福建省厦门第一中学15—16学年上学期高一期中考试数学试题(附答案)
精品解析:福建省福州第一中学2022-2023学年高一下学期期中考试数学试题(解析版)
福州一中2021-2022学年第二学期第三学段模块考试高一数学必修第二册模块试题(完卷120分钟 满分160分)参考公式:球地表面积公式24S R π=(R 为球地半径)一,选择题:本题共8小题,每小题5分,共40分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 若复数21iz =+,则|1|z +=( )A. 2B.C. 4D. 5【结果】B 【思路】【思路】由复数地四则运算得出z ,再由模长公式计算即可.【详解】()()()21i 21i 1i 1i 1i z -===-++-,|1|2i z +=-==故选:B2. 已知向量()1,1a m =- ,()2,4b =,若a b ∥,则实数m =( ).A. 1B. 1- C.32D. 32-【结果】C 【思路】【思路】向量共线地充要款件.【详解】因为a b∥,所以()1420m -⨯-=,所以32m =.故选:C .3. 在ABC 中,角A ,B ,C 所对地边分别为a ,b ,c ,若a =,2224b c +=,则角A 地最大值为( )A.2πB.3πC.4πD.6π【结果】B 【思路】【思路】由题设可得2222b c a +=,依据余弦定理有22c s 4o A b c bc +=,利用基本不等式求角A 地范围,即可确定最大值.【详解】由222242b c a +==,则2222b c a +=,所以cos b c a b c bc A bc bc bc +-+==≥=22222212442,0A π<<,所以03A π<≤,故A 地最大值为3π.故选:B4. P 是ABC 所在平面内一点,若3CB PA PB =+,则:ABP ABC S S =△△( )A. 1:4 B. 1:3C. 2:3D. 2:1【结果】A 【思路】【思路】由题设可得3PA CP =,可得,,C P A 共线且4CA PA =,即可确定结果.【详解】由题设,3PA CB BP CP =+=,故,,C P A 共线且3CP PA =,如下图示:所以:1:4ABP ABC S S = .故选:A5. 已知向量a = ,b 是单位向量,若|2|a b -= 则a 与b地夹角为( )A.6π B.3πC.23π D.56π【结果】B 【思路】【思路】求出a = 地模,将|2|a b -= ,求出向量a ,b地数量积,再依据向量地夹角公式求得结果.【详解】∵a = ,b是单位向量,若|2|a b -=∴||2a = ,1b||=,2(2)13a b -= ,∴224413a a b b -⋅+= .∴444113a b ⨯-⋅+= ,∴1a b ⋅= ,∴11cos ,212||||a b a b a b ⋅===⨯⋅,由[],0,πa b ∈ ∴a 与b地夹角为3π,故选:B.6. 已知正方体ABCD A B C D ''''-棱长为2,M ,N ,P 分别是棱AA ',AB ,BC 地中点,则平面MNP 截正方体所得地多边形地周长为( )A. +B.C.D. 【结果】C 【思路】【思路】利用平面基本性质作出正方体中地截面图,再由正方体地特征判断截面地性质,即可求周长.【详解】过直线MN 与射线,B A B B '''分别交于,I J ,作射线JP 交,CC B C '''于,G H ,连接IH 交,A D C D ''''于,E F ,如下图示:所以六边形MNPGFE 即为面MNP 截正方体所得地多边形,又M ,N ,P 分别是棱AA ',AB ,BC 地中点,易知:,,G F E 均为中点,所以截面为正六边形,故周长为.故选:C7. 表面积为324π地球,其内接正四棱柱(底面是正方形地直棱柱)地高是14,则这个正四棱柱地表面积等于( )A. 567B. 576C. 240D. 49π【结果】B 【思路】【思路】由题意画出截面图形,利用正四棱柱地对角线地长等于球地直径,通过勾股定理求出棱柱地底面边长,然后求出表面积.【详解】设球地半径为R ,正四棱柱地底面边长为a ,作轴地截面如图114AA =,AC =,又因为24324R ππ=,所以9R =,可得:AC ==,所以AC ==所以8a =,所以正四棱柱地表面积2823214576S =⨯+⨯=,故选:B【点睛】本题主要考查了球与正四棱柱地关系,考查求几何体地表面积,属于中档题.8. ABC 中,已知()()()()sin sin sin b c A C a c A C ++=+-,设D 是BC 边地中点,且ABC 则()AB DA DB ⋅+等于( )A. 2B. 4C. -4D. -2【结果】A 【思路】【思路】依据正,余弦定理求出A 。
福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)
厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
福建省厦门双十中学2023-2024学年高一上学期期中考试数学试题(含答案)
福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B= B. A B ⋂=∅C. A BD. B A2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 04. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )A. B.C. D.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20B. 21C. 22D. 237. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A a c b<< B. b c a << C. b a c << D. c b a<<8. 已知定义域为()0,∞+函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 否定是R x ∀∈,2220xx++>.的的B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f g x 为偶函数>”是“x y >”的必要条件10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A.114ab ≥ B.122a b+≥ C.2≥ D. 228a b +≥11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2ff a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 212. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.14. 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.16. 已知正数x ,y ,z 满足222321x y z ++=,则1zs xyz+=的最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.18. 已知函数()22(11)1xf x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 取值范围.20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R aa f x mx x a x m =++---∈,且12f a ⎛⎫=⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力的的22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?22. 已知函数()()9230xx mf x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B =B. A B ⋂=∅C. A BD. B A【答案】D 【解析】【详解】根据集合相等的概念,集合交集运算法则,集合包含关系等知识点直接判断求解.【分析】因为集合{}2,0,3A =,{}2,3B =,所以A B ≠,{}2,3A B ⋂=, B 是A 的真子集,所以A,B,C 错误,D 正确.故选:D2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >【答案】C 【解析】【分析】利用特殊值举反例排除即可得到答案.【详解】对于A ,若0,1a b ==-,则22<a b ,故A 错误;对于B ,若1,1a b ==-,则11a b>,故B 错误;对于C ,由于2x y =在R 上单调递增,所以a b >时,22a b >,故C 正确;对于D ,若0c =,则22ac bc =,故D 错误.故选:C3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 0【答案】B 【解析】【分析】根据奇函数()00f =得到a 值再用定义法验证即可.【详解】因为函数()()()2221f x x a x a =+-+-为奇函数,定义域为(),-∞+∞,所以()()()0210f a a =--=,解得1a =或2a =,当1a =时,()()221f x xx =-,则()()()221f x x x f x -=--≠-,不满足题意;当2a =时,()()221f x x x =+,则()()()221f x x x f x -=-+=-,满足题意.所以a 的值是2.故选:B4. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念和对数函数相关概念求解即可.【详解】由22log 2log 4x <=,解得04<<x ,由“04<<x ”是“13x <<”的必要不充分条件,所以“2log 2x <”是“13x <<”的必要不充分条件.故选:B5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )的A. B.C. D.【答案】D 【解析】【分析】通过分析幂函数和对数函数的特征可得解.【详解】函数()0ay xx =≥,与()log 0a y x x =>,答案A 没有幂函数图像,答案B.()0ay x x =≥中1a >,()log 0a y x x =>中01a <<,不符合,答案C ()0ay xx =≥中01a <<,()log 0a y x x =>中1a >,不符合,答案D ()0ay xx =≥中01a <<,()log 0a y x x =>中01a <<,符合,故选D.【点睛】本题主要考查了幂函数和对数函数的图像特征,属于基础题.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20 B. 21C. 22D. 23【答案】D 【解析】【分析】根据题意可列出方程10000(10.2) 1.2x x ⨯-=,求解即可,【详解】设经过x 天“进步“的值是“退步”的值的10000倍,则10000(10.2) 1.2x x ⨯-=,即1.2(100000.8x=,1.20.8lg10000log 10000231.2lg3lg20.1761lg l 4443g 20.8x ∴====≈≈-,故选:D .7. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A. a c b <<B. b c a <<C. b a c <<D. c b a<<【答案】D 【解析】【分析】根据指数函数的单调性和对数运算法则计算即可.【详解】由题意得,3227311121log 9log 322233c ===⨯=;因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10.90.5111333⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,由于0.510.73⎛⎫=⎪⎝⎭,所以10.73b <<;因为0.9x y =在R 上单调递减,所以1130.90.90.9a ==.所以c b a <<.故选:D8. 已知定义域为()0,∞+的函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3【答案】C 【解析】【分析】将()()1221211x f x x f x x x ->-变为()()2121110f x f x x x ++->,结合构造函数())1(),(0f x xg x x +=>,即可判断()g x 的单调性,由此将不等式()1f x x <-可化为()(3)g x g <,结合函数单调性,即可得答案.【详解】由题意知对于任意1x ,()20,x ∈+∞,12x x ≠,不妨设12x x <,则210x x ->,由()()1221211x f x x f x x x ->-得()()12212110x f x x f x x x -->-,即()()21122121110f x f x x x x x x x ⎡⎤++-⎢⎥⎣⎦>-,结合21120,0x x x x ->>得()()2121110f x f x x x ++->,即()()212111f x f x x x ++>,设())1(),(0f x xg x x +=>,则该函数在()0,∞+上单调递增,且()3(3)113f g =+=,则()1f x x <-即()11f x x+<,即()(3)g x g <,故03x <<,即不等式()1f x x <-的解集为()0,3,故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++>B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f gx 为偶函数>”是“x y >”的必要条件【答案】BC 【解析】【详解】根据含有一个量词命题的否定可判断A ;判断“0m <”和“关于x 的方程220x x m -+=有一正一负根”之间的逻辑关系可判断B ;根据函数奇偶性定义判断C ;判断>”和“x y >”的推出关系可的判断D.【分析】对于A ,命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++≥,A 错误;对于B ,当0m <时,对于220x x m -+=有440m ∆=->,即方程有两个不等实根,设为12,x x ,则120x x m =<,即12,x x 一正一负;当220x x m -+=有一正一负根时,只需满足120x x <,即0m <,即“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件,B 正确;对于C ,由题意知()h x 的定义域为R ,由()(),()()f x f x g x g x -=--=可得()()()(())()h x f g x f g x h x -=-==,即函数()()()=h x f g x 为偶函数,C 正确;对于D >0x y >≥,反之,当x y >,比如0x y >>故>”是“x y >”的充分条件,D 错误,故选:BC 10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A. 114ab ≥B. 122a b +≥C. 2≥D. 228a b +≥【答案】AD【解析】【分析】运用基本不等式和特殊值法判断各个选项即可.【详解】对于A 和C ,因为0a >,0b >,所以4a b +=≥2≤,当且仅当2a b ==时等号成立,故04ab ≤<,则114ab ≥,故A 正确,C 错误;对于B ,代入2a b ==,12131222a b +=+=<,故B 错误;对于D ,()22282a b a b++≥=,当且仅当2a b ==时等号成立,故D 正确.故选:AD11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2f f a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 2【答案】BCD【解析】【分析】判断函数()2e e 122023x x f x x -+=+的奇偶性以及单调性,则由)()2f f a <+可得||2|a <+,将各选项中的数代入验证,即可得答案.【详解】由题意知()2e e 122023x x f x x -+=+的定义域为R ,()2e e 1()22)0(23x x f x f x x -+-==+-,即()f x 为偶函数,又0x >时,e 1x >,令e ,(1)x t t =>,且e x t =在(0,)+∞上单调递增,函数1y t t=+(1,)+∞上单调递增,故e e 2x xy -+=在(0,)+∞上单调递增,则()2e e 122023x x f x x -+=+在(0,)+∞上单调递增,在(,0)-∞上单调递减,故由)()2f f a <+得|||2|a <+,将各选项中的数代入验证,0,1,2适合,在故选:BCD12. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -【答案】BCD【解析】【分析】化简得到()()22f x f x +=,进而求得则()5.54f =,可判定A 错误;当12m =时,作出函数()y f x =的图象与曲线4log y x =的图象,结合图象,可判定B 正确;根据题意得出函数()f x 的值域对m 进行分类讨论,可判定C 正确;由()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数可判定D 正确.【详解】当2m =时,函数()()22f x f x =-可转化为()()22f x f x +=,则()()()()()5.5 3.522 3.521.524 1.5414f f f f =+==+==⨯=,所以A 错误;当12m =时,函数()y f x =的图象与曲线4log y x =的图象,如图所示,可得函数()y f x =的图象与曲线4log y x =的图象有3个交点,所以B 正确;对于C 中,依题意,max min ()()4f x f x -<,当[]0,2x ∈时,函数()f x 的值域为[]0,2;当1m >时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]0,2m ;若6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦, ;随着x 依次取值,值域将变成[0,)+∞,不符合题意,若1m <-时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]2,0m ;max min ()()224f x f x m -³->,不符合题意,所以C 正确;对于D ,当[]0,2x ∈时,可得函数()f x 的值域为[]0,2,当(2,4]x ∈时,函数()f x 的值域为[]0,2m ;当6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦……,当(24],22x n n ∈--时,函数()f x 的值域为20,2n m-⎡⎤⎣⎦,当(22,2]x n n ∈-时,函数()f x 的值域为10,2n m -⎡⎤⎣⎦当(2,22]x n n ∈+时,函数()f x 的值域为0,2n m ⎡⎤⎣⎦,若01m <<,12222n n m m m -<<<<,由图象可知,()y f x =的图象与直线12n y m -=在区间[]0,2,(2,4],……,],(2242n n --上均有2个交点,在(22],2n n -上有一个交点,在(2,)n +∞上无交点,所以()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -,所以D 正确.故选:BCD.【点睛】本题解题关键是准确作出函数的图象,数形结合可得判断B ,D ,利用()()22f x f x +=迭代可判断A ,对于C ,分1m >和1m <-两种情况讨论可判断.三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.【答案】72-## 3.5-【解析】【分析】根据题意,令19x =,准确运算,即可求解.【详解】由函数)311x f x ++=-,令19x =,可得13479()1)13219f f +=+==--.故答案为:72-.14 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.【答案】{}2-【解析】【分析】根据不等式的解法和对数函数的性质,求得集合B ,结合集合并集的运算,即可求解.【详解】由不等式234(4)(1)0x x x x --=-+>,解得1x <-或>4x ,即{|1B x x =<-或4}x >,因为集合{}2,1,0,1,2A =--,所以{}2A B =-I .故答案为:{}2-.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.【答案】8【解析】【分析】根据指对幂运算法则进行计算即可.【详解】由题意得,391log 10log 1029019==,1413181⎛⎫ =⎝=⎪⎭,3130.02710-==,66663311l 1og 2log 2log 2log 1log 2log 63+=+=+=+,所以原式110101833=+-+=.故答案为:816. 已知正数x ,y ,z 满足222321x y z ++=,则1z s xyz+=的最小值为______.【答案】【解析】【分析】先代换1z +,结合基本不等式求解可得答案..【详解】因为222321x y z ++=,所以()()22232111z z x y z +=-=-+;易知1z <,所以221132z zx y +=-+;所以()221321xyz z z x y s xyz ++==-,由()114z z -≤,当且仅当12z =时取等号,可得()22432s y x y x +≥=≥,当且仅当228323x y ==,即x y ==时,取到最小值.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.【答案】(1){}|23A B x x =≤< ,{}|13A B x x ⋃=<≤;(2)12a <<.【解析】【分析】(1)化简集合A ,B ,再利用交集、并集的定义直接计算得解.(2)由“x ∈A ”是“x ∈B ”的必要不充分条件可得集合B A ,再利用集合的包含关系列出不等式组求解即得.【小问1详解】当a =1时,{}{}|(1)(30)|13A x x x x x -<=<-=<,{|()()}{|23}320B x x x x x =≤-≤≤=-,所以{}|23A B x x =≤< ,{}|13A B x x ⋃=<≤.【小问2详解】因为a >0,则{}|3A x a x a =<<,由(1)知,{|23}B x x =≤≤,因为“x ∈A ”是“x ∈B ”的必要不充分条件,于是得B A ,则有233a a <⎧⎨>⎩,解得12a <<,所以实数a 的取值范围是12a <<.18. 已知函数()22(11)1x f x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.【答案】(1)()f x 是奇函数,理由见解析(2)()f x 在(1,1)-上单调递减,证明见解析【解析】【分析】(1)根据函数奇偶性定义进行判断证明;(2)根据函数单调性定义进行证明.【小问1详解】()f x 是奇函数,理由如下:函数()22(11)1x f x x x =-<<-,则定义域关于原点对称,因为()()221x f x f x x --==--,所以()f x 是奇函数;【小问2详解】任取1211x x -<<<,则22121211221222221212222222()()11(1)(1)x x x x x x x x f x f x x x x x --+-=-=---- 1221211221222212122()2()2(1)()(1)(1)(1)(1)x x x x x x x x x x x x x x -+-+-==----,因为1211x x -<<<,所以2212211210,0,10,10x x x x x x +>->-<-<,所以12())0(f x f x ->,所以()f x 在(1,1)-上单调递减.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-的奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)()02f =,函数()()2g x f x =-是奇函数,证明见解析(2)(],0-∞【解析】【分析】(1)利用赋值法即可求得()02f =,利用奇函数定义和已知条件即可证明函数()()2g x f x =-奇偶性;(2)根据条件得到函数()f x 单调性,再结合题中条件将原不等式化简,将恒成立问题转化为最值问题进而求解.【小问1详解】因为函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,所以令0y =,得到()()()20f x f x f =+-,所以()02f =;函数()()2g x f x =-定义域为(),-∞+∞,因为()()()()()()()422020g x g x f x f x f x f x f +-=+--=+---=-=⎡⎤⎣⎦,所以函数()()2g x f x =-奇函数【小问2详解】因为对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,所以函数()f x 在(),-∞+∞单调递增,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭,即()126f x f m x ⎛⎫+--≥ ⎪⎝⎭,即()()122f x f m f x ⎛⎫+--≥⎪⎝⎭,即()12f x m f x ⎛⎫+-≥ ⎪⎝⎭,所以12x m x +-≥,所以12m x x≤+-对(]0,4x ∈恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时等号成立,所以min12220m x x ⎛⎫≤+-=-= ⎪⎝⎭,即实数m 的取值范围为(],0-∞20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R a a f x mx x a x m =++---∈,且12f a ⎛⎫= ⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.【答案】(1)(0,1){9} 是(2)-13【解析】【分析】(1)根据指数幂的含义以及对数函数的单调性分别求得a 的取值范围,综合可得答案;(2)由题意确定a 的值,化简()f x ,由12f a ⎛⎫= ⎪⎝⎭可得919()9ln 322m =+-,再由911(9ln 222f m ⎛⎫-=-- -⎪⎝⎭,两式相加即可求得答案.【小问1详解】由123a ≤可得09a ≤≤,当01a <<时,由1log 32a ≤得12log 3log a a a ≤,则123,09a a ≤∴<≤,故01a <<;当1a >时,由1log 32a ≤得12log 3log a a a ≤,则123,9a a ≥∴≥,故9a ≥;综合可得实数a 的取值范围(0,1){9} ;【小问2详解】由题意知1a >,则9a =,则()()()99ln 19ln 12f x mx x x =++---,需满足11x -<<,则()919ln 21x f x mx x+=+--,故由12f a ⎛⎫= ⎪⎝⎭得919(9ln 322m =+-,则9119ln 3222f m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,则1194,1322f f ⎛⎫⎛⎫-+=-∴-=- ⎪ ⎪⎝⎭⎝⎭.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?【答案】(1)()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩(2)2t =时有最小值,最小值为5200kJ .【解析】【分析】(1)先写出速度v 关于时间t 的函数,进而求出剩余体力Q 关于时间t 的函数;(2)分01t <≤和14t <≤两种情况,结合函数单调性,结合基本不等式,求出最值.【小问1详解】由题可先写出速度v 关于时间t 的函数()()30,0130101,14t v t t t <≤⎧=⎨--<≤⎩,代入1ΔQ 与2ΔQ 公式可得()()()1000060230,016012301016400,1411t t Q t t t t t -⋅⋅⨯<≤⎧⎪=⎡⎤-⋅--⎨⎣⎦-<≤⎪-+⎩解得()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩;【小问2详解】①稳定阶段中()Q t 单调递减,此过程中()Q t 最小值()()min 16400kJ Q t Q ==;②疲劳阶段()48004001200(14)Q t t t t =++<≤,则有()480040012004005200kJ Q t t t =++≥+=,当且仅当48001200t t=,即2t =时,“=”成立,所以疲劳阶段中体力最低值为5200kJ ,由于52006400<,因此,在2h t =时,运动员体力有最小值5200kJ .22. 已知函数()()9230x x m f x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.【答案】(1)(,2]-∞;(2)()()12f x f x <;(3)1.【解析】【分析】(1)把1m =代入,结合一元二次不等式及指数函数单调性求解不等式即得.(2)利用差值比较法,结合基本不等式判断出两者的大小关系.(3)利用换元法化简()g x 的解析式,对3m 进行分类讨论,结合二次函数的性质求得m 的值.【小问1详解】当1m =时,函数123()92)633(x x x x f x +=-⋅-=⋅,不等式()27f x ≤化为2(3)63270x x -⋅-≤,即(33)(39)0x x +-≤,解得39x ≤,则2x ≤,所以不等式()27f x ≤的解集为(,2]-∞.【小问2详解】依题意,()()112212923923x x m x x mf x f x ++-⋅⋅-=-+()()()12121233332333x x x x x x m =+--⋅-()()1212333323x x x x m =-+-⋅,由210x x >>,得12330x x -<,又212x x m =,则123323x x m +>=>==⋅,因此()()120f x f x -<,所以()()12f x f x <.【小问3详解】令3x t =,0t >,则()()221323,9232mm x m x f x t t f x t t--=-⋅⋅-=-⋅=-⋅,于是()()()g x f x f x =+-2213232mmt t t t =-⋅⋅+-⋅2211(t t t =+)-2⋅3m ⋅(t +211()23()2m t t t t =+-⋅⋅+-221(3)23m m t t=+---,而12t t+≥=,当且仅当1t t =,即1t =,0x =时取等号,当32m ≤,即3log 2m ≤时,则当12t t +=时,()y g x =取得最小值313443211,log 4m m -⋅-=-=,矛盾;当32m >,即3log 2m >时,则当13m t t+=时,()y g x =取得最小值22311m --=-,解得1m =,则1m =,所以m 的值是1.【点睛】思路点睛:含参数的二次函数在指定区间上的最值问题,按二次函数对称轴与区间的关系分类求解,再综合比较即可.。
福建省厦门第一中学2023-2024学年高一上学期入学考试数学试题(原卷版)
(1)求证: 是⊙O的切线;
(2)求证: ;
(3)若 求 的值.
22.在平面直角坐标系中,O为坐标原点,抛物线 与x轴交于点A,B,与y轴交于点C,点A的坐标为(2,0),点 在抛物线上.
15.如图,直线y= 3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y= (k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y= (k≠0)上的点D1处,则a=_____.
16.已知 中,点 , , .则 面积为________.
①
④
②
⑤
③
A.①或③B.②或③C.①或④D.以上选项都可以
7.如图,平面直角坐标系中.直线 分别交x轴、y轴于点B、A,以AB为一边向右作等边 ,以AO为边向左作等边 ,连接DC交直线l于点E.则点E的坐标为()
A. B. C. D.
8.构建几何图形解决代数问题是“数形结合”思想的重要应用,例如在计算tan15°时,可构造如图的Rt△ACB,∠C=90°.∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以 类比这种方法,若已知锐角α的正弦值为 锐角β的余弦值为 则α+β=()
20.如图,斜坡AB长130米,坡度 现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.
(1)若修建 斜坡BE的坡角为 求平台DE的长;(结果保留根号)
(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M的仰角为 他沿坡面DA走到坡脚A处,然后向大楼方向继续行走10米来到P处,测得广告底部N的仰角为 此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin 3)
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
福建省厦门外国语学校石狮分校、泉港区第一中学2023-2024学年高一上学期第二次月考(12月)数学
数 m 的取值范围.
18.已知
f
(a
)
=
cosπ(sin+ata) nπ a tan (-a )sin (2π
( -a +a)
)
(1)化简
f
(a
)
并求
f
æ çè
-
31π 3
ö ÷ø
的值;
=
3
,则
a
1 2
+
a
-
1 2
=
5
D.“ m < 0 ”是“关于 x 的方程 x2 - 2x + m = 0 有一正一负根”的充要条件 11.给出下列四个结论,其中正确的结论是( )
A.如果a, b 是第一象限的角,且a < b ,则 sina < sinb
B.若圆心角为 2π 的扇形的弦长为 4 3 ,则该扇形弧长为 4π
答案第31 页,共22 页
列式计算作答.
【详解】函数
f
(x)
=
log3
ax + 4 x+3
= log3
æ çè
a
+
4 - 3a x+3
ö ÷ø
,
因为
y
=
log3
B. 30.2 < 40.2 D. log2 3 > log3 2
试卷第21 页,共33 页
A.函数 f ( x) = a x-1 + 2(a > 0,a ¹ 1) 的图象过定点 (1,3) B.函数 f ( x) = ( x)2 与函数 g ( x) = x2 表示同一个函数
福建省龙岩市第一中学2024-2025学年高一上学期第一次月考数学试题
福建省龙岩市第一中学2024-2025学年高一上学期第一次月考数学试题一、单选题1.若集合2{|20,R}A x x x m m =++=∈中有且只有一个元素,则m 值的集合是( ) A .{}1-B .{0}C .{4}D .{1}2.“2024x <”是“2023x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.关于x 的不等式0ax b ->的解集是{}1x x >,则关于x 的不等式()(3)0ax b x +-<的解集是( )A .{1x x <-或3}x >B .{}13x x -<<C .{}13x x <<D .{1x x <或3}x >4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)的值是( ) A .1-B .0C .1D .35.若定义运算,,*,b a b a b a a b≥⎧=⎨<⎩则函数()()2*g x x x =--的值域为( ) A .(,0]-∞ B .R C .[1,)-+∞ D .(,0)-∞6.某观光种植园开设草莓自摘活动,使用一架两臂不等长的天平称重.一顾客欲购买2kg 的草莓,服务员先将1kg 的砝码放在天平左盘中,在天平右盘中放置草莓A 使天平平衡;再将1kg 的砝码放在天平右盘中,在天平左盘中放置草莓B 使天平平衡;最后将两次称得的草莓交给顾客.你认为顾客购得的草莓是( ) A .等于2kgB .小于2kgC .大于2kgD .不确定7.已知定义在R 上的函数()f x 满足:x ∀∈R ,都有(2020)(2024)f x f x -=-,且()f x 对任意()1212,[2,)x x x x ∈+∞≠,都有()()21210f x f x x x -<-,若()(31)f a f a ≤+,则实数a 的取值范围是( )A .13,24⎡⎤-⎢⎥⎣⎦B .[2,1]--C .1,2⎡⎤-∞-⎢⎥⎣⎦D .3,4⎛⎫+∞ ⎪⎝⎭8.定义在(1,1)-上的函数()f x 满足:()()1x y f x f y f xy ⎛⎫--= ⎪-⎝⎭,当()1,0x ∈-时,有()0f x >,则关于x 的不等式()212()0f x f x -+-<的解集为( )A .11,2⎛⎫- ⎪⎝⎭B .1(,1),2⎛⎫-∞-+∞ ⎪⎝⎭UC .1,12⎛⎫⎪⎝⎭D .1(1,0)0,2⎛⎫-⋃ ⎪⎝⎭二、多选题9.下列函数中,是奇函数且在区间(0,)+∞上单调递增的是( ) A .1y x=-B .y x =C .2y x =D .||y x =-10.若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是( )A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-+∞U11.若定义在R 上且不恒为零的函数()y f x =满足:对于,x y ∀∈R ,总有()()2()()f x y f x y f x f y ++-=恒成立,则下列说法正确的是( )A .(0)1f =B .(0)0f =C .()f x 是偶函数D .1(1)2f =,则()f x 周期为6三、填空题12.对于集合A ,B ,我们把集合{},x x A x B ∈∉且叫做集合A 与B 的差集,记作A B -.若{}1,2,3,4,5A =,{}4,5,6,7,8B =,则B A -=. 13.已知0,0m n >>,且2m n +=,则1424m n +++的最小值为. 14.已知函数()()22()26f x x x x ax b =-+++,且函数(2)y f x =+是偶函数,则函数()f x 在区间[0,5]的值域为.四、解答题15.设R a ∈,已知集合{}12A x x =-<<,{}2220B x x ax a =--=.(1)若{}1A B ⋂=,求a 的值; (2)若A B A =U ,求a 的取值范围.16.设命题:p 函数2()(2)3f x x m x =-+-在区间[1,2]上单调递增;命题:[0,1]q x ∃∈,不等式23220m m x --+≤成立.(1)若命题q 的否定为真命题,求实数m 的取值范围;(2)若命题p 和q 有且只有一个是真命题,求实数m 的取值范围.17.学校食堂改建一个开水房,计划用电炉或煤炭烧水,但用煤时也要用电鼓风及时排气,用煤烧开水每吨开水费为S 元,用电炉烧开水每吨开水费为P 元,50.25,10.2S x y P y =++=+其中x 为每吨煤的价格,y 为每百度电的价格,如果烧煤时的费用不超过用电炉时的费用,则仍用原备的锅炉使用煤炭烧水,否则就用电炉烧水. (1)如果两种方法烧水费用相同,试将每吨煤的价格表示为每百度电价的函数; (2)如果每百度电价不低于60元,则用煤烧水时每吨煤的最高价是多少?18.已知函数()(0)1ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1. (1)求实数a 的值;并求函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的最小值.(2)若函数2()()(1)(0)()x b f x b b g x +=+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r s t 、、,都存在以(())(())(())f g r f g s f g t 、、为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.(提示:函数()(0)kf x x k x=+>在为减函数,在)+∞为增函数可以直接使用)19.已知集合{}())*1212,,,0,,3n n A a a a a a a n n =≤<<<∈≥N L L 具有性质:P 对任意,(1),j i i j i j n a a ≤≤≤+与j i a a -至少一个属于A .(1)分别判断集合{0,2,4}C =与{1,2,3}D =是否具有性质P ,并说明理由; (2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)记123()nna f n a a a a =++++L ,求(2024)f。
福建省厦门市厦门第一中学2022-2023学年七年级上学期期中考试数学试卷
福建省厦门第一中学2022—2023学年度第一学期期中考试初一年数学试卷 命题教师:张溶 审核人:郑辉龙 2022.11说明: (1)考试时间120分钟.满分150分.(2)所有答案都必须写在答题卡指定方框内,答在框外一律不得分.(3)选择题用2B 铅笔填涂,其余一律用黑色水笔做答;不能使用涂改液/带.班级:________座号:_________姓名:__________一、选择题(每题3分,共30分)1. 早在两千多年前,中国人已经开始使用负数,并应用到生产和生活中.中国人使用负数在世界上是首创.下列各式计算结果为负数的是( )A .53+(-)B .53-(-)C .53⨯(-)D .53÷(-)(-)2. 如图,在数轴上点M 表示的数可能是( )A . 1.4-B . 2.4-C . 3.4-D .3.43. 单项式322a b -的系数和次数分别为( )A .1,3-B .2,5-C .2,3-D .1,5-4. 下面运算正确的是( )A .495x x x -=B .11022x x -=C . x x x -32=D . x x x +23= 5. 当3,4x y =-=时,式子23x y -的值为( ) A .6 B . -6 C .18 D . -186. 若x 表示某件物品的原价,则式子(1-10%)x 表示的意义是( )A .该物品价格上涨10%时上涨的价格B .该物品价格下降10%时下降的价格C .该物品价格上涨10%后的售价D .该物品价格下降10%后的售价7. 学校、家、书店依次坐落在一条南北走向的街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了﹣70米,此时张明的位置( )A .在家B .在学校C .在书店D .不在上述地方8. 如果a 大于b ,那么a 的倒数小于b 的倒数,下列举例能说明这种说法错误的是( )A .2,1a b ==B .2,1a b =-=-C .2,1a b ==-D .11,23a b == 9. 如图,将数轴上-m 与m 两点间的线段六等分,这5个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的个数是( )①30a >;②250a a +>;③14a a =;④1414=a a a a -- ; ⑤2022202215=a aA .1B .2C .3D .410. 已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a 、b 、m 、n 中的一个量即可,则要知道的那个量是( )A .aB .bC .mD .n二、填空题(每空2分,共32分)11. 2-的相反数是__________.12. 计算:(1))1(5-+=________;(2)03-=________;(3)()32-⨯=________.13. 化简:(1)123-=________;(2)x x 52+=________;(3)2273x x -=________. 14. (1)科学防疫从勤洗手开始,一双没洗干净的手上带有各种细菌病毒大约850 000 000个,这个数据用科学记数法表示为_________________;(2)圆周率π=3.1415926…,将其精确到百分位的近似数为 .15. 写出一个二次三项式_______________.16. 若0)2(12=-++b a ,则ba =_________.17. 为了加强公民的节水意识,合理利用水资源,我市采用价格调控的手段达到节水的目的,我市自来水收费的价目表如表(注:水费按月份结算,3m 表示立方米):小乐家11月份用水量为3a m ,小乐由表列出水费为12+4-6a (),则可知小乐家的用水量a 的范围是__________. 18. 若202213m ⨯=,则202214⨯= _____________(用含m 式子表示).19. 如图,下面是用棋子摆成“T ”字,n=1 n=2 n=3问:按这样的规律摆下去,摆成第4个“T ”字需要 个棋子;第n 个需要 个棋子.20. 已知有理数m ,n ,p 满足5|3+-+=-++p n m p n m |,则)4)(1(-++p n m = .三、解答题21. 计算下列各式(每题3分,共18分)(1)2(7)(4)9---+-+ (2)(6)3(42)7-⨯+-÷(3)(10.68)8(25)-÷⨯- (4)152()(12)263-+⨯- (5)234(2)2÷--- (6)2211[2(3)]14--⨯--22. 化简下列各式(每题4分,共16分)(1)2346x y x y --+ (2)3()2b a b a +--()(3)222()(21)xy y xy y +-+- (4)132]22[a a a a -+-22()23. (本题6分)先化简,再求值:222x x y x y ++-(-)(-), 其中22,.3x y =-=24. (本题8分)已知343,2A x xy y B x xy =--+=-+,(1)化简A ﹣3B .(2)当5,16x y xy +==-,求A ﹣3B 的值. (3)若A ﹣3B 的值与y 的取值无关,则x =_____.25. (本题8分)已知有理数a 是b 的相反数,且0≠a ,有理数c 和d 互为倒数,有理数m 满足3m =,求cd ba m 32--的值.26. (本题6分)小亮房间窗户的窗帘如图所示,它是由两个四分之一圆组成(半径相同)27. (本题8分)某空军举行特技飞行表演,其中一架飞机起飞0.5千米后的高度变化如下表:(1)完成右表;(2)飞机完成上述四个表演动作后,飞机高度是多少千米?(3)如果飞机每上升1千米需消耗5升燃油,平均每下降1千米需消耗3升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?28. (本题8分)两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,甲船在静水中的速度是a km /h ,乙船在静水中的速度是b km /h (a >b),水流速度是c km /h .甲船航行3h 后到达A 港口,乙船航行4h 到达B 港口.(1)2h 后甲船比乙船多航行多少千米?(2)求A ,B 两个港口之间的路程.29. (本题10分)对于一个四位自然数N ,如果N 满足各数位上的数字不全相同且均不为0,它的千位数字减去个位数字之差等于百位数字减去十位数字之差,那么称这个数N 为“差同数”.对于一个“差同数”N ,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s ,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t ,规定:2()29s t F N +=.例:N =7513,因为7﹣3=5﹣1,故:7513是一个“差同数”. 所以:735122715318s t =-=,=-=,则:2236(7513)229F +==. (1)写出一个“差同数”_______ (2)请判断4378是否是“差同数”.如果是,请求出F (N )的值;(3)若自然数P ,Q 都是“差同数”,其中100010616P x y =++,1003042Q m n =++19081907x y m n x y m n ≤≤≤≤≤≤≤≤(,,,,,,,都是整数),规定:()()F P k F Q =, 当3()()F P F Q -能被11整除时,求k 的最小值.。
福建省厦门市第六中学2023-2024学年高一上学期期中考试数学试题
福建省厦门市第六中学2023-2024学年高一上学期期中考
试数学试题
学校:___________姓名:___________班级:___________考号:___________.若函数(2)
+的定义域为(
y f x
=的定义域为1)
-B.5,7]
2,2]
-
二、多选题
9.某打车平台欲对收费标准进行改革,现制定了甲、乙两种方案供乘客选择,其支付费用与打车里程数的函数关系大致如图所示,则下列说法正确的是()
A.当打车距离为8km时,乘客选择甲方案省钱
B.当打车距离为10km时,乘客选择甲、乙方案均可
C.打车3km以上时,每公里增加的费用甲方案比乙方案多
(2)根据题意,令0x >,则又由函数()f x 是定义在R 上的奇函数,则()224,04,0
x x x x x x x ì+£=í-+>î.(3)根据题意,[]2,4x Î,则。
福建省厦门第一中学2023-2024学年高二上学期期中考试数学试题
(1)求三棱柱的侧棱长;
(2)求
uuur AB1
与
uuur BC
夹角的余弦值.
18.已知圆 C 的圆心在 x 轴上,且经过点 A(3, 0) , B (1, 2) .
(1)求圆 C 的标准方程;
(2)过点 P (-1,4) 的直线 l 与圆 C 相切,求直线 l 的方程.
19.已知椭圆
x2 a2
+
y2 b2
= 1(a > b > 0) 的一个顶点为 A(0,1) ,离心率为
2 ,过点 B (0, -2)
2
及左焦点 F1 的直线交椭圆于 C、D 两点,右焦点设为 F2 . (1)求椭圆的方程; (2)求VCDF2 的面积.
20.在平面直角坐标系
xOy
中,已知
A(1,
0),
B
( 4,
0)
,点
M
满足
| |
MA MB
2)
,
uuuur uuur 则 sina = cos AC1, OP
=
l= 3 2+l2
1£
3
+
6 l2
1=
3
+
6 4
2 3,
当且仅当 l = 2 时取等号. 故选:B 7.B
【分析】结合已知条件写出曲线 C 的解析式,做出图,将问题转化为点到直线的距离,然 后利用圆上一点到直线的距离的最小值为圆心到直线的距离减去半径即可求解.
x2 4
+
y2 2
= 1的左、右焦点为 F1 , F2 ,点 P 在椭圆上,且不与椭圆的左、
右顶点重合,则下列关于△PF1F2 的说法正确的有( ) A.△PF1F2 的周长为 4 + 2 2 B.当 ÐPF1F2 = 90° 时,△PF1F2 的边 PF1 = 2 C.当 ÐF1PF2 = 60° 时,△PF1F2 的面积为 2 3 3 D.椭圆上有且仅有 6 个点 P ,使得△PF1F2 为直角三角形
福建省厦门市第一中学2023-2024学年七年级上学期期中数学试题
福建省厦门市第一中学2023-2024学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .-3.5C .-2.56.将()a b c --+去括号,结果是(A .a b c -+B .a b c+-7.已知34a b=(0a ≠,0b ≠),下列变形错误的是(A .34a b =B .34a b =8.若x 的相反数是2,|y |=5,且x +A .3B .3或﹣7二、填空题15.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30千米/时,3小时后甲船能比乙船多航行列方程.16.下面是用棋子摆成的“小屋子这样的“小屋子”需要11枚棋子,摆第三、计算题17.计算下列各式.(1)()()3257---+-+;(2)()()()62427-⨯-+÷-;(3)15212363⎛⎫-⨯+- ⎪⎝⎭;(4)()32142--÷-.18.化简下列各式.(1)3642x y x y +--;(2)()()23a b b a ++-;(3)()()222222x xy xy x +-+-;(4)()221632m m m m -+-⎡⎤四、解答题五、应用题20.“滴滴”司机沈师傅从上午8:00~9:10在东西方向的黄龙大道上营运,共连续运载十六、解答题(3)【问题解决】请直接写出一个含x 的代数式,要求x 的值每增加1,代数式的值就都减小5,且当0x =时,代数式的值为7-.七、问答题24.对于一个四位正整数p ,如果满足各个数位上的数字互不相同且均不为0,它的千位数字与个位数字之和等于百位数字与十位数字之和,那么称这个数p 为平衡数,在平衡数p 中,从千位数字开始顺次取出三个数字依次作为百位数字、十位数字和个位数字构成一个三位数,共形成四个三位数,再把这四个三位数的和与222的商记为()F p .例如:1526p =,因为1625+=+,所以1526是一个平衡数,从千位数字开始顺次取出三个数字构成的四个三位数分别是152,526,261,615,这四个三位数的和为1525262616151554+++=,15542227÷=,所以(1526)7F =.(1)最小的平衡数是__________,最大的平衡数是________;(2)若s ,t 都是平衡数,其中103201s x y =++,100010126(t m n x =++,y ,m ,n 都是整数,且19x ≤≤,08y ≤≤,19m ≤≤,07)n ≤≤,求s 和t 的所有值.八、解答题。
福建省厦门市第一中学2020-2021学年高一上学期月考数学试题
福建省厦门市第一中学2020-2021学年高一上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若集合{}2,1,0,1,2M =--,211,R 2N y y x x ⎧⎫==-+∈⎨⎬⎩⎭,则M N =( )A .{}2,1,0,1--B .{}2,1,0--C .{}1,2D .{}22.已知幂函数f(x)的图像经过点(9,3),则f(2)-f(1)=( )A .3B .1C -1D .13.下列函数在其定义域上既是奇函数又是减函数的是( ) A .()2xf x =B .3()f x x =C .()1f x x=D .()f x x x =-4.函数()21log f x x x=-+的一个零点落在下列哪个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)5.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .76.已知 5.10.9m =,0.90.95.1,log 5.1n p ==,则这三个数的大小关系是( )A .m<n<pB .m<p<nC .p<m<nD .p<n<m7.已知函数()()()f x x a x b =--(其中)a b >,若()f x 的图象如图所示,则函数()x g x a b =+的图象大致为( )A .B .C .D .8.已知函数()()()2log ,02,0x x x f x x -⎧>⎪=⎨≤⎪⎩,则不等式()1f x >的解集为( ) A .()2,+∞ B .(),0-∞ C .(0,2)D .()(),02,-∞+∞9.一元二次方程2510x x m -+-=的两根均大于2,则实数m 的取值范围是( )A .21,4⎡⎫-+∞⎪⎢⎣⎭B .(,5)-∞-C .21,54⎡⎫--⎪⎢⎣⎭D .21,54⎛⎫-- ⎪⎝⎭10.已知函数()()3log 1f x ax =-,若()f x 在(],2-∞上为减函数,则a 的取值范围为( ) A .()0,∞+B .10,2⎛⎫ ⎪⎝⎭C .()1,2D .(),0-∞11.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞B .[]1,2C .()1,2D .(],1-∞二、多选题12.(多选题)已知函数()()2220f x x x x =++<与()()2ln g x x x a =++(a R ∈且0a >)的图象上存在关于y 轴对称的点,则a 的取值可以是下列数据中的( )A .21eB .1eC .eD .3e三、填空题13.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.14.计算:3112log 2221log 6log 334⎛⎫--+= ⎪⎝⎭______ 15.设函数f (x )=ln(1+|x |)-211x +,则使得f (x )>f (2x -1)成立的x 的取值范围是________.16.已知函数()22log 1a a f x x x x =-+-在31,2⎛⎫⎪⎝⎭内恒小于零,则实数a 的取值范围是_________.四、解答题17.已知()1ln 33x M x f x ⎧⎫⎛⎫==-⎨⎬ ⎪⎝⎭⎩⎭,{}12N x a x a =<<-(1)求M ;(2)若M N M ⋂=,求实数a 的取值范围18.已知函数()113xf x a ⎛⎫=-- ⎪⎝⎭(1)若0a =,画出函数()f x 的图象,并指出函数的单调区间; (2)讨论函数()f x 的零点个数. 19.已知函数()21log 1f x x =+. (1)用定义法证明:()f x 是()1,+∞上的减函数;(2)若对于区间[]3,4上的每一个x 值,不等式()f x x m <+恒成立,求实数m 的取值范围.20.已知二次函数()g x 对一切实数x ∈R ,都有()()11g x g x -=+成立,且()10g =,()01g =,()()()1,h x g x bx c b c R =+++∈.(1)求()g x 的解析式;(2)记函数()h x 在[]1,1-上的最大值为M ,最小值为m ,若4M m -≤,当0b >时,求b 的最大值.21.某创业投资公司拟投资开发某种新能源产品,估计能获得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5xf x ≤恒成立.) (1)判断函数() 1030x f x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()()51g x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围.(参考结论:函数()()0af x x a x=+>的增区间为(,-∞、)+∞,减区间为()、() 22.设函数()()()212,xxk f x k x R k Z -=+-⋅∈∈.(1)若()k f x 是偶函数,求k 的值;(2)若存在[]1,2x ∈,使得()()014f mf x x +≤成立,求实数m 的取值范围; (3)设函数()()()0224g x f x f x λ=-+,若()g x 在[)1,x ∈+∞有零点,求实数λ的取值范围.参考答案1.A 【分析】求出二次函数2112y x =-+的值域即为集合N ,两集合取交集即可. 【详解】{}2,1,0,1,2M =--,{}211,R 12N y y x x y y ⎧⎫==-+∈=≤⎨⎬⎩⎭,M N ∴⋂={}2,1,0,1--.故选:A 【点睛】本题考查集合的交集运算,涉及二次函数的值域,属于基础题. 2.C 【解析】设幂函数为f(x)=x α,由f(9)=9α=3,即32α=3,可得2α=1,α=12.所以f(x)=12x故f(2)-f(1)-1. 3.D 【分析】根据基本初等函数的基本性质判断各选项中函数的单调性与奇偶性,即可得出合乎题意的选项. 【详解】对于A 选项,函数()2xf x =是非奇非偶函数且为增函数;对于B 选项,函数()3f x x =是奇函数且为增函数;对于C 选项,函数()1f x x=是奇函数,且在区间(),0-∞和()0,∞+上都是减函数,但在定义域()(),00,-∞⋃+∞上不单调;对于D 选项,函数()f x x x =-的定义域为R ,关于原点对称,且()()()f x x x x x f x -=--⋅-==-,此函数为奇函数,()22,0,0x x f x x x ⎧≤=⎨->⎩,所以,函数()f x x x =-在区间(),0-∞和[)0,+∞上都是减函数,且在R 上连续,则函数()f x x x =-在R 上为减函数. 故选D. 【点睛】本题考查基本初等函数的奇偶性和单调性,熟悉一些常见的基本初等函数的基本性质是解题的关键,考查分析问题和解决问题的能力,属于中等题. 4.B 【分析】求出()1f 、()2f ,由()()120f f ⋅<及零点存在定理即可判断. 【详解】()21log 111f =-+=-,()2112log 222f =-+=,()()120f f ∴⋅<,则函数的一个零点落在区间()1,2上.故选:B 【点睛】本题考查零点存在定理,属于基础题. 5.A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A.6.C 【分析】利用指数函数与对数函数的性质即可比较大小. 【详解】设函数f (x )=0.9x ,g (x )=5.1x ,h (x )=log 0.9x 则f (x )单调递减,g (x )单调递增,h (x )单调递减 ∴0<f (5.1)=0.95.1<0.90=1,即0<m <1 g (0.9)=5.10.9>5.10=1,即n >1h (5.1)=log 0.95.1<log 0.91=0,即p <0 ∴p <m <n 故选C . 【点睛】本题考查对数值比较大小,可先从范围上比较大小,当从范围上不能比较大小时,可借助函数的单调性数形结合比较大小.属基础题 7.A 【分析】根据题意,易得()()0x a x b --=的两根为a 、b ,又由函数零点与方程的根的关系,可得()()()f x x a x b =--的零点就是a 、b ,观察()()()f x x a x b =--的图象,可得其与x 轴的两个交点的横坐标分别在区间(,1)-∞-与(0,1)上,又由a b >,可得1b <-,01a <<;根据函数图象变化的规律可得()xg x a b =+的单调性及与y 轴交点的位置,分析选项可得答案. 【详解】解:由二次方程的解法易得()()0x a x b --=的两根为a 、b ;根据函数零点与方程的根的关系,可得()()()f x x a x b =--的零点就是a 、b ,即函数图象与x 轴交点的横坐标;观察()()()f x x a x b =--的图象,可得其与x 轴的两个交点的横坐标分别在区间(,1)-∞-与(0,1)上,又由a b >,可得1b <-,01a <<;在函数()xg x a b =+可得,由01a <<可得其是减函数, 又由1b <-可得其与y 轴交点在x 轴的下方; 分析选项可得A 符合这两点,BCD 均不满足; 故选:A . 【点睛】本题综合考查指数函数的图象与函数零点的定义、性质;解题的关键在于根据二次函数的图象分析出a 、b 的范围.8.D 【分析】当0x >时求解不等式2log 1x >,当0x ≤时求解不等式21x,两段的x 的范围取并集即可. 【详解】当0x >时,不等式()1f x >为2log 1x >,解得2x >; 当0x ≤时,不等式()1f x >为21x,解得0x <.综上所述,()1f x >的解集为()(),02,-∞+∞.故选:D 【点睛】本题考查分段函数不等式,涉及对数不等式、指数不等式,属于基础题. 9.C 【分析】根据条件需满足0∆≥,(2)0f >,对称轴522x =>即可求出m 的取值范围. 【详解】关于x 的一元二次方程2510x x m -+-=的两根均大于2,则Δ25440(2)41010522m f m ⎧⎪=-+≥⎪=-+->⎨⎪⎪>⎩, 解得2154m -<-. 故选C. 【点睛】本题考查一元二次方程根与系数的关系,属于基础题. 10.B 【分析】利用复合函数法可得知内层函数1u ax =-在(],2-∞上为减函数,且10u ax =-≥在(],2-∞上恒成立,由此列出关于实数a 的不等式组,解出即可.【详解】函数()()3log 1f x ax =-的内层函数为1u ax =-,外层函数为3log y u =,由于函数()()3log 1f x ax =-在(],2-∞上为减函数,且外层函数3log y u =为增函数, 则内层函数1u ax =-在(],2-∞上为减函数,0a ∴-<,得0a >, 且10u ax =->在(],2-∞上恒成立,则min 120u a =->,解得12a <. 因此,实数a 的取值范围是10,2⎛⎫ ⎪⎝⎭. 故选B. 【点睛】本题考查复合型对数函数的单调性问题,在利用复合函数法判断内层函数和外层函数的单调性时,还应注意真数在定义域上要恒为正数,考查分析问题和解决问题的能力,属于中等题. 11.B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f xx f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题. 12.ABC 【分析】根据题意得出()()g x f x -=,可得出22x a e x +=+,于是将问题转化为实数a 的取值范围即为函数()22x h x ex +=+在(),0-∞上的值域,并利用单调性求出函数()y h x =在(),0-∞上的值域,可得出实数a 的取值范围,由此可得出正确选项. 【详解】由题意可得()()g x f x -=,则()()22ln 22x a x x x -+-=++,得()ln 22a x x -=+,22x a e x +∴=+,构造函数()22x h x ex +=+,则实数a 的取值范围即为函数()22x h x e x +=+在(),0-∞上的值域,由于函数()22x h x e x +=+在(),0-∞上单调递增,所以,()()20h x h e <=,2a e ∴<.又0a >,20a e ∴<<,因此,符合条件的选项有A 、B 、C.故选ABC. 【点睛】本题考查函数方程的应用,解题的关键就是将问题转化为函数的零点问题,另外就是利用参变量分离法将参数的取值范围转化为函数的值域问题,考查化归与转化思想的应用,属于中等题. 13.{}1,3 【解析】因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解,则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =. 14.1 【分析】根据指数运算律、对数运算律直接计算. 【详解】原式22111log 3log 3122=+--+=. 故答案为:1 【点睛】本题考查指数、对数的运算律,属于基础题. 15.1,13⎛⎫ ⎪⎝⎭【分析】判断()f x 的奇偶性和单调性,据此等价转化不等式,则问题得解. 【详解】由f (x )=ln(1+|x |)-211x+()()()21ln 11x f x x =+--=-+-, 且其定义域为R ,故f (x )为R 上的偶函数, 于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|). 当x ≥0时,f (x )=ln(1+x )-211x+, ()21ln 1,1y x y x =+=-+在[)0,+∞均是单调增函数, 所以f (x )为[0,+∞)上的增函数, 则由f (|x |)>f (|2x -1|)得|x |>|2x -1|, 两边平方得3x 2-4x +1<0,解得13<x <1. 故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题考查函数奇偶性和单调性的判断,涉及利用函数性质解不等式,属综合基础题.16.1,116⎡⎫⎪⎢⎣⎭【分析】由题意得出()()2log 11a x x ->-对任意的31,2x ⎛⎫∈ ⎪⎝⎭恒成立,然后对底数a 分1a >和01a <<两种情况讨论,结合图象找出关键点得出关于a 的不等式(组)求解,可得出实数a 的取值范围.【详解】()()()()2222log 2log log 11log 11aa a a a f x x x x x a x x x x =-+=-+--=----, 则不等式()()2log 11a x x ->-对任意的31,2x ⎛⎫∈ ⎪⎝⎭恒成立.当1a >时,312x <<,则1012x <-<,此时()1log 1log log 102a a a x -<<=,则不等式()()2log 11a x x ->-对任意的31,2x ⎛⎫∈ ⎪⎝⎭不成立; 当01a <<时,如下图所示:由图象可知,若不等式()()2log 11a x x ->-对任意的31,2x ⎛⎫∈ ⎪⎝⎭恒成立,则20113log 122a a <<⎧⎪⎨⎛⎫≥- ⎪⎪⎝⎭⎩,解得1116a ≤<. 因此,实数a 的取值范围是1,116⎡⎫⎪⎢⎣⎭.故答案为1,116⎡⎫⎪⎢⎣⎭. 【点睛】本题考查对数不等式恒成立问题,解题时要注意对底数的取值范围进行分类讨论,并利用数形结合思想得出一些关键点列不等式(组)求解,考查数形结合思想的应用,属于中等题. 17.(1){}12M x x =-<≤;(2)(],1-∞-. 【分析】(1)根据被开方数非负、对数型函数的定义域列出不等式组求解x ,x 的取值集合即为集合M ;(2)由两集合交集的结果可得M N ⊆,即可做出数轴求满足条件的a 的取值范围. 【详解】(1)2603211303x x x x x ⎧--+≥-≤≤⎧⎪⇒⎨⎨>-->⎩⎪⎩,解得12x -<≤, 所以{}12M x x =-<≤; (2)M N M ⋂=,M N ∴⊆,1211122a aa a a <-⎧⎪∴≤-⇒≤-⎨⎪->⎩,即a 的取值范围为(),1-∞-. 【点睛】本题考查函数的定义域、集合的基本运算、根据集合的包含关系求参数的范围,属于基础题. 18.(1)答案见解析;(2)答案见解析. 【分析】(1)当0a =时作出函数()f x 的图像,并根据函数图像写出函数的单调区间;(2)原问题可转化为讨论函数113xy ⎛⎫=- ⎪⎝⎭与函数y a =的交点个数.【详解】(1)若0a =,则()113xf x ⎛⎫=- ⎪⎝⎭,作出函数图像如图所示:函数()f x 的单调增区间为()0,∞+,单调减区间为(),0-∞;(2)函数()113x f x a ⎛⎫=-- ⎪⎝⎭的零点个数即为方程113xa ⎛⎫-= ⎪⎝⎭的解的个数,也即函数113xy ⎛⎫=- ⎪⎝⎭与函数y a =的交点个数,如图所示,当0a <时,函数113xy ⎛⎫=- ⎪⎝⎭与函数y a =没有交点,即()f x 有0个零点;当0a =时,函数113xy ⎛⎫=- ⎪⎝⎭与函数y a =有1个交点,即()f x 有1个零点;当01a <<时,函数113x y ⎛⎫=- ⎪⎝⎭与函数y a =有2个交点,即()f x 有2个零点;当1a ≥时,函数113xy ⎛⎫=- ⎪⎝⎭与函数y a =有1个交点,即()f x 有1个零点.综上所述,当0a <时()f x 有0个零点;当0a =或1a ≥时,()f x 有1个零点;当01a <<时()f x 有2个零点. 【点睛】本题考查函数的图像与性质、利用两函数图像的交点个数判断函数的零点个数,属于中档题. 19.(1)证明见解析;(2)()5,-+∞. 【分析】(1)设121x x >>,利用对数的运算性质以及对数函数的单调性可得出()()12f x f x <,从而得出函数()y f x =在()1+∞,上为减函数; (2)由参变量分离法得出21log 1m x x >-+对任意的[]3,4x ∈上恒成立,然后构造函数()21log 1g x x x =-+,分析函数()y g x =在区间[]3,4上的单调性,求出该函数的最大值,即可求出实数m 的取值范围. 【详解】(1)任取121x x >>,则()()212222121111log log log 111x f x f x x x x +-=-=+++, 121x x >>,则12112x x +>+>,211011x x +∴<<+,22211log log 101x x +∴<=+, 即()()12f x f x <,所以,函数()21log 1f x x =+在()1,+∞上为减函数; (2)对任意的[]3,4x ∈,()f x x m <+,即21log 1x m x <++,得21log 1m x x >-+. 构造函数()21log 1g x x x =-+,其中[]3,4x ∈,则函数()y g x =在区间[]3,4上为减函数, ∴函数()y g x =在区间[]3,4上的最大值为()()2max 13log 354g x g ==-=-,5m ∴>-.因此,实数m 的取值范围是()5,-+∞. 【点睛】本题考查利用定义证明函数的单调性,同时也考查了函数不等式恒成立问题,利用参变量分离法转化为函数的最值问题是解题的关键,考查化归与转化思想的应用,属于中等题. 20.(1)()()21g x x =-;(2)2.【分析】(1)由题意可得出二次函数()y g x =的对称轴为直线1x =,结合()10g =可得出该二次函数的顶点坐标为()1,0,可设()()21g x a x =-,再由()01g =求出实数a 的值,由此可得出函数()y g x =的解析式;(2)求出函数()y h x =的解析式()2h x x bx c =++,分析该二次函数图象的对称轴与区间[]1,1-的位置关系,分析函数()y h x =在区间[]1,1-上的单调性,求出M 和m ,然后解不等式4M m -≤,求出实数b 的取值范围,即可得出实数b 的最大值. 【详解】(1)对一切实数x ∈R ,都有()()11g x g x -=+成立,则二次函数()y g x =的对称轴为直线1x =,又()10g =,则二次函数()y g x =图象的顶点坐标为()1,0, 设()()21g x a x =-,则()01g a ==,因此,()()21g x x =-;(2)()()21h x g x bx c x bx c =+++=++,对称轴为直线2b x =-,0b >,则02b-<. 当12b-≤-时,即当2b ≥时,函数()y h x =在区间[]1,1-上单调递增, 则()11M h b c ==++,()11m h b c =-=-++,则24M m b -=≤,得2b ≤,此时2b =;当102b -<-<时,即当02b <<时,函数()y h x =在区间1,2b ⎡⎫--⎪⎢⎣⎭上单调递减,在区间,12b ⎛⎤- ⎥⎝⎦上单调递增,所以,224b b m f c ⎛⎫=-=-+ ⎪⎝⎭,()11f b c =++,()11f b c -=-++,且()()11f f >-,()11M f b c ∴==++,则2144b M m b -=++≤,整理得24120b b +-≤,解得62b -≤≤,此时,02b <<.因此,02b <≤,则实数b 的最大值为2. 【点睛】本题考查二次函数解析式的求法,同时也考查了二次函数在定区间上最值的求法,当对称轴位置不确定时,需要分析对称轴与定义域的位置关系,结合单调性得出二次函数的最值,考查分类讨论思想的应用,属于中等题.21.(1)函数模型()1030xf x =+,不符合公司要求;详见解析;(2)[]1,2. 【分析】(1)研究函数()1030xf x =+的单调性与值域,验证该函数是否满足题中三个要求,即可得出结论;(2)先求出函数()y g x =的最大值()()max 1600405g x g a ==-,由40575a -≤求出实数a 的范围,在利用参变量分离法求出满足()5xg x ≤恒成立时实数a 的取值范围,由此可得出实数a 的取值范围. 【详解】(1)对于函数模型()1030xf x =+, 当[]25,1600x ∈时,函数()y f x =是单调递增函数,则()()160075f x f ≤≤显然恒成立,若函数()5x f x ≤恒成立,即10305x x +≤,解得60x ≥,则()5xf x ≤不恒成立, 综上所述,函数模型()1030xf x =+,满足基本要求①②,但是不满足③, 故函数模型()1030xf x =+,不符合公司要求;(2)当[]25,1600x ∈时,()()51g x a =≥单调递增,∴函数()y g x =的最大值为()16005405g a ==-,由题意可得40575a -≤,解得2a ≤.设()55x g x =≤恒成立,2255x a x ⎛⎫∴≤+ ⎪⎝⎭恒成立,即225225x a x ≤++, 对于函数2251252525x y x x x ⎛⎫=+=+ ⎪⎝⎭,由题意可知,该函数在25x =处取得最小值, 即min 252522525y =+=,2224a ∴≤+=,1a ≥,12a ∴≤≤. 因此,实数a 的取值范围是[]1,2. 【点睛】本题考查函数模型的选择,本质上就是考查函数基本性质的应用,同时也考查了函数不等式恒成立问题,在求解含单参数的不等式恒成立问题,可充分利用参变量分离法转化为函数最值问题来求解,考查分析问题与解决问题的能力,属于中等题. 22.(1)2k =;(2)54m ≤;(3)1,6⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)由()()k k f x f x -=代入即可求解k ;(2)由已知代入可得2422xxxm -⋅≤-+,分类可得()242242212x x x x xm ----+≤=⋅+-,换元后利用二次函数的性质可求;(3)结合已知,代入可求()g x ,然后结合()g x 在[)1x ∈+∞,有零点利用换元法,结合二次函数的性质可求. 【详解】(1)若()k f x 是偶函数,则()()k k f x f x -=,即()()212212xx x x k k --+-⋅=+-⋅,即()()()()221212122xx x x x x k k k ----=-⋅--⋅=--,则11k -=,即2k =;(2)存在]2[1x ∈,,使得()()014f mf x x +≤成立,即2422x x x m -≤-+, 则()242242212x x x x xm ----+≤=⋅+-, 设2x t -=,∵12x ≤≤, ∴1142t ≤≤, 设()22422141x x t t --⋅+-=+-,则()224125y t t t =+-=+-,∵ 1412t ≤≤,∴当12t =时,函数取得最大值152144y =+-=, 则54m ≤. (3)()022xxf x -=-,()222xxf x -=+, 则()()2222222222xxxx f x --=+=-+,则()()()()()2022422222x x x x g x f x f x λλ--=-+=---+,设22x x t -=-,当1≥x 时,函数22x x t -=-为增函数, 则13222t ≥-=, 若()g x 在[)1,x ∈+∞有零点, 即()()()222220222x x x x g x t t λλ--=---=+-=+在32t ≥上有解, 即22t t λ=-,即2t tλ=-, ∵2t t -在3,2⎡⎫+∞⎪⎢⎣⎭递增,∴341236λ≥-=, 即λ的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题主要综合考查了函数的性质及函数与方程思想的相互转化,培养了学生的逻辑思维能力,属于中档题.。
福建省厦门第一中学2024—2025学年上学期七年级10月月考数学试卷(解析版)
福建省厦门第一中学2024—2025学年度第一学期10月学业调研评估初一年数学学科练习第Ⅰ卷说明:(1)考试时间60分钟.满分120分.(2)所有答案都必须写在答题卡指定方框内,答在框外一律不得分.(3)选择题用2B铅笔填涂,其余一律用黑色水笔做答;不能使用涂改液/带.第Ⅰ卷(选择题)一、选择题(每题3分,共30分)1. 如果收入100元记作+100元.那么−80元表示()A. 支出20元B. 支出80元C. 收入20元D. 收入80元【答案】B【解析】【分析】根据正负数的意义进一步求解即可.【详解】∵收入100元记作+100元,∴−80元表示支出80元,故选:B.【点睛】本题主要考查了正负数的意义,熟练掌握相关概念是解题关键.2. –2017的相反数是()A. -2017B. 2017C.12017− D.12017【答案】B【解析】【分析】一个数的相反数就是在这个数前面添上“-”号,据此可得.【详解】解:–2017的相反数是2017,故选B.【点睛】本题考查了相反数的概念.解题的关键是掌握相反数的概念.只有符号不同的两个数互为相反数.3. 数轴上的点A到原点的距离是5,则点A表示的数为()A. -5B. 5C. 5或-5D. 2.5或-2.5【答案】C【解析】【详解】根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C .4. 化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( )A. B. C. D.【答案】B【解析】【分析】求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.本题考查正数与负数以及绝对值,熟练掌握绝对值的意义是解题的关键.【详解】解:通过求4个排球的绝对值得:| 1.1| 1.1−=,|0.6|0.6−=,|0.9|0.9+=,|1|1+=.0.6−的绝对值最小,所以这个砝码是最接近标准的球.故选:B .5. 数轴上的点M 对应的数是2−,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. 6−B. 2C. 6−或2D. 6 【答案】B【解析】【分析】本题考查了数轴上数的表示以及数轴上点的变化规律,熟练掌握点在数轴上移动的规律是解题的关键.根据点在数轴上移动的规律,左减右加;列出算式,计算即可;【详解】解:242−+=故选:B .6. 3x =,4y =,则x y −的值是( )A. 7−B. 1C. 1−或7D. 1或7−【答案】C【解析】【分析】本题考查绝对值的意义,有理数的减法;求出y 的值,然后代入x y −中即可求出答案.【详解】解:由题意可知:3x =,4y =±,当4y =时,341x y −=−=−,当4y =−时,347x y −=+=,故选:C .7. 魏晋时期数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),图(1)表示的是()()235431++−=−的计算过程,则图(2)表示的计算过程是( )A. ()()22231−++=B. ()()223210−++=C. ()()223210++−=−D. ()()22231++−=−【答案】B【解析】 【分析】由白色算筹表示正数,灰色算筹表示负数,即可列式计算.详解】解:由题意可得:图(2)表示的计算过程是()()223210−++=, 故选B .【点睛】本题考查正负数的表示,关键是明白白色算筹表示正数,灰色算筹表示负数.8. 有理数a 、b 在数轴上的位置如图所示,则下列各式运算结果符号为正的是( )A. a b −B. a bC. abD. a b +【答案】D【【解析】 【分析】本题考查了数轴,有理数的加减乘除运算法则,根据数轴可得0,a b a b <<<,进而逐项分析判断,即可求解. 【详解】解:根据数轴可得0,a b a b <<<,∴0a b −<,0a b<,0ab <,0a b +>, 故选:D .9. 体育课上全班女生进行百米测验,达标成绩为18秒,第一小组8名女生的成绩如下:30.500.11 2.6 1.60.3−+−−−+−,,,,,,,其中“+”表示成绩小于18秒,“﹣”表示成绩大于18秒,则这个小组的达标率是( )A. 25%B. 37.5%C. 50%D. 62.5%【答案】B【解析】【分析】根据正负数的意义可得达标的有3人,然后计算即可.【详解】解:由题意得,达标的有3人, 则这个小组达标率是3100%37.5%8×=, 故选:B .【点睛】本题考查了正负数的意义,有理数的除法,根据正负数的意义得出达标的人数是解题的关键. 10. 已知整数1234a a a a ……,,,,满足下列条件:12101a a a ==−+,,324323a a a a ++……-,=,=-依此类推,则2023a 的值为( )A. 1011−B. 1010−C. 2022−D. 2023−【答案】A【解析】【分析】分别求出234567a a a a a a ,,,,,的值,观察其数值的变化规律,进而求出2023a 的值.【详解】解:根据题意可得, 10a =,2111a a +=-=-,3221a a +=−=-,的4332a a =−+=−,5442a a =−+=−,6553a a =−+=−,7663a a =−+=−,…观察其规律可得,202312022−=,202221011÷=,20231011a ∴=−,故选:A .【点睛】本题考查了数的变化规律,通过计算前面几个数的数值观察其规律是解本题的关键,综合性较强,难度适中.第Ⅱ卷(非选择题)二、填空题(第11题每空2分,其余每空3分,共25分)11. (1)化简:2−−=______;()2−−=______;2128−=______; (2)9−的倒数是______; (3)比较大小:32−______43−(填“>”或“<”). 【答案】 ①. 2− ②. 2 ③. 34−##0.75− ④. 19− ⑤. < 【解析】【分析】本题主要考查了求一个数的绝对值,化简多重符号,有理数大小的比较,求一个数的倒数,根据相关的定义进行计算即可.(1)根据绝对值的意义,相反数定义进行计算即可;(2)根据“乘积为1的两个数互为倒数”进行计算即可;(3)根据两个负数比较大小的方法:绝对值大的反而小,进行比较大小即可.【详解】解:(1)2=2−−−;()2=2−−;213284−=−; 故答案为:2−;2;34−;(2)9−的倒数是19−; 故答案为:19−;(3)3322−=,4433−=, ∵3423>, ∴3423−<−, 故答案为:<.12. 比3−小8的数是________.【答案】11−【解析】【分析】本题主要考查了有理数减法计算,只需要求出38−−的结果即可得到答案.【详解】解:3811−−=−,∴比3−小8的数是11−,故答案为:11−.13. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________.【答案】4−(答案不唯一). 【解析】【分析】本题主要考查数轴,解题关键是熟知当数轴方向朝右时,右边的数总比左边的数大.由题图可知,3m <−,写出一个符合条件的m 值即可.【详解】解:由题图可知,3m <−,∴符合条件的m 的整数值可以为4−(答案不唯一).故答案为:4−(答案不唯一). 14. 绝对值小于3的所有整数的和是______.【答案】0【解析】【分析】根据绝对值的性质得出绝对值小于3的所有整数,再求和即可.【详解】解:绝对值小于3的所有整数有:21012−−,,,,,它们的和为:0,故答案为:0.【点睛】本题考查了绝对值的性质,解题的关键是熟知绝对值的概念及性质,并正确求一个数的绝对值.15. 若320x y ++−=,则x y +=_________________ . 【答案】1−【解析】【分析】本题主要考查绝对值的非负性,熟练掌握绝对值的非负性是解题的关键.根据绝对值的非负性求出x y 、的值即可得到答案.【详解】解: 320x y ++−=, 30x ∴+=,20y −=, 3,2x y ∴=−=,321x y ∴+=−+=−,故答案为:1−.16. 在一条可以折叠的数轴上,点A ,B 表示的数分别是10−,3,(如图1)以点C 为折点,将此数轴向右对折,折叠后若点A 落在点B 的右边(如图2),且A 、B 两点距离是1,则点C 表示的数是______.【答案】3−【解析】【分析】本题主要考查数轴,熟练掌握数轴上两点的距离与点表示的数的运算关系是解答的关键.先根据A B 、表示的数求得的长,再由折叠后AB 的长求得BC 的长,进而可确定点C 表示的数.【详解】解:A B ,表示的数分别是10−,3,()31013AB ∴=−−=,∵折叠后点A 在点B 的右边,且1AB =,131162BC +∴=−=, C ∴点表示的数是363−=−,故答案为:3−.三、解答题(本大题共8题,共65分)17. 把下列各数的序号填在相应的集合里:①35−,②0.2,③47−,④0,⑤122−,⑥π,⑦ 2.3 ,⑧320+. 整数集合:{_________________________}⋅⋅⋅;负分数集合:{_________________________}⋅⋅⋅;正有理数集合:{_________________________}⋅⋅⋅.【答案】①④⑧;③⑤⑦;②⑧【解析】【分析】本题考查了实数的分类,掌握有理数的概念和实数的分类方法是解题的关键.按照实数的分类填写,实数分为有理数和无理数,无理数是无限不循环小数,有理数分为整数和分数,整数分为正整数,0和负整数,分数分为正分数和负分数.【详解】解:整数集合{①35−,④0,⑧320+…}负分数集合{③47−,⑤122−,⑦ 2.3 …} 正有理数集合{②0.2,⑧320+…}., 故答案为:①④⑧;③⑤⑦;②⑧.18. 将下列各数在数轴上表示出来,并用“<”把这些数连接起来.5+,0.5−,4−,0,112,123− 【答案】11420.501532−<−<−<<<+,数轴见解析 【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【详解】解:如图所示,11420.501532−<−<−<<<+; 19. 计算(1)()()4282924−−−−+−;(2)()11324864 −−+×−;(3)()()()2584−×+−÷−;(4)()1481227349−÷×−−−÷.【答案】(1)27−(2)11−(3)8−(4)7−【解析】【分析】本题主要考查了有理数混合运算,解题的关键是熟练掌握有理数混合运算法则,“先算乘方,再算乘除,最后算加减,有小括号的先算小括号里面的”.(1)根据有理数加减混合运算法则进行计算即可;(2)根据乘法分配律进行计算即可;(3)根据有理数四则混合运算法则进行计算即可;(4)先计算绝对值,然后根据有理数四则混合运算法则进行计算即可.【小问1详解】解:()()4282924−−−−+−4282924=−−+−32292432427=−;【小问2详解】 解:()11324864−−+×−()()()113242424864=−×−−×−+×−3418=+−11=−;【小问3详解】解:()()()2584−×+−÷−102=−+8=−;【小问4详解】 解:()1481227349−÷×−−−÷ ()4481999=−××−− 169=−+7=−.20. 出租车沿东西方向的道路上来回行驶,早上从A 地出发,中午到达B 地,约定向东为正方向,当天行驶路程记录如下:4+,6−,8+,5−,4,6+,10+,9−.(单位:千米) (1)B 地在A 地什么方向?距离A 地多远?(2)若汽车每千米耗油0.1升,出发前汽车油箱有油10升,求到达B 地后汽车油箱还剩多少升油?【答案】(1)B 地在A 地的正东方向,距离A 地12千米(2)到达B 地后汽车还剩4.8升油【解析】【分析】本题考查有理数四则混合运算应用、正负数的应用,关键是理解题意,正确列出算式. (1)将记录数据相加,根据和的符号可作出判断;(2)求得记录数据绝对值的和,即为行驶的路程,进而列式计算即可.【小问1详解】解:∵()()()46854610912++−++−++++−=(千米), ∴B 地在A 地的正东方向,距离A 地12千米.小问2详解】 解:这一天走的总路程为:46854610952+−++−++++−=(千米), 应耗油520.1 5.2×=(升), 10 5.2 4.8−=(升), 答:到达B 地后汽车还剩4.8升油.21. 食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表: 与标准质量的差值(单位:克) 5− 2− 0 1 3 6的【袋数1 4 3 4 5 3(1)这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2)若每袋标准质量为450克,求抽样检测的样品总质量是多少?【答案】(1)这批样品的平均质量比标准质量多,平均每袋多1.2克(2)抽样检测的样品总质量是9024克【解析】【分析】本题主要考查了正负数的实际应用,有理数混合计算的实际应用,熟知相关计算法则是解题的关键.(1)根据有理数的加法,可得总质量比标准质量多,根据平均数的意义,可得答案;(2)根据标准质量加上比标准质量多的,可得答案.【小问1详解】解:根据题意,得:()()512403143563−×+−×+×+×+×+×()5841518=−+−+++24=(克), 平均质量为2420 1.2÷=(克), 答:这批样品的平均质量比标准质量多,平均每袋多1.2克;【小问2详解】45020249024×+=(克), 答:抽样检测的样品总质量是9024克.22. 已知有理数x 、y 满足||9x =,||5y =.(1)若0x <,0y >,求+x y 的值;(2)若||x y x y +=+,求x y −的值.【答案】(1)4−(2)4或14【解析】【分析】(1)先根据绝对值的定义和0x <,0y >求出x 和y 的值,再代入+x y 计算;(2)先根据绝对值的定义和||x y x y +=+求出x 和y 的值,再代入x y −计算【小问1详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵0x <,0y >∴x =−9,y =5,∴x +y =−9+5=−4.【小问2详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵||x y x y +=+,∴x +y ≥0,∴x =9,y =5或x =9,y =−5,∴x y −=9−5=4或x y −=9−(−5)=14.【点睛】本题考查了绝对值的定义和有理数的加减运算,正确求出x 和y 的值是解答本题的关键. 23. 定义新运算:11a b a b ∗=−,1a b ab⊗=(右边的运算为平常的加、减、乘、除). 例如:114373721∗=−=,11373721⊗==×. 若a b a b ⊗=∗,则称有理数,a b 为“隔一数对”.例如:1123236⊗==×,11123236∗=−=,2323⊗=∗,所以2,3就是一对“隔一数对”. (1)下列各组数是“隔一数对”的是 (请填序号) ①1,2a b ==; ②1,1a b =−=; ③41,33a b =−=−. (2)计算:(3)4(3)4(31415)(31415)−∗−−⊗+−∗−(3)已知两个连续的非零整数都是“隔一数对”.计算:1223344520202021⊗+⊗+⊗+⊗++⊗ .【答案】(1)①③;(2)12−;(3)20202021 【解析】【分析】(1)按照题干定义进行计算,判断是否满足条件即可;(2)直接根据题目定义分别计算各项,然后再合并求解即可;(3)根据定义进行变形和拆项,然后根据规律求解即可.【详解】解:(1)①1,2a b ==; ∵111122a b ∗=−=,11122a b ⊗==×, ∴a b a b ⊗=∗,则①是“隔一数对”;②1,1a b =−=; ∵11211a b ∗=−=−−,1111a b ⊗==−−×, ∴a b a b ⊗≠∗,则②不是“隔一数对”; ③41,33a b =−=−; ∵94131143a b −−∗=−=,1941433a b ⊗== −×−, ∴a b a b ⊗=∗,则③是“隔一数对”;故答案为:①③;(2)根据定义,原式()1111134343141531415−−+−−−×−− 111034(3)4−−+−−× 711212=−+ 12=−; (3)根据定义,原式1223344520202021=∗+∗+∗+∗++∗1111111111()()()()()1223344520202021=−+−+−+−++− 112021=− 20202021=. 【点睛】本题考查有理数的定义新运算,仔细审题,理解题干中的新定义,熟练掌握有理数的混合运算法则是解题关键.24. 数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例:如图1所示,数轴上点A ,B ,C 所表示的数分别为1,3,4,因为3124312AB BC AB BC =−==−==,,,所以称点B 是点A ,C 的“关联点”.图1(1)如图2所示,点A 表示数2−,点B 表示数1,下列各数2,4,6所对应的点分别是C 1,C 2,C 3其中是点A ,B 的“关联点”的是 ;图2(2)如图3所示,点A 表示数10−,点B 表示数15,P 为数轴上一个动点:①若点P 在点B 的左侧,且P 是点A ,B 的“关联点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”, 请求出此时点P 表示的数.图3【答案】(1)C 2 (2)①点P 35−,520,33−;②点P 表示的数为5540652,, 【解析】【分析】(1)分别求出点C 1,C 2,C 3到,A B 两点间的距离,再进行验证即可;(2)①分类讨论点P 在AAAA 之间和点P 在A 点左侧时的情况即可;②分类讨论点P 为点,A B 的“关联点”、点B 为点,A P 的“关联点”、点A 为点,B P 的“关联点”即可求解.【小问1详解】解:∵()11224,211AC BC =−−==−=∴点C 1不是点A ,B 的“关联点”∵()22426,413AC BC =−−==−=∴222AC BC =即:点2C 是点A ,B 的“关联点”∵()33628,615AC BC =−−==−=∴点3C 不是点A ,B 的“关联点”故答案为:2C【小问2详解】解:解:设点P 在数轴上表示的数为p①(i )当点P 在AAAA 之间时,若2AP BP =,则()10215p p +=− 解得:203p =若2BP AP =,则()15210p p −=+ 解得:53p =−(ii )当点P 在A 点左侧时,则2BP AP =,即:()15210p p −=−− 解得:35p =−故:点P 表示的数为35−,520,33−;②(i )当点P 为点,A B 的“关联点”时,则2PA PB =,即:()10215p p +=−解得:40p =(ii )当点B 为点,A P “关联点”时,则2AB PB =,即:()1510215p +=− 解得:552p =或2BP AB =,即:()1521510p −=+解得:65p =(iii )当点A 为点,B P 的“关联点”时,则2AP AB =,即:()1021510p +=+的解得:40p=故:点P表示的数为55 40652,,【点睛】本题以新定义题型为背景,考查了数轴上两点间的距离公式.掌握相关结论,进行分类讨论是解题关键.。
福建省厦门第一中学2021-2022学年高一上学期入学考试数学试题
福建省厦门第一中学2021-2022学年高一上学期入学考试数学试题学校:___________姓名:___________班级:___________考号:___________A.B.C.D.x44415.如图所示,正方形ABCD 的面积为12,ABE V 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为.三、双空题16.如图,在平面直角坐标系xOy 中,把由两条射线AE ,BF 和以AB 为直径的半圆所组成的图形叫做图形C (注:不含AB 线段).已知(1,0),(1,0)A B -,AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上.①当一次函数y=x+b 的图象与图形C 恰好只有一个公共点时,b 的取值范围为; ②已知平行四边形AMPQ (四个顶点A ,M ,P ,Q 按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,则点M 的横坐标x 的取值范围为.四、解答题方案二:圆心O 1、O 2分别在CD 、AB 上,半径分别是O 1C 、O 2A ,锯两个外切的半圆拼成一个圆;方案三: 沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼到矩形AFED 下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE =x (0<x <1),圆的半径为y .①求y 关于x 的函数解析式;②当x 取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.21.已知:直角梯形OABC 中,BC ∥OA ,∠AOC =90°,以AB 为直径的圆M 交OC 于D ,E ,连结AD ,BD ,BE .(1)在不添加其他字母和线的前提下..............,直接..写出图1中的两对相似三角形. (2)直角梯形OABC 中,以O 为坐标原点,A 在x 轴正半轴上建立直角坐标系(如图2), 若抛物线223(0)y ax ax a a =--<经过点A .B .D ,且B 为抛物线的顶点.①求抛物线的解析式.②在x 轴下方的抛物线上是否存在这样的点P :过点P 作PN ⊥x 轴于N ,使得△P AN 与△OAD 相似?若存在,求出点P 的坐标;若不存在,说明理由.22.如图,在矩形ABCD 中,46AB AD E ==,,是AD 边上的一个动点,将四边形BCDE 沿直线BE 折叠,得到四边形BC D E '',连接AC AD '',.。
2015—2016学年佛山市第一中学高一下学期期中考试数学试卷(含答案)
2015—2016学年佛山市第一中学高一下学期期中考试数学试卷命题人:陈豪 审题人:雷沅江一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知向量,36(5,),(10,)55a b =-=-,则a 与b ( ) A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2. 若a >b >0,c <d <0,则一定有 ( )A.a b d c > B. a b d c < C. a b c d > D. a b c d< 3.等差数列{}n a 中,已知1a =13,254a a +=,n a =33,则n 为( )A .50B .49C .48D . 474. 若等比数列{}n a 的前n 项和r S n n +=2,则=r ( ) A. 2 B. 1 C. 0 D.1-5.已知数列{}n a 的前n 项和()21n S n n =+,则5a 的值为( )A .80B .40C .20D .16.己知函数()sin ()f x x x x R =∈, 先将()y f x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(0θ>)个单位长度,得到的图象关于直线x =34π对称, 则θ的最小值为( )A.6πB.3π C. 512π D. 23π 7. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是( ). A. 1ab ≥;B.2≤ C. 333a b +≥ D.112a b+≥. 8. 设,x y 满足约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩, 则2z x y =+的最大值为( )A .8B .7C .2D .19.如图,为了测量A C 、两点间的距离,选取同一平面上B D 、两点,测出四边形ABCD 各边的长度(单位:km ):5,8,3,5A B B C C D D A ====,且B ∠与D ∠互补,则AC 的长为( )km .A .7B .8C .9D .610. 在ABC ∆ 中有,123sin ,cos 135B A ==,则sin C 为 ( ) A.1665 B.5665 C.6365 D.1665或566511.函数x x x f sin )6sin()(-=π的最大值是( )A.12 B. 1C. 12D. 1212. 已知正项数列{}n a 满足:()()()2*113,2122181,n n a n a n a n n n N -=-+=++>∈ ,设1,n nb a =数列{}n b 的前n 项的和n S ,则n S 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .11,32⎛⎫ ⎪⎝⎭D .11,32⎡⎤⎢⎥⎣⎦二、填空题:本答题共4小题,每小题5分.13.已知点(1,1)(0,3)(3,4)A B C -、、,则向量AB 在AC 方向上的投影为_________.14. 若,a b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于________. 15.设,x y 为实数,若 2241x y xy ++=则2x y +的最大值是 .16. 如图所示,在ABC ∆中,D 为边AC 的中点,3BC BE =, 其中AE 与BD 交于O 点,延长CO 交边AB 于F 点,则FO OC→→= .三、解答题:解答应写出文字说明,证明过程或演算步骤,有6题共70分. 17.(本小题满分10分)已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为120°.(1) 求b a⋅及|a +b |; (2)设向量a +b 与a -b 的夹角为θ,求cos θ的值.18.(本小题满分12分)化简并计算: (1) 已知1cos(),(,)232βπααπ-=-∈,sin()(0,),22απββ-=∈求cos()αβ+的值. 19.(本小题满分12分)在ABC ∆中,内角A 、B 、C 对应的边长分别为a 、b 、c , 已知21sin cos 2sin a b Ba Bbc C-=-.(1)求角A ; (2)若a =求b c +的取值范围.20.(本小题满分12分)设数列}{n a 的前n 项和为n S ,101=a ,1091+=+n n S a . ⑴求证:数列}{lg n a 是等差数列. ⑵设n T 是数列13{}(lg )(lg )n n a a +的前n 项和,求使21(5)4n T m m >- 对所有的*∈N n 都成立的最大正整数m的值.21.(本小题满分12分)设()f k 是满足不等式()122log log 52k x x -+⋅-≥()2k k N *∈的自然数x 的个数. (1)求()f k 的函数解析式;(2)()()()122n S f f nf n =++⋅⋅⋅+,求n S ; 22.(本小题满分12分)某国际化妆品生产企业为了占有更多的市场份额,拟在2016年巴西奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3x -与1t +成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2016年生产化妆品的设备折旧,维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半的和,则当年生产的化妆品正好能销完。
2023-2024学年福建省厦门第一中学海沧校区高一上学期6月月考数学试题+答案解析(附后)
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求2023-2024学年福建省厦门第一中学海沧校区高一下学期6月月考数学试题的。
1.若复数,在复平面内对应的点关于x 轴对称,且,则复数( )A. 1B.C. iD.2.为了提高学习兴趣,某数学老师把《九章算术》与《孙子算经》这两本数学著作推荐给学生进行课外阅读,若该班甲、乙两名同学每人至少阅读其中的一本,则每本书都被同学阅读的概率为( )A.B.C.D.3.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币正面朝上”.下列结论正确的是( )A. A 与B 互为对立事件B. A 与B 互斥C. A 与B 相等D.4.为了解“双减”政策实施后学生每天的体育活动时间,研究人员随机调查了该地区1000名学生每天进行体育运动的时间,按照时长单位:分钟分成6组:第一组第二组第三组第四组第五组第六组,经整理得到如图的频率分布直方图,则可以估计该地区学生每天体育活动时间的第70百分位数位于的区间为( )A. B. C. D.5.在中,角A ,B ,C 所对边分别为a ,b ,c ,,则A 的值为( )A.B. C. D.6.在三角形ABC 中,和AN 分别是BC 边上的高和中线,则( )A. 14B. 15C. 16D. 177.已知平面向量,,,满足,,若对于任意实数x,都有成立,且,则的最大值为( )A. 2B. 4C. 6D. 88.已知三棱锥的体积为,外接球表面积为,且,,则直线AB,AP所成角的最小正弦值为( )A.B.C.D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.为了加强疫情防控,某中学要求学生在校时每天都要进行体温检测.某班级体温检测员对一周内甲乙两名同学的体温进行了统计,其结果如图所示,则下列结论正确的是( )A. 乙同学体温的极差为B. 甲同学体温的中位数与平均数相等C. 乙同学体温的方差比甲同学体温的方差小D. 甲同学体温的第60百分位数为10.窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一,图1是一个正八边形窗花,图2是从窗花图中抽象出的几何图形的示意图.已知正八边形ABCDEFGH的边长为,P是正八边形ABCDEFGH边上任意一点,则下列结论正确的是( )A.B. 在向量上的投影向量为C. 若,则P为ED的中点D. 若P在线段BC上,且,则的取值范围为11.设是非零复数,它们的实部和虚部都是非负实数,则( )A. 最小值为B. 没有最小值C. 最大值为2D. 没有最大值12.在三棱锥中,,,,O为的外心,则( )A. 当时,B. 当时,平面平面ABCC. PA与平面ABC所成角的正弦值为D. 三棱锥的高的最大值为三、填空题:本题共4小题,每小题5分,共20分。
福建省厦门第一中学2024届高考模拟(最后一卷)数学试题(含答案)
2024年普通高等学校招生全国统一考试模拟考数学满分:150分考试时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知随机变量,且,,则的值为( )A.B.C.D.2.已知,若,则的取值范围是( )A. B. C.或 D.或3.若抛物线的准线经过双曲线的右焦点,则的值为( )A. B.4C. D.84.已知三棱锥中平面,,,,,则该三棱锥外接球的表面积为( )A.B. C. D.5.1024的所有正因数之和为(A.1023B.1024C.2047D.20486.二维码与我们的生活息息相关,我们使用的二维码主要是大小的特殊的几何图形,即441个点.根据0和1的二进制编码规则,一共有种不同的二维码,假设我们1万年用掉个二维码,那么所有二维码大约可以用(参考数据:,)( )A.万年B.万年C.万年D.万年7.在一次数学模考中,从甲、乙两个班各自抽出10个人的成绩,甲班的十个人成绩分别为、、…、,乙班的十个人成绩分别为,,…,.假设这两组数据中位数相同、方差也相同,则把这20个数据合并后()()2~3,X N σ()24P x m <<=()15P x n <<=()25P x <<2m n +2n m -12m -12n -101mx A x mx ⎧+⎫=∈⎨⎬-⎩⎭R ≤2A ∈m 1122m -≤≤1122m -<≤12m -≤12m >12m -≤12m ≥2y mx =222x y -=m 4-8-A BCD -AB ⊥BCD 2AB =3BC =4CD =5BD =29π419π229π38π2121⨯441215310⨯lg 20.301≈lg 30.477≈117101201012310125101x 2x 10x 1y 2y 10yA.中位数可能改变,方差可能变小B.中位数可能改变,方差可能变大C.中位数一定不变,方差可能变小D.中位数一定不变,方差可能变大8.若曲线有且仅有一条过坐标原点的切线,则正数的值为( )A.C.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若,,则下列结论正确的是( )A. B. C. D.10.已知圆,圆,,则( )A.两圆的圆心距的最小值为1B.若圆与圆相切,则C.若圆与圆恰有两条公切线,则D.若圆与圆相交,则公共弦长的最大值为211.已知函数的定义域为,,且,则( )A. B.C.为奇函数D.在上具有单调性三、填空题:本题共3小题,每小题5分,共15分.12.已知复数()的实部为0,则___________.13.已知空间中有三点,,,则点到直线的距离为_________.14.设函数,若对于任意实数,,总存在,使得,则实数的取值范围是_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)用1,2,3,4,5这五个数组成无重复数字的五位数,则(1)在两个偶数相邻的条件下,求三个奇数也相邻的概率;(2)对于这个五位数,记夹在两个偶数之间的奇数个数为,求的分布列与期望.16.(15分)已知在正三棱柱中,,.1xax y e +=a 14131b c >>01a <<aab c<log log b c a a>aacb bc<log log c b b a c a >22:1O x y +=()()22:14C x a y -+-=a ∈R OC O C a =±O C a -<<O C ()f x R ()()()e ey x f x f y f x y +=+()11f =()00f =()21ef -=()e xf x ()f x ()0,+∞2cos isin 1iz θθ+=+θ∈R tan 2θ=()0,0,0O ()1,1,1A -()1,1,0B O AB ()2f x x ax b =++a b []00,4x ∈()0f x m ≥m X X 111ABC A B C -2AB =11AA =(1)已知,分别为棱,的中点,求证:平面;(2)求直线与平面所成角的正弦值.17.(15分)三角学于十七世纪传入中国,此后徐光启、薛风祚等数学家对此深入研究,对三角学的现代化发展作出了巨大贡献,三倍角公式就是三角学中的重要公式之一,类似二倍角的展开,三倍角可以通过拆写成二倍角和一倍角的和,再把二倍角拆写成两个一倍角的和来化简.(1)证明:;(2)若,,求的值.18.(17分)已知圆和点,点是圆上任意一点,线段的垂直平分线与线段相交于点,记点的轨迹为曲线.(1)求曲线的方程;(2)点在直线上运动,过点的动直线与曲线相交于点,.(ⅰ)若线段上一点,满足,求证:当的坐标为时,点在定直线上;(ⅱ)当直线过点时,过点作轴的垂线,垂足为,设直线,的斜率分别为,,是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.19.(17分)对于数列,数列称为数列的差数列或一阶差数列.差数列的差数列,称为的二阶差数列.一般地,的阶差数列的差数列,称为的阶差数列.如果的阶差数列为常数列,而阶差数列不是常数列,那么就称为阶等差数列.(1)已知20,24,26,25,20是一个阶等差数列的前5项.求的值及;(2)证明:二阶等差数列的通项公式为E F 1AA BC EF ∥11A B C 1A B 11A B C 3sin 33sin 4sin x x x =-11sin10,1n n ⎛⎫︒∈⎪+⎝⎭*n ∈N n ()22:116A x y ++=()1,0B P PB PA Q Q C C D 4x =D l C M N MN E ME MDEN DN=D ()4,1E l ()1,0M x G GN GD 1k 2k λ12k k λ=λ{}n a {}1n n a a +-{}n a {}n a {}n a {}n a k {}n a 1k +{}n a k 1k -{}n a k k {}n a k 6a {}n b;(3)证明:若数列是阶等差数列,则的通项公式是的次多项式,即(其中()为常实数)()()()()()121321111222n b b n b b n n b b b =+--+---+{}n c k {}n c n k 0kin i i c nλ==∑i λ0,1,,i k =2024年普通高等学校招生全国统一考试模拟考数学参考答案1.A2.B3.C4.C5.C6.A7.D8.A6.解析:∵1万年用掉个二维码,∴大约能用万年,设,则即万年.7.解析:不妨设,,则、、…、的中位数为,、、…、的中位数为,因为,所以或,则合并后的数据中位数是或者,所以中位数不变.设第一组数据的方差为,平均数为,第二组数据的方差为,平均数为,合并后总数为20,平均数为,方差为,.如果均值相同则方差不变,如果均值不同则方差变大.8.解析:设,则,设切点为,则,所以切线方程为,又该切线过原点,所以,整理得①,因为曲线只有一条过原点的切线,所以方程①只有一个解,故,解得.9.BC10.AD11.AC15310⨯441152310⨯441152310x =⨯()44144115152lg lg lg 2lg 3lg10441lg 2lg 3154410.3010.47715117310x ==-+=--≈⨯--≈⨯11710x =1210x x x ≤≤≤1210y y y ≤≤≤1x 2x 10x 562x x +1y 2y 10y 562y y +565622x x y y ++=5566x y y x ≤≤≤5566y x x y ≤≤≤562x x +562y y +2s x 2s y ω2s '()(){}22222110101010s s x s y ωω⎡⎤⎡⎤'=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+()()()()2222222211112222s x s y s x y s ωωωω⎡⎤⎡⎤=+-++-=+-+-⎢⎥⎢⎥⎣⎦⎣⎦≥()x 1e ax y f x +==()1exax a f x -+-'=0001,e x ax x +⎛⎫ ⎪⎝⎭()0001e x ax af x -+-'=()0000011e e x x ax ax a y x x +-+--=-()000001100e ex x ax ax a x +-+--=-20010ax x ++=()y f x =140a ∆=-=14a =11.解析:对A :令,则有,即,故A 正确;对B :、,则有,即,由,,故,即,故B 错误;对C :令,则有,即,即,又函数的定义域为,则函数的定义域为,故函数为奇函数,故C 正确;对D :令,则有,即,即有,则当时,有,即,故在上不具有单调性,故D 错误.12.14.14.解析:设的最大值为,因为,所以即,当且仅当,时,等号成立.故当时,总存在,使得几何解释:本题即求曲线与直线与轴垂直方向的距离最大值的最小值,如图所示,取,,连接并做曲线与平行的切线,切点为,当且仅当恰好位于与中间时,竖直距离最大值最小,即在,,三点处,同时取到最大值,这也是前述代数法中,取,,三个值的原因.0x y ==()()()00e000e f f f =+()00f =1x =1y =-()()()11e 1111e f f f ---=+()()()10e 1ef f f -=+()00f =()11f =()10e ef -=+()21e f -=-y x =-()()()e ex xf x f x f x x ---=+()()()0e e x xf f x f x -=+-()()e exxf x f x -=--()f x R ()e x f x R ()e xf x y x =()()()e e x x f x f x f x x +=+()()22e xf x f x =()()22e x f x f x =ln 2x =()()ln 22ln 221ln 2ef f ==()()2ln 2ln 2f f =()f x ()0,+∞432m ≤()f x M ()()()02424164f b M f a b M f a b M ⎧=⎪=++⎨⎪=++⎩≤≤≤()()()()()402242421642421648M f f f b a b a b b a b a b ++=++++++-+++++=≥≥2M ≥4a =-2b =2m ≤[]00,4x ∈()0f x m≥2y x =y ax b =--x ()0,0M ()4,16N MN 2y x =MN l ()2,4P y ax b =--MN l M N P ()0f ()2f ()4f15.(1)设“数字2,4相邻”,设“数字1,3,5相邻”则数字2,4相邻时的五位数有个,数字2,4相邻,数字1,3,5也相邻的五位数的个数为,则;(2)的所有可能取值为0,1,2,由题意知“”表示2个偶数相邻,则,“”表示2个偶数中间共插入了1个奇数,则,“”表示2个偶数中间共插入了2个奇数,则;“”表示2个偶数中间共插入了3个奇数,则,所以的分布列为0123的期望为.16.(1)取中点,连接,,∵,分别为,中点,∴且,又为中点,∴且,∴且,故四边形是平行四边形A =B =242448A A =23223224A A A =()()()241482n AB P B A n A ===X 0X =()242455205A A P X A ===1X =()213233553110A C A P X A ===2X =()22223255125A A A P X A ===3X =()2323551310A A P X A ===X X P2531015110X ()231101231510510E X =⨯+⨯+⨯+⨯=1B C G 1AG FG G F 1B C BC 1GF BB ∥112GF BB =E 1AA 11A E BB ∥1112A E BB =1GF A E ∥1GF A E =1A EFG∴而平面,面,∴平面.(2)如图以为坐标原点,,分别为,建立空间直角坐标系,则,,,,则,.设平面的法向量为,则,令,得,,∴.又,∴.即直线与平面.17.(1);(2)由(1)可知,,即是方程的一个实根.令,,1EF A G ∥EF ⊄11A B C 1A G ⊂11A B C EF ∥11A B C A AC 1AA y z ()10,0,1A )B)1B ()0,2,0C ()10,2,1A C =- )11A B =11A B C (),,n x y z = 111200A C n y z A B n y ⎧⋅=-=⎪⎨⋅=+=⎪⎩1x =y =z =-(1,n =-)1 1A B =- 1cos ,A B n == 1A B 11A B C ()sin 3sin 2sin 2cos cos 2sin x x x x x x x=+=+()22sin cos cos 12sin sin x x x x x=⋅+-()2332sin 1sin sin 2sin 3sin 4sin x x x x x x =-+-=-31sin 303sin104sin 102︒=︒-︒=sin10︒314302x x -+=()31432f x x x =-+()()()212332121f x x x x '=-=+-显然,当时,,所以在上单调递减,又,,所以,即.18.(1)由题意知圆心,半径为4,且,,则,所以点的轨迹为以,为焦点的椭圆设曲线的方程为,则,,解得,,所以,所以曲线的方程为;(2)(ⅰ)因为直线的斜率一定存在,设直线的方程为,因为在上,所以,由得,,设,,,10sin10sin 302<︒<︒=102x <<()0f x '<()31432f x x x =-+10,2⎛⎫⎪⎝⎭3114066f ⎛⎫⎛⎫=⨯> ⎪ ⎪⎝⎭⎝⎭31111174305552250f ⎛⎫⎛⎫=⨯-⨯+=-< ⎪ ⎪⎝⎭⎝⎭11sin10,65⎛⎫︒∈ ⎪⎝⎭5n =()1,0A -QP QB =2AB =42QA QB QA QP PA AB +=+==>=Q A B ()222210x y a b a b +=>>24a =22c =2a =1c =2223b a c =-=C 22143x y +=l l y kx m =+()4,1D l 41k m +=22143y kx mx y =+⎧⎪⎨+=⎪⎩()()222348430k x kmx m +++-=()()()()2222281634348430km k m k m ∆=-+-=-+>()11,M x y ()22,N x y ()00,E x y则,,由得,化简得,则,化简得,又因为,所以,所以点在定直线上.(ⅱ)因为直线过,所以,直线方程为,从而得,,由(ⅰ)知,,,,,所以,所以存在实数,使得.19.(1)的一阶差数列为4,2,,;二阶差数列为,,;三阶差数列为,,为常数列,故为三阶等差数列,即,122834kmx x k -+=+()21224334m x x k -=+ME MD EN DN =10102244x x x x x x --=--()()1212120428x x x x x x x +-=-+⎡⎤⎣⎦()202224388428343434m km km x k k k --⎛⎫⎛⎫⨯-⨯=+ ⎪ ⎪+++⎝⎭⎝⎭00330kx m x ++-=00y kx m =+00330x y +-=E 330x y +-=y kx m =+()1,00k m +=y kx k =-()4,3D k ()1,0G x 2122834k x x k +=+()21224334k x x k-=+2121y k x x =-2134k k x =-()()()()12121212122121214444333x kx k k y x x x x x k x x k x x k x x -----+=⨯==---()()()22222222222222224384434413434283443342k k x x k x k k k k k x k x x k ---+-+-++===⎡⎤⎛⎫+---⎢⎥ ⎪+⎝⎡⎤⎣⎦⎭⎣⎦12λ=1212k k ={}n a 1-5-2-3-4-1-1-1-{}n a 3k =二阶差数列的第4项为,一阶差数列的第5项为,即,故.(2)令,因为是二阶等差数列,所以,因此所以,命题得证.(3)证明:先证一个引理:记,是的次多项式数学归纳法:当时,是的2次多项式假设是的次多项式,对都成立,由二项式定理,将取0,1,2,…,,求和可得故是的次多项式,引理得证.回到本题,由(2)可知,2阶等差数列的通项是的2次多项式假设阶等差数列的通项公式是的次多项式,对于阶等差数列,它的差数列是阶等差数列,即,故由引理可知,此为的次多项式,命题得证.5-10-6510a a -=-610a =1n n n d b b +=-{}n b 112213212n n n n d d d d d d b b b ----=-==-=-+ ()()()()()()1122113212112n n n n n d d d d d d d d n b b b b b ---=-++++-+=--++- ()()()112211n n n n n b b b b b b b b ---=-++++-+ 1211n n d d d b --=++++ ()()()()()()321211231021n n b b b n b b b =-+-+++-++--+ ()()()()()321211112212n n b b b n b b b =---++--+()1,n m i S m n i ==∑(),S m n n 1m +1m =()()11,12S n n n =+n (),S k n n 1k +0,1,,1k m =- ()11101mm m k k m k n n C n+++=+-=∑n n ()()1101,m m k m k n C S k n ++=+=∑()()()11101,,1m m k m k n C S k n S m n m -++=+-=+∑n 1m +n k {}n c n k 1k +{}n c 'k 0k i n i i c n λ='=∑1111101n kn n i i i i i j c c c c j λ--===⎛⎫=+'=+ ⎪⎝⎭∑∑∑n k。
福建省厦门双十中学2023-2024学年高二上学期期中考试数学试题(含简单答案)
厦门双十中学2023-2024学年高二上学期期中考试数学试题注意事项:1.答题前,考生务必用0.5mm 黑色签字笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.,化简的结果是( )A.B. C. D. 2. 若是空间的一个基底,且向量不能构成空间的一个基底,则( )A B. 1 C. 0 D. 3. 如图,在平行六面体中,为的交点.若,则向量( )A. B. C. D. .10=2212516x y +=2212521x y +=221254x y +=2212521y x +={}123,,e e e {}122313,,a e e b e e c e te =+=+=+t =1-2-111ABCD AB C D -M 1111,A C B D 1,,AB a AD b AA c ===BM =1122--+ a b c1122++a b c 1122a b c-++1122-+a b c4. 若,则方程表示圆的个数为( )A. 1B. 2C. 3D. 45. 已知两点,,过点的直线与线段(含端点)有交点,则直线的斜率的取值范围为( )A. B. C. D.6. 已知抛物线的焦点为,点,若点为抛物线上任意一点,当取最小值时,点的坐标为( )A. B. C. D. 7. 若圆与圆关于直线对称,过点的圆与轴相切,则圆心的轨迹方程为( )A. B. C D. 8. 古希腊数学家阿波罗尼奥斯在研究圆锥曲线时发现了椭圆的光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆的左、右焦点分别为,,若从椭圆右焦点发出的光线经过椭圆上的点A 和点B 反射后,满足,且,则该椭圆的离心率为( ).A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目的.32,1,0,,14a ⎧⎫∈--⎨⎬⎩⎭2222210x y ax ay a a +++++-=()3,2A -()2,1B ()0,1P -l AB l (](),11,-∞-⋃+∞[1,1]-[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦1,15⎡⎤-⎢⎥⎣⎦24x y =F ()1,3B A AB AF +A (1,4)(4,1)1,14⎛⎫ ⎪⎝⎭11,4⎛⎫ ⎪⎝⎭22210x y ax y +-++=221x y +=1y x =-(,)C a a -P y P 24480x x y +-+=22220y x y --+=2210y x y ---=24480y x y +-+=()222210x y a b a b+=>>1F 2F 2F AB AD ⊥3cos 5ABC ∠=12要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知椭圆:的左、右焦点分别为,,点在上,若是直角三角形,则的面积可能为( )A. 5B. 4C.D.10. 已知抛物线的焦点为F ,O 为坐标原点,点在抛物线上,若,则( )A. 的坐标为B. C. D. 11. 已知正三棱柱的所有棱长均相等,,分别是的中点,点满足,下列选项中一定能得到的是( )A. B. C. D. 12. 已知点在上,点,,则( )A. 点到直线的距离最大值是B. 满足的点有2个C. 过直线上任意一点作的两条切线,切点分别为,则直线过定点D. 的最小值为三、填空题:本题共4小题,每小题5分,共20分.13. 已知向量,若,则___________.14. 已知是椭圆的两个焦点,点在上,则的取值范围是________.15. 已知直线与交于,两点,写出满足“的的一个值________.16. 已知为双曲线的左右焦点,过点作一条渐近线的垂线交双曲线右支E 22194x y +=1F 2F P E 12F PF △12F PF △2:4C x y =()00,M x y C ||5MF =F (1,0)04x =±03y =||OM =11ABC AB C -D E 11,BC B C P 1(1)AP xAB y AC x y AB =++--⊥AP BC 0y =12y =12x y ==1PD PA PEλμ=+ P 22:4O x y +=e ()3,0A ()0,4B P AB 125AP BP ⊥P AB O e ,M N MN 4,13⎛⎫ ⎪⎝⎭2PA PB +()()2,1,3,,2,1a b m =-=()a b a +⊥r r r m =12,F F 22:143x y C +=P C 2212PF PF +10x my -+=22:(1)4C x y -+=e A B ABC V m 12,F F 2222:1(0,0)x y C a b a b-=>>1F于点P ,直线与y 轴交于点Q (P ,Q 在x 轴同侧),连接,如图,若内切圆圆心恰好落在以为直径的圆上,则________;双曲线的离心率________.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知圆C 经过、两点,且圆心在直线上.(1)求圆C 的标准方程;(2)过点的直线l 与圆C 相交于P 、Q 两点,且,求直线l 的方程.18. 记的内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求A ;(2)若,,的角平分线交BC 于点D ,求的长.19. 已知的一条内角平分线的方程为,一个顶点为,边上的中线所在直线的方程为.(1)求顶点的坐标;(2)求的面积.20. 如图,在三棱柱中,侧面底面,底面为等腰直角三角形,为中点.2PF 1QF 1PQF △12F F 12F PF ∠=e =()2,0A()0,4B230x y --=()1,0T -5CP CQ ⋅=-ABC V π2sin 6b c a C ⎛⎫+=+ ⎪⎝⎭a =32BA CA ⋅= BAC ∠AD ABC V CD 0x y +=()2,1A AC BE 52100x y -+=C ABC V 11ABC AB C -11AA C C ⊥ABC ABC V 1AB BC AA D ===AC(1)求证:;(2)再从以下条件①、条件②这两个条件中选择一个作为已知,求二面角的余弦值.条件①:;条件②:.21. 在平面直角坐标系xOy 中,已知圆心为动圆过点,且在轴上截得的弦长为4,记的轨迹为曲线.(1)求曲线的方程;(2)已知及曲线上的两点和,直线BD 经过定点,直线AB 、AD 的斜率分别为,判断是否为定值,说明理由.22. 已知动圆经过定点,且与圆:内切.(1)求动圆圆心的轨迹的方程;(2)设轨迹与轴从左到右交点为,,点为轨迹上异于,的动点,设交直线于点,连接交轨迹于点,直线,的斜率分别为,.①求证:为定值;②证明:直线经过轴上的定点,并求出该定点的坐标.的的1BD AA ⊥1A CC B --111A C B C ⊥11AA B C =C (2,0)y C E E (1,2)A E B D (3,2)-12k k 、12k k +M ()1F 2F (2216x y -+=M C C x A B P C A B PB 4x =T AT C Q AP AQ AP k AQ k ·AP AQ k k PQ x厦门双十中学2023-2024学年高二上学期期中考试数学试题简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】BCD【12题答案】【答案】BCD三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】【14题答案】【答案】【15题答案】中任意一个皆可以,答案不唯一)【16题答案】【答案】①.②.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.【17题答案】【答案】(1)(2)或【18题答案】【答案】(1)(2【19题答案】【答案】(1)(2)【20题答案】【答案】(1)证明略(2)【21题答案】【答案】(1);(2)是,.152-[]8,102π()()223310x y-+-=1133y x=+131399y x=+π3(4,4)-92324y x=121k k+=【22题答案】【答案】(1)(2)①证明略;②证明略;2214x y +=()1,0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省厦门第一中学2015-2016学年度第一学期期中考试高一年数学试卷 第Ⅰ卷(满分60分)一.选择题(本小题共12题,每小题5分,共60分)1.已知全集{1,2,3,4,5,6,7},{1,3,5},{2,4,5,7}U A B ===,则集合()U C A B 为A.{1,2,3,4,6,7}B.{1,2,5}C.{3,5,7}D.{6} 2.下列函数中,能用二分法求零点的是A.x x f 2log )(=B.2)(x x f -=C.2)(x x f =D.||)(x x f = 3.函数x xy -=31的图像关于 A.x 轴对称 B.y 轴对称 C.坐标原点对称 D.直线y x =对称4.函数()ln(4)f x x =-的定义域是A.(1,)+∞B.[1,4)C.(1,4]D.(4,)+∞ 5.已知幂函数)(x f 的图象经过点(9,3),则=)41(f A.1 B .21 C.41 D.161 6.若函数2)()(-=x f x F 在(,0)-∞内有零点,则()y f x =的图像可能是A .B .C .D . 7.下列函数中,是偶函数且在(0,)+∞上为减函数的是 A.2yx = B.3y x = C.2y x -= D.3y x -=8.某新品牌电视投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销量y 与投放市场的月数x 之间的关系的是A.x y 100=B.10050502+-=x x yC.xy 250⨯= D.100log 1002+=x y9.计算:2666)3(log )18(log )2(log +⋅的值为A.1B.2C. 3D.410.对于实数a 和b ,定义运算“*”:22,*,a a b a b a b b ab a b⎧-≤⎪=⎨->⎪⎩ ,设()(21)*(1)f x x x =--,且关于x 的方程()()f x a a R =∈恰有三个互不相等的实数根,则实数a 的取值范围是 A.1[0,]4 B.1[0,]16 C.1(0,](1,)4+∞U D.1(0,)411.已知函数k x x f +-=||2|log |)(2有四个零点4321,,,x x x x ,则k x x x x ++++4321的取值范围为A.),8(+∞B.),4(+∞C.)8,(-∞D.)4,(-∞12.定义在D 上的函数()f x 若同时满足:①存在0M >,使得对任意的12,x x D ∈,都有12|()()|f x f x M -<;②()f x 的图像存在对称中心。
则称()f x 为“P -函数”。
已知函数121()21xxf x -=+和2())f x x =,则以下结论一定正确的是 A.1()f x 和 2()f x 都是P -函数 B.1()f x 是P -函数,2()f x 不是P -函数 C.1()f x 不是P -函数,2()f x 是P -函数 D.1()f x 和 2()f x 都不是P -函数第Ⅱ卷(满分90分)二.填空题(本小题共4题,每小题5分,共20分)13.已知函数⎪⎩⎪⎨⎧≤>=0,50,log )(2x x x x f x ,则)]41([f f 的值是 ▲ . 14.已知函数()log (21)(0,1)x a f x a a =->≠在区间(0,1)内恒有()0f x <,则函数2log (23)a y x x =--的单调递减区间是 ▲ .15.若直角坐标平面内的两个不同点N M ,满足条件:①N M ,都在函数()y f x =的图像上; ②N M ,关于y 轴对称.则称点对[,]M N 为函数()y f x =的一对“友好点对”.(注:点对[,]M N 与[,]N M 为同一“友好点对”)已知函数⎪⎩⎪⎨⎧≤+>=)0(|4|)0(|log |)(23x x x x x x f ,则此函数的“友好点对”有 ▲ 对. 16.已知偶函数()()f x x R ∈满足:任意的x R ∈,都有(2)()f x f x +=,且[0,1]x ∈时,()f x x =,则函数5()()log |4|F x f x x =--的所有零点之和为 ▲三.解答题(共6小题,满分70分)17.(本小题满分10分)已知集合A={x|3<x<6},B={x|2<x <9},(I )求B A ,)()(B C A C R R ,(II )已知C={x|a <x <a+1},若B C B = ,求实数a 的取值范围.18.(本小题满分12分)设二次函数c bx ax x f ++=2)(的图象过点)1,0(和)4,1(,且对于任意R x ∈,不等式x x f 4)(≥恒成立.(I )求函数)(x f 的解析式;(II)求函数]4)([log )(+=x f x g b 的值域.19.(本小题满分12分)已知函数0(22)(12>+-=+a a a x f x x且1≠a ).(I).若41)1(=-f ,求函数1)()(+=x f x g 的所有零点; (II).若函数)(x f 的最小值为7-,求实数a 的值.20.(本小题满分12分)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元). 当年产量不少于80千件时,10000()511450C x x x =+-(万元),每件商品售价为0.05万元. 通过市场分析,该厂生产的商品能全部售完.(I )写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (II )年产量为多少千件时,该厂在这一商品的生产中所获利润最大?21.(本小题满分12分)已知函数()()f x x R ∈满足:对于任意实数,x y ,都有1()()()2f x y f x f y +=++恒成立,且当0x >时,1()2f x >-恒成立;(I)求(0)f 的值,并例举满足题设条件的一个特殊的具体函数; (II)判定函数()f x 在R 上的单调性,并加以证明;(III)若函数2()(max{,2})()1F x f x x x f k =--+-+(其中,()max{,},()a ab a b b a b ≥⎧=⎨<⎩)有三个零点123,,x x x ,求123123()u x x x x x x =+++⋅⋅的取值范围.22.(本小题满分12分)已知函数)(,1)(2R x x xx f ∈+=. (I )判定函数)(x f 在区间]1,1[-上的单调性,并用定义法加以证明; (II )对于任意n个实数n a a a ,,,21 (可以相等),求满足50|)(||)(||)(|21≥+++n a f a f a f 成立的正整数n 的最小值;(Ⅲ)设函数)()()()(*2N n n f x f x g n ∈-=在区间]1,0[上的零点为n x x =,试探究是否存在正整数n ,使得n x x x +++ 212≥?若存在,求正整数n 的最小值;若不存在,请说明理由.福建省厦门第一中学2015-2016学年度第一学期期中考试高一年数学试卷 (参考答案与评分标准)一、选择题(每小题5分,共60分)1.D,2.A,3.C,4.B,5.B,6.D,7.C,8.C,9.A,10.D, 11.C,12.B 二、填空题(每小题5分,共20分) 13.251;14.(,1)-∞-;;15. 3;16. 32 ;三、解答题(共6大题,10+12+12+12+12+12,共70分)17.解(I )∵A={x|3<x<6},B={x|2<x <9},∴A∩B={x|3<x <6}, ......................................2分∵B={x|2<x <9},∴3|{)()()(≤==x x B A C B C A C R R R 或}6≥x ;....................................6分(II )∵C B B ⋃= ∴C ⊆B , ....... 7分, ∴ (8)解得2≤a≤8,....................................................................................................................... 10分18解:(I)依题意得⎪⎩⎪⎨⎧===⇔⎪⎩⎪⎨⎧=--=++===12104)4(4)1(1)0(2c b a ac b c b a f c f ,12)(2++=∴x x x f .................................6分(II).由44)()1()(2≥+∴+=x f x x f .........................................................................................8分∴24log ]4)1[(log )(222=≥++=x x g )(x g ∴的值域为),2[+∞ (12)分19.解:(Ⅰ)由∴=⇒=---22241)1(a f 2a =,2()2422x x f x =-⨯+...............................2分 令2x t =,于是3,103401)()(212==∴=+-⇔=+=t t t t x f x g ................................4分即12=x 或32=x,)(x g ∴的零点为0=x 或3log 2=x ....................................................7分 (Ⅱ) 2222)(22)(a a a a a a x f x x x -+-=+⋅-= ..............................................................10分 当1=x 时,72)1()(2min -=-==a f x f ,又0>a 3=∴a ..............................................................12分 20.解:(I)2140250,0803()100001200(),80x x x L x x x x ⎧-+-<<⎪⎪∴=⎨⎪-+≥⎪⎩ (6)分(II )当080x <<时21()(60)9503L x x =--+60x ∴= 时,()max (60)950L x L ==...................................................................8分 当80x ≥时.1000)100(1000)10000(1200)(2≤--=+-=x x x x x L .. (10)分当100x =时取“=”.9501000max >=L ∴当产量为100千件时,利润最大为1000万元.………………….………………12分21.解:(1).取x=y=0代入题设中的式得:11(00)(0)(0)(0)22f f f f +=++⇒=-...2分 特例:1()2f x x =-(不唯一,只要特例符合题设条件就给2分)...............4分(验证:1()2f x x =-,1()2f y y =-,11111()()()()()22222f x y x y x y f x f y +=+-=-+-+=++)(2).判定:()f x 在R 上单调递增(判断正确给1分)...........................5分 证明:任取12,,x x R ∈且12x x <,则21211121112121211()()(())()()()()211()0(0()).22f x f x f x x x f x f x x f x f x f x x x x f x x -=-+-=-++-=-+>->∴->-Q12()()f x f x ∴<,所以函数f(x)在R 上单调递增.............................8分(3).由2211()0(max{,2})()10(max{,2})()22F x f x x x f k f x x x f k =⇔--+-+=⇔--+-+=- 2(max{,2}())(0).f x x x k f ⇔--+-=又由(2)知f(x)在R 上单调递增,所以2(max{,2}())(0)f x x x k f --+-=⇔2max{,2}()0x x x k --+-=2max{,2}k x x x ⇔=--................9分构造2()max{,2},g x x x x =--由220x x x x ->-⇔<或3x >,2,(,0)(3,)()2,[0,3]x x g x x x x -∈-∞+∞⎧∴=⎨-∈⎩U ,于是,题意等价于: y k =与()y g x =的图象有三个不同的交点(如上图,不妨设这三个零点123x x x <<),则01k <<,123,,x k x x =-为22x x k -=的两根,即23,x x 是一元二次方程220x x k -+=的两根,23232x x x x k +=⎧∴⎨⋅=⎩,∴2123123()2()2u x x x x x x k k k k k =+++=-+-=--,01k <<(变量归一法),由22912()42u k k k =--=-+在k ∈(0,1)上单调递减,于是可得:02u <<..........................................12分22.解:(Ⅰ)任意取]1,1[,21-∈x x ,且21x x <,则1212211222221212(1)()()()11(1)(1)x x x x x x f x f x x x x x ---=-=++++ ................................................2分 ∵1121<<-x x ,210x x ->, ∴12()()0f x f x -<,∴2()1xf x x =+在]1,1[-上单调递增............................................4分 (判断正确,没有证明,只给1分) (Ⅱ).1|||)(|2+=x x x f ,1)当0≠x 时,.212)||1||(1||1||11|||)(|22≤+-=+=+=x x x x x x x f 当且仅当1±=x 时取=;2)当0=x 时,0|)0(|=f ,∴R x ∈∀,21|)(|max =x f .........6分 50|)(||)(||)(|221≥+++≥∴n a f a f a f n,100≥∴n (当100,...2,1},1,1{=-∈i a i 时取=), 100m i n =∴n .(求最大值的方法很多,评卷时,酌情处理)...........................................8分 (Ⅲ))(11)/1(/1)1(22x f x x x x x f =+=+=,221()(),f f n n ∴=由2()0()()n g x f x f n =⇔=在]1,0[∈x 上有解21x n=,又(I )知)(x f 在[0,1]x ∈上单调递增,2()()f x f n ∴=在[0,1] 只有这一解,21n x n =∴, 当n=1时,211<=x ;当2≥n 时21211131212111)1(1321211113121122221<-<--++-+-+=-++⨯+⨯+<++++=+++nn n n n n x x x n . 由知对任意*N n ∈,都有221<+++n x x x ,∴满足n x x x +++ 212≥的正整数n 不存在.................................................................12分。