i x f A 10)(lim ξλ,路程01lim ()ni i i S v t λτ→==∆∑.将这种方法加以精确叙述得到定积分的定义定义 设函数],[)(b a x f 在上有界,在[a,b]中任意插入若干个分点 b x x x x x a n n =<<<<<=-1210 把区间[a,b]分成n 个小区间],,[,],,[],,[12110n n x x x x x x -各个小区间的长度依次为1122011,,,--=∆-=∆-=∆n n n x x x x x x x x x . 在每个小区间[i i x x ,1-]上任取一点1()i i i i x x ξξ-≤≤,作函数值)(i f ε与小区间长度i x ∆的乘积()(1,2,,),i i f x i n ξ∆= 并作出和1()ni i i S f x ξ==∆∑.记},,,max{21n x x x ∆∆∆= λ,如果不论对[a,b]怎样分法,也不论在小区间[i i x x ,1-]上点i ξ怎样取法,只要当1→λ时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[a,b]上的定积分(简称积分), 记作⎰badx x f )(,即⎰badx x f )(=I =01lim ()ni i i f x λξ→=∆∑,其中)(x f 叫做被积函数, dx x f )(叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限, [a,b]叫做积分区间.注意:积分与积分变量无关,即:⎰⎰⎰==bab abadu u f dt t f dx x f )()()(函数可积的两个充分条件:定理1 设],[)(b a x f 在上连续,则)(x f 在[a,b]上可积。

高等数学 第五章定积分习题课

高等数学 第五章定积分习题课


b
a
f ( x )dx ≤ ∫ g ( x )dx
a
b
⑧估值定理:设M 和 m 分别是函数 f ( x )在区间[a, b ]上的 估值定理: 最大值和最小值, 最大值和最小值,则
m (b − a ) ≤ ∫ f ( x )dx ≤ M (b − a )
a b
上连续, ⑨定积分中值定理:如果函数 f ( x ) 在闭区间[a, b ] 上连续 定积分中值定理: 则至少存在一点ξ ∈(a , b) ,使下式成立: 使下式成立: 使下式成立
b b b
b
a
b
b

b
a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
⑤区间长: ∫ 1dx = b − a 区间长:
a
b
保号性: ⑥保号性:如果在区间[a, b ]上, f ( x ) ≥ 0 ,则∫ a f ( x )dx ≥ 0
b
⑦单调性:如果在区间 [a, b ] 上, f ( x ) ≤ g ( x ) 则 单调性:
b

b
a
f ( x )dx = lim ∫ f ( x )dx −
t →b a
t
设 c ( a < c < b ) 为 f ( x ) 的瑕点,则有 的瑕点,

b a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
= lim ∫ f ( x )dx + lim ∫ f ( x )dx − +

b
a
f ′( x )dx = [ f ( x )] a = f (b) − f (a ) = a − b

高数习题

高数习题
1 n 2 n n n
定积分习题课
n
2 dx
x 0
1
= 右边
11
定积分习题课
例4. 估计下列积分值
1 解: 因为 4

1 4 x

1 0
2
,
1 dx


0 2 dx
1 2
11
4 x
2
π 6
12
定积分习题课
例5. 证明
证: 令 令 得 则

13
例6. 设

试证 上是单调递减的连续函数,


4
4
sin 2 x dx x 1 e

4
1 1 ( )sin 2 xdx 1 e x 1 e x

4

4



4
1 sin xdx ( 2) 4
2
1 所以I ( 2) 8
27
例16 设f ( x), g ( x)在0,1 上有连续导数,且
f (0) 0, f ( x) 0, g ( x) 0. 证明 :


1 x ln( x 4 x 2 ) 2

2

2


2
ln 2
22
定积分习题课
解2
1 f ( x) [( f ( x) f ( x)) ( f ( x) f ( x))] 2

其中f ( x) f ( x)为偶函数,f ( x) f ( x)为奇函数
定积分习题课
明对于任何 q 0 ,1 都有不等式 证明:显然 q 0 , q 1 时结论成立. 当 0 q 1 时,

高等数学习题课(5)定积分

高等数学习题课(5)定积分

0
则 b a
f
(
x)dx
0
(a b)
推论:(1) 如果在区间[a,b]上 f ( x) g( x) ,
则 b a
f
(
x
)dx
b
a g( x)dx
(a b)
(2)
b
a
f
(
x)dx
b
a
f
( x)dx
(a b)
性质6 设M 及m 分别是函数 f ( x) 在区间[a,b]
上的最大值及最小值,

b
即 F( x) x ( f ( x) f (t) 2)dt 0 a f (t) f (x) F ( x) 单调增加.
又 F (a) 0, F(b) F(a) 0,

b
f ( x)dx
b dx
(b a)2.
a
a f (x)
例8
( x et2 dt)2
求 lim x
0
x e2t2 dt
( x)
x
a
f
(t )dt 在[a,b]上具有导数,且它的导数

( x)
dx
dx a
f (t)dt
f (x)
(a x b)
定理 3(微积分基本公式) 如果F ( x) 是连续函数 f ( x)在区间[a, b]上的一个原函数,则
b
a f ( x)dx F (b) F (a)
也可写成
b a
b
b
a
f
( x)dx
lim
a
f ( x)dx
b
b
a
f
( x)dx
lim
0 a

定积分习题

定积分习题
1 1
y
x
确定 y 是 x 的函数 , 求f(x)。 解:方程两端对 x 求导, 得
f ( x y ) ⋅ ( y + x y′) = ∫ f (t ) d t + x ⋅ f ( y ) ⋅ y′
1
y
令 x = 1, 得
f ( y ) y = ∫ f (t ) d t + y f (1)
1
y
+ y ′ ∫ f (t ) d t + y ⋅ f ( x)
例12. 求 lim
x →0
= cot t 。
4
∫ ⎢∫ ⎣
0
x2 0
x ⎡ u2 0
⎤ arctan(1 + t ) dt ⎥ du ⎦ = lim x →0 x ⋅ (1 − cos x )

x
0
⎡ u arctan 1 + t dt ⎤ du ( ) ⎥ ⎢ ∫0 ⎣ ⎦ x2 x⋅ 2
2
⎛0⎞ ⎜ ⎟ ⎝0⎠
解: 等式两边对 x 求导, 得 不妨设 f (x)≠0, 则
sin x 1 ) 2 f (x) f ′(x) = f (x⋅ 2 2 + cos x
∴ f ( x) = ∫ 1 sin x dx f ′( x) dx = ∫ 2 2 + cos x
1 = − ln (2 + cos x ) + C 2
习题课
定积分及其相关问题
一、与定积分概念有关的问题的解法 二、有关定积分计算和证明的方法
曲边梯形的面积 曲边梯形的面积
问题1: 问题1:
变速直线运动的路程 变速直线运动的路程
问题2: 问题2:
定积分 定积分 的的 定定 性性 积积 质质 分分 定定 计计 积 算算 分积 法法 的分 的

高数第五章广义积分、定积分应用课堂练习题及参考答案

高数第五章广义积分、定积分应用课堂练习题及参考答案
0
ab.
2
y
b
O
ax
1
4
(2)
四.求下列平面图形分别绕 x 轴、y 轴旋转产生的立体的体积.
1. 由椭圆 x2 y2 1围成的平面图形 a2 b2
解:如图,该旋转体可视为由上半椭圆 y b a2 x2 及 x 轴所围成的图形,绕 x 轴旋转而成 a
的立体,故
Vx
a
dV
a
a
a
b2 a2
解: Vx
2 (x3 )2 dx
0
7
x7
|02
128 7
Vy
2
8 0
x
x3dx
2
1 ( 5
x5 )
|80
64 5
(或者 Vy
8 (22 3
0
y2
)dy
(4 y
3 5
5
y3
)
|80
64 5
(3)
4. 曲线 y x3 与直线 x 0, y 1所围成的图形
解: Vy
1
(3
0
y )2 dy
;当
p 1时,发散
3.
11 1 x2
dx 1 x
1 1
2
( “对”,“错” )
11 1 x2 dx
解:错,无界函数的积分,瑕积分,瑕点为 0,
1
1 dx
01 dx
11 dx
1 x2
1 x2
0 x2
0
1
1 0 dx
lim (1 1) ,(或者
1 x2
x 1
x x 0
2
3
3
x2
x3 3
1
0

高等数学-定积分及其应用ppt课件.ppt

高等数学-定积分及其应用ppt课件.ppt
一、引例
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设

存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,


故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?

定积分-习题课

定积分-习题课

(cos
3
4
3 1 x 2 A)dx A, 4 2 2
16 ( 1 )
, f ( x ) cos
4
x
3 8 (1 )
.
例14 求 lim
n
1
x e
n
x x
0
1 e
dx
解 因为 x [0 , 1]时,0
0
1
x e 1 e
1
n
1 ln x 2 1 x
2
)
1
4 x
lim ln
x
2 2
1 x
0
lim f ( x) lim (
x 0 x 0
1 2
ln x
1 1 x
2 2
2

1 2
ln x)
1 4
lim ln(1 x )
2 x 0
lim
1 2
1 2
x 0
ln x(
x
1 x
)0

lim
定积分习题课
• 一、主要内容 • 二、典型例题
一、主要内容
问题1:
曲边梯形的面积
问题2:
变速直线运动的路程
存在定理
的定 性积 质分
定积分
广义积分
定 计积 算分 法的
牛顿-莱布尼茨公式

b
f ( x )dx F ( b ) F ( a )
a
二、典型例题
例1

求 2 1 sin 2 xdx .
0
4
ln( 2 sin x cos x ) dx
0
4
4
(ln 2 ln sin x ln cos x ) dx

高等数学第五章习题课1定积分

高等数学第五章习题课1定积分

第 五 章 定 级 分

原式 lim
2e
x2
0 e
2 x2
x t2
dt
x
e
0
lim
2 e dt e
x2
x t2
x
lim
2e
x2
2
x 2 xe x
1 lim 0 x x
- 17 -
习题课(一)
3 解
第 五 章 定 级 分
tf ( x t )dt lim 0 ,
1 i 1 2 lim sin sinxdx n 0 n n i 1
n
-2-

习题课(一)
第 五 章 定 级 分
i 1 n i 1 lim sin lim sin n n n n 1 n n n i 1 i 1 1 2 sinxdx 0 2 原式 1 n1 n 2 n nn 3 lim n n n n
1 2 F ( x )dx 0
存在一点 , 使得 F ( ) 0, 即 f ( ) f ( )

-9-
习题课(一)
第 五 章 定 级 分
设在 [0,1] 上 f ( x ) 0, 证明: 1 1 2 0 f ( x )dx f ( 3 ) 证 由于 y f ( x ) 在区间 [0,1] 是上凸的, 所以曲线 1 1 y f ( x ) 在过 ( , f ( )) 处的切线下方,即 3 3 1 1 1 f ( x ) f ( ) f ( )( x ) 3 3 3 1 1 2 1 2 f ( x ) f ( ) f ( )( x ) 3 3 3

同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】

同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】

5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。

高等数学教案定积分及其应用

高等数学教案定积分及其应用

高等数学教学教案第5章 定积分及其应用,n ),每个小区间的长度记为,2,,n ),在()i f ξi x ∆,再求和1,2,,n ),,如果该极限存在,则称函数上可积,此极限值为)d x x ,即⎰称为被积函数,x()]d n f x ±±(bn af ⎰()d b ak f x x =⎰(区间可加性)设,,a b c )d c ax x f =⎰(保序性)若在区间[a )d x 0≥.授课序号02授课序号03授课序号04为A 的平板水平的放置在液体深为h 处,那么平板一侧所受的液体静压力方向垂直于物体表面,各点压强的大小与方向皆不变,则物体所受的总压力为PA F =.如果平板倾斜放置在液体中,那么,由于液体深度不同的点处压强P 不相等,平板一侧所受的液体压力就不能用上述方法计算.3. 引力由万有引力定律知,质量分别为21,m m ,相距为r 的两个质点间的引力大小为221r m m G F ⋅=,其中G 为万有引力系数,引力的方向沿着两质点的连线.举例说明怎样用定积分解决某些引力问题.4. 函数的平均值函数)(x f 在],[b a 上的平均值1()d b a y f x x b a=-⎰,恰好是定积分中值定理中的)(ξf . 四.例题讲解例1.求由两抛物线2y x =与2x y =所围成图形的面积A .例2.求由抛物线22y x =与直线4y x =-所围成图形的面积A . 例3.求椭圆⎩⎨⎧==,sin ,cos t b y t a x (0>a ,0>b )所围图形的面积.例4.计算心形线)cos 1(θρ+=a (0>a )所围图形的面积.例5.如图5.25,连接坐标原点O 及点(,)P h r 的直线, 直线x h =及x 轴围成一个直角三角形.将它绕x 轴旋转一周构成一个底半径为r ,高为h 的圆锥体.计算这个圆锥体的体积.图5.25例6.计算由椭圆22221x y a b+=所围成的图形分别绕x 轴、y 轴旋转一周而成的旋转体(叫做旋转椭球体)的体积.例7.计算由曲线3y x =,x 轴及直线2x =所围成的图形绕y 轴旋转而成的旋转体的体积.例8.一平面经过半径为R 的圆柱体的底圆中心并与底面交成α角,计算该平面截圆柱体所得立体的体积.(a) (b)图5.29例9.计算曲线3223y x =上相应于x 从a 到b 的一段弧的长度. 例10.计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩(0>a )的一拱(02)t ≤≤π的长度(图5.32). 例11.求阿基米德螺线θρa =(0>a )相应于θ从0到π2一段(图5.33)的弧长.例12.设在x 轴上的原点处放置了一个电量为1q +的点电荷,将另一带电量为2q +的点电荷放入由1q +形成的电场中,求电场力将2q +从x a =排斥到x b =时所做的功.例13.一个底半径为R 米,高为H 米的圆柱体水桶,盛满了水,问水泵将水桶内的水全部抽出来要做多少功 (水密度为33100.1m kg ⨯=ρ).例14.设半径为R 的圆形水闸门,水面与闸顶齐,求闸门一侧所受的总压力.图5.35例15.一个水平放置的线密度为μ,长度为l 的均匀细直棒,在其延长线上放置一个质量为m 的质点,该质点距细直棒最近端点的距离为r .求细直棒对质点的引力大小.Ox x yydyy +R2水面复合化成形加工方法及技术基础5.1 材料成形加工技术的复合化20世纪70年代开始,人们把信息、能源和材料誉为人类文明的三大支柱,20世纪80年代以来又把新材料技术与信息技术、生物技术一起列为高新技术革命的重要标志。

大一高数课件第五章 5-习题课-1

大一高数课件第五章 5-习题课-1

8、下列( 、下列(
dx 10、 10、广义积分 ∫ 2 =( ) 0 x − 4x + 3 1 2 (A)1 − ln 3 ; (B) ln ; (C)ln 3 ; 2 3 0 − kx 11、当( 收敛。 、 )时,广义积分 ∫− ∞e dx 收敛。
2
(D)发散. 发散.
(A) k > 0
(B) k ≥ 0
71 3 ; 4、 ; 4、 3
3 π π 5、 6、 7、 8、 5、1; 6、 ; 7、 − arcsin ; 8、π . 2 4 5
2、 3、 4、 5、 一、1、C; 2、A; 3、C; 4、D; 5、C; 6、 7、 8、 9、 10、 6、D; 7、B; 8、A; 9、C; 10、D. 三、1、
3x2 1 + x 12 − 2x 1 + x8
2、 ; 2、± 2e
− y2
sin x 2 .
4 π 4 2、 3、 四、1、 2 ln ; 2、 ; 3、 π − 3 4 3
x
1
.
14、 14、− a x[ f ( x ) + f ( − x )]dx = ∫
+a
.
15、 15、

+∞ 2
dx 为常数, ,其中 k 为常数,当 k ≤ 1 时,这积分 k x (ln x )

当 k >1 其值为
时,这积分 .
x3
,当这积分收敛时, 当这积分收敛时,
16、 连续, 16、设 f ( x ) 连续,且∫0 f ( t )dt = x ,则 f (8) =
2 1

2 −1 1
(C) ∫ dx ;
−1

定积分习题课

定积分习题课
定理1. 设 f (u) 有原函数, u (x)可导, 则有换元
公式
f (u)du u (x)
即 f [(x)](x)dx f ((x))d(x)
(也称配元法 , 凑微分法)
例1. 求
解: 令 u ax b ,则 d u adx , 故
原式 = um 1 d u 1 1 um1 C a a m1
4x)
dx
3 2
dx
cos 2x d(2x)
1 8
cos
4
x
d(4x)
例 9 cos x cos 2xdx
原式=
1 2
(cos
x
cos
3x)dx
1 sin x 1 sin 3x C
2
6
例10 tan3 x sec2 xdx
原式= tan2 xsec x(tan xsec x)dx (sec2 x 1)sec xd(sec x)
例8. 求
含sin 2k xcos2l x 二倍角公式
解: cos4 x (cos2 x)2 (1 cos 2x)2
2
1 4
(1
2
cos
2
x
cos
2
2
x)
1 4
(1
2
cos
2x
1cos 2
4x
)
1 4
(23
2
cos
2x
1 2
cos
4x)
cos4 x dx
1 4
(
3 2
2
cos
2
x
1 2
cos
F(b) F(a),
说明:
1) 当 < , 即区间换为[ , ] 时, 定理 1 仍成立 .

北京邮电大学《高等数学教学课件》5-习题课

北京邮电大学《高等数学教学课件》5-习题课

4 (cos x sin x)dx
0
2(sin x cos x)dx
4
2 2 2.
例5

1
2 1
2
[
sin x x8 1
ln2(1 x)]dx.
1

原式 0
2 1
ln(1
x)dx
2
0
1
1 ln(1 x)dx
2 ln(1 x)dx
0
2
3 ln 3 ln 1 . 22 2
x
x
x 0 f (u)du 0 uf (u)du
所以
x
0
u 0
f
( x)dxdu
x
( x u) f (u)du .
0
1/ 2
例 设 f ( x ) 在[0,1]可微,且满足 f (1) 2 xf ( x)dx 0
证明:(0,1)使
f ( ) f ( )
0
分析:变形为: f ( ) f ( ) 0, [ xf ( x)] 0
0
1 x
5、 1 dx ;
1
1
1 2x
7、 2
dx

1 x 3x2 2x 1
2、 a
dx

0 x a2 x2
4、 5 x 2 2x 3 dx ; 2
6、
x 2
dx 4x
; 9
8、
1
dx .
1 x x1
五、设 f ( x)在 0 , 1 上有连续导数, f (0) 0 ,
且0 f ( x) 1,试证:
f (u a2 ) du u 2u
1 a2 21
f (u
a2 ) du uu
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
思考:若f ( x ) = x − ∫ sin xf ( x )dx, 且a ≠ −1, 为常数, lijuan
2 0
a
求: ∫ f ( x)dx
0
a
等式两边同乘 sin x
解: . 设A =

a
0
sin xf ( x)dx
2
sin xf ( x) = x sin x − sin x ∫ sin xf ( x)dx
定积分 定积分
广义积分 广义积分
定定 积积 分分 的的 定定 积积 分分 的的 计计 算算 法法 计计 算算 法法

牛顿 莱布尼茨公式 牛顿牛顿 牛顿莱布尼茨公式 b
a
f ( x )dx = F (b ) − F ( a )
2
x=b
1、问题的提出
实例1 (求曲边梯形的面积A)
曲边梯形由连续曲线
lijuan
f ( x )d x
性质4


b a
1

d

x
=


b a
d
lijuan
x
性质5 如果在区间
∫a

b
f ( x )d x ≥ 0

b a
推论: (1) 如果在区间


b
f
(
x
) d
b
x ≤
(2)
∫a
f ( x )d x a < b) ≤ (∫ f ( x ) d a
a
8
[a , b]
性质6 设

o
π 4 0
= ∫ (cos x − sin x )dx + ∫ (sin x − cos x )dx
= [sin x + cos x]
= 2 2 − 2.
π 4
0
π + [− cos x − sin x ] 2 π 4
20
π 2 π 4
π 4
π 2
x
例: 求 ∫
π 2 0
sin x dx. sin x + cos x
19 1 n 2 n
n 2n
例: 求 ∫
π 2 0
1 − sin 2 xdx.
π 2 0
sin 2 x + cos2 x = 1
lijuan
解 原式 = ∫
= ∫ sin x − cos x dx sin x
π 2 0
sin 2 x − 2sin x cos x + cos2 xdx y cos x
轴与两条直线
x

n λ → 0 i =1
y =
所围成.
f ( x、 () f ( x ) ≥
A = lim ∑ f (ξ i )∆xi
实例2 (求变速直线运动的路程) 设某物体作直线运动,已知速度 是时间 间隔 上 的一个连续函数,且 ,求 n 物体在这段时间内所经过的路程 S. s = lim ∑ v (τ i )∆t i λ →0
求: ∫0 f ( x)dx 定积分是一常数
a
解: 设 : ∫ f ( x)dx = A
0
a
两边在[0,a ]上求积分
a a
则: ∫ f ( x)dx =
0
a

a
0
x dx − ∫ [ ∫ f ( x)dx]dx
0 0
2
a 1 3 a = [ x ]0 − a ∫ f ( x )dx 0 3 a a3 1 3 a3 ∴ ∫ f ( x) dx = ∴ A = a − aA ∴ A = 0 3(1 + a) 3(1 + a ) 3
0
a →−∞ a
b
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
13
b t b f ( x ) dx = lim f ( x ) dx f ( x) dx = f+ (ax )dx + ∫ f (dx x) dx ∫ ∫ − a lim t → b = f ( x ) dx lim f ( x ) ∫ ∫ a a c t →c − ∫a t →c + ∫t (2)无界函数的广义积分
各小区间的长度依次为 ∆
x
i
=
x,i −
),
4
x
ξ
i
i −, 1
在各小区间上任取 一点 (



b
n
a
f ( x) dx = I =lim ∑ f (ξi )∆xi
作乘积
λ →0 i =1
f
( ξ
i
) ∆
x
(i lijuan i =

怎样的分法,也不论在小区间
的取法,只要当
, 如果不论对
λ = max{∆x1 , ∆x2 ,⋯, ∆xn }
b b
c
t
lijuan

b
a
f ( x )dx = lim f ( x )dx + ∫
t →a t
b
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
14
做定积分步骤:
(1)是否为广义积分,是否有无穷间断点;
lijuan
(2)区间是否对称,是否为奇函数、偶函数、 周期函数; (3)是否可用递推公式;
lijuan
π n +1 sin sin π 2 2 n n J = I − lim + lim = −0+0 = n →∞ n + 1 n →∞ 1 π π n+ n +1
18
n n n + 2 +⋯+ 2 ). **练习: 1.求极限 lim ( 2 2 2 n→∞ n + 1 n + 2 n + n lijuan 1 1 1 1 n π = d x = 解: 原式 = lim ∑ 2 ∫ 2 i 0 1+ x n→∞ n i =1 1 + ( ) 4 n
π 2 0 π sin x cos x dx , 设 J = ∫ 2 dx , 0 sin x + cos x sin x + cos x
lijuan
解 由I =∫
则 I +J = ∫
π 2 0
π dx = , 2
π
I −J = ∫
π 2 0
sin x − cos x d (cos x + sin x ) 2 dx = − ∫ = 0. 0 sin x + cos x sin x + cos x
(2)分部积分法
b a b a
b
β
f [ϕ ( t )]ϕ ′( t )dt
b
换元公式
∫ udv = [uv ] − ∫ vdu
a
分部积分公式
12
7、广义积分
(1)无穷限的广义积分
lijuan

+∞
a b
f ( x) dx = lim ∫ f ( x) dx
b→+∞ a
b

−∞
f ( x) dx = lim ∫ f ( x )dx
(4)常规积分题的做法。
用第二类换元积分法证明一些结论。
15
**例、用定积分的定义计算极限:
π 2π sin sin sin π n n I = lim[ + + ... + ] n →∞ n + 1 1 1 n+ n+ 2 n 解: 将数列适当放大和缩小,以简化成定积分的和:
lijuan
π 2π sin sin n+ n + ... + sin π 1 n +1 n + 1 n+ 2 n n 1 π 2π kπ 1 < (sin + sin + ... + sin π ) = ∑ sin ⋅
n kπ 1 = ⋅ ∑ sin ⋅ n + 1 k =1 n n
n
n kπ 1 ⇒ lim ⋅ ∑ sin ⋅ n →∞ n + 1 n n k =1
n n kπ 1 n kπ 1 sin ⋅ = lim ⋅ lim ∑ sin ⋅ = lim ∑ n →∞ n + 1 n →∞ n n n n n →∞ k =1 k =1
[ a
, b
6
]
∫a kf ( x )dx = k ∫a f ( x )dx
4、定积分的性质
性质1 性质2 性质3 假设
b
b
b
k
lijuan
∫a
[ f ( x ) ±
g ( x ) ]d x
( 为常数)
a < c < b
f d d x x (= ∫ x f ) ( x ) + a
7

b a
c
∫c
b
ξ
分别是函数
在区间
lijuan
M 上的最大值及最小值,
m (b − a ) ≤

∫a
b
f ( x )dx ≤. M ( b − a )
上连续,

性质7 (定积分中值定理)
如果函数
则在积分区间
在闭区间
上至少存在一个点
b a
使

f
9
(
x
积分中值定理
=
) d
f (
x
5、牛顿—莱布尼茨公式
定理1 如果
在 在 是 上连续,则积分上限的函数 上具有导数,且它的导数
2 = ∫ sin π xdx = 0 π
相关文档
最新文档