部编版人教初中数学八年级上册《第十三章(轴对称)全章导学案》最新精品优秀打印版整章导学单
八年级数学上册 第十三章 轴对称 画轴对称图形导学案 (新版)新人教版
画轴对称图形【学习目标】1.指导学生能熟练画出一个图形关于某一条直线对称的轴对称图形.2.培养学生的良好动手实践能力.【学习重点】理解两个图形关于某一条直线对称的特征,并能画轴对称图形.行为提示:创设情境,引导学生探究新知.行为提示:认真阅读课本,独立完成“自学互研”中的题目.在探究练习的指导下,自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.提示:让学生亲自动手操作,通过操作体会两个图形关于某一条直线对称的特征.在学生动手操作的过程中,老师向学生提问左边的问题,引发学生的思考.情景导入生成问题如图,给出了一个图案的一半,其中的虚线是这个图案的对称轴.(1)你能猜出整个图案的形状吗?(2)你能画出这个图案的另一半吗?几何图形都可以看作是由点组成的,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点便可以得到原图形的轴对称图形,如何作出点A、B、C、D关于直线l的对称点呢?自学互研生成能力知识模块一两个图形关于某一条直线对称的特征(一)自主学习阅读教材P67思考之前的内容,完成下列问题:如图,观察下面图形剪纸形成过程并填空:1.剪纸得到的另一半图形与原图形的形状、大小一样吗?答:两个图形形状、大小完全一样.2.新图形上的每一点,都与原图形上的某一点关于直线l对称.3.连接任意一对对应点的线段被对称轴垂直平分.(二)合作探究1.轴对称图形的性质:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.2.如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?知识模块二画轴对称图形(一)自主学习阅读教材P67思考之后~P68练习之前的内容,完成以下问题:从教材P67例1,我们可以知道:1.找点A关于直线l的对称点A′的方法是:过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA.A′就是点A关于直线l的对称点.2.作△ABC关于直线l对称的图形的方法是:分别找出三角形ABC的三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.(二)合作探究1.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.在图中,画出△A′B′C′,使△A′B′C′与△ABC关于l成轴对称图形.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一两个图形关于某一条直线对称的特征知识模块二画轴对称图形检测反馈达成目标1.作已知点关于某直线的对称点的第一步是( B)A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为( C) A.50°B.30°C.100°D.90°第2题图第3题图3.如图,△ABC与△A1B1C1关于直线MN对称,△A1B1C1和△A2B2C2关于直线EF对称.(1)画直线EF;(2)若直线MN与直线EF交于点O,所夹的角为45°,求∠BOB2的度数.解:(1)连C1C2作C1C2的垂直平分线EF;(2)连OB、OB1、OB2,则∠BOB2=2∠M OE=90°.课后反思查漏补缺1.本节课学到了什么知识?还有什么困惑?2.改进方法。
新人教版初中数学八年级上册《第十三章轴对称:数学活动》公开课导学案_0
《运用轴对称设计图案》教学设计一.教材依据人民教育出版社(义务教育课程标准实验教科书)数学八年级上册第十三章活动课。
二.设计理念初中数学教学大纲中明确指出:“要坚持理论联系实际,把数学知识运用到实际中去分析、解决力所能及的实际问题.”,《全日制义务教育数学课堂标准》提出“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,教师激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动的经验。
”因此,在本节课教学设计中,体现以下教学理念:黔南剪纸、自制花边等,让学生在真实有趣的情境中学习数学。
2、具体的活动中获得数学知识。
3、学有价值的数学:通过本课的学习,学生体会轴对称的重要性,学会运用轴对称设计图案。
4、人人都得到发展:学生通过教学活动,体验制作的过程,并在过程中理解和会教学重点四、教学流程安排五、教学流程设计[活动2] 创设情境,探索新知,获取新知一、美术字与轴对称3、猜想下列几个未写完的美术字是什么汉字或字母?问题1:该公司安排甲、乙两种货车运货,有几种方案?问题2:4]制作花边,作品展示,体会成功的喜悦。
有时,将平移和轴对称结合起来,可以设计出更丰富的图案,许多镶边和背景图案就是这样设计的.请你利用平移和轴对称设计图案,制作成花边,并说明你的设计过程,与同学九、教学反思:本节课是一节数学活动课,这是一堂集欣赏美与动手设计为一体的活动课,让学生在动手操作中探究,在理解中创新,以学生交流、合作为主,用轴对称研究美术字的对称和写出轴对称的美术字;利用轴对称设计图案,体验数学与生活的紧密联系,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生自制图案的主动性,使他们真正成为学习的主人,积极参与到活动中的每一个环节,努力探索自制美丽图案的方法,大胆展示自己的作品。
2023八年级数学上册第十三章轴对称13.1轴对称13.1.1轴对称教案(新版)新人教版
- 确保所有实验器材的安全性,避免在使用过程中造成伤害。
4. 教室布置:
- 将教室座位调整为小组合作模式,每个小组配有一张工作台,便于学生进行讨论和操作。
- 在教室前方设置多媒体展示区,方便展示图片、视频和动画等教学资源。
- ③轴对称在实际生活中的应用:如建筑设计、艺术创作、自然界中的对称现象等。
2. 艺术性和趣味性:
- 使用图形和色彩突出轴对称的美感,如对称的图案、色彩对比等。
- 设计一些有趣的轴对称图案,如蝴蝶、剪纸等,增加学生的视觉吸引力。
- 引导学生参与板书的绘制,如让学生在黑板上画出轴对称图形,增加互动性和参与度。
3. 成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
五、总结回顾(5分钟)
今天的学习,我们了解了轴对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2023八年级数学上册 第十三章 轴对称13.1 轴对称13.1.1 轴对称教案(新版)新人教版
主备人
备课成员
课程基本信息
1. 课程名称:轴对称
教学内容:13.1 轴对称13.1.1 轴对称
2. 教学年级和班级:八年级
3. 授课时间:第1课时
4. 教学时数:45分钟
【教学目标】
1. 知识与技能:理解轴对称的概念,掌握轴对称图形的特点,能够识别并绘制轴对称图形。
2. 提升逻辑推理能力:引导学生从特殊到一般,通过观察、分析、归纳,发现轴对称的性质和规律,培养学生的逻辑推理能力。
部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?
√
√
√
√
√
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!
最新人教版第十三章轴对称导学案
13.1.1轴对称班级小组姓名【学习目标】1.理解轴对称图形及轴对称的定义;2.了解轴对称图形与轴对称的联系与区别;3.了解线段垂直平分线的概念,理解轴对称图形和轴对称的性质.【重点难点】对轴对称图形与轴对称概念的理解;轴对称图形与轴对称的联系与区别.预习案【预习导学】预习课本58-60页内容,完成下列问题.1.轴对称图形的定义:.2.轴对称的定义:.3.线段垂直平分线的定义是:.4.轴对称图形和轴对称的性质:探究案探究1:准备一张纸;对折纸;用圆规在纸上扎出如图所示的图案(或者发挥你的想象扎出其它你认为美丽的图案);把纸打开铺平,观察所得的图案,位于折痕两侧的部分有什么关系?练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?图(1)有条对称轴;图(2)有条对称轴;图(3)有条对称轴;图(4)有条对称轴;图(5)有条对称轴.探究2:观察下列图形,有什么共同特点?思考:两图形关于直线a成轴对称,它们全等吗?已知两图形全等,它们成轴对称吗?探究3:参照下图说明轴对称图形与两个图形成轴对称有什么区别与联系?区别:。
联系:。
.(A)(B)(C)(D)(A )(B )(C )(D )探究4:如图,ABC ∆和C B A '''∆关于直线MN 对称, 点A '、B '、C '分别是点A 、B 、C 的对称点, 线段A A '、B B '、C C '与直线MN 有什么关系? 由此你能得到什么结论?训练案1.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )2.下列图案中,不是轴对称图形的是( )3.下列图形中对称轴最多的是 ( )A 、圆B 、正方形C 、等腰三角形D 、线段4.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )5.下面哪些选项的右边图形与左边图形成轴对称?( )6.下面四组图形中,右边与左边成轴对称的是( )A. B. C. D.7.下列说法不正确的是 ( ) A.两个关于某直线对称的图形一定全等 B. 对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称8.试想想“角的对称轴就是它的角平线”这句话对吗?判断正误,说明理由。
第13章《轴对称》总复习-导学案(人教版)
第十三章《轴对称》总复习导学案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.4.等腰三角形有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做 .5.等边三角形三条边都的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角”).(2)等腰三角形的顶角、底边上的、底边上的相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别,两底角的平分线也 .5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于0.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形.四、练习一、选择题1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,ACB A ''C '图2图1E DCBAlODCBABA交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.FE DCAP 2P 1N MO PB Aα35°115°DECBAO22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.D C BAADEFB C25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .F CBAEDCBAABCDE28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .31.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.HEA(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论N MDCBA。
最新人教版八年级数学上册导学案:第十三章 轴对称
第十三章轴对称13.1轴对称13.1.1轴对称一、新课导入1.导入课题:放映一些生活中常见的轴对称图形的设计图片,并进行下列解说:我们生活在一个充满对称的世界中,许多建筑都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些具有对称性,对称给我们带来多少美的感受!而轴对称是对称中重要的一种,这节课让我们一起走进轴对称吧!2.学习目标:(1)能在生活实例中认识轴对称图形.(2)会区分轴对称图形和两个图形成轴对称的联系和区别.(3)认识轴对称图形的性质.(4)了解线段的垂直平分线的概念,掌握线段垂直平分线与对称轴之间的区别和联系.3.学习重、难点:重点:轴对称图形的概念及轴对称图形的性质.难点:能够识别轴对称图形并会找出它的对称轴.二、分层学习1.自学指导:(1)自学内容:教材第58页到第59页最后一个思考前面部分.(2)自学时间:5分钟.(3)自学方法:通过观察、折叠、总结轴对称图形的特征.(4)自学参考提纲:①认真观察教材中的图片,你能简要说出它们的共同特征吗?你还能举出生活中类似于这种图形的实例吗?它们都是轴对称图形,如:课桌、一些汽车标志、奥运5环等等.②你能动手操作剪出与教材类似的图案吗?动手试试看.③你是怎样找一个轴对称图形的对称轴?写出自己的看法.把这个图形沿一条直线折叠,使直线两旁的部分重合,这条直线就是这个图形的对称轴.④请你举出一些生活中两个图形成轴对称的例子,并指明它的对称轴.比如一个标准篮球场的两个半场的图案,对称轴是中场线.⑤你能说出轴对称与轴对称图形的联系和区别吗?轴对称是指两个图形,轴对称图形是指单一图形,它们都有对称轴.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:轴对称图形和两个图形成轴对称的联系和区别是本层次的难点,学生对两个概念容易混淆,教师应特别关注.②差异指导:借助幻灯片展示轴对称图形和两个图形成轴对称之间的区别和联系,帮助学生深刻认真加以区分.(2)生助生:学生小组合作交流找出两个概念之间的关键字眼和图形特征.4.强化:(1)轴对称图形的意义.(2)两个图形成轴对称的意义.(3)轴对称与成轴对称的联系与区别.(4)练习:下列各图,你能找出它们的对称轴吗?请一一画出:(1) (2) (3) (4) (5)解:如图所示,图形(3)有无数条对称轴.(5)小组交流展示:①归纳轴对称图形的特征,并能举出一两个实例.②找对称轴的方法.1.自学指导:(1)自学内容:教材第59页最后一个“思考”至第60页“练习”之前的内容.(2)自学时间:5分钟.(3)自学方法:通过画图、思考得出结论.(4)自学参考提纲:①认真阅读P59页最下面的一个思考:a.点A、B、C的对称点分别是A′、B′、C′.b.线段AA′、BB′、CC′之间的位置关系AA′∥BB′∥CC′.c.线段AA′、BB′、CC′与对称轴之间的位置关系:AA′⊥MN、BB′⊥MN、CC′⊥MN.②归纳:垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.③归纳:图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.并结合图13.1-5,叙述轴对称图形的性质.④画出一些关于直线成轴对称的图形,然后同桌展示交流,并用文字语言叙述图形轴对称的性质.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情;学生能从图形中获得表象知识,但是在学习图形轴对称的性质过程中,当图形与文字语言结合时,学生有点混淆,教师特别关注其中的易混点.②差异指导:引导学生挖掘垂直平分线中的关键字眼以及成轴对称图形的性质的归纳.(2)生助生:小组合作帮助完成自学提纲中的④.4.强化:(1)成轴对称的两个图形的性质.(2)线段的垂直平分线的意义.(3)练习:教材第60页“练习”.三、评价1.学生的自我评价(围绕三维目标):学生相互交流自己的学习收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(每题10分,共60分)1.线段是轴对称图形,它的对称轴是它的垂直平分线.2.角是轴对称图形,它的对称轴是它的角平分线所在的直线.3.简体汉字中“田、日、中”,都具有对称美的特点,请你再写出具有这们特征的三个汉字为王喜工.4.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑哪一个与其他三个不同?请指出这个图形,并说明理由.答:这个图形是:④(写出序号即可),理由是只有它不是轴对称图形.5.下面有4个汽车标志图案,其中是轴对称图形的是(B)A②③④A.①②③④B.①②③C.①②④D.②③④6.如图,它们是否是轴对称图形,如果是,它有几条对称轴?画画看.二、综合应用(每题10分,共20分)7.找出英文26个大写字母中哪些是轴对称图形?解:A、B、C、D、E、H、I、K、M、O、T、U、V、W、X、Y是轴对称图形.8.你能举出三个是轴对称图形的几何图形吗?解:正方形、长方形、圆.(答案不唯一)三、拓展延伸(20分)9.小强站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟,其读数如图所示,则电子钟的实际时刻是10:21.13.1.2 线段的垂直平分线的性质一、新课导入1.导入课题:前面我们已经学习了轴对称图形和两个图形成轴对称的意义和性质,这节课我们一起运用轴对称来探索线段垂直平分线的性质和判定.2.学习目标:(1)能述出线段垂直平分线的性质.(2)能运用线段垂直平分线的性质解决有关问题.(3)能说出线段垂直平分线的判定方法.3.学习重、难点:重点:线段垂直平分线的性质.难点:线段垂直平分线的性质与判定的运用.二、分层学习1.自学指导:(1)自学内容:探究线段垂直平分线上的点与两个端点的距离有什么关系?(2)自学时间:10分钟.(3)自学方法:通过作图、猜想、验证,得出结论.(4)探究提纲:①如图,直线l垂直平分线段AB,P1、P2、P3是l上的点.a.P1到端点A、B的距离是什么?分别表示为P1A、P1B.b.量一量这两个距离,你能猜想出什么结论?P1A= P1Bc.你能用什么方法来证明你的猜想,试写出论证(或说明).证明:∵l⊥AB,∴∠P1CA=∠P1CB.又CA=CB,P1C= P1C,∴△P1CA≌△P1CB (SAS).∴P1A= P1B.d.P2,P3分别到A、B点的距离也满足上述关系吗?满足e.由折叠的方法能否验证你的结论?试试看.②归纳:线段垂直平分线的性质.文字语言叙述:线段垂直平分线上的点与这条线段两个端点的距离相等.几何语言叙述:∵l垂直平分AB,P是l上一点;∴PA=PB.③如图,在△PAB中,如果PA=PB,那么点P是否在线段AB的垂直平分线上?请证明这个结论?点P在线段AB的垂直平分线上证明:作PC⊥AB,垂足为C,则∠ACP=∠BCP=90°,在Rt△PAC 和Rt△PBC中,PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC.∴PC是AB的垂直平分线,即点P在线段AB的垂直平分线上.这个结论与②中的结论之间有何关(联)系?它们互为逆定理.④归纳:线段垂直平分线性质的逆定理.文字语言叙述:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.几何语言叙述:∵PA=PB;∴P点在AB的垂直平分线上.⑤比较这两个性质之间的区别和联系.2.自学:学生结合自学指导进行探究式学习.3.助学:(1)师助生:①明了学情;这节的难点是性质的证明,看学生对文字语言的证明过程是否熟练.②差异指导:引导学生用全等三角形的知识对性质进行证明.(2)生助生:在区别两个性质的因果关系时,小组合作交流共同完成区分条件与结论.4.强化:(1)交流学习成果:①线段垂直平分线的定义;②线段垂直平分线的性质.(2)练习:到三角形三个顶点的距离相等的点是(B)A.三条角平分线的交点B.三边垂直平分线的交点C.三边高线的交点D.没有这样的点1.自学指导:(1)自学内容:教材第62页例1.(2)自学时间:5分钟.(3)自学方法:动手画图,分析作图的原理.(4)自学参考提纲:①复习:什么是尺规作图?尺规作图的步骤有哪些?尺规作图是指用没有刻度的直尺和圆规作图.步骤:a.已知;b.求作;c.作法;d.作图.②画图:按照例题的步骤动手画一画.③分析:a.以C为圆心,CK为半径作弧交AB于D、E,则CD与CE是何关系?CD=CEb.分别以D、E为圆心,大于1DE长为半径作弧交于F,说明2DF与EF如何?DF=EFDE的长为半径画弧”?c.为什么要“大于12解:这样所画的弧才能相交.d.作直线CF得出CF⊥AB的道理是什么?解:先由SSS证明∠DCF=∠ECF,再结合CD=CE,∠CDE=∠CED,证得CF⊥DE,即CF⊥AB.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:学生知道“过已知直线外一点作这条直线的垂线有且只有一条”,但不会用尺规作图作线段的垂线.②差异指导:引导学生阅读作法,分析作图原理.(2)生助生:小组讨论作图原理,有不明白的地方小组合作交流帮助解决.4.强化:练习:教材第62页练习1、2题.学生板演.练习1:AB=AC=CE,AB+BD=DE.练习2:直线AM是线段BC的垂直平分线.1.自学指导:(1)自学内容:教材第62页“思考”到第63页的内容.(2)自学时间:8分钟.(3)自学方法:通过观察、分析、操作、总结归纳得出作对称轴的方法.(4)自学参考提纲:①如果两个图形成轴对称,其对称轴与对应点所连线段的关系是怎样的?解:对称轴垂直平分对应点所连线段.②为什么说例2的作法本质上就是线段垂直平分线的尺规作图?你能用尺规作图的方法作一条线段的垂直平分线吗?动手试试,并简要说明作图方法?解:因为A,B两点关于CD对称,根据两个图形成轴对称的性质可知例2的作法就是线段垂直平分线的尺规作图.作法:如图所示:(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弦相交于C、D两点;(2)作直线CD.CD即为AB 的垂直平分线.③请你动手作出教材中五角星及它的对称轴.并简要说明理由?2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情;通过前两节的学习,了解学生对对称轴的画法是否已经熟悉.②差异指导:引导学生画复杂图形的对称轴,关键是先找出对应点,然后再画任意一对对应点所连线段的垂直平分线.(2)生助生:学生之间相互交流帮助解疑难.4.强化:(1)交流学习成果:作线段垂直平分线的方法;作成轴对称的两个图形的对称轴的方法和依据.(2)总结:对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.(3)练习:教材第64页“练习”.练习2:角的平分线所在的直线是角的对称轴.练习3:与A成轴对称的是B.三、评价1.学生的自我评价(围绕三维目标):学生相互交谈自己的学习收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课教学力求充分体现内容的基础性,方法的灵活性,学生学习的主体性和教学的主导性,在学习活动中,要求学生主动参与,认真思考,比较观察、动手交流和表述,并借助多媒体的手段辅助教学,增强直观性、激发学习兴趣,强调分组讨论,学生与学生之间很好的交流与合作,利用师生的双边活动,激发学生学习兴趣,教师从中发现、搜集学生的学习情况,查漏补缺,适时调度,从而顺利达到教学的目的.一、基础巩固(每题10分,共60分)1.如图,直线CD是线段AB的垂直平分线,M是直线CD上的一点.已知线段MA=12cm,则线段MB的长为12cm.2.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D ,△ABD的周长是12cm,AC=5cm,则AB+BC=12cm,△ABC的周长是17cm.3.下列几何图形:①线段;②正方形;③圆;④等腰梯形;⑤平行四边形,其中一定是轴对称图形的是①②③④(填序号).4.在△ABC中,AB的中垂线与AC边所在直线相交所得的锐角为50°,则∠A的度数为(C)A.50°B.40°C.40°或140°D.40°或50°5.将一正方形纸片按图(1),图(2)的方式依次对折之后,再沿图(3)中的虚线裁剪得图(4).最后将图(4)的纸片打开铺平,所得到的图案是(B)6.画出下列图形的对称轴(有几条对称轴就画出几条,不要遗漏).二、综合应用(20分)7.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在点C′处,BC′交AD于E;(1)若∠DBC=22.5°,则在不添加辅助线的情况下,图中45°的角(虚线也视为角的边)有多少个?(2)你认为图中有多少组全等三角形,并把他们写下来.解:(1)5个.(2)4组,△BCD≌△BC′D,△ABE≌△C′DB,△ABD ≌△CDB,△ABD≌△C′DB.三、拓展延伸(每题10分,共20分)8.电信部门要修建一座电视信号发射塔,如图,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置?在图上标出它的位置.解:如图所示,两条高速公路相交的角的角平分线和AB的垂直平分线的交点P1与P2点.9.△ABC中,AB=AC,∠A=120°,AB的垂直平分线交于BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.证明:连接AM,AN.∵ME垂直平分AB,NF垂直平分AC,∴MB=MA,NA=NC,∴∠B=∠MAB,∠C=∠NAC.又AB=AC,∠A=120°,∴∠B=∠C=30°∴∠MAB+∠NAC=∠B+∠C=60°,∴∠MAN=∠BAC-(∠MAB+∠NAC)=60°,∵∠MAN=∠AMN=∠ANM=60°,∴AM=AN=MN,∴BM=MN=NC.13.2画轴对称图形第1课时作轴对称图形一、新课导入1.导入课题:你们会利用轴对称进行简单的图案设计吗?今天我们就一起来学习怎样作轴对称图形.2.学习目标:(1)知道轴对称变换前后的两个图形是全等的,并且任意一对对应点所连线段被对称轴垂直平分.(2)已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.3.学习重、难点:重点:已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.难点:能进行简单的轴对称变换设计对称性图案.二、分层学习1.自学指导:(1)自学内容:教材第67页到本页思考上面部分.(2)自学时间:5分钟.(3)自学方法:通过观察、动手操作、总结出成轴对称的两个图形的有关性质.(4)自学参考提纲:①结合图13.2-1,阅读教材第67页第一段,把重点语句做上记号.②将下列图案沿直线l折叠,用针尖沿着玉米图案扎出,再打开看看,得到了什么?连接对应点(找三对),看所连线与l有何位置关系?测量对应点所连线段被l分成的两段有何关系?解:得到一个与玉米图案一样的图形,所连线段被l垂直平分、相等.图1 图2③将你实验得出的结论用几何方法论证一下.④结论:a.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;b.新图形上的每一点,都是原图形上的某一点关于直线l的对称点;c.连接任意一对对应点的线段都被对称轴垂直平分.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:八年级学生已经具备一定观察能力,了解学生能否将实验操作得出的结论完整地用语言表达出来.②差异指导:结合学生画出的图形,引导学生表述实验发现的结论.(2)生助生:互助交流关于直线对称的两个图形的对应点与对称轴存在的关系.4.强化:(1)填空:①由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;②新图形上的每一点,都是原图形上的某一点关于直线l的对称点;③连接任意一对对应点的线段都被对称轴垂直平分.④两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.(2)交流学习成果:①轴对称前后两个图形的关系;②对应点连线与对称轴的关系.(3)总结:①轴对称前后两个图形全等;②对应点连线被对称轴垂直平分.1.自学指导:(1)自学内容:探究如何作出一个图形关于某直线的对称图形.(2)自学时间:5分钟.(3)自学方法:作一个图形关于某条直线的对称图形,应根据轴对称的性质作对称点.(4)探究提纲:①作已知一点关于某条直线的对称点的方法是怎样的?过点P作直线l的垂线,垂足为O,在垂线上截取OP′=OP,P′即为所求作的点.②作已知一条线段关于某条直线的对称线段的方法是怎样的?分别作点A,B关于直线l的对称点A′,B′,连接A′B′,A′B′即为所求作的线段.③作已知一个三角形关于某条直线对称的三角形的方法是怎样的?分别作点A,B,C关于直线l的对称点A′,B′,C′,顺次连接A′B′、A′C′、B′C′,△A′B′C′即为所求作的三角形.④作已知图形关于某条直线对称的图形的方法是怎样的?分别作点A,B,C,D关于直线l的对称点A′,B′,C′,D′,顺次连接A′B′,B′C′,C′D′,D′A′,四边形A′B′C′D′即为所求作的四边形.⑤改变对称轴的位置,然后画一画.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否掌握画图的依据和方法.②差异指导:由点、线段、三角形再到复杂图形,一步一步引出关于直线对称的图形的画法,并让学生观察改变对称轴后图形的变与不变之处.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流及总结:作一个图形关于某条直线的对称图形的方法.(2)结论:分别作出这些点关于对称轴的对应点再连接这些对应点,就可以得到原图形的轴对称图形(3)教材第68页“练习”.三、评价1.学生的自我评价(围绕三维目标):学生之间相互交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(第1、2题每题10分,第3题20分,第4题30分,共70分)1.已知:直线AB与直线A′B′交于点P,并且这两条直线关于直线l成轴对称,下列说法正确的是(C )A.直线AB与直线A′B′的长度不相等B.直线AB、A′B′与直线l不一定能交于同一点C.直线AB、A′B′与直线l一定交于P点D.点P关于直线l的对称点不存在2.下列说法:①关于某直线对称的两个图形的面积相等;②平面内两个完全相同的图形一定关于某直线对称;③两个图形成轴对称,其对应点连线的垂直平分线就是它们的对称轴;④关于某直线对称的两个图形,对称点一定在该直线的两旁;其中正确的是(B)A.①②B.①③C.①②③D.①②③④3.如图,把下列图形补成关于直线l对称的图形.4.已知△ABC及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形.(1)直线l就是AA′的垂直平分线;(2)作出B、C关于直线l的对称点B′、C′.(3)连接A′B′、B′C′、C′A′,即得△ABC关于直线l的对称图形△A′B′C′.二、综合应用(15分)5.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.解:一般三角形:沿中线折,没有重合的;沿高线折,底边重合,沿角平分线折,两邻边重合.等腰三角形:沿底边上的中线折,底边重合,两邻边也重合;沿底边上的高线折,底边重合,两邻边重合;沿顶角角平分线折,底边重合,两邻边也重合.三、拓展延伸(15分)6.如图所示,∠AOB内一点P,P1P2分别是P关于OA、OB的对称点,P1P2=交OA于M,交OB于N.若P1P2=8cm,则△PMN的周长是多少?解:∵P1、P关于OA对称,P2、P关于OB对称,∴OA垂直平分P1P,OB垂直平分P2P.∴MP1=MP,NP2=NP.∴C△PMN=PM+MN+NP.=P1M+MN+NP2= P1P2==8cm.13.2画轴对称图形第2课时用坐标表示轴对称一、新课导入1.导入课题:同学们还记得怎样利用坐标来表示地理位置吗?今天我们来学习用坐标表示轴对称.2.学习目标:(1)能知道关于x轴或关于y轴对称的点的坐标特征.(2)能利用对称点坐标规律在平面直角坐标系中作出一个图形关于x、y轴的轴对称图形.3.学习重、难点:重点:知道关于坐标轴对称的点的坐标规律,并能利用这个规律,找一点关于x轴或y轴的对称点坐标.难点:在平面直角坐标系中,作出一个图形关于x轴或y轴的对称图形.二、分层学习1.自学指导:(1)自学内容:教材第68页“练习”后到第71页“归纳”部分的内容.(2)自学时间:5分钟.(3)自学方法:通过观察、体验教材第69页思考中的问题,领悟关于x轴或y轴对称的两个点的坐标的特点.(4)自学参考提纲:通过填表回答:①思考中西直门的坐标是(-3.5,4),你能说说东直门和西直门的位置关系吗?东直门和西直门是关于中轴线对称的.②完成教材上的表格填空,并思考:a.关于x轴对称的点的坐标有什么规律?横坐标相等,纵坐标互为相反数.b.关于y轴对称的点的坐标有什么规律?纵坐标相等,横坐标互为相反数.③点(-2,1)关于x轴、y轴的对称点的坐标分别为(-2,-1)、(2,1).2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生观察归纳的结论是否正确.②差异指导:引导学生将发现的规律用文字语言和坐标方式表达出来.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流学习成果:小组讨论,展示学习成果.(2)总结:点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y).(3)练习:分别写出下列各点关于x轴和y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)解:关于x轴对称:(-2,-6),(1,2),(-1,-3),(-4,2),(1,0);关于y轴对称:(2,6),(-1,-2),(1,3),(4,-2),(-1,0).1.自学指导:(1)自学内容:教材第70页例2.(2)自学时间:5分钟.(3)自学方法:结合图形,动手描点从而得出一般性的规律.(4)自学参考提纲:①在平面直角坐标系中作一个图形关于坐标轴对称的对称图形依据是什么?轴对称图形的性质.②通过例2试归纳:在平面直角坐标系中作一个图形关于坐标轴对称的对称图形步骤是什么?(1)找关键点;(2)找关键点的对称点;(3)顺次连接各对称点,得出对称图形.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否熟悉根据结论正确把握对称点的坐标特点.②差异指导:学生在画多边形的对称图形时,引导学生找到并画出特殊点.(2)生助生:学生间互助交流.4.强化:(1)交流及总结:作图方法和作图步骤.(2)教材第70页到第71页“练习”的1、2、3题.练习1:关于x轴对称的点的坐标为:(-2,-6),(1,2),(-1,-3),(-4,2),(1,0),关于y轴对称的点的坐标为:(2,6),(-1,-2),(1,3),(4,-2),(-1,0)练习2:B(1,2)三、评价1.学生的自我评价(围绕三维目标):学生间交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、效果及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时采用探究、发现式的教学方法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,可培养学生观察、归纳、分析问题解决问题的能力,并通过研究线段之间关系发现对称点的坐标之间的关系,从中体验数形结合思想,教学中应让学生认识到寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤.一、基础巩固(每题10分,共50分)1.分别写出下列各点关于x轴和y轴对称的点的坐标.(3,6),(-7,9),(6,-1),(-3,-5),(0,10)解:关于x轴对称的点:(3,-6),(-7,-9),(6,1),(-3,5),(0,-10);关于y轴对称的点:(-3,6),(7,9),(-6,-1),(3,-5),(0,10).。
初中数学人教版八年级上册:第13章《轴对称》全章教案(22页,含反思)
初中数学人教版八年级上册实用资料第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2线段的垂直平分线的性质(2课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论.原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”.此时,逆命题就很容易写出来.“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成.学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC ≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.从同学们的推理证明过程可知线段的垂直平分线的性质的逆命题是真命题,我们把它称为线段的垂直平分线的判定.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.例1 尺规作图:经过已知直线外一点作这条直线的垂线. 已知:直线AB 和AB 外一点C.(如下图) 求作:AB 的垂线,使它经过点C.作法:(1)任意取一点K ,使点K 和点C 在AB 的两旁. (2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定).∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB 的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题. 2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA =PB ,PO ⊥AB ,则必有AO =BO ,为什么?(2)如左下图,△ABC 中,AC =16 cm ,DE 为AB 的垂直平分线,△BCE 的周长为26 cm .求BC 的长.(3)有A ,B ,C 三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时 画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法. 难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴? 二、探究新知 我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图.作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C,D两点;(2)作直线CD.CD就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图.教师引导学生思考:(1)在作法中为什么有CA=CB,DA=DB?(2)可以用这种方法找线段的中点吗?四等分点呢?三、举例分析例2如图(1),△ABC和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A、点A′连线的垂直平分线即可,如图(2).例3图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2画轴对称图形(2课时)第1课时作轴对称图形通过实际操作,掌握作轴对称图形的方法.重点能够按要求作出简单平面图形经过一次对称后的图形.难点较复杂图形的轴对称图形的画法.一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动]在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.认真观察,左脚印和右脚印有什么关系?(成轴对称)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1]如何画一个点的对称图形?例1画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2]如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段.画法:(1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3]如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A 关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是()四、小结与作业1.归纳:几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.2.作业:教材习题13.2第1题.几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.已知点A(2,-3) B(-1,2) C(-6,-D(3,5) E(4,0) F(0,-3)5)关于x轴的对称点关于y轴的对称点【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?【归纳】关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?【归纳】一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析【例1】已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.【解析】(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P(-2,3)关于y轴对称点为Q(a,b),则a+b的值为()A.1B.-1C.5D.-53.点P(a,b)关于x轴对称的点为P1,点P1关于y轴的对称点为P2,则P2的坐标为() A.(a,b) B.(a,-b)C.(-a,b) D.(-a,-b)4.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于()对称.A.x轴B.y轴C.x轴或y轴D.不确定五、拓展思维如图,点A(1,4),B(4,1),l为第一、三象限角∠xOy的平分线.(1)求证:l垂直平分AB;(2)A,B关于l成轴对称吗?(3)如果点A,B的坐标分别为(6,8)和(8,6),它们还关于l对称吗?(4)如果你发现了对称点的坐标规律,写出点P(m,n)关于第一、三象限角平分线的对称点Q的坐标.六、小结与作业小结:(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.作业:教材习题13.2第3,4题.本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3等腰三角形13.3.1等腰三角形(2课时)第1课时等腰三角形的性质和应用1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.重点等腰三角形的性质及应用.难点等腰三角形的性质的证明.一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.在△ABC中,若AB=AC,则△ABC是等腰三角形,AB,AC是腰,BC是底边,∠A 是顶角,∠B和∠C是底角.【活动2】把活动1中剪出的△ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.教师活动:引导学生归纳.性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).【活动3】你能用所学知识验证上述性质吗?如图,在△ABC中,AB=AC.求证:∠B=∠C.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B=∠C,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC边上的中线AD,证明△ABD和△ACD全等即可,根据条件利用“边边边”可以证明.教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC边上的中线AD,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD ≌△ACD(SSS ),所以∠B =∠C. 这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由△ABD ≌△ACD ,还可得出∠BAD =∠CAD ,∠ADB =∠ADC =90°. 从而AD ⊥BC ,这也就证明了等腰△ABC 底边上的中线平分顶角∠A 并垂直于底边BC. 添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2. 三、应用提高例1 如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.学生活动:小组合作,分组讨论、交流.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)发现:(1)∠ABC =∠ACB =∠CDB =∠A +∠ABD ; (2)∠A =∠ABD ; (3)∠A +2∠C =180°.若设∠A =x ,则有x +4x =180°,得到x =36°,进一步得到两个底角的度数.四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).作业:教材习题13.3第1,3,7题.本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时 等腰三角形的判定1.理解并掌握等腰三角形的判定方法. 2.运用等腰三角形的判定进行证明和计算.重点等腰三角形的判定方法. 难点等腰三角形的判定方法的证明.一、提出问题出示教材第77页“思考”. 学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系? 学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等. 如何证明? 二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证. 已知:在△ABC 中,∠B =∠C.求证:AB =AC.与学生一起回顾等腰三角形中常添加的辅助线:高、顶角平分线、底边上的中线.让学生逐一尝试,发现可以作AD ⊥BC ,或AD 平分∠BAC ,但不能作BC 边上的中线.学生口头证明后,选一种方法写出证明过程.如图,在△ABC 中,∠B =∠C ,作△ABC 的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C ,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.归纳等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”. 三、应用举例 1.出示教材例2.引导学生根据命题画出图形,利用角平分线的性质及“等边对等角”来证明. 学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB=AC.可先证明∠B=∠C.因为∠1=∠2,所以可以设法找出∠B,∠C与∠1,∠2的关系.证明:∵AD∥BC,∴∠1=∠B(______________________),∠2=∠C(______________________).而已知∠1=∠2,所以∠B=∠C.∴AB=AC(______________).2.出示教材例3.让学生自学例3.例3已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识.因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想.13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定。
八年级数学上册第十三章轴对称数学活动导学案新版新人教版
数学活动——轴对称的运用一、新课导入1.导入课题:在电子屏幕上投影一些汉字、英文字母、阿拉伯数字、花边图案及等腰三角形折叠图片,并提问:(1)屏幕上的汉字、英文字母、阿拉伯数字有什么特点吗?(2)屏幕上的花边图案你知道是利用什么来设计的吗?(3)等腰三角形利用折叠的方法得出它的性质,折叠方法是利用了等腰三角形的什么特征?学生回答后,板书活动主题.2.学习目标:(1)体验轴对称渗透到了我们的文化生活之中.(2)能用轴对称设计图案.(3)会用轴对称探讨等腰三角形性质.3.学习重、难点:重点:用轴对称设计图案,用轴对称探讨等腰三角形的性质.难点:用轴对称设计图案.二、分层学习1.自学指导:(1)自学内容:教材第88页活动1:美术字与轴对称.(2)自学时间:5分钟.(3)自学要求:阅读教材,体验美术字的轴对称特征.(4)自学参考提纲:①阅读教材,完成教材中布置的学习任务要求.②“喆”字你认识吗?读“zhé”,它是轴对称的吗?试画出它的对称轴,对称轴两旁均是什么汉字?是轴对称的,均是“吉”字.③以虚线为对称轴,将虚线右边和下边的部分补充完整,看它表示什么?④写出几个轴对称的美术字,画出它们的对称轴.2.自学:学生根据学习指导进行学习.3.助学:(1)师助生:教师巡视课堂,对困难学生进行指导.(2)生助生:学生之间相互帮助.4.强化:(1)对称性是汉字(美术字)及英文字母、阿拉伯数字的重要特征之一(2)利用轴对称可以书写一些美术字.1.自学指导:(1)自学内容:教材第88页活动2:利用轴对称设计图案.(2)自学时间:8分钟.(3)自学要求:观察教材中的图2、图3,分析并说明图案的形成过程(4)自学参考提纲:①教材图2中每相邻两朵花之间成什么关系?每两朵花之间成什么关系?②图2中,第二朵花可由第一朵花轴对称得到,第三、四朵花可由第一、二朵花平移得到.③图3中有两条对称轴,右上风车图案能由左上或右下平移得到吗?右上风车图案能由左下图案平移得到吗?不能;能.④有些美丽的图案,可以通过将平移和轴对称结合起来得到.⑤说说教材图4的图案是怎样设计形成的.由第一朵花轴对称得到第二朵花,再平移第一、二朵花,依次得到第三、四、五、六朵花.2.自学:学生结合自学指导进行学习.3.助学:(1)师助生:对课本中的图案设计过程不理解的学生进行指导.(2)生助生:学生之间相互指导交流帮助.4.强化:(1)利用轴对称(或平移),可以由一个基本图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(2)将平移和轴对称结合设计更丰富的图案.1.自学指导:(1)自学内容:教材第89页活动3:等腰三角形中相等的线段.(2)自学时间:5分钟.(3)自学要求:学生剪纸、折叠、观察和归纳.(4)自学提纲:①阅读教材,完成教材中布置的学习任务.②图5中,DE与DF的关系是DE=DF,可通过证明Rt△AED≌△AFD来推得.③当DE、DF分别是AB、AC上的中线时,DE=DF.④当DE、DF分别是∠ADB、∠ADC的平分线时,DE=DF.⑤过AD上任一点作BC的平行线交AB于M,AC于N,试判断MD和ND的关系?并证明你的结论.MD=ND.证明:∵AB=AC,∴∠B=∠C.∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.∴∠AMN=∠ANM.∴AM=AN,在△AMD和△AND中,AM=AN,∠MAD=∠NAD,AD=AD,∴△AMD≌△AND(SAS).∴MD=ND.2.自学:学生结合自学指导进行学习.3.助学:(1)师助生:了解学生的判断及证明是否正确,错误原因在哪里?(2)生助生:学生之间相互展示交流帮助.4.强化:利用轴对称,通过折叠法得出相等线段.这是我们今后探究几何图形中相等线段的一个重要思路.三、评价1.学生的自我评价:介绍自己在活动中的表现和收获.2.教师对学生的评价:(1)表现性评价:点评学生在学习中的态度、方法和成果及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时活动1、2,通过实例的多媒体展示,唤起学生的好奇心,提出问题,引导学生进入活动,创造一种探索的情境.在学习活动中,只有调动学生的非智力因素,才能使他们产生强烈的未知欲望和饱满的热情参与活动中来.整节课是一个动眼观察,动脑思考实践体验和共同提高的动态过程,在活动3中,以实际动手操作画图并猜想线段间的关系,最后用所学知识加以验证,进行分层教学.一、基础巩固(每题20分,共60分)1.以下列各图中的虚线为对称轴,补充图形.2.下列四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是(C)A.1B.2C.3D.43.下列图案是利用轴对称设计的吗?若是,请用虚线画出对称轴;若不是,请说明理由.解:不是;因为它们不能关于某条直线对称.二、综合应用(20分)4.观察下列图案:(1)图①到②是利用轴对称得到,图④可以由图(③)经过平移直接得到;(2)由上面图案设计说明,有时需将轴对称和平移结合起来设计图案.三、拓展延伸(20分)5.通过折纸猜想:等腰三角形两个底角的平分线是什么关系?并利用三角形全等知识加以证明.解:猜想:等腰三角形两个底角的平分线相等.证明:如图.∵AB=AC,∴∠ABC=∠ACB,∵BE平分∠ABC,CD平分∠ACB,∴∠EBC=12∠ABC,∠DCB=12∠ACB,∴∠EBC=∠DCB.在△BCD和△CBE中,∠DBC=∠ECB,BC=CB,∠DCB=∠EBC,∴△BCD≌△CBE(ASA).∴CD=BE.。
八年级数学上册第十三章轴对称全套学案新版新人教版(强力推荐)
第十三章轴对称数学活动学习目标1.能写出轴对称的美术字,画出它们的对称轴.2.能利用轴对称设计图案.3.探索并证明等腰三角形中相等的线段.4.积极参与数学活动,在数学活动过程中,积累活动经验.学习过程一、深化探究活动1:美术字与轴对称1.从轴对称的角度观察它们,你能发现它们的共同特点吗?2.画出这些美术字的对称轴.3.猜想下列几个未写完的美术字是什么汉字或字母?4.你能再写出几个轴对称的美术字,并画出它们的对称轴吗?5.你收集了哪些生活中的标志是轴对称的,拿出来和同学们交流一下.活动2:利用轴对称设计图案1.思考:这两个图案是怎样得到的?2.画一画:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸.看看你能得到什么?3.(1)改变折痕的位置并重复几次,你又得到什么?(2)对称轴的方向和位置的变化对图形有什么影响?4.请你利用平移和轴对称设计图案.活动3:等腰三角形中相等的线段1.等腰三角形底边中点到两腰的距离相等吗?如何证明?尝试画出图形,并根据题目的条件写出已知,求证,证明.2.如果DE,DF分别是AB,AC上的中线,它们还有相等的数量关系吗?已知:如图,在△ABC中,AB=AC,点D,E,F分别是BC,AB,AC边的中点.求证:DE=DF.3.如果DE,DF分别是∠ADB,∠ADC的平分线,它们还有相等的数量关系吗?已知:如图,在△ABC中,AB=AC,点D是BC边的中点,DE,DF分别是∠ADB,∠ADC的平分线.求证:DE=DF.4.由等腰三角形是轴对称图形,利用类似方法,还可以得到等腰三角形中哪些相等的线段,并证明结论.二、反思小结(1)解决本节课中的问题,用到了什么知识?(2)举例说明轴对称在实际生活中还有哪些运用?(3)等腰三角形中有哪些相等的线段?探究等腰三角形中相等的线段的一般步骤是什么?参考答案一、深化探究活动1:美术字与轴对称1.都是轴对称图形3.羊王平BED4.举例如下:囍一二三品吕中由甲回活动2:利用轴对称设计图案1.每个图案都是有一个基本图形得到与成轴对称的另一个图形,重复这个过程,便可以得到整个美丽的图案.3.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.活动3:等腰三角形中相等的线段2.等腰三角形底边中点到两腰的距离相等吗?已知:如图,在△ABC中,AB=AC,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:DE=DF.方法一:证明:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.又∵AB=AC,∴△ABC是等腰三角形,∴∠B=∠C.∵D是BC边的中点,∴DB=DC.∴△EBD≌△FCD(AAS),∴DE=DF.方法二:证明:∵AB=AC,D是BC边的中点,∴AD平分∠BAC.∵DE⊥AB,DF⊥AC,∴DE=DF.方法三:证明△AED≌△AFD.方法四:面积法,△ABD的面积等于△ACD的面积, ∴AB×DE=AC×DF.∵AB=AC,∴DE=DF.2.证明:∵AB=AC,∴∠B=∠C.∵点D,E,F分别是BC,AB,AC边的中点,∴DB=DC,BE=AE,CF=AF.∴BE=CF.∴△BDE≌△CDF(SAS).∴DE=DF.3.证明:∵AB=AC,∴∠B=∠C.∵点D是BC边的中点,∴DB=DC,∠ADB=∠ADC=90°.∵DE,DF分别是∠ADB,∠ADC的平分线,∴∠BDE=∠ADB,∠CDF=∠ADC.∴∠BDE=∠CDF.∴△BDE≌△CDF(ASA).∴DE=DF.4.AD上任意一点与B,C的连接线相等等腰三角形两腰上的中线相等等腰三角形两底角平分线相等等腰三角形两腰上的高相等第十三章轴对称13.1 轴对称13.1.1 轴对称学习目标1.认识轴对称图形的共同特征,能识别简单的轴对称图形及其对称轴,通过实践操作,理解轴对称图形和两个图形成轴对称的区别.2.经历折叠、剪纸等活动,发展形象思维和空间观念,积累数学活动的经验,在动手实践中学会与人合作、彼此交流.3.初步获得动手的乐趣和成就感,欣赏并体会对称美,感受轴对称的价值,培养热爱生活的情感.学习过程一、自主学习一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式?”你知道怎么做吗?同学们可以带着这个问题进行下面的学习.二、深化探究1.欣赏生活中的轴对称图片.2.观察特点、形成概念问题1:这些美丽的图形均来自生活,细心观察之后,你能发现这些图形有什么共同特征吗?用自己的语言描述一下..问题2:举出几个生活中具有对称特征的物体,并与同伴交流.举例:.轴对称图形的概念:.3.练习:(1)我们学过的图形中,你知道哪些图形是轴对称图形吗?你能找出它们的对称轴吗?平行四边形是轴对称图形吗?学过的轴对称图形有:.平行四边形(是或否)轴对称图形(动手折折试试).(2)下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?(3)下列图形是轴对称图形吗?各有几条对称轴?4.作“印墨迹”实验.(1)在纸上滴几滴墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是什么呢?(2)观察探究、相互交流.5.类比观察,发现区别(1)观察老师展示的图案.(2)观察下列每组图案,你发现和刚才的轴对称图形是一回事吗?与大家交流.两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(3)全等与对称的关系概念中的“重合”是什么意思?(全等),那么全等的两个图形一定关于某直线对称吗?这两个全等三角形关于某直线对称吗?(4)轴对称图形和两个图形成轴对称的区别:认识了轴对称图形,探讨了两个图形关于直线对称的特点,那么轴对称图形和两图形关三、练习巩固1.生活中的轴对称图形随处可见,我们每天使用的数字、字母和汉字中也有一些可以看成是轴对称图形,你能识别它们吗?能说出它们的对称轴吗?(1)下面的数字,哪些是轴对称图形?它们各有几条对称轴?0123456789(2)你能发现下列哪些汉字可以看成是轴对称图形吗?口工用中由水日甲田2.下列图形是部分汽车的标志,哪些是轴对称图形?3.下列英文字母中哪些是轴对称图形A B C D E F G H I J K L M N O P Q R S T U V W X Y Z4.这是一个车牌在镜子中的图案,你知道这个车牌号是多少吗?5.回归问题情境:你能解决课堂开始提出的问题吗?一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式?”小兰仅仅拿了一面镜子,就很快地解决了这道题目.你能解释为什么吗?四、深化提高1.动手创作:在中国的剪纸艺术中,大量地应用了轴对称的知识,你能利用今天学的知识自己动手剪一个美丽的图案吗?2.课外拓展这节课我们认识了生活中的许多轴对称图形,它们不但体现了一种对称美,还有一定的科学道理,你们知道吗?——表盘的对称保证了走时的均匀性.——飞机的对称使飞机能够在空中保持平衡.——人眼睛的对称使人观看物体能够更加准确全面.——双耳的对称能使听到的声音具有较强的立体感……五、反思小结这节课……我学会了……我发现了……我感触最深的……我还有什么问题……如果世界没有对称会怎样……参考答案二、深化探究2.轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线即折痕所在直线就是它的对称轴.三、练习巩固1.(1)0,3,8(2)口工中由日甲田2.3.A C D E H I M O T U V W X Y Z4.MT79365.利用轴对称“5+3=8”四、深化提高略第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质(第1课时)学习目标1.理解线段垂直平分线的性质,会利用线段垂直平分线的性质进行推理.2.自己动手探究发现线段垂直平分线的性质,培养观察、猜想、归纳能力.3.通过应用线段垂直平分线的性质进行推理,培养几何推理的严密性.学习过程一、自主学习活动1:情景引入在106国道某段的同侧,有两个工厂A,B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?你会吗?带着这个问题,请进行下面的学习,学习完后你一定会解决这个问题!二、深化探究活动2:探究性质11.问题:如图,直线l垂直平分线段AB,P1,P2,P3……是l上的点,分别量一量点P1,P2,P3……到点A与点B的距离,你有什么发现?发现:.猜想:.2.问题:如图,已知直线l⊥AB,垂足为C,AC=CB,点P在l上.求证:PA=PB.证明:结论:线段垂直平分线的性质1.性质1用符号语言表示为:∵,∴.活动3:性质1的应用【例1】如图,在△ABC中,已知AC=27,DE垂直平分AB,交AB于点D,交AC于点E,△BCE 的周长等于50,求BC的长.(1)已知中“DE垂直平分AB”这个条件能想到哪个重要定理:(2)用上这个定理后能增加什么条件?(3)你会写出应用这个定理的步骤吗?活动4:探究性质2把线段垂直平分线的性质1反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?3.问题:已知线段AB,点P是平面内一点,且PA=PB.求证:P点在线段AB的垂直平分线上.证明:总结:线段垂直平分线的性质2.用符号语言表示为:∵,∴.从上面两个结论可以看出:在线段AB垂直平分线l上的点与A,B的距离相等;反过来,与两点A,B的距离相等的点都在直线l上,所以直线l可以看成与两点A,B的距离相等的所有点的集合.活动5:性质2的应用(8分钟)【例2】如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?并说明理由.三、深化提高解决问题(2分钟)在106国道某段的同侧,有两个工厂A,B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?四、反思小结活动7:感想与收获1.这节课你学到了哪些知识?2.你觉得这些知识在具体的题目中如何运用?3.你还有哪些困惑?五、课堂检测1.判断下列语句的对错.(1)如图①,直线MN垂直平分线段AB,则AE=AF.()(2)如图②,线段MN被直线AB垂直平分,则ME=NE.()(3)如图③,PA=PB,则直线MN是线段AB的垂直平分线.()2.在锐角△ABC内,一点P满足PA=PB=PC,则P是△ABC()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点3.已知,D是直角△ABC斜边AC的中点,ED垂直AC于点D,交BC于点E,∠EAB∶∠EAC=2∶3,求∠ACB的度数.参考答案二、深化探究1.略2.证明:∵l⊥AB,∴∠PCA=∠PCB=90°.在△PCA和△PCB中,,∠∠,,∴△PCA≌△PCB(SAS).∴PA=PB.线段垂直平分线的性质1:线段垂直平分线上的点与这条线段两个端点的距离相等.性质1用符号语言表示为:∵PC垂直平分AB(CA=CB,PC⊥AB),∴PA=PB.【例1】解:∵DE垂直平分AB,∴AE=BE.∵BE+EC+BC=50,∴AE+EC+BC=50,即AC+BC=50.又AC=27,∴BC=23.3.证明:过点P作PC⊥AB于点C.在Rt△PAC和Rt△PBC中,,公共边 ,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC.故P点在AB的垂直平分线上.总结:线段垂直平分线的性质2与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.用符号语言表示为:∵PA=PB,∴点P在线段AB的垂直平分线上.【例2】解:是.证明如下:∵AB=AC,∴点A在BC的垂直平分线上.∵MB=MC,∴点M在BC的垂直平分线上.∴直线AM是线段BC的垂直平分线.三、深化提高作点A关于直线l的对称点A1,连接BA1交l于点C,则C点就是医院的位置(或作B的对称点).四、反思小结略五、课堂检测1.(1)错(2)对(3)错2.D3.解:设∠CAE=3x,∠BAE=2x,因为DE垂直平分AC,所以EA=EC,所以∠C=∠CAE=3x,3x+2x+3x+90°= 80°,x=11. 5°,∠C=33.75°.第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质(第2课时)学习目标1.会画线段的垂直平分线和过直线外一点作已知直线的垂线.2.进一步理解线段的垂直平分线的性质,能够确定两个图形成轴对称的对称轴.3.通过线段的垂直平分线的画法的学习进一步培养画图能力.学习过程一、复习引入问题1:轴对称图形的性质是什么?.二、深化探究1.线段垂直平分线的作图问题2:如何作出线段的垂直平分线?提示:由两点确定一条直线和线段垂直平分线的性质,只要作出到线段两端点距离相等的两点即可.已知:线段AB.求作:线段AB的垂直平分线.作法:思考1:在上述作法中,为什么要以“大于AB的长”为半径作弧?思考2:根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.总结:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段的中点,所以我们可用这种方法作线段的中点.2.作轴对称图形的对称轴【例1】右图中的五角星有几条对称轴?作出这些对称轴.3.过一点作已知直线的垂线点和直线有几种位置关系?如何过已知点作一条直线的垂线呢?问题1:尺规作图:经过已知直线外一点作这条直线的垂线(写出已知、求作、作法,并画图,不证明).问题2:过直线上一点作已知直线的垂线.已知直线AB和AB上的一点C,求作:直线CD垂直于直线AB.三、练习巩固【例2】如图,小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,若要使厂部到A,B的距离相等,则应选在哪里?四、深化提高1.画出下面各图的对称轴.2.角是轴对称图形吗?如果是,它的对称轴是什么?3.如图,A,B是某条路边的两个新建小区,要在公路边增设一个公共汽车站,使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?4.如图,有A,B,C三个村庄,现要修建一所希望小学,使三个村庄到学校的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(保留作图痕迹).五、反思小结本节课你学到了什么?1.线段垂直平分线的作法.2.作成轴对称的图形的对称轴的几种方法:(1)将图形对折;(2)用尺规作图;(3)用刻度尺先取一对对称点连线的中点,然后作垂线.3.有许多图形的对称轴不止一条.参考答案一、复习引入问题1如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.二、深化探究1.作法:(1)分别以点A,B为圆心,以大于AB的长为半径作弧,两弧相交于C和D两点;(2)作直线CD.直线CD就是线段AB的垂直平分线.思考1:(1)如果以AB长为半径作弧,两弧只有一个交点,正好是线段AB的中点.这样就找不到到端点A,B距离相等的两点,也就作不出线段AB的垂直平分线了.(2)如果以小于AB长为半径作弧,两弧将没有交点,这样也找不到到A,B两端点距离相等的点,也就作不出线段AB的垂直平分线了.只有以大于AB长为半径作弧才能作出线段AB的垂直平分线.思考2:(1)从作法的第一步可知AC=BC,AD=BD.∴C,D都在线段AB的垂直平分线上(线段垂直平分线的判定定理).∴CD就是线段AB的垂直平分线(两点确定一条直线).2.作法:(1)找出五角星的一对对应点A和A',连接AA'.(2)作出线段AA'的垂直平分线l.则l就是这个五角星的一条对称轴.3.2种.一种是点在直线上,一种是点在直线外.解:已知直线AB和AB外一点C,求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交直线AB于点D和点E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.三、练习巩固答案:连接AB,作AB的垂直平分线,则与CD的交点就是要建的自来水厂的位置.四、深化提高1.2.略3.连接AB,作线段AB的垂直平分线与公路相交于点C,那么AC=BC,所以点C就是所选汽车站的位置.4.解:设A,B,C为顶点构建三角形,作任意两边的中垂线,交于点O,点O即是学校的位置.理由:线段垂直平分线上的点到线段两顶点的距离相等,∵由作图可知,OA=OB,OB=OC,∴OA=OC.故学校建在O处时,三个村庄到学校的距离相等.第十三章轴对称13.2 画轴对称图形13.2 画轴对称图形(第1课时)学习目标1.能够按要求作出简单平面图形经过一次对称后的图形.2.能设计简单的轴对称图案.3.通过画轴对称图形,增强学习几何的趣味感,培养审美情操.学习过程一、自主学习观看课件,并思考课件中的图案是怎么形成的.二、深化探究1.动手画图一(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.2.动手画图二(1)再取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上远离折叠线画出一朵花;(4)把纸展开.3.观察教科书67页中图13.2-14.动手画图三取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?提出问题:每组图案是怎样得到的?(1)每组图案中相邻的两个图案是否都是对称的?(2)每组图案各有几条对称轴?对称轴一定是水平或竖直的吗?(3)这些图案由一个图形经一次轴对称作图就能得到吗?归纳:作轴对称图形的基本特征:(1).(2).(3).三、练习巩固1.如图,已知点A和直线l,试画出点A关于直线l的对称点A',并写出你的画法.2.已知直线l和线段AB,作出线段AB与A'B'关于直线l对称的图形.3.已知△ABC和直线l,作出与△ABC关于直线l对称的图形.4.课本68页练习第1题.四、课堂小结(1)几何图形都可以看作由点组成,只要作出这些点关于对称轴的对应点,再连接对应点,就可以得到原图形的轴对称图形.(2)对于一些由直线、线段或射线组成的图形只要作出图形中的一些特殊点的对称点,再连接对称点,就可以得到原图形的轴对称图形.(3)作图步骤:1.找特征点;2.作垂线;3.截取等长;4.依次连线.五、深化提高1.如图,把下列图形补成关于直线l对称的图形.2.如图,分别以AB为对称轴,画出各图形的对称图形,并观察图形(3)和它的轴对称图形构成一个三角形.3.一交警在执勤过程中,从汽车的后视镜中看见某车牌的后5位号码是,该车牌的后5位号码实际是.4.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时钟表示的时间是.5.下列图形中,是轴对称图形的是()参考答案二、深化探究1.略2.略3.略4.(1)是(2)不一定(3)不都是归纳:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状大小完全一样.(2)新图形上的每一点都是原图形上的某一点关于直线l的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.三、练习巩固1~4.略五、深化提高1.2.3.BA6294.13:305.B第十三章轴对称13.2 画轴对称图形13.2 画轴对称图形(第2课时)学习目标1.在平面直角坐标系中,会画出关于x轴、y轴对称的点,进而探求关于x轴、y轴对称点的坐标规律.2.通过找关于坐标轴对称的点之间的规律,以及在验证规律正确的过程中,培养语言能力、观察能力、归纳能力,养成良好的科学研究方法.3.在找点与绘图的过程中,发展数形结合的思维意识,形成数形结合的思想.学习过程一、自主学习已知对称轴l和一个点A,你能作出点A关于l的对称点A'吗?思考:这是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、深化探究探究1:如图,在平面直角坐标系中你能画出点A(2,3)关于x轴的对称点吗?点B(-4,2),C(3,-4),D, 呢?归纳:关于x轴对称的点的坐标的特点是:.练习:1.点P(-5,6)与点Q关于x轴对称,则点Q的坐标为.2.点M(a,-5)与点N(-2,b)关于x轴对称,则a= ,b= .探究2:如图,你能在平面直角坐标系中画出点A(2,3)关于y轴的对称点吗?点B(-4,2),C(3,-4)呢?归纳:关于y轴对称的点的坐标的特点是:.练习:1.点P(-5,6)与点Q关于y轴对称,则点Q的坐标为.2.点M(a,-5)与点N(-2,b)关于y轴对称,则a= ,b= .小结:点(x,y)关于x轴对称的点的坐标为.点(x,y)关于y轴对称的点的坐标为.三、深化提高1.完成下表.2.已知点P(2a+b,-3a)与点P'(8,b+2).若点P与点P'关于x轴对称,则a= ,b= .若点P与点P'关于y轴对称,则a= ,b= .3.【例1】已知△ABC的三个顶点的坐标分别为(-3,5),B(-4,1),C(-1,3),作出△ABC 关于y轴对称的图形.【例2】四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出四边形关于y轴与x轴对称的图形.解:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A,B,C,D关于y 轴对称的点分别为A'(,),B'(,),C'(, ),D'(,),依次连接A'B',B'C',C'D',D'A',就可得到与四边形ABCD 关于y轴对称的四边形A'B'C'D'.类似地,请你在图上作出与四边形ABCD关于x轴对称的图形.四、总结反思这节课你学到了什么?五、课堂检测1.2.若点C(-2,-3)关于x轴的对称点为A,关于y轴的对称点为B,则△ABC的面积为.3.已知点P(2m+1,m-3)关于y轴的对称点在第四象限,求m的取值范围.4.如图,利用关于坐标轴对称的点的坐标特点,分别作出与△ABC关于x轴对称的△A'B'C'和关于y轴对称的△A″B″C″.参考答案一、自主学习过点A作直线l的垂线段(AO⊥l,垂足为O),延长(AO到A')使得(A'O=AO),则A'就是点A关于直线l的对称点.二、深化探究探究1:横坐标不变,纵坐标互为相反数练习:1.(-5,-6)2.-2 5探究2:纵坐标不变,横坐标互为相反数练习:1.(5,6)2.2-5三、深化提高1.2.246-203.【例1】如图所示.【例2】如图所示.五、课堂检测1.2.123.m<-.4.解:△A'B'C'和△A″B″C″如图所示.第十三章 轴对称 13.3 等腰三角形13.3.1 等腰三角形(第1课时)学习目标1.理解并掌握等腰三角形的定义,探索等腰三角形的性质和判定方法;能够用等腰三角形的知识解决相应的数学问题.2.在探索等腰三角形的性质和判定的过程中体会知识间的关系,感受数学与生活的联系;增强添加辅助线解决问题的能力.3.增强分析解决问题的能力,逐渐养成良好的学习习惯.学习过程一、自主学习叫等腰三角形, 的两条边叫做腰.二、深化探究 1.探究:如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?把活动中剪出的△ABC 沿折痕AD 对折,找出其中重合的线段和角,填入下表.重合的线段重合的角三、归纳总结1.归纳等腰三角形的性质:性质1等腰三角形的两个相等(简写成“”性质2等腰三角形、、互相重合.2.用几何语言表示等腰三角形性质定理在△ABC中,(1)∵AB=AC,∴∠B=∠.(2)∵AB=AC,AD⊥BC,∴∠ =∠,=CD.(3)∵AB=AC,AD是中线,∴⊥,∠=∠.(4)∵AB=AC,AD是角平分线,∴⊥,= .四、练习巩固填空(1)等腰三角形一个底角为75°,它的另外两个角为.(2)等腰三角形一个角为70°,它的另外两个角为.(3)等腰三角形一个角为 0°,它的另外两个角为.五、反思回顾通过本节课的学习,谈谈你的收获?1.等腰三角形的定义及相关概念.2.等腰三角形的性质和判定.六、深化提高1.【例题】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,(1)图中共有几个等腰三角形?(2)设∠A为x°,你能分别表示出图中其他各角吗?(3)你能求出△ABC各角的度数吗?2.巩固练习:如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的.建筑工人师傅对这个建筑物做出了两个判断:①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°.②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直于横梁的.请同学们想一想,工人师傅的说法对吗?请说明理由.。
新人教版八年级数学上册第13章《轴对称》教案(全章)
第1课时轴对称(1)小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它标出下列图形中的对称点观察下列各种图形,判断是不是轴对称图形,若是,请画出对称轴。
课本Р4 练习拓展升华这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,第2课时轴对称(2)线段垂直平分线上的与这条与一条线段两个端点距离相等的点,在这条线段的下列说法中,正确的有【】、两个关于某直线对称的图形是全等形;对称点一定在直线两旁;】第3课时轴对称(3)的垂直平分线.就是这个五角星的一条对称轴.这几个图形的对称轴分别有3条、2条、可联想到“线段垂直平分线上的点“两点之间线段最短”是线段最值问题中两个作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连结这对对应点,•第4课时作轴对称图形(1)第5课时 作轴对称图形(2)【问题2】已知△ABC ,过点A 作直线l .求作:△A ′B ′C ′使它与△ABC 关于l 对称.二、合作交流 解读探究 【问题3】如图所示:从A 地到B 地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?【问题4】如图,要在燃气管道L 上修建一个泵站,分别向A 、B 两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短? 的同旁,泵站应修在管道的什能发现什么规),FE DCBA八年级某班同学做游戏,在活动区域边放了一些球,则小明按怎样的路线跑,去捡哪个位置的球,才能最短的距离拿到球并跑到目的地AA小明第6课时用坐标表示轴对称-5)D(0.5,1)E(4,0))D’( )E’( )第7课时等腰三角形(1)第8课时等腰三角形(2)本节课我们主要探究了等腰三角形判定定理,•并对判定定理的简单应用作了一定的了第9课时等边三角形(1)学生首先独立思考,然后可以分组讨论,观察是等边三角形可以有且有一个角是60°;E DA第10课时等边三角形(2)。
新人教版初中数学八年级上册《第十三章轴对称:13.1轴对称》优质课导学案_0
13.1.1 轴对称课题13.1.1 《轴对称》课时 1教学目标知识与技能1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.3.理解线段垂直平分线的概念.过程与方法在探索轴对称过程中,体会知识间的关系,感受数学与生活的联系.情感价值观培养学生的分析解决问题的能力,使学生养成良好的学习习惯.教学重点轴对称和成轴对称图形的区别和联系.教学难点能够识别轴对称图形并找出它的对称轴.教学方法创设情境-主体探究-合作交流-应用提高.媒体资源多媒体投影教学过程教学流程教学活动学生活动设计意图导入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十三章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.出示图片,观察它们都有些什么共同特征.观察思考探究创设情境,引入新课小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.轴对称与轴对称图1、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.2、轴对称图形:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应就,叫做对称点。
观察归纳理解轴对称与轴对形结论:位于折痕两侧的图案是对称的,它们可以互相重合.3、由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.4、一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。
新人教版初中数学八年级上册《第十三章轴对称:13.1轴对称》优课导学案_0
活动一:把一个轴对称图形沿对称轴均匀分开,变成了几个图形?他们这两个图形全等吗?沿对称轴折叠他们还完全重合吗?组成的新图形是轴对称图形吗?(学生回答板书:成轴对称)
学生观察,回答2个图形,全等,完全重合,不是轴对称图形,叫两个图形成轴对称。
学生在自主学习已经有了成轴对称的概念,但只是文字的,让学生对轴对称图形和成轴对称有了更深刻理解
培养学生独立思考问题、培养发现问题解决问题的能力
六:知识梳理,大家分享
通过本节课的学习,你有什么收获,有什么困惑
1、认识轴对称及轴对称图形并能找出其对称轴。
2、轴对称图形与轴对称的相同点和不同点。
3、并初步体会轴对称及轴对称图形的设计。
理解本课的知识脉络,并使重点突出,加深学生对新知识的理解,促使能力的形成. “小结”的目的在于知识的构建不断完善.
观察,学生回答
学生分别找出
通过小组探究,完成表格
五:学以致用ቤተ መጻሕፍቲ ባይዱ
1.概念在现,
学生会用概念进行判断
验证新知,巩固新知,学生机使用。
2.概念辨别
学生会用概念进行判断
验证新知,巩固新知
3.对应点,性质运用运用
培养学生独立思考问题、培养发现问题解决问题的能力
4.推理运用
学生独立思考,团队合作得到正确结论,展示结果
动手实践、自主探究与合作交流是学生进行有效的数学学习活动的重要方式,在教学中,注重学生的活动,鼓励人人亲身经历与实践,积极思考,更体会活动的乐趣,培养学生的空间观念、动手能力。
活动二;下列图形成轴对称图形吗?为什么?
活动三:请联系实际说出你身边成轴对称的实例。
活动四:轴对称图形和两个图形成轴对称的区别与联系
七:走进生活促进
人教版初中数学八年级上册第十三章:轴对称(全章教案)
第十三章轴对称本章的内容包括:轴对称、画轴对称图形、等腰三角形、最短路径问题.轴对称是一种重要的对称.本章我们将从生活中的对称出发,学习几何图形的轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用.在此基础上,利用轴对称来研究等腰三角形,进而通过推理论证得到等腰三角形、等边三角形的性质和判定方法,由此体会图形变化在几何研究中的作用.在中考中,本章重点考查轴对称图形的性质、等腰三角形、等边三角形的判定及性质.【本章重点】轴对称图形的性质、等腰三角形的性质及判定.【本章难点】运用轴对称的思路分析认识复杂图形,进行推理论证.【本章思想方法】1.体会和掌握分类讨论思想,如:在解答等腰三角形的问题中,当腰和底、顶角的大小、角的位置不明确时,需要进行分类讨论.2.体会方程思想,如:在解决等腰三角形的问题时,根据边或角之间的关系,先设适当的边或角为未知数,再将其他的边或角用含未知数的代数式表示出来,最后根据等腰三角形的周长或三角形的内角和定理等构造方程解决问题.3.体会数形结合思想,如:运用本章知识解决实际问题时经常根据题意画出符合条件的图形,利用数形结合思想解决问题.13.1轴对称3课时13.2画轴对称图形2课时13.3等腰三角形4课时13.4课题学习最短路径问题1课时13.1轴对称13.1.1轴对称(第1课时)一、基本目标【知识与技能】1.理解轴对称图形和两个图形关于某条直线对称的概念.2.能识别简单的轴对称图形及其对称轴.【过程与方法】通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流.【情感态度与价值观】通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动,体会图形的美,同时感悟数学来源于生活又用于生活.二、重难点目标【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系.【教学难点】轴对称的性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P58~P60的内容,完成下面练习.【3 min反馈】1.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是对称轴,折叠后重合的点是对应点,叫做对称点.3.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.4.图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.5.下列体育运动标志中,不是轴对称图形的有1个.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.【互动探索】(引发学生思考)如何判断一个图形是否是轴对称图形?如何找轴对称图形的对称轴?【解答】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形,(2)(4)(7)(8)(10)是轴对称图形.(2)(4)(8)有1条对称轴;(7)有4条对称轴;(10)有2条对称轴.【互动总结】(学生总结,老师点评)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.【例2】如图,△ABC和△AED关于直线l对称,若AB=2 cm,∠C=95°,则AE=________,∠D=________.【互动总结】(学生总结,老师点评)根据轴对称的性质,有AE=AB=2 cm,∠D=∠C =95°.【答案】2 cm95°【互动总结】(学生总结,老师点评)根据成轴对称的两个图形全等及全等的性质得到对应线段相等,对应角相等.活动2巩固练习(学生独学)1.下图中的轴对称图形有(B)A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)2.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B =40°,则∠BCD的度数是(A)A.130° B.150° C.40° D.65°3.画图:试画出下列正多边形的所有对称轴,并完成表格,n条对称轴.解:如图.环节3课堂小结,当堂达标(学生总结,老师点评)1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.请完成本课时对应练习!13.1.2线段的垂直平分线的性质第2课时线段垂直平分线的性质和判定一、基本目标【知识与技能】探索并理解线段垂直平分线的性质及判定.【过程与方法】经历探索轴对称图形性质及判定的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.二、重难点目标【教学重点】掌握线段垂直平分线的性质及判定.【教学难点】运用其性质及判定解答相关问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P61~P62的内容,完成下面练习.【3 min反馈】1.如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,猜想一下线段AA′、BB′、CC′与直线MN有什么关系?答:直线MN垂直平分线段AA′、BB′、CC′.2.垂直平分线的性质:线段垂直平分线的点与这条线段两个端点的距离相等.3.垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.4.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分∠AMB环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为E,交AC于点D,若△DBC的周长为35 cm,求BC的长.【互动探索】(引发学生思考)△DBC的周长为35 cm,求BC→需求BC+DC的长,利用AD=BD(垂直平分线的性质)→BC+DC=AC.【解答】∵△DBC的周长=BC+BD+CD=35 cm,DE垂直平分AB,∴AD=BD,故BC+AD+CD=35 cm.∵AC=AD+DC=20 cm,∴BC=35-20=15(cm).【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【例2】如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.【互动探索】(引发学生思考)先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,从而找出AD 与EF 的关系.【解答】AD 垂直平分EF .∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE =DF .在Rt △ADE 和Rt △ADF 中,∵⎩⎪⎨⎪⎧AD =AD ,DE =DF ,∴Rt △ADE ≌Rt △ADF , ∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .【互动总结】(学生总结,老师点评)证线段垂直平分线的方法1即定义,证垂直平分,方法2即线段垂直平分线的判定定理.活动2 巩固练习(学生独学)1.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段P A =5,则线段PB 的长度为( B )A.6 B.5C.4 D.32.到平面内不在同一直线上的三个点A、B、C的距离相等的点有1个.3.如图,在△ABC中,D是AB的中点,点F是BC延长线上一点,连结DF,交AC 于点E,连结BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.(1)证明:∵∠A=∠ABE,∴EA=EB.∵AD=DB,∴DF是线段AB的垂直平分线.(2)解:∵∠A=46°,∴∠ABE=∠A=46°.∵AB=AC,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC-∠ABE=21°,∠F=90°-∠ABC=23°.活动3拓展延伸(学生对学)【例3】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【互动探索】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证△ADE ≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF 即可.【解答】(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD =CF , ∴AB =BC +AD .【互动总结】(学生总结,老师点评)此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.环节3 课堂小结,当堂达标 (学生总结,老师点评)线段垂直平分线⎩⎪⎨⎪⎧性质:线段垂直平分线的点与这条线段两个端点的距离相等判断:与线段两个端点距离相等的点在这 条线段的垂直平分线请完成本课时对应练习!第3课时线段垂直平分线的有关作图一、基本目标【知识与技能】理解并掌握线段垂直平分线的有关作图.【过程与方法】经历探索线段垂直平分线的有关作图的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过作轴对称图形的对称轴,促使学生对轴对称有了更进一步的认识,活动与操作的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力,同时培养学生动手操作的意识及能力.二、重难点目标【教学重点】理解作轴对称图形的对称轴的方法.【教学难点】能解决有关线段垂直平分线的作图题.环节1自学提纲,生成问题【5 min阅读】阅读教材P62~P63的内容,完成下面练习.【3 min反馈】1.如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴.2.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.3.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.解:它们都是轴对称图形,第一幅图的对称轴是中间的水平直线,第二、三幅图的对称轴是中间的竖着直线.4.作线段AB 的垂直平分线.解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F两点;(2)作直线EF ,EF 即为所求的直线.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例题】找出下列图形的所有的对称轴,并一一画出来.【互动探索】(引发学生思考)如何作轴对称图形的对称轴?【解答】所画对称轴如下所示:【互动总结】(学生总结,老师点评)对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.活动2巩固练习(学生独学)1.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?解:图中有阴影的三角形与三角形1、3成轴对称,整个图形是轴对称图形,它共有2条对称轴.2.观察图中的图形,是轴对称图形的画出所有的对称轴.略环节3课堂小结,当堂达标(学生总结,老师点评)作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.请完成本课时对应练习!13.2画轴对称图形第1课时画轴对称图形一、基本目标【知识与技能】掌握作已知图形关于直线的轴对称图形的方法.【过程与方法】在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.【情感态度与价值观】经历实际操作、认真体验的过程,发展学生的思维空间,培养学生的应用意识和探究精神.二、重难点目标【教学重点】作出简单平面图形关于直线的轴对称图形.【教学难点】利用轴对称进行一些图案设计环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2巩固练习(学生独学)1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是(B)2.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.略活动3拓展延伸(学生对学)【例2】如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=()A.20° B.30°C.40° D.50°【互动探索】根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即可.请完成本课时对应练习!第2课时坐标中的轴对称一、基本目标【知识与技能】理解并掌握关于x轴、y轴对称的点的坐标的规律.【过程与方法】1.在探索关于x轴、y轴对称的点的坐标的规律时,发展学生形象思维能力和数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.【情感态度与价值观】在探索规律的过程中,培养学生的应用意识和探究精神,提高学生的求知欲和好奇心.二、重难点目标【教学重点】直角坐标系中关于x轴、y轴对称的点的特征.【教学难点】能解决有关坐标中的轴对称问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P68~P70的内容,完成下面练习.【3 min反馈】1.(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数.2.(1)点(x,y)关于y轴对称的点的坐标为(-x,y);(2)关于x轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变.3.点P(-4,3)关于x轴的对称点为Q,则点Q的坐标为(-4,-3).4.点P(-3,4)关于y轴的对称点为M,则点M的坐标为(3,4).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】在平面直角坐标系中,已知点A(-3,1)、B(-1,0)、C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.【互动探索】(引发学生思考)作已知图形关于坐标轴的对称图形的关键是什么?【解答】如图,△DEF是△ABC关于y轴对称的图形.【互动总结】(学生总结,老师点评)在坐标系中作出关于坐标轴的对称点,然后顺次连结,即可作出已知图形关于坐标轴的对称图形.活动2巩固练习(学生独学)1.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).2.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.3.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2018的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.(2)∵A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2018=1.3.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.解:画图略.其中A1(3,-4)、B1(1,-2)、C1(5,-1).活动3拓展延伸(学生对学)【例3】如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,画出四边形ABCD 关于y轴对称的四边形A1B1C1D1;(2)点D1的坐标是________;(3)求四边形ABCD的面积.【互动探索】(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连结即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.【解答】(1)画图略. (2)点D 1的坐标为(-1,1).(3)四边形ABCD 的面积为12×1×3+12×1×2=52.【互动总结】(学生总结,老师点评)轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连结对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)坐标中的轴对称⎩⎪⎨⎪⎧关于x 轴、y 轴对称的点的坐标变化规律作已知图形关于x 轴、y 轴对称的图形请完成本课时对应练习!13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质一、基本目标【知识与技能】1.了解等腰三角形的概念,掌握等腰三角形的性质.2.利用等腰三角形的性质解决相关问题.【过程与方法】经历等腰三角形性质的探究过程,通过实践、操作、观察、猜想、论证,发展了合情推理的能力和演绎推理的能力,同时增强了语言表达能力.【情感态度与价值观】在活动中,培养学生自主探究、合作交流、应用数学的意识,提高学习的兴趣.二、重难点目标【教学重点】理解并掌握等腰三角形的性质.【教学难点】运用等腰三角形的性质解决有关问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形是等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.教材P75【探究】:(1)如图,把一张长方形的纸片按图中虚线对折,并剪去阴影部分,再把它展开,得到△ABC.从上述过程中可知,在△ABC中,AB=AC,所以△ABC是等腰三角形.(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角:①重合的线段:AB与AC、BD与CD、AD与AD;②重合的角:∠B与∠C、∠BAD与∠CAD、∠ADB与∠ADC.3.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”).(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.4.在△ABC中,若AC=AB,则∠B=∠C.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.【互动探索】(引发学生思考)设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【解答】∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC=∠ABD+∠A=2x.从而∠ABC=∠C=∠BDC=2x.在△ABC中,∠A+∠ABC+∠ACB=1=x+2x+2x=180°.解得x=36.∴在△ABC中,∠A=36°,∠ABC=∠C=72°.【互动总结】(学生总结,老师点评)利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.【例2】如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.【互动探索】(引发学生思考)要证∠BAD=2∠DBC,考虑作∠BAD的角平分线,即作等腰三角形的高,再根据等角的余角相等求解.【证明】过点A作AE⊥BC于点E.∵AB=AC,∴∠BAD=2∠2.∵BD⊥AC于点D,∴∠BDC=90°.∴∠2+∠C=∠C+∠DBC=90°.∴∠DBC=∠2.∴∠BAD=2∠DBC.【互动总结】(学生总结,老师点评)解决本题的关键:(1)从要证等式中,角之间的数量关系,利用等腰三角形“三线合一”作辅助线;(2)在有直角的平面几何图形中,可用等角的余角相等证明角相等.活动2巩固练习(学生独学)1.已知等腰三角形的一个角为80°,则其顶角为(D)A.20°B.50°或80°C.10°D.20°或80°2.如图,在△ABC,AB=AC,BC=6 cm,AD平分∠BAC,则BD=3 cm.3.在△ABC中,AB=AC,过点C作CN∥AB且CN=AC,连结AN交BC于点M.求证:BM=CM.证明:∵AB=AC,CN=AC,∴AB=CN,∠N=∠CAN.又∵AB∥CN,∴∠BAM=∠N,∴∠BAM=∠CAM,∴AM为∠BAC的平分线.又∵AB=AC,∴AM为三角形ABC的边BC上的中线,∴BM=CM.活动3拓展延伸(学生对学)【例3】已知△ABC 是等腰三角形,且∠A +∠B =130°,求∠A 的度数.【互动探索】要求∠A ,需先讨论∠A 是等腰△ABC 的顶角还是底角,再结合三角形的内角和求解.【解答】①当∠A 为顶角时,则∠B =∠C . ∵∠A +∠B +∠C =180°,∠A +∠B =130°, ∴∠B =∠C =50°. ∴∠A =80°.②当∠C 为顶角时,则∠A =∠B , ∵∠A +∠B =130°, ∴∠A =65°.③当∠B 为顶角时,则∠A =∠C , ∵∠A +∠B =130°, ∴∠A =∠C =50°.【互动总结】(学生总结,老师点评)本题体现了分类讨论思想.等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角.环节3 课堂小结,当堂达标 (学生总结,老师点评) 等腰三角形的性质⎩⎪⎨⎪⎧等边对等角三线合一轴对称性请完成本课时对应练习!第2课时等腰三角形的判定一、基本目标【知识与技能】1.探索等腰三角形的判定方法.2.掌握等腰三角形性质与判定的综合应用.【过程与方法】经历判定等腰三角形的探究过程,通过实践、操作、观察、猜想、论证,发展了合情推理的能力和演绎推理的能力,同时增强数学语言表达能力.【情感态度与价值观】在活动中,培养学生自主探究、合作交流、应用数学的意识,感受数学学习的乐趣,激发学习数学的兴趣.二、重难点目标【教学重点】掌握等腰三角形的判定方法.【教学难点】会运用等腰三角形的判定方法解决问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P77~P78的内容,完成下面练习.【3 min反馈】1.等腰三角形的定义:如果一个三角形有两边相等,这个三角形为等腰三角形.2.如图,在△ABC中,∠B=∠C,求证:AB=AC.证明过程略.(提示:作△ABC的角平分线AD)3.等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成等角对等边).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DB=DC,∠ABD=∠ACD,求证:AB=AC.【互动探索】(引发学生思考)要证AB=AC,本题不能直接连结AD,由全等得到,可以考虑连结BC利用等腰三角形的性质与判定方法求证.【证明】连结BC.∵DB=DC,∴∠DBC=∠DCB.∵∠ABD=∠ACD,∴∠ABD+∠DBC=∠ACD+∠DCB.∴∠ABC=∠ACB,∴AB=AC.【互动总结】(学生总结,老师点评)本题主要是通过连结BC,使AB、AC在同一个三角形中,最后通过证明它们所对的角相等,而证得这两条线段相等.【例2】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.【互动探索】(引发学生思考)要证△CEF是等腰三角形,需证CE=CF.由等角的余角相等可得∠B=∠ACD,由AE是∠BAC的平分线和三角形外角的性质可得CE=CF.【解答】∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【互动总结】(学生总结,老师点评)“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.活动2巩固练习(学生独学)1.如图,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD=3 cm.2.如图,AB=AC,FD⊥BC于点D,DE⊥AB于点E,若∠AFD=145°,则∠EDF=55°.3.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.证明:∵DE∥AC,∴∠CAD=∠ADE.∵AD平分∠BAC,∴∠CAD=∠DAE,∴∠DAE=∠ADE.∵AD⊥BD,∴∠DAE+∠B=90°,∠ADE+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.活动3拓展延伸(学生对学)【例3】已知平面直角坐标系中,点A的坐标为(-2,3),在y轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P共有()A.3个B.4个C.5个D.6【互动探索】∵△AOP为等腰三角形,所以可分三类讨论:(1)AO=AP(有一个).此时只要以A为圆心,AO长为半径画圆,可知圆与y轴交于O点和另一个点,另一个点就是点P1;(2)AO=OP(有两个).此时只要以O为圆心AO长为半径画圆,可知圆与y轴交于两个点,这两个点就是P2、P4;(3)AP=OP(一个).作AO的中垂线与y轴有一个交点,该交点就是点P3.综上所述,共有4个.故选B.。
最新部编版人教初中数学八年级上册《第十三章(轴对称)全章导学案》精品完美优秀打印版导学单
最新精品部编版人教初中八年级数学上册第十三章轴对称优秀导学案(全章完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)13.1 轴对称13.1.1轴对称(1)学习目标:1、通过展示轴对称图形的图片,初步认识轴对称图形;2、通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3、培养良好的动手试验能力、归纳能力和语言表述能力。
学习重点:理解轴对称图形的概念。
学习难点:判断图形是否是轴对称图形。
课前预习:1、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.做下面的题,检验你预习的结果5、轴对称图形的对称轴是一条___________A直线 B射线 C线段6、课本P30练习题。
7、下面的图形是轴对称图形吗?如果是,指出对称轴。
课内探究:例1、我国的文字非常讲究对称美,分析图中的四个图案,图案()有别于其余三个图案.思路分析:(A) (B) (C) (D)第4题所用知识点:例2、如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成)思路分析:所用知识点:当堂检测:A组:1、要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。
2、课本P36习题1,3、课本P63复习题1B组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗3、练习册习题C组:1、用两个圆、两个三角形、两条平行线构造轴对称图形,别忘了要加上一两句贴切、诙谐的解说词。
新人教版初中数学八年级上册《第十三章轴对称:13.1.1轴对称》优质课导学案_1
课题:13.1.1 轴对称一、教学内容及其分析:1、内容:了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2、分析:重点轴对称图形和两个图形成轴对称的区别与联系.二、教学目标分析:1、知识与技能:了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2、过程与方法:通过对新旧知识联系的分析,分组讨论的方法,从而提高学生解决问题的能力和合作交流的能力.3、情感态度价值观:让学生积极参与教学活动,敢于发表自己的想法、勇于质疑、敢于创新,养成独立思考、合作交流的学习习惯,使学生具备学好数学的信心。
三、学情分析:学生已认识了一些基本图形特特征。
学生学习这些知识,一方面可以加深对已学图形的认识,另一方面,可以认识日常生活中具有轴对称性质的图形。
四、教学过程教学基本流程:知识回顾,导学设疑→揭示目标,明确方向→预习展示,定位目标→师生合作,释疑解惑→当堂训练,分层巩固→课堂小结,归纳梳理→作业布置。
(一)、知识回顾,导学设疑1、全等形的概念:。
2、平移前后的图形有什么特点:。
(二)、揭示目标,明确方向1、掌握轴对称图形和轴对称的概念。
2、知道轴对称图形和两个图形成轴对称的区别与联系。
设计意图:让学生知道本节课要掌握的知识点,对照知识点看看自己这节课学习完自己掌握的情况。
(三)、预习展示,定位目标第一个学习目标中的第一个知识点是了解轴对称图形的概念,我们一起来认识轴对称图形。
引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合。
归纳总结:轴对称图形的概念:像窗花一样如果沿一条直线折叠,直线两旁的部分能够,这个图形就叫做轴对称图形,这条直线就是它的.这时,我们也说这个图形关于这条直.教师:你能举出一些轴对称图形的例子吗?设计意图:让学生掌握学习目标一的第一个知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新精品
部编版人教初中八年级数学上册第十三章轴对称
优
秀
导
学
案
(全章完整版)
前言:
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)
第十三章轴对称
13.1轴对称
13.1.1轴对称
1.理解轴对称图形和两个图形关于某条直线对称的概念,了解轴对称及轴对称图形的的性质.
2.能识别简单的轴对称图形及其对称轴.
重点:轴对称与轴对称图形的概念.
难点:轴对称与轴对称图形的性质.
一、自学指导
自学1:自学课本P58-59页“思考1及思考2”,了解轴对称图形、轴对称的概念,以及它们之间的区别和联系,完成下列填空.(5分钟) 总结归纳:(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.
(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
自学2:自学课本P59页“思考3”,了解轴对称及轴对称图形的的性质.(5分钟)
如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点.
(1)设AA′交对称轴于点P,将△ABC或△A′B′C′沿MN折叠后,点A与点A′重合,则有△ABC≌△A′B′C′,PA=PA′,∠MPA=∠MPA′=90度.
(2)MN与线段AA′的关系为MN垂直平分线段AA′.
总结归纳:(1)经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
(2)成轴对称的两个图形是全等形.
(3)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
(4)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)
1.如图所示的图案中,是轴对称图形的有A,B,C,D.
2.下列图形中,不是轴对称图形的是(D)
A.角B.等边三角形
C.线段D.直角梯形
3.下图中哪两个图形放在一起成轴对称B与F,C与D.
4.轴对称与轴对称图形有什么区别与联系?
答:区别为轴对称是指两个图形沿对称轴折叠后重合,而轴对称图形是指一个图形的两部分沿对称轴折叠后能完全重合;联系是都有对称轴、对称点和两部分完全重合的特性.
小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 下列图形是轴对称图形吗?如果是,指出轴对称图形的对称轴.
①等边三角形;②正方形;③圆;④平行四边形.
解:①等边三角形的对称轴为三条中线所在的直线;②正方形的对称轴为两条对角线所在的直线和两组对边中点所在的直线;③圆的对称轴为过圆心的直线.
点拨精讲:对称轴是一条直线.
探究2 如图,△ABC和△ADE关于直线l对称,若AB=2 cm,∠C=80°,则AE=2_cm,∠D=80°.
点拨精讲:根据成轴对称的两个图形全等,再根据全等的性质得到对应线段相等,对应角相等.
学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)
1.指出下列哪组图形是轴对称,并指出对称轴.
①任意两个半径相等的圆;②正方形的一条对角线把一个正方形分成的两个三角形;③长方形的一条对角线把长方形分成的两个三角形.
解:①两圆心所在的直线和连接两圆心的线段的垂直平分线;②正方形两条对角线所在的直线;③不是轴对称关系.
点拨精讲:是不是轴对称看是否能沿某条直线折叠后重合.
2.下列两个图形是轴对称关系的有A,B,C.
3.如图,在网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在旁边的网格中设计出一个轴对称图案.(不得与原图案相同,黑、
白方块的个数要相同)
(3分钟)1.可用折叠法判断是否为轴对称图形.
2.多角度、多方法思考对称轴的条数.
3.对称轴是一条直线,一条垂直于对应点连线的直线.
4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.
(学生总结本堂课的收获与困惑)(2分钟)
(10分钟)
13.1.2线段的垂直平分线的性质(1)
1.理解线段垂直平分线的性质和判定,并会运用此性质解决问题.
2.会用尺规作图过直线外一点作已知直线的垂线.
重、难点:线段垂直平分线的性质和判定定理的理解与运用.
一、自学指导
自学1:自学课本P61页“探究”,理解线段垂直平分线的性质与判定定理,完成下列填空.(5分钟)
1.如图,l⊥AB,垂足为C,AC=BC,则△PAC≌△PBC,PA=PB.
2.如图,PA=PB,若PC⊥AB,垂足为C,则AC=BC;若AC=BC,则PC⊥AB.总结归纳:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.。