Influence of Silica and Micro-Fillers from Recycling Materials on Strength of Epoxy-Polymer

合集下载

!白炭黑及硅烷偶联剂

!白炭黑及硅烷偶联剂
CBS Sulfur
Dr. Ewe-Hong Tan -AT1-Asia / Applied Technology Advanced Fillers
1 100 50 5 3 1.5 1.5 1.0
2 100 50 5 3 1.5 1.5 1.0
1.0 2.0
1.0 2.0
12
Sep. 2002 / Slide 12
1
Reinforcement with Silicas
Advanced Fillers and Pigments
沉降法白碳黑
Stage 1 : 水玻璃
SiO2 + Na2CO3
> 1000 oC
Na2O.SiO2 + CO2
Stage 2 : 白碳黑
Na2O.SiO2 + H2SO4
SiO2 + Na2SO4 + H2O
5
Reinforcement with Silicas
Advanced Fillers and Pigments
白碳黑比表面积对橡胶产品性能的影响
粘度 硫化速率 拉伸
表面积
耐磨性
表面积
模量
表面积
制品透明度
表面积
表面积
表面积
Dr. Ewe-Hong Tan -AT1-Asia / Applied Technology Advanced Fillers
过氧化硫化体系对比
RSS1 (ML 1+4 = 70 - 80)
100 50 0.5 2.03
Silica / Carbon Black
Zinc Stearate
Dicumyl Peroxide
Dr. Ewe-Hong Tan -AT1-Asia / Applied Technology Advanced Fillers

219316036_随机质心映射优化法提升生防乳酸菌Lac9-3的粘附性及其对冷藏凡纳滨对虾(Lit

219316036_随机质心映射优化法提升生防乳酸菌Lac9-3的粘附性及其对冷藏凡纳滨对虾(Lit

唐智鑫,钱怡霖,王荣荣,等. 随机质心映射优化法提升生防乳酸菌Lac9-3的粘附性及其对冷藏凡纳滨对虾(Litopenaeus vannamei )菌群结构的影响[J]. 食品工业科技,2023,44(12):130−137. doi: 10.13386/j.issn1002-0306.2022080170TANG Zhixin, QIAN Yilin, WANG Rongrong, et al. Random-Centroid Optimization (RCO) Method to Improve the Adhesion of Biocontrol Lactic Acid Bacteria (LAB) Lac 9-3 and Its Effect on the Microflora Structure of Refrigerated Litopenaeus vannamei [J].Science and Technology of Food Industry, 2023, 44(12): 130−137. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080170· 生物工程 ·随机质心映射优化法提升生防乳酸菌Lac 9-3的粘附性及其对冷藏凡纳滨对虾(Litopenaeus vannamei )菌群结构的影响唐智鑫,钱怡霖,王荣荣,李 苑,刘尊英*(中国海洋大学食品科学与工程学院,山东青岛 266003)摘 要:生防乳酸菌粘附是其在食品表面定植并发挥作用的第一步。

为进一步提升乳酸菌Lac 9-3在凡纳滨对虾表面的粘附性,探究其对冷藏凡纳滨对虾腐败菌生长的影响,本研究采用随机质心映射优化法(Random-Centroid Optimization ,RCO )优化了乳酸菌Lac 9-3的接种条件(包括接种液浓度、接种菌株生长阶段、浸泡时间与接种液pH )。

12.绿色轮胎-技术和市场

12.绿色轮胎-技术和市场

Market of Green Tire 4 绿色轮胎市场概况4
The additional price of GT is about RMB 250 per tire and RMB 1,000 for 4 tires. Saving in gas is about RMB3,000. Net saving of money is ~2,000 RMB. 绿色轮胎大约比普通轮胎贵人民币250元,4个 轮胎贵1000元。三年节油的费用3080元。所 以经济上是合算的。 China now has about 70million cars & trucks. If all use GT, could save 9.8 billion liters or 7 million tons of gasoline /year. 中国现有7000万辆汽车和卡车(不包括摩托车和 农用车),如果全部使用绿色轮胎,每年可以 节油7百万吨。考虑到中国汽车增加速度很快, 节油数量更多。因此环保意义很大。

Can Improve various performance attributes of a tire: Wear - [-30oC and below] Snow and wet traction- [-20oC to 0oC] Rolling losses - [40oC to 60oC] Thermal stability - [80oC and higher]
Reinforcement due to interaction Reinforcement due to dispersion
Dissipation arrests crack Wear control deflection and absorption of micro-cracks Silica particle

微晶纤维素的制备及其在功能材料领域中的应用进展

微晶纤维素的制备及其在功能材料领域中的应用进展

·微晶纤维素·微晶纤维素的制备及其在功能材料领域中的应用进展陈嘉川颜家强张凯*和铭杨桂花*(齐鲁工业大学(山东省科学院)生物基材料与绿色造纸国家重点实验室/制浆造纸科学与技术教育部重点实验室,山东济南,250353)摘要:微晶纤维素(MCC )是由纤维素降解产生的一种功能高分子材料,其具有比表面积大、热稳定性好、结晶度高和聚合度低等优点,在功能材料等相关领域具有较好应用前景。

本文首先介绍了MCC 制备过程中所用原料、预处理及制备方法等方面的研究进展,其次对MCC 在吸附材料、抗菌材料和发光材料等功能材料领域中的应用状况进行了综述,最后对MCC 的制备及应用研究进展进行了总结和展望。

关键词:MCC ;制备;功能材料;应用中图分类号:TS721文献标识码:ADOI :10.11980/j.issn.0254-508X.2021.03.010Preparation of Microcrystalline Cellulose and Its Application in the Field of Functional MaterialsCHEN Jiachuan YAN Jiaqiang ZHANG Kai *HE Ming YANG Guihua *(State Key Lab of Bio-based Material and Green Papermaking/Key Lab of Pulp &Paper Science and Technology of Education Ministry ofChina ,Qilu University of Technology (Shandong Academy of Sciences ),Ji ’nan ,Shandong Province ,250353)(*E -mail :zhangkai2018@ ;ygh2626@ )Abstract :Microcrystalline cellulose is a kind of multifunctional polymer material produced by cellulose degradation.It has the advantages of large specific surface area ,good thermal stability ,high crystallinity and low polymerization degree.Microcrystalline cellulose has a good application prospect in functional materials and other related fields.In this paper ,the research progresses of raw materials ,pretreatment and preparation methods in the preparation of microcrystalline cellulose were introduced firstly.Secondly ,the application status of micro⁃crystalline cellulose in the field of functional materials such as adsorption materials ,antibacterial materials and luminescent materials was re⁃viewed.Finally ,the research progress on the preparation and application of microcrystalline cellulose was summarized and prospected.Key words :microcrystalline cellulose ;preparation ;functional materials ;application植物纤维原料具有储量丰富、可再生和绿色环保等优点,其主要成分包括纤维素、半纤维素和木质素,各成分含量随原料种类和内部组织的差异而有所不同。

纳米引入杂化改性聚醚砜膜技术优化提高油气产量的研究

纳米引入杂化改性聚醚砜膜技术优化提高油气产量的研究

纳米引入杂化改性聚醚砜膜技术优化提高油气产量的研究作者:杨荣国李阳薛赛红来源:《粘接》2023年第09期摘要:全球能源需求持续增长,尤其是石油和天然气等化石燃料。

虽然每口井的石油和天然气产量都有下降的趋势,但如果这种情况继续下去,能源就会短缺。

提高石油产量的一种方法是向油井注水。

石油和天然气生产通常会产生大量的水作为副产品,称为采出水。

采出水可用于注水,以提高石油产量,但采出水的参数必须符合质量标准,以避免损坏岩层、结垢、设备腐蚀和进一步污染。

膜分离技术是气田水处理的一种替代技术,可以有效地去除原油,降低含盐量。

纳米杂化聚醚砜(PES)膜是一种新型膜材料,具有显著推动当前技术发展的潜力。

以聚醚砜和纳米二氧化硅为无机填料,在N-甲基吡咯烷酮溶剂中,采用干/湿相转化技术制备了均匀稳定的掺杂溶液,制备了纳米杂化膜。

将该膜应用于采出水死细胞过滤系统。

结果表明:纳米杂化膜对采出水的除油除盐能力高于常规膜,且纳米杂化膜具有较高的渗透性。

关键词:采出水;纳米杂化膜;改性聚醚砜膜;纳米二氧化硅中图分类号:TQ051.8+93 文献标志码:A文章编号:1001-5922(2023)09-0128-04Research on nano-enhanced hybrid modified polyethersulfone membrane technology for optimizing and increasing oil and gas productionYANG Rongguo,LI Yang,XUE Saihong(Qilicun Oil Production Plant of Yanchang Oilfield Co., Ltd.,Yan’an 717100, Shaanxi China)Abstract:Global energy demand continues to rise, especially for fossil fuels such as oil and natural gas.While the production of oil and gas per well is on a declining trend, if this continues,there will be an energy shortage.One method to increase oil production is water injection into oil wells.Oil and gas production typically generate a significant amount of water as a byproduct, known as produced water.Produced water can be used for water injection to enhance oil production, but the parameters of produced water must meet quality standards to avoid reservoir damage, scaling,equipment corrosion, and further pollution.Membrane separation technology is an alternative technique for gas field water treatment, effectively removing crude oil and reducing salt content.Nano-enhanced polyethersulfone (PES) hybrid membranes are a novel membrane material with the potential to significantly advance current technology.Uniform and stable doped solutions were prepared using polyethersulfone and nano silica as inorganic fillers in N-methyl-2-pyrrolidone solvent, utilizing dry/wet phase inversion techniques to fabricate nano-enhanced hybrid membranes.This membrane was applied to a produced water dead-end filtration system.Results show that the nano-enhanced hybrid membrane exhibits higher oil and salt removal capabilities from produced water compared to conventional membranes, and it demonstrates superior permeability.Key words:produced water; nano-enhanced hybrid membrane; modified polyethersulfone membrane; nano silica化石燃料的需求并沒有伴随着产量的增加,石油和天然气的产量往往会下降[1]。

微咸水-腐植酸肥耦合滴灌条件下钙镁离子质量浓度对灌水器堵塞的影响

微咸水-腐植酸肥耦合滴灌条件下钙镁离子质量浓度对灌水器堵塞的影响

2024年3月 灌溉排水学报第43卷 第3期 Mar. 2024 Journal of Irrigation and Drainage No.3 Vol.4394▪灌溉技术与装备▪文章编号:1672 - 3317(2024)03 - 0094 - 09微咸水-腐植酸肥耦合滴灌条件下钙镁离子质量浓度对灌水器堵塞的影响贺 新1,刘新宇1,周 龙1,赵 校1,刘 鹏1,苏艳平1*,周 铸2,李 薇3(1.中国农业大学,北京 100083;2.江苏省水利工程科技咨询股份有限公司,南京 210023;3.北京市水务局政务服务中心,北京 100038)摘 要:【目的】探明腐植酸肥施用条件下不同钙镁离子质量浓度对灌水器堵塞物质形成的影响效应与作用机制。

【方法】以微咸水中钙镁离子耦合腐植酸肥滴灌为研究对象,选取4种不同额定流量(1.6、1.1、1.4、1.75 L/h )的非压力补偿内镶贴片式灌水器(FE1—FE4),其中设置3组钙离子质量浓度微咸水处理,离子质量浓度分别为100、150、200 mg/L (G1、G2、G3),3组镁离子质量浓度微咸水处理,离子质量浓度分别为100、150、200 mg/L (M1、M2、M3),以地下微咸水灌溉为对照(CK ),研究不同离子质量浓度的灌水器平均流量(Dra )、滴灌系统灌水器的堵塞率分布、灌水器堵塞物质干质量(DW )动态变化规律,并分析了灌水器内部堵塞物质矿物组分。

【结果】与CK 相比,G1、G2、G3、M1、M2、M3处理的Dra 分别降低了21.58%~29.68%、35.02%~39.71%、45.62%~55.68%、14.25%~20.41%、24.89%~45.69%、35.22%~56.75%,堵塞物质干质量分别增加了124.62%~178.49%、174.23%~230.33%、235.59%~270.09%、67.14%~120.28%、136.96%~191.18%、203.54%~213.35%。

牙科复合树脂材料耐磨性能研究现状

牙科复合树脂材料耐磨性能研究现状

牙科复合树脂材料耐磨性能研究现状韩红钰;付静;刘杰【摘要】Composite resins are commonly used materials for dental restorations due to their minimally invasiveness,aesthetics and convenient clinical manipulation.However,the poor wear resistance has limited the clinical longevity of dental composites.Wear test is to explore the friction and wear behaviors of composite resins in order to develop and improve the mechanical properties of dental resins based on experimental evidence.This review will discuss theories related to wear test,factors influenceing wear behaviors,clinical research progress and current situation of the experiment research.%复合树脂因其微创、美观、易操作等优点成为口腔科常用的牙科修复材料,但耐磨性差缩短了其使用寿命.探究树脂材料摩擦磨损行为的磨损实验研究有助于开发和改善树脂的机械性能,为研发具有良好耐磨性能的修复材料提供实验依据.本文就磨损实验的相关理论、耐磨性的影响因素、临床研究进展及实验研究现状进行讨论.【期刊名称】《口腔颌面修复学杂志》【年(卷),期】2017(018)003【总页数】4页(P181-184)【关键词】牙科复合树脂;耐磨性能;磨损实验【作者】韩红钰;付静;刘杰【作者单位】青岛大学附属医院口腔科口腔临床医学重点实验室青岛大学口腔医学院山东266003;青岛大学附属医院口腔科口腔临床医学重点实验室青岛大学口腔医学院山东266003;青岛大学附属医院口腔科口腔临床医学重点实验室青岛大学口腔医学院山东266003【正文语种】中文【中图分类】R783.1磨损是因物体相对运动使表面材料逐渐损失的过程。

高分子材料纳米二氧化硅外文文献翻译

高分子材料纳米二氧化硅外文文献翻译

纳米二氧化硅对成核、结晶和热塑性能的影响外文文献翻译(含:英文原文及中文译文)文献出处:Laoutid F, Estrada E, Michell R M, et al. The influence of nanosilica on the nucleation, crystallization andtensile properties of PP–PC and PP–PA blends[J]. Polymer, 2013, 54(15):3982-3993.英文原文The influence of nanosilica on the nucleation, crystallization andtensileproperties of PP–PC and PP–PA blendsLaoutid F, Estrada E, Michell R M, et alAbstractImmiscible blends of 80 wt% polypropylene (PP) with 20 wt% polyamide (PA) or polycarbonate (PC) were prepared by melt mixing with or without the addition of 5% nanosilica. The nanosilica produced a strong reduction of the disperse phase droplet size, because of its preferential placement at the interface, as demonstrated by TEM. Polarized Light Optical microscopy (PLOM) showed that adding PA, PC or combinations of PA-SiO2 or PC-SiO2 affected the nucleation density of PP. PA droplets can nucleate PP under isothermal conditions producing a higher nucleation density than the addition of PC or PC-SiO2. PLOM was found to be more sensitive to determine differences in nucleation than non-isothermal DSC. PP developed spherulites, whose growth was unaffected by blending, while its overall isothermal crystallizationkinetics was strongly influenced by nucleation effects caused by blending. Addition of nanosilica resulted in an enhancement of the strain at break of PP-PC blends whereas it was observed to weaken PP-PA blends. Keywords:Nanosilica,Nucleation,PP blends1 OverviewImmiscible polymer blends have attracted attention for decades because of their potential application as a simple route to tailor polymer properties. The tension is in two immiscible polymerization stages. This effect usually produces a transfer phase between the pressures that may allow the size of the dispersed phase to be allowed, leading to improved mixing performance.Block copolymers and graft copolymers, as well as some functional polymers. For example, maleic anhydride grafted polyolefins act as compatibilizers in both chemical affinities. They can reduce the droplet volume at the interface by preventing the two polymers from coalescing. In recent years, various studies have emphasized that nanofillers, such as clay carbon nanotubes and silica, can be used as a substitute for organic solubilizers for incompatible polymer morphology-stabilized blends. In addition, in some cases, nanoparticles in combination with other solubilizers promote nanoparticle interface position.The use of solid particle-stabilized emulsions was first discovered in 1907 by Pickering in the case of oil/emulsion containing colloidalparticles. In the production of so-called "Pickling emulsions", solid nanoparticles can be trapped in the interfacial tension between the two immiscible liquids.Some studies have attempted to infer the results of blending with colloidal emulsion polymer blends. Wellman et al. showed that nanosilica particles can be used to inhibit coalescence in poly(dimethylsiloxane)/polyisobutylene polymers. mix. Elias et al. reported that high-temperature silicon nanoparticles can migrate under certain conditions. The polypropylene/polystyrene and PP/polyvinyl acetate blend interfaces form a mechanical barrier to prevent coalescence and reduce the size of the disperse phase.In contrast to the above copolymers and functionalized polymers, the nanoparticles are stable at the interface due to their dual chemical nature. For example, silica can affect nanoparticle-polymer affinities locally, minimizing the total free energy that develops toward the system.The nanofiller is preferentially placed in equilibrium and the wetting parameters can be predicted and calculated. The difference in the interfacial tension between the polymer and the nanoparticles depends on the situation. The free-diffusion of the nanoparticle, which induces the nanoparticles and the dispersed polymer, occurs during the high shear process and shows that the limitation of the viscosity of the polymer hardly affects the Brownian motion.As a result, nanoparticles will exhibit strong affinity at the local interface due to viscosity and diffusion issues. Block copolymers need to chemically target a particular polymer to the nanoparticle may provide a "more generic" way to stabilize the two-phase system.Incorporation of nanosilica may also affect the performance of other blends. To improve the distribution and dispersion of the second stage, mixing can produce rheological and material mechanical properties. Silica particles can also act as nucleating agents to influence the crystallization behavior. One studies the effect of crystalline silica on crystalline polystyrene filled with polybutylene terephthalate (polybutylene terephthalate) fibers. They found a stable fibril crystallization rate by increasing the content of polybutylene terephthalate and silica. On the other hand, no significant change in the melt crystallization temperature of the PA was found in the PA/ABS/SiO2 nanocomposites.The blending of PP with engineering plastics, such as polyesters, polyamides, and polycarbonates, may be a useful way to improve PP properties. That is, improving thermal stability, increasing stiffness, improving processability, surface finish, and dyeability. The surface-integrated nano-silica heat-generating morphologies require hybrid compatibilization for the 80/20 weight ratio of the thermal and tensile properties of the blended polyamide and polypropylene (increasedperformance). Before this work, some studies [22] that is, PA is the main component). This indicates that the interfacially constrained hydrophobic silica nanoparticles obstruct the dispersed phase; from the polymer and allowing a refinement of morphology, reducing the mixing scale can improve the tensile properties of the mixture.The main objective of the present study was to investigate the effect of nanosilica alone on the morphological, crystalline, and tensile properties of mixtures of nanosilica alone (for mixed phases with polypropylene as a matrix and ester as a filler. In particular, PA/PC or PA/nano The effect of SiO 2 and PC/nanosilica on the nucleation and crystallization effects of PP as the main component.We were able to study the determination of the nucleation kinetics of PP and the growth kinetics of the particles by means of polarization optical microscopy. DSC measures the overall crystallization kinetics.Therefore, a more detailed assessment of the nucleation and spherulite growth of PP was performed, however, the effect of nanosilica added in the second stage was not determined. The result was Akemi and Hoffman. And Huffman's crystal theory is reasonable.2 test phase2.1 Raw materialsThe polymer used in this study was a commercial product: isotactic polypropylene came from a homopolymer of polypropylene. The Frenchformula (B10FB melt flow index 2.16Kg = 15.6g / 10min at 240 °C) nylon 6 from DSM engineering plastics, Netherlands (Agulon Fahrenheit temperature 136 °C, melt flow index 240 °C 2.16kg = 5.75g / 10min ) Polycarbonate used the production waste of automotive headlamps, its melt flow index = 5g / 10min at 240 °C and 2.16kg.The silica powder TS530 is from Cabot, Belgium (about 225 m/g average particle (bone grain) about 200-300 nm in length, later called silica is a hydrophobic silica synthesis of hexamethyldisilane by gas phase synthesis. Reacts with silanols on the surface of the particles.2.2 ProcessingPP_PA and PP-PC blends and nanocomposites were hot melt mixed in a rotating twin screw extruder. Extrusion temperatures range from 180 to 240 °C. The surfaces of PP, PA, and PC were vacuumized at 80°C and the polymer powder was mixed into the silica particles. The formed particles were injected into a standard tensile specimen forming machine at 240C (3 mm thickness of D638 in the American Society for Testing Materials). Prior to injection molding, all the spherulites were in a dehumidified vacuum furnace (at a temperature of 80°C overnight). The molding temperature was 30°C. The mold was cooled by water circulation. The mixture of this combination is shown in the table.2.3 Feature Description2.31 Temperature Performance TestA PerkineElmer DSC diamond volume thermal analysis of nanocomposites. The weight of the sample is approximately 5 mg and the scanning speed is 20 °C/min during cooling and heating. The heating history was eliminated, keeping the sample at high temperature (20°C above the melting point) for three minutes. Study the sample's ultra-high purity nitrogen and calibrate the instrument with indium and tin standards.For high temperature crystallization experiments, the sample cooling rate is 60°C/min from the melt directly to the crystal reaching the temperature. The sample is still three times longer than the half-crystallization time of Tc. The procedure was deduced by Lorenzo et al. [24] afterwards.2.3.2 Structural CharacterizationScanning electron microscopy (SEM) was performed at 10 kV using a JEOL JSM 6100 device. Samples were prepared by gold plating after fracture at low temperature. Transmission electron microscopy (TEM) micrographs with a Philips cm100 device using 100 kV accelerating voltage. Ultra-low cut resection of the sample was prepared for cutting (Leica Orma).Wide-Angle X-Ray Diffraction Analysis The single-line, Fourier-type, line-type, refinement analysis data were collected using a BRUKER D8 diffractometer with copper Kα radiation (λ = 1.5405A).Scatter angles range from 10o to 25°. With a rotary step sweep 0.01° 2θ and the step time is 0.07s. Measurements are performed on the injection molded disc.This superstructure morphology and observation of spherulite growth was observed using a Leica DM2500P polarized light optical microscope (PLOM) equipped with a Linkam, TP91 thermal stage sample melted in order to eliminate thermal history after; temperature reduction of TC allowed isothermal crystallization to occur from the melt. The form is recorded with a Leica DFC280 digital camera. A sensitive red plate can also be used to enhance contrast and determine the birefringence of the symbol.2.3.3 Mechanical AnalysisTensile tests were carried out to measure the stretch rate at 10 mm/min through a Lloyd LR 10 K stretch bench press. All specimens were subjected to mechanical tests for 20 ± 2 °C and 50 ± 3% relative humidity for at least 48 hours before use. Measurements are averaged over six times.3 results3.1 Characterization by Electron MicroscopyIt is expected that PP will not be mixed with PC, PA because of their different chemical properties (polar PP and polar PC, PA) blends with 80 wt% of PP, and the droplets and matrix of PA and PC are expectedmorphologies [ 1-4] The mixture actually observed through the SEM (see Figures 1 a and b).In fact, because the two components have different polar mixtures that result in the formation of an unstable morphology, it tends to macroscopic phase separation, which allows the system to reduce its total free energy. During shearing during melting, PA or PP is slightly mixed, deformed and elongated to produce unstable slender structures that decompose into smaller spherical nodules and coalesce to form larger droplets (droplets are neat in total The size of the blend is 1 ~ 4mm.) Scanning electron microscopy pictures and PP-PC hybrid PP-PA neat and clean display left through the particle removal at cryogenic temperatures showing typical lack of interfacial adhesion of the immiscible polymer blend.The addition of 5% by weight of hydrophobic silica to the LED is a powerful blend of reduced size of the disperse phase, as can be observed in Figures 1c and D. It is worth noting that most of the dispersed phase droplets are within the submicron range of internal size. The addition of nano-SiO 2 to PA or PC produces finer dispersion in the PP matrix.From the positional morphology results, we can see this dramatic change and the preferential accumulation at the interface of silica nanoparticles, which can be clearly seen in FIG. 2 . PP, PA part of the silicon is also dispersed in the PP matrix. It can be speculated that thisformation of interphase nanoparticles accumulates around the barrier of the secondary phase of the LED, thus mainly forming smaller particles [13, 14, 19, 22]. According to fenouillot et al. [19] Nanoparticles are mixed in a polymer like an emulsifier; in the end they will stably mix. In addition, the preferential location in the interval is due to two dynamic and thermodynamic factors. Nanoparticles are transferred to the preferential phase, and then they will accumulate in the interphase and the final migration process will be completed. Another option is that there isn't a single phase of optimization and the nanoparticles will be set permanently in phase. In the current situation, according to Figure 2, the page is a preferential phase and is expected to have polar properties in it.3.2 Wide-angle x-ray diffractionThe polymer and silica incorporate a small amount of nanoparticles to modify some of the macroscopic properties of the material and the triggered crystal structure of PP. The WAXD experiment was performed to evaluate the effect of the incorporation of silica on the crystalline structure of the mixed PP.Isotactic polypropylene (PP) has three crystalline forms: monoclinic, hexagonal, and orthorhombic [25], and the nature of the mechanical polymer depends on the presence of these crystalline forms. The metastable B form is attractive because of its unusual performance characteristics, including improved impact strength and elongation atbreak.The figure shows a common form of injection molding of the original PP crystal, reflecting the appearance at 2θ = 14.0, 16.6, 18.3, 21.0 and 21.7 corresponding to (110), (040), (130), (111) and (131) The face is an α-ipp.20% of the PA incorporation into PP affects the recrystallization of the crystal structure appearing at 2θ = 15.9 °. The corresponding (300) surface of the β-iPP crystal appears a certain number of β-phases that can be triggered by the nucleation activity of the PA phase in PP (see evidence The following nucleation) is the first in the crystalline blend of PA6 due to its higher crystallization temperature. In fact, Garbarczyk et al. [26] The proposed surface solidification caused by local shear melts the surface of PA6 and PP and forms during the injection process, promoting the formation of β_iPP. According to quantitative parameters, KX (Equation (1)), which is commonly used to evaluate the amount of B-crystallites in PP including one and B, the crystal structure of β-PP has 20% PP_PA (110), H(040) and Blends of H (130) heights (110), (040) and (130). The height at H (300) (300) for type A peaks.However, the B characteristic of 5 wt% silica nanoparticles incorporated into the same hybrid LED eliminates reflection and reflection a-ipp retention characteristics. As will be seen below, the combination of PA and nanosilica induces the most effective nucleatingeffect of PP, and according to towaxd, this crystal formation corresponds to one PP structure completely.The strong reductive fracture strain observations when incorporated into polypropylene and silica nanoparticles (see below) cannot be correlated to the PP crystal structure. In fact, the two original PP and PP_PA_SiO2 hybrids contain α_PP but the original PP has a very high form of failure when the strain value.On the other hand, PP-PC and PP-PC-Sio 2 blends, through their WAXD model, can be proven to contain only one -PP form, which is a ductile material.3.3 Polarized Optical Microscopy (PLOM)To further investigate the effect of the addition of two PAs, the crystallization behavior of PC and silica nanoparticles on PP, the X-ray diffraction analysis of its crystalline structure of PP supplements the study of quantitative blends by using isothermal kinetic conditions under a polarizing microscope. The effect of the composition on the nucleation activity of PP spherulite growth._Polypropylene nucleation activityThe nucleation activity of a polymer sample depends on the heterogeneity in the number and nature of the samples. The second stage is usually a factor in the increase in nucleation density.Figure 4 shows two isothermal crystallization temperatures for thePP nucleation kinetics data. This assumes that each PP spherulite nucleates in a central heterogeneity. Therefore, the number of nascent spherulites is equal to the number of active isomerous nuclear pages, only the nucleus, PP-generated spherulites can be counted, and PP spherulites are easily detected. To, while the PA or PC phases are easily identifiable because they are secondary phases that are dispersed into droplets.At higher temperatures (Fig. 4a), only the PP blend inside is crystallized, although the crystals are still neat PP amorphous at the observed time. This fact indicates that the second stage of the increase has been able to produce PP 144 °C. It is impossible to repeat the porous experiment in the time of some non-homogeneous nucleation events and neat PP exploration.The mixed PP-PC and PP-PC-SiO 2 exhibited relatively low core densities at 144 °C, (3 105 and 3 106 nuc/cm 3) suggesting that either PC nanosilica can also be considered as good shape Nuclear agent is used here for PP.On the other hand, PA, himself, has produced a sporadic increase in the number of nucleating events in PP compared to pure PP, especially in the longer crystallization time (>1000 seconds). In the case of the PP-PA _Sio 2 blend, the heterogeneous nucleation of PP is by far the largest of all sample inspections. All the two stages of the nucleating agent combined with PA and silica are best employed in this work.In order to observe the nucleation of pure PP, a lower crystallization temperature was used. In this case, observations at higher temperatures found a trend that was roughly similar. The neat PP and PP-PC blends have small nucleation densities in the PP-PC-SiO 2 nanocomposite and the increase also adds further PP-PA blends. The very large number of PP isoforms was rapidly activated at 135°C in the PP-PA nanoparticle nanometer SiO 2 composites to make any quantification of their numbers impossible, so this mixed data does not exist from Figure 4b.The nucleation activity of the PC phase of PP is small. The nucleation of any PC in PP can be attributed to impurities that affect the more complex nature of the PA from the PC phase. It is able to crystallize at higher temperatures than PP, fractional crystallization may occur and the T temperature is shifted to much lower values (see References [29-39]. However, as DSC experiments show that in the current case The phase of the PA is capable of crystallizing (fashion before fractionation) the PP matrix, and the nucleation of PP may have epitaxy origin.The material shown in the figure represents a PLOAM micrograph. Pure PP has typical α-phase negative spherulites (Fig. 5A) in the case of PP-PA blends (Fig. 5B), and the PA phase is dispersed with droplets of size greater than one micron (see SEM micrograph, Fig. 1) . We could not observe the spherulites of the B-phase type in PP-PA blends. Even according to WAXD, 20% of them can be formed in injection moldedspecimens. It must be borne in mind that the samples taken using the PLOAM test were cut off from the injection molded specimens but their thermal history (direction) was removed by melting prior to melting for isothermal crystallization nucleation experiments.The PA droplets are markedly enhanced by the nucleation of polypropylene and the number of spherulites is greatly increased (see Figures 4 and 5). Simultaneously with the PP-PA blend of silica nanoparticles, the sharp increase in nucleation density and Fig. 5C indicate that the size of the spherulites is very small and difficult to identify.The PP-PC blends showed signs of sample formation during the PC phase, which was judged by large, irregularly shaped graphs. Significant effects: (a) No coalesced PC phase, now occurring finely dispersed small droplets and (B) increased nucleation density. As shown in the figure above, nano-SiO 2 tends to accumulate at the interface between the two components and prevent coalescence while promoting small disperse phase sizes.From the nucleation point of view, it is interesting to note that it is combined with nanosilica and as a better nucleating agent for PP. Combining PCs with nanosilica does not produce the same increase in nucleation density.Independent experiments (not shown here) PP _ SiO 2 samplesindicate that the number of active cores at 135 °C is almost the same as that of PP-PC-SiO2 intermixing. Therefore, silica cannot be regarded as a PP nucleating agent. Therefore, the most likely explanation for the results obtained is that PA is the most important reason for all the materials used between polypropylene nucleating agents. The increase in nucleation activity to a large extent may be due to the fact that these nanoparticles reduce the size of the PA droplets and improve its dispersion in the PP matrix, improving the PP and PA in the interfacial blend system. Between the regions. DSC results show that nano-SiO 2 is added here without a nuclear PA phase.4 Conclusion5% weight of polypropylene/hydrophobic nanosilica blended polyamide and polypropylene/polycarbonate (80E20 wt/wt) blends form a powerful LED to reduce the size of dispersed droplets. This small fraction of reduced droplet size is due to the preferential migration of silica nanoparticles between the phases PP and PA and PC, resulting in an anti-aggregation and blocking the formation of droplets of the dispersed phase.The use of optical microscopy shows that the addition of PA, the influence of PC's PA-Sio 2 or PC-Sio 2 combination on nucleation, the nucleation density of PP polypropylene under isothermal conditions is in the following approximate order: PP <PP-PC <PP -PC-SiO 2<<PP-PA<<< PP-PA-SiO 2. PA Drip Nucleation PP Production of nucleation densities at isothermal temperatures is higher than with PC or PC Sio 2D. When nanosilica is also added to the PP-PA blend, the dispersion-enhanced mixing of the enhanced nanocomposites yields an intrinsic factor PP-PA-Sio2 blend that represents a PA that is identified as having a high nucleation rate, due to nanoseconds Silicon oxide did not produce any significant nucleation PP. PLOAM was found to be a more sensitive tool than traditional cooling DSC scans to determine differences in nucleation behavior. The isothermal DSC crystallization kinetics measurements also revealed how the differences in nucleation kinetics were compared to the growth kinetic measurements.Blends (and nanocomposites of immiscible blends) and matrix PP spherulite assemblies can grow and their growth kinetics are independent. The presence of a secondary phase of density causes differences in the (PA or PC) and nanosilica nuclei. On the other hand, the overall isothermal crystallization kinetics, including nucleation and growth, strongly influence the nucleation kinetics by PLOAM. Both the spherulite growth kinetics and the overall crystallization kinetics were successfully modeled by Laurie and Huffman theory.Although various similarities in the morphological structure of these two filled and unfilled blends were observed, their mechanical properties are different, and the reason for this effect is currently being investigated.The addition of 5% by weight of hydrophobic nano-SiO 2 resulted in breaking the strain-enhancement of the PP-PC blend and further weakening the PP-PA blend.中文译文纳米二氧化硅对PP-PC和PP-PA共混物的成核,结晶和热塑性能的影响Laoutid F, Estrada E, Michell R M, et al摘要80(wt%)聚丙烯与20(wt %)聚酰胺和聚碳酸酯有或没有添加5%纳米二氧化硅通过熔融混合制备不混溶的共聚物。

食品包装名词中英文对照

食品包装名词中英文对照

食品包装名词中英文对照包装 Package, Packaging包装形象 Package Image包装设计 Package Design包装策略 Package Tactics销售包装 Sales (or Consumer) Package出口包装 Export Package礼品包装 Gift Package泡罩包装 Blister Package包装材料 Packaging Materials包装科学与技术 Packaging Science and Technology包装工程 Packaging Engineering包装测试 Package Testing包半装潢 Package Decorating包装标准与法规 Package Standards and Statntes 包装有效期 Shelf Life of Package, Package life 食品包装 Food Packaging绿色包装 Green Packaging绿色食品 Green Food企业形象战略 CIS Corporate Identity System运输包装 Transport Package内销包装 Domestic Package组合包装 Constitute Package/ Assembly Package 热收缩包装 Shrink Package包装容器 Packaging Containers包装方法 Packaging Method包装质量 Package Quality包装管理 Package Management食品包装与方法食品品质 Food Quality食品氧化 Food Oxidation食品微生物 Food Microorganism食品营养 Food Nutrition高温杀菌 High Temperature Sterilization 蒸煮袋 Retortable Pouch冻结 Freezing化学防腐 Chemical Preservation辐照防腐 Radiation Asepsis食品添加剂 Food Additiue微波灭菌 Micvowave Sterilization食品脱水 Food Dehydration食品腌渍防腐 Food Preservation食品褐变变色 Food Browning非酶褐变 Non-Enzymaticbrowning渗透性 Permeability饱和吸湿量 Saturated Moisture Content 环境因素 Environmental Factor食品冷藏 Refrigerated Storage of Food 水分活度 Water Actiuity冷冻调理食品 Frozen Prepared Food低温贮藏 Low-temperature Storage冷藏 Refrigerated Storage冰温贮藏 Ice-temperature Storage化学防腐剂 Chemical Preservative辐射剂量 Radiatiue Dosage (or Dosage of Radition) 杀菌剂 Fungicide微波辐射 Microwaue Radiation食品浓缩 Food Concentration食品烟熏防腐 Fumigation Asepsis of Food酶促褐变 Enzymatic Browning油脂氧化 Oxidation of Fat and Oils食品吸湿 Moisture absorbability of food临界水分值 Critical Moisture Content食品包装材料纸与纸板 paper and Board牛皮纸 Kraft Paper鸡皮纸 W. G. Wrapping Paper玻璃纸 Glass Paper (Cellophane) 糖果包装纸 Kiss Paper涂布纸 White Board白纸板 White board再生纸板 Reclaimed board牛皮箱纸板 kraft Liner board瓦楞纸板 Corrugated Board瓦楞纸箱 Corrugated Box折叠盒 Folding Cartons衬袋盒(箱) Bag-in -box复合纸罐 Composite Paper-Can纸质托盘 Paper-Tray定量 net weight羊皮纸 Parchment Paper半透明纸 Semitransparent Paper普通食品包装纸 Food Packaging Paper 茶叶袋滤纸 Tea Bag Paper复合纸 Composite Paper黄纸板 Straw Board箱纸板 Case Board瓦楞原纸 Corrugating Base Paper包装纸箱 Packaging Box纸盒 Paper Box固定盒 Set-up Box纸浆模制品 Pulp Mould复合纸杯 Composite Paper -Cup纸袋 Paper Bag塑料包装材料 Plastic Packaging Materials热塑性塑料 Thermo Plastic塑料树脂 Plastic Resin聚乙烯 Polyethylene高密度聚乙烯 High Density Polyethylene聚丙烯 Polypropylene聚氯乙烯 Polyvinyl Chloride聚酯 Polyethylene Terephthlate聚酰胺 Polyamide乙烯-乙烯醇共聚物 Ethylene-Vinyl Alcohol Copoyhner 离子型聚合物 Ionomer聚氨脂 Polyurethane环境可降解塑料 Environmental lysis film塑料薄膜 Plastic Film热收缩薄膜 Shrink Film复合薄膜 Compsite Fism蒸煮袋 Retortable Pouch生物降薄膜 Biolysis Film塑料瓶 Plastic Bottle热固性塑料 Thermoset Plastic低密度聚乙烯 Low Density Polyethylene线型低密度聚乙烯 Linear Low density Polyethylene 聚苯乙烯 Polystyrene聚偏二氯乙烯 Poly vinylidene Chlorie (saran)聚碳酸酯 Polycarbonate聚乙烯醇 Polyvinyl Alcshol乙烯-醋酸乙烯共聚物 Ethylene Vinylacetate聚四氟乙烯(PTFE) Polyterafluoroethylene定向拉伸薄膜 Stretched Film弹性薄膜 Elastic Film塑料薄膜袋 Plastic film Bag可食薄膜 Edible Film光降解膜 Light ?lysis Film塑料桶 Plastic Drum塑料保温箱 Plastic Foam Box热成型容器 thermo Form Containers助剂(添加剂) Additives增塑剂 Plasticizers稳定剂 Stabilizers填充剂 Fillers着色剂 Colorants金属包装材料和容器 Metal Packaging Material and Containers镀锡薄钢板 Tinplate镀锌薄钢板 Enplate铝合金薄板 Aluminium Alloy Plate 铝箔 Aluminium Foil金属罐 Metal Can两片罐 Two-piece Can圆罐 Round Can方罐 Rectagular Can梯形罐 trapezoidal Can浅冲罐 Drawn Can钙塑瓦楞箱 Calp Box塑料片材 Plastic sheet毒性 Toxicity安全性 Safety透气性 Gas Permeability透湿性 Water Vapor Permeability 渗透性 Permeability镀铬薄钢板 Tin-free ?Steel-or TFS 低碳薄钢板 Low Carbon Steel真空镀铝膜 Al metallizing Fool三片罐 Three ?piece Can组合罐 Composite Can异形罐 Irregular Can椭圆罐 Oval Can缩颈罐 Necked-in Can深冲罐 deep Drawn Can变薄拉伸罐 Crawn and Ironed Can 焊缝罐 Resistance Welding Can易开罐 Easy Open Can铝质罐 aluminum Can涂料罐 Lacquered Tin Plate Can罐盖 End (or Lid or Cover)全开盖 Full Open Can金属软管 Metal Collapsible Tube玻璃容器 Glass Containers瓶罐 Container轻量瓶 Light weight Container软饮料瓶 Sofe drink bottle陶瓷电装容器 Pottery and Porcelain Packaging Containers 包装辅助材料 ancillary Packaging Materials粘合剂 Adhesive聚醋酸乙烯 Poly vinyl Acetate水溶型粘合剂 Water-soluble Adhesive溶剂型粘合剂 Solvent Adhesive压敏型粘合剂 Pressure-sensitive Adhesive 锡焊罐 Soldered Can粘接罐 Cono-weld Can卷开罐 Key Open Can索铁罐 Plain Tinplate Can顶开罐 Open Top Can易开盖 Easy Open End金属大桶 Metal Drum钠钙硅玻璃 Sode-lime-silica Glass小口瓶 Bottle啤酒瓶 Beer Bottle白酒瓶 White Spirit Bottle乳液型粘合剂 Emulsion Adhesive热熔型粘合剂 Hotmelt Adhesive胶乳 Latex淀粉粘合剂 Starch Adhesive阿拉伯树胶 Acacia Gum皮胶 Hide glue涂料 Coating Material酚醛树胶(PF) phenol ?formaldehyde Resin 丙烯酸树脂 Acrylics环氧树脂(EP) Epoxide Resin防雾滴涂料 Antidimming Paint桐油 Tung Oil封缄材料 Closure Material胶带 gummed Tape流体密封胶 Fluid Seal-gum糊精 Dextrin骨胶 bone glue干酪素 Casein天然树脂 Natural Resin氨基树脂 Amino Resin防腐涂料 Anticorrosive Paint防静电涂料 Anti-static Paint石蜡 Paraffin捆扎材料 Strapping Material压敏胶带 Pressure-sensitive Tape食品包装技术和设备食品包装技术 Food Packaging technology 食品包装机械 Food Packaging Machinery 自动包装机 Automatic Packaging Machine专用包装机 Special Purpose Packaging Machine食品充填技术 Food Tilling Technique灌装技术 Canning Technique裹包技术 Wrapping Technique扭结式裹包机 Twist wrapping Machine拉伸裹包机 Stretch (film) Wrapping Machine袋装技术 Fill-bag technique制袋成型-充填-封口包装机 Form/fill/Seal Machine装盒技术 Cartoning Technique热成型充填封合包装机 Thermo form/Fill/Seal热收缩包装技术 Shrinking Packaging Technique收缩套箍 Bands, shrink (moisture)防潮包装技术 Water Vapour Proof Packaging Technique 透湿度 Water Vapour Permeability干燥剂 Desiccating Agent, desiccant通用包装机 Universal Packaging Machine多功能包装机 Multi-function Packaging Machine计量精度 Measuring Precision灌装机 Canning Machine折叠式裹包机 Fold Wrapping Machine缠绕式裹包机 Spiral (or Convdute) Wrapping Machine袋装机械 Fill-bag Machine装盒机 Cartoning Machine, Cartoner热收缩薄膜 Film, Shrink收缩包装机 Shrink Wrapping Machine临界水分 Critical Moisture Content吸潮剂 Demoisturer, Moisture Remouver真空包装(VP) Vacuum Packaging改善或控制气氛包 MAP Modified or Controlled Atmosphore Packaging保鲜包装 Fresh-keeping Packaging真空包装机 Vacuum Packaging Machine 脱氧包装 De-oxygen Packaging脱氧剂 deoxygener无菌包装系统 Aseptic Packaging System 利乐包 Tetra Pak软罐头 Flexible Can蒸煮盒 Retortable Box封口技术 Sealling Technique塞子 Plug螺旋盖 Screw Cap凸耳盖 Twist-off lug Cap撬开盖 Pry-off Cap,Press-on Cap热压封合 Heat Sealing铁落试验 Drop Test商标 Tradematk货签 Shipping Tag压敏标签 Pressure-sensitive Label充气包装 Gas Packaging透气度 Gas permeability充气包装机 gas Flushing Machine无菌包装(AP) Aseptic Pavckaging超高温瞬时灭菌(UHT) Ultra High Temperature Short Time 康美盒无菌包 Combibloe Aseptic Package蒸煮袋 Retortable Pouch杀菌机 sterilization Machine盖 Cap, Lid, Cover防盗盖 Pilfer Proof Cap Tamperproof Cap滚压盖 Roll-on Cap王冠盖 grown, Grown Cap压力试验 Compression Test标签 Label吊牌 Tag胶粘标签 Adhesive Label热敏标签 heat-sensitive Label贴标机 Labelling Machine激光打印 Laser Printing捆扎机 Strapping Machine喷墨打印 spray ink Printing捆扎带 Strapping包装自动线 Automatic Packaging Line有关包装缩略语和简称一览表一. 包装材料和容器制品ABS acrylonitrile-butadiene-styrene 丙烯腈-丁二烯-苯乙烯ADH adhesive 粘合剂AF aluminuj foil 铝箔AM aluminum metallization 蒸镀铝ANS acrylonitrile-styrene copolymers 丙烯腈-苯乙烯共聚物BBP butyl benzyl phthalate 邻苯二甲酸丁苄酯BIB Bag-in ?box 衬袋箱(盒)BK bleached kraft 漂白牛皮纸BMC bulk molding compound 预制整体模塑料BON biaxially oriented nylon film 双向拉伸尼龙薄膜BOPP Biaxially oriented polypropylene film 双向拉伸聚丙烯CELLD cello phane 赛璐玢COFC container on flat car 平板车集装箱CRC child-resistant closure 儿童安全盖DMT dimethyl terephthalate 对苯二甲酸二甲酯DOA dioctyl akipate 己二酸二辛酯DOP dioctyl phthalate 邻苯二酸二辛酯DRD draw redraw (cans) 深冲(罐),冲压-再冲压DWI draw and ironed (cans) 冲拔罐EAA ethylene-acrylic acid 乙烯-丙烯酸共聚物ECCS electrolytic chromium-coated steel 镀络钢EEA ethylene-ethyl acrylate 乙烯-丙烯酸乙酯共聚物EG thylene glycol 乙二醇EMAA ethylene-methacrylic acid 乙烯-甲基丙烯酸共聚物EPC expanded polyethylene copplymer 发泡聚乙烯EPE expanded polyethylenev 发泡聚乙烯ETO ethylene oxide 环氧乙烷ETP electrolytic tinplate 电镀锡钢板EVA ethylene-vinyl acetate 乙烯-醋酸乙烯共聚物EVOH ethylene-vinyl alcohol 乙烯-乙烯醇共聚物FEP fluorinated ethylene-polypropylene 氟化乙烯-丙烯共聚物FRP fiberglass reinforced plastics 玻璃纤维增强塑料GPPS general-purpose polystyrene 通用型聚苯乙烯HDPE high density polyethylene 高密度聚乙烯HM hot melt 热熔胶HPP homopolymer polypropylene 聚丙烯均聚物LDPE low density polyethylene 低密度聚乙烯LLDPE linear low density polyethylene 线性低密度聚乙烯MDPE medium density polyethylene 中密度聚乙烯MGBK machine-glazed bleached kraft 纸机光泽漂白牛皮纸MMA methyl methacrylate 甲基丙烯酸甲酯NC nitrocellulose 硝化纤维素NK natural kraft 本色牛皮纸NODA n-octyl n-decyl adipate 已二酸辛癸酯ON oriented nylon 取向(拉伸)尼龙OPET oriented polyester 取向(拉伸)聚酯OPP oriented polypropylene 拉伸聚丙烯OPS oriented polystyrene 拉伸聚苯乙烯PAN polyacrylonitrile 聚丙烯腈PBT poly butylenes terephthalate 聚对苯二甲酸丁二醇酯PC poly carbonate 聚碳酸酯PE poly ethylene 聚乙烯PET polyester 聚酯PEB polyisobutylene 聚异丁烯PM packaging materials 包装材料PP poly propylene 聚丙烯PS polystyrene 聚苯乙烯PTFE poly tetra fluoroethy lene 聚四氟乙烯PVAC poly (vinyl acetate) 聚醋酸乙烯PVC poly (vinyl chloride) 聚氯乙烯PVDC poly (vinylidene fluoride) 聚偏二氯乙烯PVF poly (vinyl luoride) 聚氟乙烯PVF2 poly (vinylidene fluoride) 聚偏二氟乙烯PVA poly (vinyl alcohol) 聚乙烯醇RCF regenerated cellulose film 再生纤维素薄膜RCPP random-copolymer poly propylene 无规聚丙烯RSC regular slotted container 规则开槽箱SAN styrene-acylonitrile 苯乙烯-丙烯腈共聚物SB styrene-butadiene 苯乙烯-丁二烯共聚物SBS sdid bleached sulate 同质漂白牛皮纸TUS solid unbleached sulfate 同质未漂白牛皮纸TFS tin-free steel 无锡钢板TPA terephthalic acid 对苯二甲酸VA vinyl alcohol 乙烯醇VC vinyl chloride 氯乙烯VCM vinyl chloride monomer 氯乙烯单体VDC vinylidene chloride 偏二氯乙烯XKL extensible kraft linerboard 可伸性牛皮箱纸板二.包装技术及单位BPM bottles (or bags) per minute 瓶(或袋)/分钟BUR blow-up ratio 吹胀比CA controlled atmosphere 控制气氛CAD computer-aided design 计算机辅助设计CAP controlled atmosphere 控制气氛包装CNC computer numerical control 计算机数字控制CPM cans perminute 罐/分钟FFS form/fill/seal 成型-充填-封合GAL gallon(3.785L in the U.S) 加仑(美加仑等于3.785升) HFFS form/fill /seal, horizontal 卧式成型-充填-封合HRC Rockwell hardness (C Scale) 洛氏硬度(C标度)HRM Rockwell hardness (M scale) 洛氏硬度(M标度)HTST high temperature-short time 高温短时杀菌MA modified atmosphere 改变气氛MD machine direction 机器方向,纵向OD optical density 光密度OTR oxygen transmission rate 氧气透过率PPB part per billion (109) 十亿分之一PPM part per million (107) 百万分之一RH relative humidity 相对湿度RPM rotations per minute 每分钟转数SP special packaging 特殊包装,专用包装TFFS thermoform/fill/seal 热成型-充填-封合TM melting temperature 熔化温度TIS technical information service 技术情报服务UV ultraviolet 紫外线VFFS form/fill/seal, vertical 立式成型-充填-封合WT weight 重量WVTR water vapor transmission rate 水蒸气透过率食品标准英语词汇蜂蜜标准 Standard for Honey可可脂标准 Standard for Cocoa Butters巧克力标准 Standard for Chocolate可可粉和可可糖混合物标准 Standard for Cocoa Powders (Cocoas) and Dry Cocoa-sugar Mixtures天然矿泉水标准 Standard for Natural Mineral Waters加工可可和巧克力制品所使用的碎可可豆, 可可块, 可可油饼和可可细粉标准 Standard for Cocoa (Cacao) Nib, Cocoa (Cacao) Mass, Cocoa Press Cake and Cocoa Dust (Cocoa Fines), for Use in the Manufacture of Cocoa and Chocolate Products夹心巧克力成分标准 Standard for Composite and Filled Chocolate可可脂糖果标准 Standard for Cocoa Butter Confectionery木薯标准 Standard for Gari食醋标准 Standard for Vinegar蛋黄酱标准 Standard for Mayonnaise食用木薯粉标准 Standard for Edible Cassava Flour糖标准 Standard for Sugars鱼和鱼制品标准名称沙文鱼罐头 Canned Salmon速冻除内脏及带内脏鳍鱼 Quick Frozen Finfish, Uneviscerated and Eviscerated小虾或大虾罐头 Canned Shrimps or Prawns金枪鱼和鲣鱼罐头 Canned Tuna and Bonito蟹肉罐头 Canned Crab Meat速冻小虾或大虾 Quick Frozen Shrimps or Prawns沙丁鱼和沙丁类鱼制品罐头 Canned Sardines and Sardine-Type Pro油脂和相关制品标准名称单个标准未涉及的食用油脂通用标准 General Standard for Edible Fats and Oils Not Covered by Individual Standards人造奶油标准 (脂肪含量不低于80%) Standard for Margarine粗制和精炼的橄榄油, 以及精炼橄榄渣油标准 Standard for Olive Oil, Virgin and Refined, and for Refined Olive-Pomace Oil人造奶油标准 (脂肪含量在39%-41%间) Standard for Minarine命名植物油标准 Standard for Named Vegetable Oils命名动物油标准 Standard for Named Animal Fats谷物、豆类及其制品以及植物蛋白标准名称面粉标准 Standard for Wheat Flour玉米标准 Standard for Maize (Corn)整玉米粗粉标准 Standard for Whole Maize (Corn) Meal脱胚玉米粉和玉米渣标准 Standard for Degermed Maize (Corn) Meal and Maize (Corn) Grits小麦面筋标准 Standard for Wheat Gluten脱皮的整珍珠小米标准 Standard for Whole and Decorticated Pearl Millet Grains小米面标准 Standard for Pearl Millet Flour某些豆类标准 Standard for Certain Pulses高粱米标准 Standard for Sorghum Grains高粱面标准 Standard for Sorghum Flour植物蛋白制品标准 General Standard for Vegetable Protein Products (VPP)大豆蛋白制品标准 General Standard for Soy Protein Products (SPP)粗粒硬质小麦和硬质小麦粉标准 Standard for Durum Wheat Semolina and Durum Wheat Flour大米标准 Standard for Rice小麦和硬质小麦标准 Standard for Wheat and Durum Wheat花生标准 Standard for Peanuts燕麦标准 Standard for Oats古斯(蒸熟的硬质小麦餐)标准 Standard for Couscous果汁及相关产品标准名称杏蜜、桃蜜和梨蜜标准(采用物理方法保藏) Standard for Apricot, Peach and Pear Nectars Preserved Exclusively by Physical Means桔子汁标准(仅用物理方法保藏) Standard for Orange Juice Preserved Exclusively by Physical Means葡萄柚汁标准(仅用物理方法保藏) Standard for Grapefruit Juice Preserved Exclusively by Physical Means柠檬汁标准(仅用物理方法保藏) Standard for Lemon Juice Preserved Exclusively by Physical Means苹果汁标准(仅用物理方法保藏) Standard for Apple Juice Preserved Exclusively by Physical Means蕃茄汁标准(仅用物理方法保藏) Standard for Tomato Juice Preserved Exclusively by Physical Means浓缩苹果汁标准(采用物理方法浓缩) Standard for Concentrated Apple Juice Preserved Exclusively by Physical Means浓缩桔子汁标准(采用物理方法浓缩) Standard for Concentrated Orange Juice Preserved Exclusively by Physical Means葡萄汁标准(仅用物理方法保藏) Standard for Grape Juice Preserved Exclusively by Physical Means浓缩葡萄汁标准(采用物理方法浓缩) Standard for Concentrated Grape Juice Preserved Exclusively by Physical Means浓缩拉布鲁斯卡甜葡萄汁标准(采用物理方法浓缩) Standard for Sweetened Concentrated Labrusca Type Grape Juice Preserved Exclusively by Physical Means菠萝汁标准(仅用物理方法保藏) Standard for Pineapple Juice Preserved Exclusively by Physical Means无果肉的黑加仑果蜜标准(采用物理方法保藏) Standard for Non-pulpy Blackcurrant Nectar Preserved Exclusively by Physical Means黑加仑汁标准(仅用物理方法保藏) Standard for Blackcurrant Juice Preserved Exclusively by Physical Means浓缩黑加仑汁标准(采用物理方法浓缩) Standard for Concentrated Blackcurrant Juice Preserved Exclusively by Physical Means含某种小浆果的果肉蜜标准(采用物理方法保藏) Standard for Pulpy Nectars of Certain Small Fruits Preserved Exclusively by Physical Means含桔的果蜜标准(采用物理方法保藏) Standard for Nectars of Certain Citrus Fruits Preserved Exclusively by Physical Means浓缩菠萝汁标准(采用物理方法浓缩) Standard for Concentrated Pineapple Juice Preserved Exclusively by Physical Means采用防腐剂加工的浓缩菠萝汁标准 Standard for Concentrated Pineapple Juice with Preservatives, for Manufacturing番石榴果蜜标准(采用物理方法保藏) Standard for Guava Nectar Preserved Exclusively by Physical Means芒果果肉液标准(采用物理方法保藏) Standard for Liquid Pulpy Mango Products Preserved Exclusively by Physical Means其它未涉及的果蜜通用标准(采用物理方法保藏) General Standard for Fruit Nectars Preserved Exclusively by Physical Means Not Covered by Individual Standards其它未涉及的果汁通用标准(仅用物理方法保藏) General Standard for Fruit Juices Preserved Exclusively by Physical Means Not Covered by Individual Standards蔬菜汁通用标准 General Standard for Vegetable Juices食品分类标准名称预包装食品标签通用标准 General Standard for the Labelling of Prepackaged Foods辐照食品通用标准 General Standard for Irradiated Foods食品添加剂销售时的标签通用标准 General Standard for the Labelling of Food Additives when Sold as Such食用盐标准 Standard for Food Grade Salt食品添加剂通用法典标准前言 Preamble to the General Standard for Food Additives食品中污染物和毒素通用法典标准前言 Preamble to the General Standard for Contaminants and Toxins in Foods再加工用花生中黄曲霉毒素最大限量标准 Standard for Maximum Level for Aflatoxins in Peanuts intended for Further Processing。

Fumed Silica Filler

Fumed Silica Filler

Fumed Silica Filler – Why so Popular?SpecialChem | Edward M Petrie - Jun 20, 2011IntroductionFumed silica is a popular filler that is used in many adhesive and sealant formulations. Even though fumed silica is not a very good extender for minimizing cost, modifying thermal expansion coefficients, or significantly improving cured strength, it is one of the most widely used fillers in a variety of applications from structural adhesives to pressure sensitive adhesives. Fumed silica, an amorphous silicon dioxide, is a versatile, efficient additive used in adhesive and sealant formulations primarily for flow control and thixotropy. Fumed silica has long been the dominant thixotrope employed in the adhesive and sealant industry.This article will explore why fumed silica is so widely used and valued by the formulator. The origin and various types of fumed silica will also be described. The property modifications that are possible will be identified with the focus being on thixotropy and rheological properties. Starting formulations will be provided for several adhesive and sealant products.Origin and CharacteristicsSilica is an abundant mineral found in crystalline form (quartz) and amorphous form (diatomaceous silica). Diatomaceous silica is used more extensively than quartz because it is a softer material providing less machining and abrasive problems. There is also concern over respiratory problems possibly associated with inhalation of finely divided quartz. Although it is an excellent additive for increasing viscosity, diatomaceous silica has a low oil adsorption and very large surface area so that it is not a particularly good extender since it cannot be easily incorporated into the formulation in high concentrations.Fumed silica is produced by the vapor-phase hydrolysis of silicon chlorides in a hydrogen-oxygen flame or an electric arc furnace. Fumed silica is sometimes also referred to as pyrogenic silica. The high temperature creates silicon dioxide molecules which then condense to form discrete particles which can attach themselves to one another due to the high temperature of the process. The result is a three-dimensional branched aggregate.Fumed silica is naturally hydrophilic due to the silanol groups on the particle surface. This accounts for its high surface energy and good wetting properties. However, fumed silica particle can be "treated" to provide a number of hydrophobic grades. In these processes the silanol groups on the surface are generally replaced with organosilicon groups.The surface chemistry of fumed silica is extremely important because of its influence on the rheological behavior of the formulation. Three types of chemical groups can be formed on the surface of the particle depending on the processing procedures:1.Isolated hydroxyl,2.Hydrogen bonded hydroxyl, and3.SiloxaneThe isolated and the hydrogen bonded hydroxyl groups are hydrophilic sites, whereas the siloxane is a hydrophobic site. Thus, fumed silica grades are generally characterized by their surface area and whether they are hydrophilic (standard grade) or hydrophobic. The hydrophilic silica is most effective in nonpolar and medium polar media. The hydrophobicity of treated fumed silica results in lower adsorbed moisture on the silica. This makes it ideal for use in systems where moisture sensitivity is important and must be maintained low (e.g., moisture cure urethanes and silicones). The performance of hydrophilic fumed silica is often improved by adding a polar substance such as ethylene glycol, glycerin, or some secondary amines to the formulation. In medium polar to polar media, hydrophobic fumed silica is a more efficient thickening agent and generallypreferred. Comparative sag resistance properties of various commercial types of fumed silica in a liquid epoxy adhesive system are shown in Table 1.Cab-O-Sil PTG Hydrophilic 60 60 45 26Aerosil 200/Aluminum Oxide C Hydrophilic 60 40 25 13Aerosil COK 84 Hydrophilic 60 60 40 16Cab-O-Sil N70-TS Hydrophobic 60 60 60 60Aerosil R972 Hydrophobic 60 30 25 16Table 1: Comparative Sag Resistance Properties of Fumed Silica in Liquid Epoxy 1Fumed silica is typically available with sizes in the 7-40 nanometer range and surface areas ranging from 50 to 380 m2/g. Unlike precipitated silica, fumed silica has no internal surface area. The specific gravity of fumed silica is approximately 2.2. Because of its high surface area to weight ratio, formulations generally require only a little fumed silica (1% to 5% by weight) to achieve thixotropic properties.ThixotropyAlthough most fillers provide adhesive and sealant systems with viscosities that are unaffected by shear rate, certain fillers can provide thixotropy which results in an adhesive that will not flow under low levels of stress (e.g., under its own weight when applied to vertical surfaces). Yet the compound will exhibit lower viscosities when under higher levels of stress such as when being dispensed or applied to a substrate.Thixotropy provides a shear thinning effect; that is, viscosity decreases as shear rate increases, and vice versa. This not only allows easy pumping, dispensing, and mixing of the adhesive, but also provides sag resistance once the adhesive is applied. The thixotropic fillers work by forming a temporary "structure" in the mixture, which can be broken down at high rates of shear. This structure is generally the result of van der Waals forces between molecules. Viscosity decrease occurs when this structure breaks down due to shearing stress and the resistance to flow decreases. (See Figure 1)Figure 1: Thixotropic structuresThixotropy can be obtained at fairly low loading concentrations with colloidal silica, bentonite, metallic leafing powders, and hydrated magnesium aluminum silicates. If required, thixotropic adhesive pastes may be formulated which will not flow during cure even at elevated temperaturesand which are useful for bonding loose fitting joints.The addition of asbestos fibers at one time provided excellent thixotropic adhesive formulations, especially at elevated temperatures. However, health and environmental regulations have severely limited the use of this material. Today, fumed silica, precipitated calcium carbonate, certain clays, and cellulose and other fibers offer thixotropic properties at relatively low levels of loading.The thixotropic characteristics provided by fumed silica are due to its ability to develop a loosely woven, lattice-like network by hydrogen bonding between particles. This network raises the apparent viscosity of the system, increases the cohesive forces, and contributes to the suspension of the solid. Because the hydrogen bonds themselves are relatively weak, they are easily disrupted through the action of an applied stress or shearing force and quickly reformed when the stress or shearing force is removed.FormulationFumed silica is generally incorporated at concentrations of less than 10 pph. Adhesive and sealant systems based on lower viscosity resins generally tend to hold thixotroping action better at elevated temperature than systems based on the higher viscosity resins.Parameters that are important to the performance of fumed silica systems include: •the nature of the system (polarity)•concentration of the silica•grade of silica used (particle size, surface area, density, surface chemistry, etc.)•degree of dispersion•presence of additives in the formulation other than the fumed silica.At times the results of the formulation are less than expected because these factors are not considered or understood relative to the final rheological properties. For example, proper dispersion can maximize the efficiency of both hydrophilic and hydrophobic fumed silica. To ensure proper dispersion, addition of silica to the formulation in the right sequence, as well as effectiveness of the dispersion equipment becomes very important.High shear mixing equipment will improve the efficiency of fumed silica in the formulation. In most cases, silica should be added to the resin directly or to the more viscous part of the formulation with as little solvent or diluents as possible. Incorporating the silica before adding any fillers or pigments assures homogeneous distribution. Dispersing the silica in a concentrated base, or master batching, provides optimum efficiency and stability.The fumed silica also raises the effective viscosity of the base resin to prevent other components from settling while the extrudability or spreadability is unaffected. It also should be noted that fumed silica provides a surface that is free of texture. This is important in architectural grade paints and sealants.Fumed silica is often used in 100% solids, liquid polymers. Fumed silica is often found in adhesive formulations containing base polymers of epoxy, urethane, or silicone. 2With epoxy adhesives and sealants only a few percent by weight of the additive will eliminate common problems such as slumping and separation. Table 2 shows a starting formulation for several thixotropic two-component, room temperature curing epoxy adhesives. Note that only about 2% of fumed silica is required to make both components thixotropic.68 50.5Part A DGEBA epoxy(EEW=190)Reactive diluent 7 Talc29.5 40 Fumed silica thixotrope2.5 2.5 Part B Cycloaliphatic amine40 Polyamide53 Aluminum powder24 20 Talc34 25 Fumed silica thixotrope 2 2 CureCure schedule30 min at 150°C 30 min at 120°C Mix ratio 2A:1B by weight 1A:1B byweightProperties on Aluminum Lap shear @ 25°C 1734 psi 1640 psi Lap shear @ 120°C 396 psi 175 psi T-peel @ 25°C 4 pli 14 pliTable 2: Starting Formulation for a Rigid and a Flexible 2K Thixotropic EpoxyAdhesiveThe fumed silica also raises the effective viscosity of the base resin to prevent other components from settling while the extrudability or spreadability is unaffected. It also should be noted that fumed silica provides a surface that is free of texture. This is important in architectural grade paints and sealants.Fumed silica has also been effective in a variety of sealant systems including butyl, silicone, urethane, and MS Polymer (silyl-terminated polyether) sealants. Table 3 provides an MS Polymer sealant formulation that uses fumed silica as a thixotrope.MS Polymer100 Plasticizers50 Filler (calcium carbonate)120 Pigment20 Fumed silica5 Dehydration agent (organosilane) 2 Adhesion promoter3 Hardening catalyst (organo-tin) 1.5Total301.5 Table 3: MS Polymer Sealant Formulation With polyurethane systems, the thixotropic gels formed with ordinary fumed silica are at times unstable when shipped and stored due to reaction of the surface hydroxyls with the isocyanate groups. However, this problem can be eliminated by using silane treated fumed silica or adding small percentages of polyoxypropylene prepolymer to the formulation.Fumed silica has also been used in pressure sensitive and hot melt adhesives to change the rheological properties and to enhance physical properties. In hot melt systems, fumed silica has been incorporated into resins such as polystyrene blocked copolymer and butyl rubber. Five percent of added fumed silica (provided that it is dispersed properly) provides an increase in shore hardness, tensile strength, and elongation without the loss of peel strength.In waterborne pressure sensitive adhesives, the use of fumed silica dispersion is generally better than using the equivalent fumed silica powder. Both products will make a significant impact in the improvement of shear strength while having moderate or little impact on other pressure sensitive adhesive tests. 3Table 4 illustrates the enhanced properties obtained with the use of fumed silica in a Kraton (styrene butadiene block copolymer) based pressure sensitive adhesive without the loss of adhesion or tack. The temperature resistance, tensile, and elongation values improve with as little as three percent addition of the silica.Film thickness, mils 1.5 1.5Specific gravity 0.93 0.93Rolling ball tack, cm 0.5 0.5Probe tack, kg 2.0 2.1Shear adhesive failure temperature, deg F 190 190Tensile strength, psi 700 780Elongation at break, % 660 680Hardness, Shore A 61 68Peel temperature, deg F 150 190Creep: 240 deg F hold, mins 100 180Table 4: Properties of Pressure Sensitive Adhesive with and without Fumed Silica. (Adhesive based on styrene butadiene copolymer.)References1.Katz, H.S. and Milewski, eds., Handbook of Fillers for Plastics, van Nostrand Reinhold,New York, 1987, p. 180.2.Wen, J. "Fumed Silica Control Rheology of Adhesives and Sealants", Adhesives andSealants Industry, October 2000.3.Conn, R., "Fumed Silica Use in Pressure Sensitive Adhesives", PSTC Technical Seminar,2009.。

煅烧温度对磁性铁钛复合氧化物微观结构及脱硝活性的影响

煅烧温度对磁性铁钛复合氧化物微观结构及脱硝活性的影响

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2018年第37卷第9期·3410·化 工 进展煅烧温度对磁性铁钛复合氧化物微观结构及脱硝活性的影响周飞1,2,熊志波1,金晶1,武超1,陆威1,丁旭春2(1上海理工大学能源与动力工程学院,上海 200093;2江苏国信靖江发电有限公司,江苏 靖江 214500) 摘要:利用共沉淀微波法构筑新型磁性铁钛复合氧化物催化剂,研究了煅烧温度对其物性结构及NH 3-SCR 脱硝性能的影响,揭示了钛掺杂对磁性γ-Fe 2O 3晶体高温热转化及其脱硝性能的优化机制。

结果表明:当煅烧温度由300℃升至500℃时,磁性铁氧化物的比表面积、孔容先增大后减小,且较高的煅烧温度促使其γ-Fe 2O 3晶体逐步转变为α-Fe 2O 3晶体,导致磁性铁氧化物表面Fe 2+和活性氧浓度增大,促使其NH 3-SCR 脱硝性能降低;掺杂钛可提高磁性铁氧化物的热稳定性,抑制了高温煅烧下γ-Fe 2O 3晶体向α-Fe 2O 3晶体的不可逆转变和其孔隙结构的坍塌,增大了高温煅烧时磁性铁氧化物催化剂的比表面积和比孔容,合适的煅烧温度为400℃;该煅烧温度下,催化剂低温活性最佳,反应温度高于220℃、空速比60000h –1时可获得80%以上的NO x 转化效率。

关键词:污染;选择催化还原;催化剂;共沉淀;煅烧温度;微观结构;微波辐射中图分类号:TQ3 文献标志码:A 文章编号:1000–6613(2018)09–3410–06 DOI :10.16085/j.issn.1000-6613.2017-2004Influence of calcination temperature on the micro-structure and the NH 3-SCR activity of magnetic iron-titanium mixed oxide catalystZHOU Fei 1,2, XIONG Zhibo 1, JIN Jing 1, WU Chao 1, LU Wei 1, DING Xuchun 2(1School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2Jiangsu Guoxin Jingjiang Power Company, Jingjiang 214500, Jiangsu, China)Abstract :A novel magnetic iron-titanium mixed oxide catalyst was prepared through the co -precipitation method under microwave irradiation. The effect of calcination temperature on its micro-structure and the NH 3-SCR activity was investigated. The mechanism of the enhancements on the NH 3-SCR activity and the high-temperature irreversible thermal transformation of magnetic γ-Fe 2O 3 crystal by the addtion of titanium was also revealed. The results indicated that the BET surface area and the pore volume of the prepared magnetic iron oxide firstly increased and then decreased when the calcination temperature increased from 300℃ to 500℃. Meanwhile, γ-Fe 2O 3 crystals irreversibly transformed into α-Fe 2O 3 after being calcined at high temperature, giving rise to the increase of the concentrations of Fe 2+ and active oxygen on its surface, thereby decreased the NH 3-SCR activity of magnetic iron oxide catalyst. The addition of titanium oxide improved the thermal stability of γ-Fe 2O 3 crystals in magnetic iron oxide. The irreversible thermal transformation of γ-Fe 2O 3 crystal into α-Fe 2O 3 crystal and the collapsing of microscopic pore structure of the magnetic iron oxide were also depressed when it was calcined at high temperature. Therefore, the addition of titanium oxide improved the BET surface area and the pore volume of the magnetic iron oxide.放控制。

华工学人

华工学人

李勇(Li Y o n g),汉族,河南信阳人。

1997年毕业于哈尔滨理工大学机械制 造工艺及装备专业,获工学学士学位;2002年毕业于华南理工大学机械制造及其 自动化专业,获工学硕士学位;2008年毕业于华南理工大学机械制造及其自动化 专业,获工学博士学位。

2002年7月起在华南理工大学机械与汽车工程学院任教;2010年被遴选为广东省高等学校"千百十工程”校级培养对象。

2008年晋升为副 教授,2014年晋升为教授,2015年被批准为博士生导师。

至今已指导(含协助指 导)硕士研究生20人。

李勇教授长期从事电子散热领域的教学和科研工作。

负责主讲《机械设备数控 技术》《机械制造技术基础》本科生课程。

教学中重视学生的全面发展,特别是思 维方法和解决问题的能力,注重理论研究与应用技术相结合,深受学生好评。

主编 教材《机械设备数控技术》,参编教材《机械制造技术基础》和《机电一体化系 统设计与应用》。

2010年获广东省教学成果一等奖(排名第三);2009年获华南 理工大学教学成果特等奖、一等奖各1项,并先后5次获得华南理工大学教学优秀 奖。

指导研究生参加广东省"挑战杯”大学生课外学术科技作品竞赛,获特等奖,多次指导本科生参加全国大学生节能减排实践竞赛及国家大学生创新性实验计划并 获奖。

多年来,李勇教授针对微电子、光电子、电力电子等领域的热控制需求,对微 结构和微系统的设计、制造、优化与应用技术进行了深入研究,涉及微热管结构设 计制造技术、微热管自动化设备研发、微电子/光电子/电力电子热管理系统设计分 析、IDC机房热控制与节能技术、半导体芯片制冷技术、汽车尾气余热回收利用及 动力电池热管理技术等多个方面;同时,针对未来柔性电子产业的热管理需求,开展了柔性热管、微型压电风扇等关键产品及技术的研发。

曾主持包括国家自然科学 基金项目"面向智能手机领域的超薄微热管制造方法研究与传热性能优化”、"大功率LED芯片集成封装用均热板形变调控机制与性能分析”,广东省自然科学基金 项目"多尺度分段烧结式吸液芯结构强化传热机理研究”、"高深宽比沟槽式微热 管成形技术基础研究”,以及广东省科技计划项目"流动人□封闭环境空气质量分 析及调节技术研究”、"太阳能集热器关键传热元件性能检测技术及仪器开发”在内的多个项目的研究;同时,与重庆大江美利信压铸有限公司合作共建电子散热研 究中心,与中国移动通信集团广东有限公司合作研究IDC机房及服务器散热技术,与广东新创意科技有限公司合作研发了微热管自动化生产装备等。

高硅氧含量硅丙乳液改性硅溶胶基无机涂料的制备及性能研究

高硅氧含量硅丙乳液改性硅溶胶基无机涂料的制备及性能研究

2020年第21期广东化工第47卷总第431期 · 23 ·高硅氧含量硅丙乳液改性硅溶胶基无机涂料的制备及性能研究王政芳,李善吉,饶珍(广州工程技术职业学院石油化工学院,广东广州510057)[摘要]本文首先制备了一种高有机硅含量的硅丙乳液,然后利用所制备高有机硅含量的硅丙乳液杂化改性硅溶胶作为主要成膜物质,并辅以适当的颜料,填料,助剂等制备了硅丙乳液改性硅溶胶基无机涂料(TGS-Si)。

对改性后的硅溶胶基无机涂料涂膜性能研究表明:涂膜表干时间1.5 h;涂膜正常,无气泡,无裂纹;涂膜水浸泡168小时,无气泡,无起皮,无脱落;涂膜碱浸泡168小时,无气泡,无起皮,无脱落;涂膜耐洗擦2200次无漏底;柔韧性为1 mm;铅笔硬度3 h,水接触角度为118°,具有阻燃性能。

[关键词]无机涂料,杂化,疏水性,阻燃性[中图分类号]TU561.6 [文献标识码]A [文章编号]1007-1865(2020)21-0023-02Study on the Preparation and Properties of Silica Sol-based Inorganic CoatingModified by Silica-acrylic EmulsionWang Zhengfang, Li Shanji, Raozhen(Department of Petrochemical Engineering, Guangzhou Institute of Technology, Guangzhou 510057, China) Abstract: In this paper, high organic silicone content of silicon-acrylic emulsion modified silica sol was prepared by hybrid reaction between a high organic silicone content of silicon-acrylic emulsion and silica sol. Then appropriate pigments, fillers, additives, etc. were added to form silicon-acrylic emulsion modified silica sol based inorganic coating (TGS-Si). Studied on performance of coating revealed that the TGS-Si coating has excellent hydrophobicity, washable resistance and flame retardant performance, compared with the performance of commercially available silicon-acrylic emulsion modified silicone sol - based coating (TS-Si).Keywords: inorganic coating;hybrid;hydrophobicity;flame retardant.无机涂料指以硅酸盐,硅溶胶,磷酸盐等作为主要成膜物质,辅以适当的填料,颜料,填料,助剂等成分,经充分研磨等工艺而形成的涂料[1-2]。

如何解释XRD中衍射峰向高角度偏移(附参考文献)

如何解释XRD中衍射峰向高角度偏移(附参考文献)

参考文献(下载该文档获得参考文献)
1. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering。
2. Improved optical and structural properties of ZnO thin films by rapid thermal annealing。
宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在 的应力。一般情况下,残余应力的术语残余应力)在X射线衍射谱上的表现是使峰位漂移。当存在压应力时,晶 面间距变小,因此,衍射峰向高角度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射 峰位向低角度位移。通过测量样品衍射峰的位移情况,可以求得残余应力
3. Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion。
首先明白什么是残余应力?
外力撤除后在材料内部残留的应力就是残余应力。但是,习惯上将残余应力分为微观应力和宏观 应力。两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽,而超微观应力的存在则会使衍射 峰强度降低。这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。通过测量 衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
如何理解衍射峰偏移和残余应力之间的关系?
如图所示四氧化三铁的特征峰 (111)、(220)、(311)、 (400)发生不同程度的偏移, 但是在Jade分析软件中,这种 样品的原始XRD与四氧化三铁匹 配度最高

生物学医药中的硅胶色谱填料的英文

生物学医药中的硅胶色谱填料的英文

生物学医药中的硅胶色谱填料的英文In the field of biomedical sciences, silica gel chromatography fillers play a crucial role in various applications ranging from drug discovery and development to analytical chemistry. These fillers, often referred to as silica-based stationary phases, are used in chromatography columns to separate and purify complex mixtures based on their chemical properties. The demand for high-performance silica gel chromatography fillers has grown significantly over the years, driven by the increasing complexity of biomolecules and the need for more efficient and selective separation techniques.Introduction to Silica Gel Chromatography Fillers.Silica gel chromatography fillers are porous, solid particles made primarily of silicon dioxide (SiO2). They are characterized by their high surface area, chemical stability, and tunable pore size, which allows for precise control over the separation process. Silica gel fillers arewidely used in chromatography techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and supercritical fluid chromatography (SFC).In biomedical applications, silica gel chromatography fillers are essential for the purification and analysis of biomolecules like proteins, peptides, nucleic acids.。

临界厚度现象对微铣刀磨损的影响

临界厚度现象对微铣刀磨损的影响

2021年第49卷第2期P生产技术roduction Technology 王学彬等 临界厚度现象对微铣刀磨损的影响53 收稿日期:2020-12-14临界厚度现象对微铣刀磨损的影响王学彬,严 亮,杨 健,肖渊海(中国电子科技集团公司第二十一研究所,上海200233)摘 要:随着电机微型化,微铣削加工方法在电机生产中使用日趋广泛㊂受微铣刀强度限制,微铣刀切削刃具有一定圆弧,导致微铣削时出现临界厚度现象㊂建立二维车削仿真模型对临界厚度现象进行仿真,建立二维铣削模型仿真分析临界厚度下铣削区域温度分布㊂通过微铣削实验,设置不同每齿进给量,分析临界厚度现象对刀具磨损的影响㊂关键词:临界厚度;微铣削;温度;磨损中图分类号:TM305.1 文献标志码:A 文章编号:1004-7018(2021)02-0053-03Wearof Micro MillingCutter by Critical Thickness PhenomenonWANG Xue -bin ,YAN Liang ,YANG Jian ,XIAO Yuan -hai(No.21Research Institute of China Electronics Technology Group Corporation,Shanghai 200233,China)Abstract :With the miniaturization of motor,micro-milling was widely used in micro production.Due to the strengthlimitation of the micro-milling cutter,the cutting edge of the micro-milling cutter has a certain arc size,which leads to thephenomenon of critical thickness in micro-milling.A two-dimensional turning model was established to simulate the phe⁃nomenon of critical thickness,and a two-dimensional milling model was established to simulate and analyze the temperaturedistribution in the lower milling area of critical thickness.The influence of critical thickness phenomenon on tool wear wasanalyzed by setting different feed per tooth through micro-milling experiment.Key words :critical thickness,micro-milling,temperature,tool wear0 引 言随着装备微型化,微型电机需求量明显增加,微铣削加工开始应用于微型电机生产㊂微铣刀制造时受加工能力和刀具强度影响,切削刃不能做成绝对锋利,刀刃上有一定尺寸圆弧[1]㊂在传统铣削加工中,由于每齿进给量很大,切削刃圆弧对铣削影响可以忽略不计㊂而在微铣削时每齿进给量很小,切削刃圆弧的存在使得微铣削产生临界厚度现象[2]㊂武文毅搭建了刀具磨损监测系统,并研究了切削三要素及切削时间对微铣刀磨损量的影响[3]㊂本文通过对临界厚度现象进行仿真,研究临界厚度下铣削区域温度分布㊂并设计临界厚度下铣削实验,总结临界厚度现象对刀具磨损的影响㊂1 建立有限元仿真模型1.1 材料和模型设置刀具材料为硬质合金,材料参数如表1所示,工表1 刀具材料参数材料参数数值材料参数数值密度ρ/(kg㊃m -3)14×103抗压强度δ1/MPa5000硬度(HRA)≥90泊松比0.21杨氏模量E /GPa700抗弯强度δ2/MPa1800件材料为钛合金TC4,材料参数如表2所示㊂表2 工件材料参数材料参数数值材料参数数值密度ρ/(kg㊃m -3)4×103膨胀系数α/(10-6/℃)8.8应力常数σ/MPa 800屈服强度σE /MPa 850比热容J /(kg㊃K)600热导率λ/[W /(m㊃K)]7.0泊松比0.35杨氏模量E /GPa100 仿真中材料模型选择Johnson-Cook 模型,其表达式为式(1)[4],该模型适用于表达应力㊁应变㊁温度和材料物理特性之间的关系㊂σ=(X +Yεn )(1+Z ln ε㊃ε01-T -T 0T 1-T æèçöø÷0éëêùûúm (1)式中:σ为应力;ε㊃为应变率;T 0为外界温度;ε为应变;ε0为应变率参考值;T 1为熔点[8]㊂1.2 建立有限元仿真模型使用ABAQUS 软件建立二维车削模型和二维铣削模型,如图1所示㊂(a)二维车削模型(b)二维铣削模型图1 仿真模型P生产技术roduction Technology 2021年第49卷第2期 王学彬等 临界厚度现象对微铣刀磨损的影响54 2 临界厚度现象仿真2.1 临界厚度几何模型介绍使用不同规格的微铣刀,临界厚度数值不同㊂研究表明,临界厚度与刀具切削刃圆弧有关[5],临界厚度几何模型如图2所示㊂根据A 点受力,推导出临图2 临界厚度几何模型界厚度公式,见式(2)㊂临界厚度计算公式:a =R (1-F yF x+μ[1+(F yF x)2](1+μ2))(2)式中:R 为切削刃圆弧半径;F x 为X 方向分力;F y 为Y 方向分力;μ为摩擦系数㊂2.2 临界厚度现象仿真根据经验F y /F x 取0.9,摩擦系数0.2,通过计算理论临界厚度值为0.199R ㊂由于临界厚度数值很小,很难通过实验观察临界厚度现象㊂本文通过有限元分析软件建立二维车削模型,对临界厚度现象进行模拟,并分析临界厚度数值范围,仿真参数如表3所示㊂表3 临界厚度仿真参数圆弧半径r /μm车削速度υ/(mm㊃s -1)切削厚度h /μm 1234310000.30.50.60.8 在临界厚度下切削时,材料受到挤压,切削位置工件变形,应垂直向下;当切削厚度大于临界厚度时,切削区域材料变形,应垂直向上,可根据仿真结果中材料变形方向判断是否处于临界厚度切削状态㊂模型中刀具和工件接触位置垂直方向的变形结果如图3所示,图3中,u 1,u 2数值为工件在纵向的变形量,切削厚度在0.3μm 和0.5μm 时刀具附近工件表面变形,数值为负,变形方向向下,材料主要表现为挤压变形,故切削厚度为0.5μm 小于临界厚度㊂切削厚度为0.6μm 时,刀具附近工件表面变形,数值为正值,变形方向垂直向上;当切削厚度为0.8μm 时,切削刃附件工件表面垂直向上变形量增加,形成更明显的切屑形态,切削厚度0.6μm 大于临界厚度㊂由仿真结果可知,圆弧半径为3μm 时,临界厚度值在0.5~0.6μm 区间内,与公式计算结果0.199R 吻合㊂因此可以采用有限元分析方法对临界厚度现象进行仿真,确定材料变形量相对位移临界厚度值所在范围㊂(a)h =0.3μm (b)h =0.5μm(c)h =0.6μm(d)h =0.8μm图3 临界厚度现象仿真结果2.3 临界厚度现象对微铣刀温度的影响周海波[6]等研究切削钛合金时切削温度是引起刀具磨损失效的主要因素㊂本文使用二维铣削模型,仿真分析临界厚度现象对铣削区域温度的影响㊂通过上节仿真知,刀具圆弧半径为3μm 时,临界厚度值在0.5~0.6μm 区间内,保持模型中主轴转速不变,将每齿进给量设置为0.5μm 和0.7μm,仿真参数如表4所示㊂表4 仿真参数圆弧半径r /μm主轴转速n /(r㊃min -1)每齿进给量b /μm 1231200000.50.7 铣削区域温度分布如图4所示,铣刀表面切削温度分布如图5所示㊂由仿真结果可知,每齿进给量0.5μm 时,工件表面温度最大值为174℃,刀具表面温度最大值为135℃㊂每齿进给量0.7μm 时,工件表面温度最大值升高至196℃,微铣刀表面温度最大值降低至109℃㊂(a)0.5μm(b)0.7μm图4 铣削区域温度分布每齿进给量0.5μm 小于临界厚度,切削过程中无切屑产生,切削热无法通过排屑散出,热量在切削刃积聚,导致切削刃温度较高㊂每齿进给量0.7μm 大于临界厚度,虽然工件表面温度较高,但 2021年第49卷第2期 P生产技术roduction Technology 王学彬等 临界厚度现象对微铣刀磨损的影响55 最高温度在变形严重的工件位置,可认为热量被切屑带走,微铣刀表面温度较低㊂由此可知,临界厚度现象导致切削区域热量不宜散出,热量会在切削刃上积聚,微铣刀温度增加,从而降低刀具使用寿命㊂(a)0.5μm(b)0.7μm图5 微铣刀温度分布3 临界厚度现象对刀具磨损的影响实验刀具为日立公司生产的双刃立铣刀,刀具直径为0.5mm,刀具如图6所示㊂使用扫描电子显微镜测量刀具刃口半径约为3μm㊂图6 微铣刀外形3.1 实验方法和参数实验方法为微铣刀在钛合金板上加工槽长度为15mm,实验过程中保持主轴转速和铣削深度不变,改变每齿进给量,实验参数如表5所示㊂每加工完成两个槽后,取下微铣刀测量刀尖磨损量,当刀尖磨损量值超过10μm 后停止加工㊂表5 实验参数主轴转速n /(r㊃min -1)吃刀量m /μm每齿进给量b /μm1232000080.40.60.83.2 实验结果分析刀尖磨损量与加工槽数量曲线如图7所示㊂图(a)每齿进给量0.4μm(b)每齿进给量0.6μm(c)每齿进给量0.8μm图7 刀具磨损速度曲线图7的三条曲线变化趋势相同,加工前期曲线相对平缓,加工后期曲线变化增加,刀具磨损速度加剧㊂当每齿进给量为0.4μm 时,微铣刀加工12个槽后,刀尖磨损量为10.9μm㊂每齿进给量为0.6μm 时,微铣刀加工20个槽后,刀尖磨损量为10.6mm㊂每齿进给量为0.8μm 时,微铣刀加工18个槽后,刀尖磨损量为11.1μm㊂每齿进给量由0.6μm 变化至0.8μm 时,微铣刀磨损速度增加不明显,表明临界厚度上加工时进给速度对刀尖磨损影响不明显㊂当每齿进给量为0.4μm 时,微铣刀加工槽数减少,微铣刀磨损速度增加明显㊂通过实验可知,当每齿进给量大于临界厚度,进给速度增加对微铣刀磨损影响不明显;当每齿进给量小于临界厚度,微铣刀磨损速率明显增加,故设置进给速度应保证每齿进给量大于临界厚度㊂4 结 语本文使用有限元二维车削模型对临界厚度现象进行仿真,仿真结果证实采用有限元分析方法仿真临界厚度现象的有效性,并可确定临界厚度值所在范围㊂使用有限元二维铣削模型仿真分析临界厚度下铣削区域温度分布规律,临界厚度下由于切削热无法通过铁屑散出,导致刀尖温度明显升高,刀尖温度升高会加速刀具磨损㊂通过微铣削实验,每齿进给量小于临界厚度时刀具磨损相同长度时,微铣刀加工槽数明显减少,当每齿进给量小于临界厚度时,刀具磨损速度增加明显㊂参考文献[1] 陈妮.KDP 晶体修复用PCD 微球刀的设计与加工工艺研究[D].哈尔滨:哈尔滨工业大学,2013:32-36.[2] BISSACCO G,HANSEN H N.Modelling the cutting edge radiussize effect for force prediction in micro milling[J].Cirp Annals-Manufacturing Technology,2008,57(1):113-116.[3] 武文毅.镍基高温合金Inconel718微铣削刀具磨损研究[D].大连:大连理工大学,2014.[4] 国宪孟,程祥,张什,等.基于Abaqus 的正交切削仿真的有限元分析[J].机床与液压,2015,43(13):134-136,141.[5] YUAN Z J,ZHOU M,DONG S.Effect of diamond tool sharpnesson minimum cutting thickness and cutting surface integrity in ultra⁃precisionmachining[J].Journal of Materials Processing Technolo⁃gy,1996,62(4):327-330.[6] 周海波,张京东,闫寒,等.钛合金高速铣削刀具磨损机理和预测方法研究[J].工具技术,2014,48(3):18-22.作者简介:王学彬(1989 )男,工程师,研究方向为微特电机工艺技术㊂。

炭黑表面能与甲苯抽出物透光率的关系

炭黑表面能与甲苯抽出物透光率的关系

炭黑表面能与甲苯抽出物透光率的关系路 明,张红霞,和富金,李 明,张 超,衣黎明(怡维怡橡胶研究院有限公司,山东青岛 266045)摘要:选取具有相同比表面积、不同甲苯抽出物透光率的炭黑N134,采用反相色谱测试其表面能,考察炭黑表面能与甲苯抽出物透光率的关系。

结果表明:当甲苯抽出物透光率低时,炭黑N134晶体边缘的高能位点被不完全燃烧的原料油或者烃类物质占据,炭黑N134的表面能色散分量低;当甲苯抽出物透光率为77%时,炭黑N134的表面能色散分量为233.6 mJ·m-2,甚至比甲苯抽出物透过率为92%的炭黑N234低约24%;当甲苯抽出物透光率高于82%时,随着甲苯抽出物透光率的提高,炭黑N134的表面能色散分量呈线性提高;当甲苯透光率为99%时,炭黑N134的表面能色散分量达到511.0 mJ·m-2。

炭黑生产企业可通过控制工艺和原材料提高炭黑纯净度,以提高炭黑质量。

关键词:炭黑;表面能;色散分量;甲苯抽出物;透光率;正烷烃;吸附自由能;反相色谱中图分类号:TQ330.38+1;O657.7 文章编号:1000-890X(2020)09-0709-04文献标志码:A DOI:10.12136/j.issn.1000-890X.2020.09.0709炭黑是轮胎行业应用最为广泛的补强填料,是一种利用油类或者天然气等碳氢化合物裂解和不完全燃烧而生成的黑色粉末状物质[1]。

目前轮胎行业应用最为广泛的是炉法炭黑。

在炉法炭黑的生产过程中,煤气和空气首先混合燃烧以形成火焰,然后原料油喷入火焰,接着喷入冷水使生成的炭黑烟气急冷[2]。

炭黑的微观结构、粒子形态和表面性能都极为特殊,表征炭黑的常规参数主要有比表面积、吸油值、着色强度、加热减量、灰分含量、甲苯抽出物透光率等。

甲苯抽出物透光率主要与炭黑纯净度有关,不完全燃烧的原料油或者烃类物质沉积在炭黑表面越多,甲苯抽出物透光率越低。

除常规参数外,填料的表面能已经成为公认的影响填料补强性能的参数。

三种寡核苷酸纯化方法的比较

三种寡核苷酸纯化方法的比较

三种寡核苷酸纯化方法的比较摘要:分别采用固相萃取法、电泳法、色谱法纯化寡核苷酸,色谱分析结果表明产物纯度高,固相萃取法纯化后的产物纯度低于电泳法与色谱法,但产量相对较大,PCR检测结果证明3种方法纯化的寡核苷酸具有良好的检测性能。在建立的固相萃取纯化试验条件下,对3种填料纯化寡核苷酸的效果、产量、成本进行了比较分析,结果表明,使用硅胶C18和聚苯乙烯-二乙烯基苯填料(PS/DVB)填充的萃取小柱既能达到良好的纯化效果又可降低成本。关键词:寡核苷酸;纯化;固相萃取;电泳;色谱Comparison of Three Purification Methods for OligonucleotidesAbstract: Solid-phase extraction method, electrophoresis method and chromatography method were applied for purifying crude oligonucleotides. The results of chromatography analysis showed that the product was with high purity. The purity of product from solid-phase extraction method was a little bit lower than that of electrophoresis method; but the yield was relatively higher. According to PCR test, all the 3 methods has good detection performance. Under the solid phase extraction purification test conditions, the purification effect, yield and cost of three kinds of fillers was compared. The result showed that good purification effect with low cost could be obtained when using silica gel C18 and PS/DVB filling extraction columns.Key words: oligonucleotides; purify; solid-phase extraction; electrophoresis; chromatography寡核苷酸是由核苷酸通过3′,5′-磷酸二酯键连接而成的短链DNA分子。它可作为PCR检测所需要的引物或探针的主要组成部分,广泛应用于生物学、农牧业、医学等领域[1-3]。目前,中国已可使用DNA合成仪快速合成各种序列的寡核苷酸以及荧光标记的寡核苷酸,最常用的寡核苷酸为10~30 nt。以链长为25 nt的寡核苷酸为例,产物纯度约为80%~85%,其中含有一定量的杂质,如5′羟基不完全脱二甲氧基三苯甲烷(DMT)保护基团或不完全封闭羟基产生的非目标序列等。这些杂质不但造成寡核苷酸定量不准,还可能影响到下一步的生物学试验。因此,合成后的寡核苷酸需要纯化。目前大多采用的寡核苷酸纯化方法有3种,分别为固相萃取法[4]、电泳法和色谱法。研究采用美国应用生物系统公司的DNA合成仪合成寡核苷酸,分别采用3种方法在优化的试验条件下进行纯化,比较纯化效果;再应用制备的寡核苷酸作为PCR 检测用引物,成功地从南瓜果实中检测到了黄瓜绿斑驳花叶病毒[5];另外,对固相萃取法和色谱法纯化寡核苷酸进行了具体的研究。1 材料与方法1.1 材料1.1.1 原料聚苯乙烯-二乙烯基苯填料(PS/DVB)(粒度50 μm)、YMC*GEL ODS-A制备色谱球形填料/硅胶C18(平均孔径12 nm,粒度50 μm)购自北京慧德易科技有限责任公司,Oasis HLB固相萃取小柱(货号WAT094226)、XTerraTM MSC18柱(50.0 mm×4.6 mm,平均孔径14 nm,粒度2.5 μm)购自美国Waters公司,筛板、6 mL萃取柱购自大连思谱精工有限公司,荧光薄层层析板购自青岛海洋化工厂,寡核苷酸购自中国检验检疫科学研究院动植物检疫研究所。1.1.2 试剂三羟甲基氨基甲烷、丙烯酰胺、双丙烯酰胺、溴酚蓝、二甲苯蓝、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)、冰醋酸、三乙胺、乙腈、尿素、三氟乙酸、浓氨水等,以上均为分析纯。1.1.3 主要仪器高效液相色谱仪(包括600泵、600控制器、717自动进样器、2996光电二极管矩阵检测器)、固相萃取装置购自美国Waters公司,DYY-10C电泳仪、WD9403E手提式紫外灯购自北京市六一仪器厂,DU640核酸蛋白分析仪购自美国BECKMAN公司,ABI Prism 7700实时荧光PCR仪购自美国ABI公司,PTC-200梯度PCR仪购自美国MJ Research公司。1.2 方法1.2.1 固相萃取纯化取筛板置于6 mL萃取柱底端,分别称量100 mg的硅胶C18、PS/DVB填充萃取柱,平铺填料后,在其上面放一个筛板。以一定序列的带DMT保护基团的寡核苷酸(“Trityl on”形式)为试验样品,用3 mL pH 8的0.1 mol/L 醋酸三乙胺(TEAAc)溶液溶解样品,振匀后平均分成3份,分别使用Oasis HLB固相萃取小柱、自组装的PS/DVB和硅胶C18萃取小柱纯化寡核苷酸,方法如下:将4 mL乙腈过柱,活化;用4 mL pH 8的0.1 mol/L TEAAc溶液进行柱平衡;上样,3~4 min内样品在重力下通过吸附床,重复两次上样;用3 mL含体积分数为14%的乙腈的pH 8的0.1 mol/L TEAAc溶液冲洗短链的寡核苷酸,重复一遍;用3 mL去离子水洗两遍;将3 mL体积分数为3%的三氟乙酸加入到填料上方,其在重力下过柱,控制旋钮,先流出1 mL的三氟乙酸,停3~5 min,完成去DMT保护基团过程,观察到吸附层变橙红色后再重复用3 mL的三氟乙酸过柱;用3 mL去离子水洗两遍;逐滴加入1 mL含体积分数为10%的乙腈的pH 11.3的0.36 mol/L TEAAc溶液,控制流速为1~2 mL/min,边洗脱边收集。定量,分装,干燥。1.2.2 电泳纯化1)电泳。在50 mL的16%聚丙烯酰胺凝胶溶液中加250 μL APS溶液、37.5 μL TEMED,迅速搅拌均匀后,倒入两玻璃板间,插入样梳,静置40~120 min,凝固后拔掉样梳。接通电源,设定电压为600 V,电泳前预热30 min。用200 μL饱和尿素溶解样品,上样;用含溴酚蓝、二甲苯蓝的饱和尿素溶液作为指示剂,在600 V电压下电泳,溴酚蓝条带移动到距凝胶前沿1/3处停止电泳。2)引物回收。用塑料镊子启开玻璃板,小心将胶置于铺有塑料薄膜的荧光薄层层析板上。用260 nm波长的紫外光从上方照射凝胶,用刀片切下含有目的条带的凝胶。采用浸泡法从凝胶中回收寡核苷酸,将切下来的凝胶移入1.5 mL离心管中,挤碎,将破碎的凝胶置于加有5 mL灭菌水的10 mL离心管中,于37 ℃摇床中温育过夜。离心,取上清液,干燥。3)脱盐。使用自组装的硅胶C18萃取小柱脱盐,步骤如下:将4 mL乙腈过柱,活化;将4 mL pH 7的0.1 mol/L TEAAc溶液过柱,使柱平衡;用1 mL pH 7的0.1 mol/L TEAAc溶液溶解样品,上样;将4 mL pH 7的0.1 mol/L TEAAc溶液过柱;将4 mL 去离子水过柱,脱盐;最后用1 mL体积分数为70%的乙腈洗脱样品。4)定量、分装、干燥。1.2.3 色谱纯化流动相由pH 7的0.1 mol/L TEAAc溶液和乙腈溶剂组成。柱温为60 ℃,流速为1 mL/min,色谱柱为XTerraTM MS C18柱(50.0 mm×4.6 mm,粒度2.5 μm,平均孔径14 nm)。采用254 nm和290 nm双波长检测。1)DNA(“Trityl off”形式)的色谱纯化。对于未选择“Trityl on”形式的合成(即合成的寡核苷酸不带DMT保护基团),用浓氨水释放寡核苷酸后离心、干燥,然后采用反相离子对色谱法进行纯化,纯化后不需要去DMT保护基团,直接定量。用200 μL pH 7的0.1 mol/L TEAAc溶液溶解样品,上样,检测波长为254、290 nm,当检测到目标产物峰时,人工收集目标产物。色谱条件见表1。用色谱纯化后干燥;再用硅胶C18萃取小柱脱盐,定量,分装,干燥。2)DNA(“Trityl on”形式)的色谱纯化。对于选择“Trityl on”形式的合成(即全长寡核苷酸的最后一个核苷酸保留DMT保护基团),用浓氨水释放寡核苷酸后,离心、干燥;然后采用反相离子对色谱法进行纯化,色谱条件见表2;用色谱纯化后干燥;用体积分数为80%的冰醋酸去DMT保护基团,静置20~30 min,干燥;用硅胶C18萃取小柱脱盐,定量,分装,干燥。2 结果与分析2.1 色谱分析2.1.1 固相萃取纯化结果分析采用表1中的色谱条件对3种小柱纯化寡核苷酸后的产物进行纯度分析,在260 nm波长下,当吸光度为1时寡核苷酸浓度约为30 μg/mL[6],应用DU640核酸蛋白分析仪测定适当稀释后的寡核苷酸的吸光度,再根据稀释倍数和体积计算出纯化后寡核苷酸的产量。由图1A、图1B、图1C以及表3可知,在建立的试验条件下,采用3种填料固相萃取纯化的寡核苷酸都有少量杂质,但是都比较纯而且产量相近。因此,该试验条件适用于采用硅胶C18、PS/DVB纯化寡核苷酸;固相萃取纯化是个非常粗糙的过程,由于DMT保护基团具有强疏水性以及短链寡核苷酸的合成效率高,使得不同填料固相萃取纯化的效果相差不大,采用3种填料纯化后的寡核苷酸纯度都很高。2.1.2 电泳纯化结果分析电泳法纯化一定序列的寡核苷酸(“Trityl off”形式)后,按照表1的色谱条件,在波长254 nm下检测纯化后的产物。从图2可知,杂质峰几乎看不到,可知电泳纯化的寡核苷酸纯度高。2.1.3 色谱纯化结果分析由图3可知,应用表1的色谱条件能够将不带强疏水性DMT保护基团的寡核苷酸与杂质分离,通过254和290 nm双波长检测到在8~11 min出来的色谱峰在双波长检测下吸光度最大,且峰面积最大,所以初步被判断为目标产物。收集后,在相同色谱条件下分析,图4中仅在10~12 min出现惟一色谱峰,说明在该色谱条件下能很好地纯化不带强疏水性DMT保护基团的寡核苷酸。由图5可知,在表1的色谱条件下分离20 μL带有DMT保护基团的寡核苷酸,在梯度洗脱前20 min内目标寡核苷酸没有分离出来,而是在20 min后,目标寡核苷酸、部分杂质由强非极性溶剂100%乙腈一同洗脱出来,试验证明,由于DMT基团具有强疏水性,在反相离子对色谱柱中具有强保留性,因此表1中色谱条件不适用于分离具有DMT保护基团的寡核苷酸,须用非极性更强的流动相洗脱。所以,采取增加流动相B的非极性的办法改进色谱条件,将流动相B中的乙腈体积分数由15%增加至40%,依据公式T=△φ/tG(T为梯度陡度,△φ为流动相中强洗脱液组分B体积分数的变化值,tG为梯度洗脱时间)计算梯度陡度(T),T减少到了1.1%/min,从而保证了流动相B在梯度洗脱时间内保持较强的非极性。由图6可知,在254和290 nm双波长检测下,根据吸光度和峰面积判断目标产物在14~20 min分离出来,收集后,在同样色谱条件下分析,图7在14~20 min出现了惟一一个色谱峰,无杂质峰,说明在表2的色谱条件下,能够很好地分离带有强疏水性DMT保护基团的寡核苷酸。2.2 性能检测试验结果将固相萃取、电泳及色谱纯化后的寡核苷酸用于黄瓜绿斑驳花叶病毒的RT-PCR及实时荧光PCR检测,考察其检测效果。由图8可知,对于黄瓜绿斑驳花叶病毒的RT-PCR试验,以纯化后的一定序列的寡核苷酸作为引物进行PCR扩增,电泳结果表明3个泳道均在近750 bp位置出现了扩增条带。由图9可知,将纯化后的一定序列的寡核苷酸作为实时荧光PCR检测用引物,得到了实时荧光PCR扩增曲线,检测到了南瓜果实中的黄瓜绿斑驳花叶病毒。说明采用3种方法纯化的寡核苷酸纯度高,适用于PCR检测。2.3 产量比较试验结果应用DNA合成仪,以0.2 μmol合成规模合成一定数量不同序列的20 nt左右的寡核苷酸,应用此次研究建立的纯化条件,通过多次试验,总结出固相萃取纯化的平均产量为600~900 μg;色谱纯化的平均产量为300~450 μg;电泳纯化的平均产量为300~450 μg。3 小结与讨论1)固相萃取纯化寡核苷酸试验中,3种填料纯化的产物浓度都较高且产量相差不大。3种填料各有优缺点,从耐酸碱、耐用性方面比较,硅胶C18不耐酸碱,工作pH 2~7,而聚苯乙烯-二乙烯基苯(PS/DVB)的工作范围为pH(工作/清洗)2~13/1~14,耐强酸强碱,可重复使用。虽然理论上,在pH 7.5以上键合硅胶填料的硅基体在水溶液中易于溶解;在pH 2.0以下硅醚链不稳定并且表面上的官能团开始裂开,改变了吸附性能。然而,由于填料暴露于溶剂的时间很短,若一次使用,硅胶C18的稳定性是可以接受的。从价格上比较,Oasis HLB>PS/DVB>硅胶C18。综合以上的分析可知,采用固相萃取法,一次性使用自组装的硅胶C18或重复使用PS/DVB萃取小柱可达到良好的纯化效果,并且降低了成本。2)对于带有DMT基团的寡核苷酸的纯化,由于寡核苷酸的DMT保护基团的强疏水作用,纯化时需要用强非极性的洗脱液洗脱。寡核苷酸在合成时设置“Trityl on”形式较合适,这是因为在日常寡核苷酸生产中,合成的序列是变化的,难以采用标准物对照进行色谱定性。若为“Trityl off”形式的合成,在合成产物效率高时,根据峰面积可以判断出目标产物峰;但在合成效率不高时,由于没有明显大面积的色谱峰,导致无法判断哪个峰是目标产物。而对于“Trityl on”形式的合成,由于全长的寡核苷酸带有强疏水性的DMT保护基团,保留时间长,与其他杂质保留时间差异大,可根据保留时间长短及峰面积大小识别目标产物峰。3)比较3种方法纯化产物的色谱分析结果,合成短片段寡核苷酸时,由于总的合成效率高,失败序列少,色谱分析结果证明采用固相萃取法、电泳法、色谱法纯化后的产物纯度相差不大,但也有差别,固相萃取纯化产物的色谱分析图中有少量的面积小的杂质峰,而电泳纯化和色谱纯化产物的色谱分析图中几乎没有杂质峰,这说明固相萃取法纯化产物的纯度低于电泳、色谱纯化的产物。比较3种方法纯化后产物的产量,固相萃取纯化的寡核苷酸的产量较高,而色谱纯化和电泳纯化的寡核苷酸的产量相近,纯度相对高。对于纯度要求高的PCR克隆、点突变等分子生物学试验和修饰/标记的寡核苷酸,宜选择电泳法或色谱法纯化。参考文献:[1] 朱水芳. 实时荧光聚合酶链反应(PCR)检测技术[M]. 北京:中国计量出版社,2003.34-38.[2] 陈旭,齐凤坤,康立功,等. 实时荧光定量PCR 技术研究进展及其应用[J]. 东北农业大学学报,2010,41(8):148-155.[3] 丁超. 实时荧光定量PCR应用及实验条件优化[J]. 大连医科大学学报,2007,29(4):404-407.[4] GILAR M,BOUVIER E S P. Purification of crude DNA oligonucleotides by solid-phase extraction and reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A,2000,890(1):167-177.[5] 李红霞,白静,陈红运,等. 南瓜果实中黄瓜绿斑驳花叶病毒的RT-PCR检测及cp基因序列分析[J].植物检疫,2007,21(5):268-270.[6] 孙树汉.基因工程原理与方法[M].北京:人民军医出版社,2002.。

低比表面积低密度二氧化硅

低比表面积低密度二氧化硅

低比表面积低密度二氧化硅Low specific surface area and low density of silicon dioxide are two important factors that can affect its applications in various industries. The specific surface area of a material refers to the total surface area per unit volume, which is crucial for determining its reactivity and adsorption properties. A low specific surface area can limit the interactions between silicon dioxide particles and other materials, thereby reducing its effectiveness in catalysts, fillers, and other applications. Additionally, a low density of silicon dioxide can affectits mechanical properties and overall performance in products suchas insulation materials and coatings.在各个领域中,二氧化硅的低比表面积和低密度都是影响其应用的重要因素。

材料的比表面积是指单位体积内的总表面积,这对于确定其反应性和吸附性能至关重要。

低比表面积可能会限制二氧化硅颗粒与其他材料之间的相互作用,从而降低其在催化剂、填料等应用中的效果。

此外,二氧化硅的低密度可能会影响其在绝缘材料和涂料等产品中的机械性能和整体性能。

二氧化硅颗粒密度

二氧化硅颗粒密度

二氧化硅颗粒密度引言二氧化硅颗粒是一种常见的无机材料,具有广泛的应用领域,如制备光纤、涂料、橡胶和陶瓷等。

在这些应用中,二氧化硅颗粒的密度是一个重要的物理性质。

本文将探讨二氧化硅颗粒密度的定义、测量方法和影响因素。

一、定义二氧化硅颗粒密度是指单位体积内所含有的质量。

按照国际单位制,密度的单位是千克每立方米(kg/m³)。

对于固体颗粒而言,其密度可以看作是固体颗粒质量与体积之比。

二、测量方法1. 水排除法水排除法是一种常用的测量固体颗粒密度的方法。

该方法基于阿基米德原理,通过浸入水中并排出位于容器中原有水分来间接计算固体颗粒的密度。

具体步骤如下:1.准备一个已知容积的容器,并称为V1。

2.将容器充满水,并记录初始水位。

3.在水中缓慢放入一定量的二氧化硅颗粒,直至容器中没有气泡产生。

4.记录此时水位上升的高度,并计算固体颗粒所占据的体积V2。

5.根据阿基米德原理,固体颗粒所占据的体积等于排出的水的体积,即V1-V2。

6.称取一定质量的二氧化硅颗粒,并计算其质量m。

7.根据密度的定义,密度等于质量与体积之比,即密度 = m / (V1 - V2)。

2. 气比重法气比重法是另一种常用的测量固体颗粒密度的方法。

该方法利用气体浮力与固体颗粒质量之间的关系来计算固体颗粒密度。

具体步骤如下:1.准备一个已知容积和重量的容器,并称为V1和W1。

2.在容器内充满干燥空气,并记录初始重量W1。

3.将一定质量的二氧化硅颗粒放入容器中,并记录最终重量W2。

4.根据浮力原理,固体颗粒所受到的浮力等于排开的空气质量,即浮力 = W1- W2。

5.根据固体颗粒质量与浮力之间的关系,可以计算固体颗粒密度,即密度 =(W2 - W1) / 浮力。

三、影响因素二氧化硅颗粒的密度受到多个因素的影响,包括以下几个方面:1.颗粒形状:颗粒形状直接影响颗粒之间的空隙大小和堆积方式。

不同形状的颗粒具有不同的堆积密度,从而导致不同的颗粒密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档