课后限时自测12圆周运动及其应用

合集下载

新教材高考物理一轮复习课时练12圆周运动含解析新人教版

新教材高考物理一轮复习课时练12圆周运动含解析新人教版

圆周运动1.(圆周运动的动力学分析)(2020浙江高三月考)如图所示是游乐场中的一种过山车,轨道车套在轨道上且在轨道的外侧做圆周运动。

设图中轨道半径为R,则对轨道车中某一乘客而言()A.速度大于√gg才能通过最高点B.过最高点时车对人的作用力一定向上C.过最低点时车对人的作用力一定向上D.过最低点时的速度一定大于过最高点时的速度2.(圆周运动的运动学分析)如图,修正带是通过两个齿轮的相互咬合进行工作的。

其原理可简倍,则下列化为图中所示的模型。

A、B是转动的齿轮边缘的两点,若A轮半径是B轮半径的32说法中正确的是()A.A、B两点的线速度大小之比为3∶2B.A、B两点的角速度大小之比为2∶3C.A、B两点的周期之比为2∶3D.A、B两点的向心加速度之比为1∶13.(圆周运动的动力学分析)(2020江西南昌开学考试)摩天轮在一些城市是标志性设施,如图所示的摩天轮,某同学在周末去体验了一下,他乘坐该摩天轮随座舱在竖直面内做匀速圆周运动。

设座舱对该同学的作用力为F,该同学的重力为G,下列说法正确的是()A.该同学经过最低点时,F=GB.该同学经过最高点时,F=GC.该同学经过与转轴等高的位置时,F>GD.该同学经过任一位置时,F>G4.(圆周运动的动力学分析)如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是()A.过山车在过最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座位不可能产生大小为mg的压力C.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mg5.(圆周运动的动力学分析)(2020广东深圳月考)如图所示,小物块(可看作质点)以某一竖直向下的初速度从半球形碗的碗口左边缘向下滑,半球形碗一直静止在水平地面上,物块下滑到最低点的过程中速率不变,则关于下滑过程的说法正确的是()A.物块下滑过程中处于平衡状态B.半球碗对物块的摩擦力逐渐变小C.地面对半球碗的摩擦力方向向左D.半球碗对地面的压力保持不变6.(竖直面内的圆周运动)质量为m的小球在竖直平面内的光滑圆管轨道内运动,小球的直径略小于圆管的直径,如图所示。

圆周运动课堂测试题(含答案)

圆周运动课堂测试题(含答案)

限时测试题(含答案)(时间:35分钟,10题,每题10分,共计100分)1.(多选)下列关于圆周运动的说法正确的是A .做匀速圆周运动的物体,所受的合外力一定指向圆心B .做匀速圆周运动的物体,其加速度可能不指向圆心C .作圆周运动的物体,其加速度不一定指向圆心D .作圆周运动的物体,所受合外力一定与其速度方向垂直2.质点做匀速圆周运动时,下列说法正确的是A .线速度越大,周期一定越小B .角速度越大,周期一定越小C .转速越小,周期一定越小D .圆周半径越大,周期一定越小3.物体做半径为R 的匀速圆周运动,它的向心加速度、角速度、线速度和周期分别为a 、ω、v 和T .下列关系式不正确的是( )A .ω=a R B .v =aR C .a =ωv D .T =2πa R4.如图所示A 、B 、C 分别是地球表面上北纬30°、南纬60°和赤道上的点.若已知地球半径为R ,自转的角速度为ω0,求:(1)A 、B 两点的线速度大小分别为 和 .(2)A 、B 、C 三点的向心加速度大小之比为 5.长度为L=0.5m 的轻质细杆OA ,A 端有一质量为m=3.0kg 的小球,如图6-7-16所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s ,g 取10m/s 2,则此时细杆OA 受到( )A .6.0N 的拉力B .6.0N 的压力C .24N 的拉力D .24N 的压力6.水平匀速转动的圆盘上的物体相对于圆盘静止,则圆盘对物体的摩擦力方向是 ( )A .沿圆盘平面指向转轴B .沿圆盘平面背离转轴C .沿物体做圆周运动的轨迹的切线方向D .无法确定7.如图所示皮带转动轮,大轮直径是小轮直径的2 倍,A 是大轮边缘上一点, B 是小轮边缘上一点, C 是大轮上一点,C 到圆心O 1的距离等于小轮半径。

转动时皮带不打滑,则A 、B 、C 三点的角速度之比ωA : ωB : ωC =_______ _ ,向心加速度大小之比a A :a B :a C =_______。

(完整版)圆周运动及其应用专题复习(解析版)

(完整版)圆周运动及其应用专题复习(解析版)

圆周运动及其应用专题复习(答案版 )课前复习1. 描绘圆周运动的物理量主要有线速度、角速度、周期、转速、向心加快度、向心力等,现比较以下表:物理量 意义、方向公式、单位线速度① 描绘做圆周运动的物体运动快慢的物理量(v) ①v = l = 2πr② 方向与半径垂直,和圆周相切t T② 单位: m/s角速度① 描绘物体绕圆心转动快慢的物理量 (ω)Δθ 2π②中学不研究其方向① ω= t =T②单位: rad/s周 期 和 ① 周期是物体沿圆周运动一圈的时间 (T)① T =2πr;单位: s转速② 转速是物体在单位时间内转过的圈数((n),也v叫频次 (f)② n 的单位 r/s 、r/min1③ f 的单位: Hz③ 周期与频次的关系为 T = f(a n )向 心 加①描绘速度方向变化快慢的物理量a n =v2速度②方向指向圆心① =ω2rr② 单位: m/s 24π向心力 ①作用成效是产生向心加快度,只改变线速度的v2① F n =m ω2r = m2方向,不改变线速度的大小r = m T 2 r② 方向指向圆心 .②单位: N2.匀速圆周运动有关性质:(1) 定义 :物体沿圆周运动,而且线速度大小到处相等的运动. (2) 匀速圆周运动的特色速度大小不变而速度方向时辰变化的变速曲线运动.只存在向心加快度,不存在切向加快度. 合外力即产生向心加快度的力,充任向心力(3) 条件:合外力大小不变,方向一直与速度方向垂直且指向圆心.课前练习1.某型石英表中的分针与时针可视为做匀速转动,分针的长度是时针长度的 1.5 倍,则以下说法中正确的选项是 ()A .分针的角速度与时针的角速度相等B .分针的角速度是时针的角速度的 60 倍C .分针端点的线速度是时针端点的线速度的18 倍D .分针端点的向心加快度是时针端点的向心加快度的 1.5 倍【分析】 分针的角速度 ω1= 2π π rad/min ,时针的角速度 ω2= 2π πrad/min.T = 30 T = 36012ω1∶ω2= 12∶1, v 1∶v 2 =ω1r 1∶ω2r 2= 18∶1, a 1∶a 2= ω1 v 1∶ω2v 2= 216∶1,故只有 C 正确. 【答案】C2.摆式列车是集电脑、自动控制等高新技术于一体的新式高速列车,以下图.当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时, 车厢又恢还原状, 就像玩具“不倒翁”同样. 假定有一超高速列车在水平面行家驶,以 360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为 50 kg 的乘客,在拐弯过 程中所遇到的火车给他的作使劲为 (g 取 10 m/s 2)( )A . 500 NB .1 000 N C. 500 2 N D . 0【分析】 乘客所需的向心力:v 2F = m500 N ,故火车对乘客的R = 500 N ,而乘客的重力为作使劲大小为 N = F 2 +G 2= 500 2 N , C 正确. 【答案】 C讲堂复习:考点 1: 圆周运动的运动学剖析21.对公式 v = ωr 和 a = vr = ω2r 的理解(1) 由 v =ωr 知, r 一准时, v 与 ω成正比; ω一准时, v 与 r 成正比; v 一准时, ω与 r 成反比.2(2) 由 a =v= ω2r 知,在 v 一准时, a 与 r 成反比;在ω一准时, a 与 r 成正比.r(1) 同轴传动:固定在一同共轴转动的物体上各点角速度同样.(2) 皮带传动:不打滑的摩擦传动和皮带(或齿轮 )传动的两轮边沿上各点线速度大小相等.例 1:(2013 届连云港高三模拟 )以下图,半径为r =20 cm 的两圆柱体 A 和 B ,靠电动机带动按同样方向均以角速度 ω= 8 rad/s 转动,两圆柱体的转动轴相互平行且在同一平面内, 转动方向已在图中标出,质量平均的木棒水平搁置其上,重心在刚开始运动时恰在 B 的正上 方,棒和圆柱间动摩擦因数μ=,两圆柱体中心间的距离 s = 1.6 m ,棒长 l >m ,重力加快度取 10 m/s 2,求从棒开始运动到重心恰在A 的正上方需多长时间?【审题视点】(1) 开始时,棒与 A 、B 有相对滑动先求出棒加快的时间和位移.(2)棒匀速时与圆柱边沿线速度相等,求出棒重心匀速运动到A 正上方的时间. 【分析】棒开始与 A 、 B 两轮有相对滑动,棒受向左摩擦力作用,做匀加快运动,末速度v = ωr=8× 0.2 m/s = 1.6 m/s ,加快度a = μg= 1.6 m/s 2,时间vt 1= a =1 s ,t 1 时间内棒运动位移12s 1= 2at 1 = 0.8 m.今后棒与A 、B 无相对运动,棒以v = ωr 做匀速运动,再运动s 2= s - s 1= 0.8 m ,重心到 A 的正上方需要的时间s 2t 2= v = 0.5 s ,故所求时间 t =t 1+ t 2= 1.5 s.【答案】1.5 s例 2.小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:迅速丈量自行车的骑行速度. 他的假想是: 经过计算脚踏板转动的角速度, 计算自行车的骑行速度. 经过骑行,他获得以下的数据:在时间t 内脚踏板转动的圈数为N ,那么脚踏板转动的角速度ω= ________;要计算自行车的骑行速度, 还需要丈量的物理量有 ____________________ ;自行车骑行速度的计算公式 v = ________.【分析】 θ 依照角速度的定义式ω==2N πtv t ;要计算自行车的骑行速度,因为 =ω 后 R ,还要知道自行车后轮的半径 R ,r 1ω后= ω飞轮 ,而 ω飞轮 r 2= ω牙盘 r 1,ω牙盘 = ω,联立以上各式解得 v = R ω r 2 Nr 1 =2 πR tr 2【答案】.故还需知道后轮半径R ,牙盘半径 r 1,飞轮半径r 2. 2N πtr 2r 1 R ω 或r 2Nr 12πR tr 2考点 2:圆周运动的动力学剖析 1.向心力的根源向心力是按力的作用成效命名的,能够是重力、弹力、摩擦力等各样力,也能够是几个力的协力或某个力的分力,所以在受力剖析中要防止再此外增添一个向心力. 2. 向心力确实定(1) 确立圆周运动的轨道所在的平面,确立圆心的地点.(2) 剖析物体的受力状况,找出全部的力沿半径方向指向圆心的协力就是向心力.3. 解决圆周运动问题的主要步骤(1) 审清题意,确立研究对象.(2) 剖析物体的运动状况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等. (3) 剖析物体的受力状况,画出受力表示图,确立向心力的根源. (4) 据牛顿运动定律及向心力公式列方程.(5) 求解、议论.例 3:(2012 福·建高考 )以下图,置于圆形水平转台边沿的小物块随转台加快转动,当转速达到某一数值时,物块恰巧滑离转台开始做平抛运动.现测得转台半径 R = 0.5 m ,离水平 地面的高度 H = 0.8 m ,物块平抛落地过程水平位移的大小 s =0.4 m .设物块所受的最大静 摩擦力等于滑动摩擦力,取重力加快度 g = 10 m/s 2.求:(1) 物块做平抛运动的初速度大小v 0;(2) 物块与转台间的动摩擦因数μ. 【审题视点】(1) 应理解掌握好 “ 转台边沿 ” 与 “恰巧滑离 ” 的含义.(2)临界问题是静摩擦力达到最大值.【分析】 (1) 物块做平抛运动,在竖直方向上有H = 1gt 2①2在水平方向上有 s = v 0t ②g由①②式解得v0= s2H ③代入数据得v0= 1 m/s.(2)物块走开转台时,最大静摩擦力供给向心力,有2v0f m= m R④f m=μN=μ mg⑤2v0由④⑤式得μ=gR代入数据得μ=0.2.【答案】(1)1 m/s规律总结:(1)不论是匀速圆周运动仍是非匀速圆周运动,沿半径方向指向圆心的协力均为向心力.(2)当采纳正交分解法剖析向心力的根源时,做圆周运动的物体在座标原点,必定有一个坐标轴沿半径方向指向圆心.例 4.(2013 届淮州中学四月调研 )以下图,用一根长为 l= 1 m 的细线,一端系一质量为 m =1 kg 的小球 (可视为质点 ),另一端固定在一圆滑锥体顶端,锥面与竖直方向的夹角θ= 37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为 T.(g 取 10 m/s 2,结果可用根式表示)求:(1)若要小球走开锥面,则小球的角速度ω0起码为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?【分析】(1)若要小球恰巧走开锥面,则小球遇到重力和细线拉力如图示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定2律及向心力公式得: mgtan θ= mω0lsin θ2=g=g解得:ω0,即ω0= 12.5 rad/s.l cos θlcos θ(2)同理,当细线与竖直方向成 60°角时,由牛顿第二定律及向心力公式: mgtan α= mω′2lsin α解得:ω′2=g ,即ω′=lcos α【答案】(1) 12.5 rad/s (2) 20 rad/sg=20 rad/s. lcos α考点 3:“轻绳模型”与“轻杆模型”轻绳模型轻杆模型均是没有支撑的小球均是有支撑的小球常有种类v 2过最高点的临界条件由 mg =m r 得v 临= 0v 临 = gr(1) 当 v = 0 时, F N =mg ,F N为支持力,沿半径背叛圆心(1)过最高点时, v ≥ gr ,F N (2) 当 0< v < gr 时, mg - F N+mg =m v 2 v 2r ,绳、轨道对球产 = m ,F N 背叛圆心, 随 v 的r议论剖析生弹力 F N增大而减小 (2)当 v < gr 时,不可以过最高 (3) 当 v = gr 时, F N =0点,在抵达最高点前小球已经 (4) 当 v > gr 时, F N + mg =离开了圆轨道v 2m r ,F N 指向圆心并随 v 的增大而增大例 5:长 L =0.5 m 质量可忽视的轻杆,其一端可绕 O 点在竖直平面内无摩擦地转动,另一端固定着一个小球 A.A 的质量为 m = 2 kg ,当 A 经过最高点时,以下图,求在以下几种状况下杆对小球的作使劲:(1)A 在最高点的速率为1m/s(2)A 在最高点的速率为 4m/s(3) 假如将原题中的轻杆换成轻绳,则结果怎样?【分析】( 1)向上的支持力 16N(2) 向下的压力 44N(3)换成细绳最小速度为根号5,故只好是向下压力课后思虑: (4)A 在最低点的速率为21m/s ;(5) A 在最低点的速率为 6 m/s.44N( 1)动能定理求出最高点速度1m/s, 向上的支持力 16N(2) 动能定理求出最高点速度 4m/s ,向下压力 44N.圆周运动及其应用课后练习 :●考察圆周运动中的运动规律1.(2010 ·纲全国高考大 )如图是利用激光测转速的原理表示图,图中圆盘可绕固定轴转动,盘边沿侧面上有一小段涂有很薄的反光资料.当盘转到某一地点时,接收器能够接收到反光涂层所反射的激光束,并将所收到的光信号转变为电信号,在示波器显示屏上显示出来 (如图 ).(1)若图中示波器显示屏横向的每大格(5 小格 )对应的时间为× 10-2 s,则圆盘的转速为______转 /s.(保存 3 位有效数字 )(2)若测得圆盘直径为 10.20 cm,则可求得圆盘侧面反光涂层的长度为 ______ cm.( 保存 3 位有效数字 )【分析】(1)从图可知圆盘转一圈的时间在横坐标上显示22 格,由题意知图中横坐标上每小格表示× 10-2 s,所以圆盘转动的周期是0.22 s,则转速为 4.55 转 /s.(2)反射光惹起的电流图象在图中的横坐标上每次一小格,说明反光涂层的长度占圆盘周长12πr×的22,则涂层长度L=22=22cm= 1.46 cm.【答案】●利用圆周运动测分子速率散布2. (多项选择 )(2012 上·海高考 )图为丈量分子速率散布的装置表示图.圆筒绕此中心匀速转动,侧面开有狭缝N,内侧贴有记录薄膜,M 为正对狭缝的地点.从原子炉R 中射出的银原子蒸汽穿过屏上S缝后进入狭缝 N,在圆筒转动半个周期的时间内接踵抵达并堆积在薄膜上.展开的薄膜如图 b 所示, NP, PQ 间距相等.则 ()A .抵达 M 邻近的银原子速率较大B.抵达 Q 邻近的银原子速率较大C.位于 PQ 区间的分子百分率大于位于NP 区间的分子百分率D.位于 PQ 区间的分子百分率小于位于NP 区间的分子百分率d【分析】分子在圆筒中运动的时间t=v,可见速率越大,运动的时间越短,圆筒转过的角度越小,抵达地点离M 越近,所以 A 正确, B 错误;依据题图 b 可知位于 PQ 区间的分子百分率大于位于 NP 区间的分子百分率,即 C 正确, D 错误.【答案】AC●圆周运动的动力学识题3.(多项选择 )(2012 绍·兴一中月考 )以下图,放于竖直面内的圆滑金属圆环半径为 R,质量为 m 的带孔小球穿于环上同时有一长为 R 的细绳一端系于球上,另一端系于圆环最低点.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能是 ()3gB.3gA. 2R Rg1g C.R D. 2R【分析】以下图,若绳上恰巧无拉力,则有mgtan 60°= mRω2sin 60°,ω=2g R,所以当ω>2gA 、B 选项正确.R时,物体受三个力的作用【答案】AB●圆周、平抛相联合4. (多项选择 )(2012 浙·江高考 )由圆滑细管构成的轨道以下图,此中AB 段和 BC 段是半径为 R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平川面高为H 的管口 D 处静止开释,最后能够从A 端水平抛出落到地面上.以下说法正确的选项是()A .小球落到地面时有关于 A 点的水平位移值为2 RH- 2R2B .小球落到地面时有关于 A 点的水平位移值为2 2RH- 4R2C.小球能从细管 A 端水平抛出的条件是H> 2R5D.小球能从细管 A 端水平抛出的最小高度H min=2R【分析】要使小球从 A 点水平抛出,则小球抵达 A 点时的速度 v> 0,依据机械能守恒定12,所以 H> 2R,应选项 C 正确,选项 D 错误;小球从 A 点水平律,有 mgH-mg·2R= mv212抛出时的速度 v=2gH-4gR,小球走开 A 点后做平抛运动,则有2R=2gt ,水平位移 x =v t,联立以上各式可得水平位移 x= 2 2RH- 4R2,选项 A 错误,选项 B 正确.【答案】BC●竖直面内圆周运动问题5. (2011 北·京高考 )以下图,长度为l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小能够忽视).(1) 在水平拉力 F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力争,并求力 F 的大小;(2)由图示地点无初速开释小球,求当小球经过最低点时的速度大小及轻绳对小球的拉力. (不计空气阻力 ).【分析】(1)受力剖析如图依据均衡条件,应知足T cos α= mg,Tsin α= F则拉力大小 F = mgtan α.(2)运动中只有重力做功,系统机械能守恒12mgl(1- cos α)= mv则经过最低点时,小球的速度大小v=2gl 1-cos αv2依据牛顿第二定律T′ - mg= m l解得轻绳对小球的拉力v2T′= mg+ m l= mg(3- 2 cos α),方向竖直向上.【答案】(1)看法析(2) 2gl 1- cos αmg(3- 2 cos α),方向竖直向上。

2021届新高考物理能力培养专训——《圆周运动及应用》复习检测(Word版附答案)

2021届新高考物理能力培养专训——《圆周运动及应用》复习检测(Word版附答案)

圆周运动及其应用时间:60分钟满分:100分一、选择题(本题共11小题,每小题7分,共77分。

其中1~9题为单选,10~11题为多选)1.如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的是()A.线速度v A=v BB.角速度ωA=ωBC.受到的合力F A合=F B合D.受到的摩擦力F f A>F f B2.在修筑铁路时,弯道处的外轨会略高于内轨。

如图所示,当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度大小为v,重力加速度为g,两轨所在面的倾角为θ,则()A.该弯道的半径r=v2 g sinθB.当火车质量改变时,规定的行驶速度大小随之变化C.当火车速率大于v时,外轨将受到轮缘的挤压D.当火车以规定速度行驶时,火车只受重力和支持力3.如图所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法不正确的是()A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B对A的动摩擦因数μA大于盘对B的动摩擦因数μB4.如图所示,两个相同材料制成的水平摩擦轮A和B,两轮半径R A=2R B,A 为主动轮。

当A轮匀速转动时,在A轮边缘处放置的小木块恰能在A轮的边缘上与A轮相对静止,若将小木块放在B轮上让其相对B轮静止,木块与B轮转轴间的最大距离为()A.R B8 B.R B2C.R BD.R B 45.如图,有一倾斜的匀质圆盘(半径足够大),盘面与水平面的夹角为θ,绕过圆心并垂直于盘面的转轴以角速度ω匀速转动,有一物体(可视为质点)与盘面间的动摩擦因数为μ(设最大静摩擦力等于滑动摩擦力),重力加速度为g。

要使物体能与圆盘始终保持相对静止,则物体与转轴间最大的距离为()A.μg cosθω2 B.g sinθω2C.μcosθ-sinθω2g D.μcosθ+sinθω2g6.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T,则F T随ω2变化的图象是()7.如图所示,竖直平面内有一光滑圆环,圆心为O,OA连线水平,AB为固定在A、B两点间的光滑直杆,在直杆和圆环上分别套着一个相同的小球M、N。

【精准解析】2021版新高考物理人教版测评 十二 4.3 圆周运动及其应用

【精准解析】2021版新高考物理人教版测评 十二 4.3 圆周运动及其应用

核心素养测评十二圆周运动及其应用(45分钟100分)一、选择题(本题共9小题,每小题6分,共54分,1~6题为单选题,7~9题为多选题)1.关于物体做圆周运动的说法中正确的是( )A.匀速圆周运动是匀变速曲线运动B.匀速圆周运动是向心力不变的运动C.做圆周运动的物体加速度可以不指向圆心D.竖直平面内做圆周运动的物体通过最高点的最小向心力等于物体的重力【解析】选C。

匀速圆周运动的加速度方向始终指向圆心,方向时刻改变,所以匀速圆周运动不是匀变速曲线运动,故A错误;匀速圆周运动的向心力大小不变,方向指向圆心,时刻改变,故B错误;做变速圆周运动的物体加速度沿半径方向分量改变速度方向,指向圆心,沿切向分量改变速度大小,合加速度不指向圆心,故C正确;如果是杆模型,竖直平面内做圆周运动的物体通过最高点的最小向心力可以为零,故D错误。

2.如图所示,两个用相同材料制成的靠摩擦传动的轮A和B水平放置,两轮半径R A=2R B。

当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。

若将小木块放在B轮上,欲使木块相对B 轮也静止,则木块距B轮转轴的最大距离为( )A. B. C. D.R B【解析】选C。

A和B是用相同材料制成的,靠摩擦传动,边缘线速度大小相等,则ωA R A=ωB R B而R A=2R B。

所以=对于在A边缘的木块,最大静摩擦力恰为向心力,即m R A=f max当在B轮上恰要滑动时,设此时半径为R则m R=f max解得R=,故选C。

3.如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为M,到小环的距离为L,其两侧面与夹子间的最大静摩擦力均为F。

小环和物块以速度v向右匀速运动,小环碰到杆上的钉子P后立刻停止,物块向上摆动。

整个过程中,物块在夹子中没有滑动。

小环和夹子的质量均不计,重力加速度为g。

下列说法正确的是 ( )A.物块向右匀速运动时,绳中的张力等于2FB.小环碰到钉子P时,绳中的张力大于2FC.物块上升的最大高度为D.速度v不能超过【解析】选D。

圆周运动测试题及答案

圆周运动测试题及答案

圆周运动基础训练A1.如图所示,轻杆的一端有个小球,另一端有光滑的固定轴O现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则F()A.一定是拉力B.一定是推力C.一定等于0 D.可能是拉力,可能是推力,也可能等于02.如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上。

若在传动过程中皮带不打滑,则()A.a点与b点速度大小相等B.a点与c点角速度大小相等C.a点与d点向心加速度大小相等D.a、b、c、d四点,加速度最小的是b点3.地球上,赤道附近的物体A和北京附近的物体B,随地球的自转而做匀速圆周运动.可以判断()A.物体A与物体B的向心力都指向地心B.物体A的线速度的大小小于物体B的线速度的大小C.物体A的角速度的大小小于物体B的角速度的大小D.物体A的向心加速度的大小大于物体B的向心加速度的大小4.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.a处B.b处C.c处D.d处5.如图为A、B两物体做匀速圆周运动时向心加速度随半径r变化的图线,由图可知()A.A物体的线速度大小不变B.A物体的角速度不变C.B物体的线速度大小不变D.B物体的角速度与半径成正比6.由上海飞往美国洛杉矶的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海面的高度均不变,则以下说法正确的是()A.飞机做的是匀速直线运动B.飞机上的乘客对座椅压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零7.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进人容器后靠筒壁站立,当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为()A.游客受到的筒壁的作用力垂直于筒壁B.游客处于失重状态C.游客受到的摩擦力等于重力D.游客随着转速的增大有沿壁向上滑动的趋势8.如图所示是一种娱乐设施“魔盘”,而且画面反映的是魔盘旋转转速较大时,盘中人的情景.甲、乙、丙三位同学看了图后发生争论,甲说:“图画错了,做圆周运动的物体受到向心力的作用,魔盘上的人应该向中心靠拢”.乙说:“画画得对,因为旋转的魔盘给人离心力,所以人向盘边缘靠拢”.丙说:“图画得对,当盘对人的摩擦力不能满足人做圆周运动的向心力时,人会逐渐远离圆心”.该三位同学的说法应是()A.甲正确B.乙正确C.丙正确D.无法判断9.在光滑杆上穿着两上小球m1、m2,且m l=2m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示,此时两小球到转轴的距离r l与r2之比为()A .1:1 B.1:2C.2:1 D.1:210.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A.两物体均沿切线方向滑动B.两物全均沿半径方向滑动,离圆盘圆心越来越远C两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远11.司机为了能够控制驾驶的汽车,汽车对地面的压力一定要大于0,在高速公路上所建的高架桥的顶部可看作是一个圆弧,若高速公路上汽车设计时速为4 0m/s,则高架桥顶部的圆弧半径至少应为______(g取10m/s2)解析设当汽车行驶到弧顶时,对地面压力刚好为零的圆12.AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径为R,小球的质量为m,不计各处摩擦.求:(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R/2时速度的大小和方向;(3)小球经过圆弧轨道的B点和水平轨道的c点时,所受轨道支持力N B、Nc各是多大?13、用钳子夹住一块质量m=50kg的混凝土砌块起吊(如图所示).已知钳子与砌块间的动摩擦因数µ=0. 4,砌块重心至上端间距L=4m,在钳子沿水平方向以速度v=4m/ s匀速行驶中突然停止,为不使砌块从钳子口滑下,对砌块上端施加的压力至少为多大?(g=10m/s2)圆周运动B能力提升1.半径为R的光滑半圆球固定在水平面上(如图),顶部有一小物体A,今给它一个水平初速v0=gR,,则物体将()A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道作圆周运动D.立即离开半圆球做平抛运动2.如图所示,固定在竖直平面内的光滑圆形轨道ABCD,D点为轨道最高点,DB为竖直直径,AE为过圆心的水平面,今使小球自A点正上方某处由静止释放,且从A点内侧进人圆轨道运动,只要适当调节释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后(不计空气阻力)()A、一定会落在水平面AE上B、一定会再次落到圆轨道上C、可能会落到水平面AED、可能会再次落到圆轨道上。

圆周运动的应用

圆周运动的应用

圆周运动的应用1.关于匀速圆周运动,下列说法中正确的是 ( )A .是匀变速运动B .是变加速运动C .是匀速运动D .是速率不变的运动2.小球做匀速圆周运动,半径R =0.1m ,向心加速度的大小为a =0.4m /s 2,则下列说法中正确的是( )A .小球所受的合力为恒力B .小球运动的角速度为2rad /sC .小球做匀速圆周运动的周期为π sD .小球在t =π/4 s 内通过位移的大小为小π /20 m3.做匀速圆周运动的物体,下列哪些量是不变的:( )A .线速度B .角速度C .向心加速度D .向心力4.如图所示,为一皮带传动装置,右轮的半径为r ,a 是它的边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 ( )(A )a 点与b 点线速度大小相等 (B )a 点与c 点角速度大小相等(C )a 点与d 点向心加速度大小相等 (D )a 、b 、c 、d 四点,加速度最小的是b 点5.如图所示,水平转台上放着A 、B 、C 三个物体,质量分别为2m 、m 、m ,离转轴的距离分 别为R 、R 、2R ,与转台间的摩擦因数相同,转台旋转时,下列说法中,正确的是 ( )(A )若三个物体均未滑动,C 物体的向心加速度最大(B )若三个物体均未滑动,B 物体受的摩擦力最大(C )转速增加,A 物比B 物先滑动 (D )转速增加,C 物先滑动6.小球m 用长为L 的悬线固定在O 点,在O 点正下方L/2处有一个光滑钉子C ,如图 所示,今把小球拉到悬线成水平后无初速度地释放,当悬线成竖直状态且与钉子相碰时 ( )(A )小球的速度突然增大 (B )小球的角速度突然增大(C )小球的向心加速度突然增大 (D )悬线的拉力突然增大7.用材料和粗细相同、长短不同的两段绳子,各栓一个质量相同的小球在光滑水平面上做匀速圆周运动,那么 ( )(A )两个球以相同的线速度运动时,长绳易断 (B )两个球以相同的角速度运动时,长绳易断(C )两个球以相同的周期运动时,长绳易断 (D )无论如何,长绳易断8.如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A 的受力情况,下列说法中正确的是:( )A .摆球A 受重力、拉力和向心力的作用B .摆球A 受拉力和向心力的作用C .摆球A 受拉力和重力的作用D .摆球A 受重力和向心力的作用9.如图所示,小物块A 与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则下列关于A 的受力情况说法正确的是( )A .受重力、支持力B .受重力、支持力和指向圆心的摩擦力C .受重力、支持力、摩擦力和向心力D .受重力、支持力和与运动方向相同的摩擦力10.如图所示皮带转动轮,大轮直径是小轮直径的2 倍,A 是大轮边缘上一点,B是小轮边缘上一点, C 是大轮上一点,C 到圆心O 1的距离等于小轮半径。

(完整版)圆周运动习题及答案

(完整版)圆周运动习题及答案

《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。

2020版高考人教版物理一轮复习课后限时作业12牛顿运动定律综合应用

2020版高考人教版物理一轮复习课后限时作业12牛顿运动定律综合应用

课后限时作业12 牛顿运动定律综合应用时间:45分钟1.如图所示,a 、b 两物体的质量分别为m 1和m 2,由轻质弹簧相连.当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1,加速度大小为a 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,加速度大小为a 2,则( B )A .a 1=a 2,x 1=x 2B .a 1<a 2,x 1=x 2C .a 1=a 2,x 1>x 2D .a 1<a 2,x 1>x 2解析:对a 、b 物体及弹簧整体分析,有a 1=F -(m 1+m 2)g m 1+m 2=F m 1+m 2-g ,a 2=F m 1+m 2,可知a 1<a 2,再隔离b 分析,有F 1-m 2g =m 2a 1,解得F 1=m 2F m 1+m 2,F 2=m 2a 2=m 2F m 1+m 2,可知F 1=F 2,再由胡克定律知,x 1=x 2,所以选项B 正确.2.如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m .现用水平力F 拉B (如图甲所示),A 、B 刚好不发生相对滑动,一起沿水平面运动.若改用水平力F ′拉A (如图乙所示),使A 、B 也保持相对静止,一起沿水平面运动,则F ′不得超过( B )A .2FB.F 2 C .3F D.F 3解析:力F 拉木块B 时,A 、B 恰好不滑动,故A 、B 间的静摩擦力达到最大值,对木块A 受力分析,受重力mg 、支持力N 1、向前的静摩擦力f m ,根据牛顿第二定律,有f m =ma ,对A 、B 整体受力分析,受重力3mg 、支持力N 2和拉力F ,根据牛顿第二定律,有F =3ma ,联立解得f m =13F ,当F ′作用在木块A 上,A 、B 恰好不滑动时,A 、B 间的静摩擦力达到最大值,对木块A ,有F ′-f m =ma 1,对整体,有F ′=3ma 1,联立解得F ′=12F ,即F ′的最大值是12F . 3.(多选)如图所示,用力F 拉着A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一块橡皮泥,它和中间的物体一起运动,且原拉力F 不变,那么加上橡皮泥以后,两段绳的拉力T a 和T b 的变化情况是( AD )A .T a 增大B .T b 增大C .T a 减小D .T b 减小解析:设C 物体质量为m ,A 物体质量为m ′,整体质量为M ,整体的加速度a =F M ,对C 物体分析,有T b =ma ,对A 物体分析,有F -T a =m ′a ,解得T a =F -m ′a .在B 物体上加上橡皮泥,由于原拉力F 不变,则整体的加速度a 减小,因为m 、m ′不变,所以T b 减小,T a 增大,A 、D 正确.4.质量为M的光滑半圆槽放在光滑水平面上,一水平恒力F作用在其上从而使质量为m的小球静止在半圆槽上,如图所示,则(C)A.小球对半圆槽的压力为MF m+MB.小球对半圆槽的压力为mF m+MC.水平恒力F变大后,如果小球仍静止在半圆槽上,则小球对半圆槽的压力增大D.水平恒力F变大后,如果小球仍静止在半圆槽上,则小球对半圆槽的压力减小解析:由整体法可求得系统的加速度a=FM+m,小球对半圆槽的压力F N=m g2+a2=m g2+F2(M+m)2,当F增大后,F N增大,只有C正确.5.如图所示,bc为固定在小车上的水平横杆,物块串在杆上,靠摩擦力保持相对杆静止,物块又通过轻细线悬吊着一个小球,此时小车正以大小为a的加速度向右做匀加速运动,而物块、小球均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增加,物块始终和小车保持相对静止,则当加速度增加到2a时(A)A.横杆对物块的摩擦力增加到原来的2倍B.横杆对物块的弹力增加到原来的2倍C.细线与竖直方向的夹角增加到原来的2倍D.细线的拉力增加到原来的2倍解析:对小球和物块组成的整体,分析受力如图甲所示,根据牛顿第二定律得,水平方向有f=(M+m)a,竖直方向有F N=(M+m)g,则当加速度增加到2a时,横杆对物块的摩擦力f增加到原来的2倍,横杆对物块的弹力等于物块、小球的总重力,保持不变,故A正确,B错误;以小球为研究对象,分析受力情况如图乙所示,由牛顿第二定律得mg tanθ=ma,解得tanθ=ag,当a增加到原来的两倍时,tanθ变为原来的两倍,但θ不是原来的两倍.细线的拉力F T=(mg)2+(ma)2,可见,a变为原来的两倍,F T不是原来的两倍,故C、D错误.6.如图所示,在倾角为30°的光滑斜面上端系有一劲度系数为20 N/m的轻质弹簧,弹簧下端连一个质量为2 kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以4 m/s2的加速度沿斜面向下匀加速运动,g取10 m/s2,则(B)A.小球向下运动0.4 m时速度最大B.小球向下运动0.1 m时与挡板分离C.小球速度最大时与挡板分离D.小球从一开始就与挡板分离解析:球和挡板分离前小球做匀加速运动,球和挡板分离后做加速度减小的加速运动,当加速度为零时,速度最大,此时小球所受合力为零,即kx m=mg sin30°,解得x m=mg sin30°k=0.5 m,由于开始时弹簧处于原长,所以速度最大时,小球向下运动的路程为0.5 m,故A错误;设球与挡板分离时位移为x,从开始运动到分离的过程中,小球受竖直向下的重力、垂直斜面向上的支持力F N、沿斜面向上的挡板支持力F1和弹簧弹力F,根据牛顿第二定律有mg sin30°-kx-F1=ma,保持a不变,随着x的增大,F1减小,当小球与挡板分离时,F1减小到零,则有mg sin30°-kx=ma,解得x=m(g sin30°-a)k=0.1 m,即小球向下运动0.1 m时与挡板分离,故B正确;因为速度最大时,运动的位移为0.5 m,而小球运动0.1 m与挡板分离,故C、D错误.7.(多选)如图甲所示,水平地面上固定一足够长的光滑斜面,斜面顶端有一理想定滑轮,轻绳跨过滑轮,绳两端分别连接小物块A和B.保持A的质量不变,改变B的质量m,当B的质量连续改变时,得到A的加速度a随B的质量m变化的图线如图乙所示.设加速度沿斜面向上的方向为正方向,空气阻力不计,重力加速度g取9.8 m/s2,斜面的倾角为θ.下列说法正确的是(BC)A.若θ已知,可求出A的质量B.若θ未知,可求出图乙中a1的值C.若θ已知,可求出图乙中a2的值D.若θ已知,可求出图乙中m0的值解析:由题中图象,若m=0,则物块A受重力、支持力作用,由牛顿第二定律可知,A的加速度方向沿斜面向下,a2=-g sinθ,C 正确;若m=m0,则A的加速度为零.由平衡条件可知,m0g=m A g sinθ,必须知道A的质量m A和θ的值,m0才可求,D错误;若B的质量无限大,则所受拉力远小于它的重力,B的加速度趋近于g,所以A的最大加速度a1=g,B正确;对以上状态的分析中,均无法计算出A 的质量,A错误.8.如图所示,B物体的质量为A物体质量的两倍,用轻弹簧连接后放在粗糙的斜面上,A、B与斜面间的动摩擦因数均为μ.对B施加沿斜面向上的拉力F,使A、B相对静止地沿斜面向上运动,此时弹簧长度为l1;若撤去拉力F,换成大小仍为F的沿斜面向上的推力推A,A、B保持相对静止后弹簧长度为l2,则下列判断正确的是(D)A.两种情况下A、B保持相对静止后弹簧的形变量相等B.两种情况下A、B保持相对静止后两物体的加速度不相等C.弹簧的原长为l1+l2 2D.弹簧的劲度系数为F l1-l2解析:以A、B为整体,根据牛顿第二定律知,两种情况下的加速度相等,设A的质量为m,则加速度a=F3m-g sinθ-μg cosθ.设弹簧的原长为l0,根据牛顿第二定律得,第一种情况下,对A,有k(l1-l0)-mg sinθ-μmg cosθ=ma,第二种情况下,对B,有k(l0-l2)-2mg sinθ-μ·2mg cosθ=2ma,联立得l0=2l1+l23,k=Fl1-l2,故B、C错误,D正确;第一种情况下,弹簧的形变量为Δl1=l1-l0=13l1-13l2,第二种情况下,弹簧的形变量Δl2=l0-l2=23l1-23l2,故A错误.9.足够长光滑斜面BC的倾角α=53°,小物块与水平面间的动摩擦因数为0.5,水平面与斜面之间B点由一小段圆弧连接,一质量m=2 kg的小物块静止于A点.现在AB段对小物块施加与水平方向成α=53°角的恒力F作用,如图甲所示,小物块在AB段运动的速度—时间图象如图乙所示,到达B点时迅速撤去恒力F.(已知sin53°=0.8,cos53°=0.6,g取10 m/s2)(1)求小物块所受的恒力F大小.(2)求小物块从B点沿斜面向上运动到返回B点所用时间.(3)小物块能否返回A点?若能,计算小物块通过A点时的速度;若不能,计算小物块停止运动时距离B点的距离.解析:(1)由图乙可知,AB段加速度a1=ΔvΔt=0.5 m/s2由牛顿第二定律得F cosα-μ(mg-F sinα)=ma1解得F=ma1+μmgcosα+μsinα=11 N.(2)在BC上,有mg sinα=ma2加速度a2=g sinα=8 m/s2小物块从B到最高点所用时间与从最高点到B时间相等,则t=2v Ba2=0.5 s.(3)小物块从B向A运动过程中,有μmg=ma3解得a3=μg=0.5×10 m/s2=5 m/s2滑行的位移s=v22a3=2.022×5m=0.4 m<s AB=v t=v B2t=2.02×4.0 m=4.0 m.故小物块不能返回A点.答案:(1)11 N(2)0.5 s(3)不能0.4 m10.两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A上,使A、B由静止开始一起向右做匀加速运动,如图甲所示,在A、B的速度达到6 m/s时,撤去推力F.已知A、B质量分别为m A=1 kg、m B=3 kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图象如图乙所示.g取10 m/s2,求:(1)推力F的大小.(2)A物体刚停止运动时,物体A、B之间的距离.解析:(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B物体的v-t图象得a=3 m/s2.对于A、B整体,由牛顿第二定律得F-μm A g=(m A+m B)a解得F=15 N.(2)设物体A匀减速运动的时间为t,撤去推力F后,A、B两物体分离,A在摩擦力作用下做匀减速直线运动,B做匀速运动,对于A物体有μm A g=m A a A,a A=μg=3 m/s2,v t=v0-a A t=0,解得t=2 s,物体A的位移为x A=v t=6 m,物体B的位移为x B=v0t=12 m,所以A物体刚停止运动时,物体A、B之间的距离为Δx=x B-x A =6 m.答案:(1)15 N(2)6 m11.如图所示,一圆环A套在一均匀圆木棒B上,A的长度相对B 的长度来说可以忽略不计,A和B的质量都等于m,A和B之间滑动摩擦力为f(f<mg,g为重力加速度).开始时B竖直放置,下端离地面高度为h,A在B的顶端.现让它们由静止开始自由下落,当木棒与地面相碰后,木棒以竖直向上的速度反向运动,并且碰撞前后的速度大小相等.设碰撞时间很短,不考虑空气阻力,在B再次着地前,A、B不分离.(1)请描述在从开始释放到B再次着地前的过程中,A、B各自的运动情况,并求出匀变速运动时的加速度大小;(2)B至少应该多长?解析:(1)释放后A和B相对静止一起做自由落体运动,加速度大小都为a=g,B与地面碰撞后,A继续向下做匀加速运动,加速度大小a A=mg-f m,B竖直向上做匀减速运动,加速度大小a B=mg+f m,B速度减为零后,继续以加速度a B向下运动.(2)B第一次着地前瞬间的速度为v1=2gh,B与地面碰撞后向上运动到再次落回地面所需时间为t=2v1 a B,在此时间内A的位移x=v1t+12a A t2,要使B再次着地前A不脱离B,木棒长度L必须满足L≥x,联立解得L≥8m2g2h (mg+f)2.答案:(1)见解析(2)8m2g2h(mg+f)2感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

(完整版)圆周运动及其应用专题复习(答案解析版)

(完整版)圆周运动及其应用专题复习(答案解析版)

圆周运动及其应用专题复习(答案版)课前复习1.描述圆周运动的物理量主要有线速度、角速度、周期、转速、向心加速度、向心力等,现物理量 意义、方向 公式、单位 线速度① 描述做圆周运动的物体运动快慢的物理量(v )② 方向与半径垂直,和圆周相切 ① v =Δl Δt =2πrT② 单位:m/s角速度① 描述物体绕圆心转动快慢的物理量(ω) ②中学不研究其方向① ω=ΔθΔt =2πT②单位:rad/s周期和转速① 周期是物体沿圆周运动一圈的时间(T )② 转速是物体在单位时间内转过的圈数((n ),也叫频率(f ) ③ 周期与频率的关系为T =1f① T =2πrv ;单位:s ② n 的单位r/s 、r/min ③ f 的单位:Hz 向心加速度 ① 描述速度方向变化快慢的物理量(a n ) ②方向指向圆心① a n =v 2r =ω2r② 单位:m/s 2 向心力① 作用效果是产生向心加速度,只改变线速度的方向,不改变线速度的大小 ② 方向指向圆心.① F n=mω2r =mv 2r =m 4π2T2r ②单位:N2.匀速圆周运动相关性质:(1)定义:物体沿圆周运动,并且线速度大小处处相等的运动. (2)匀速圆周运动的特点速度大小不变而速度方向时刻变化的变速曲线运动. 只存在向心加速度,不存在切向加速度. 合外力即产生向心加速度的力,充当向心力(3)条件:合外力大小不变,方向始终与速度方向垂直且指向圆心.课前练习1.某型石英表中的分针与时针可视为做匀速转动,分针的长度是时针长度的1.5倍,则下列说法中正确的是( )A .分针的角速度与时针的角速度相等B .分针的角速度是时针的角速度的60倍C .分针端点的线速度是时针端点的线速度的18倍D .分针端点的向心加速度是时针端点的向心加速度的1.5倍【解析】 分针的角速度ω1=2πT 1=π30 rad/min ,时针的角速度ω2=2πT 2=π360 rad/min.ω1∶ω2=12∶1,v 1∶v 2=ω1r 1∶ω2r 2=18∶1,a 1∶a 2=ω1v 1∶ω2v 2=216∶1,故只有C 正确.【答案】 C2.摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如图所示.当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样.假设有一超高速列车在水平面内行驶,以360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为50 kg 的乘客,在拐弯过程中所受到的火车给他的作用力为(g 取10 m/s 2)( )A .500 NB .1 000 NC .500 2 ND .0【解析】 乘客所需的向心力:F =m v 2R =500 N ,而乘客的重力为500 N ,故火车对乘客的作用力大小为N =F 2+G 2=500 2 N ,C 正确. 【答案】 C课堂复习:考点1: 圆周运动的运动学分析1.对公式v =ωr 和a =v 2r=ω2r 的理解(1)由v =ωr 知,r 一定时,v 与ω成正比;ω一定时,v 与r 成正比;v 一定时,ω与r 成反比.(2)由a =v 2r=ω2r 知,在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.2.传动装置特点(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同.(2)皮带传动:不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等.例1:(2013届连云港高三模拟)如图所示,半径为r =20 cm 的两圆柱体A 和B ,靠电动机带动按相同方向均以角速度ω=8 rad/s 转动,两圆柱体的转动轴互相平行且在同一平面内,转动方向已在图中标出,质量均匀的木棒水平放置其上,重心在刚开始运动时恰在B 的正上方,棒和圆柱间动摩擦因数μ=0.16,两圆柱体中心间的距离s =1.6 m ,棒长l >3.2 m ,重力加速度取10 m/s 2,求从棒开始运动到重心恰在A 的正上方需多长时间?【审题视点】 (1)开始时,棒与A 、B 有相对滑动先求出棒加速的时间和位移.(2)棒匀速时与圆柱边缘线速度相等,求出棒重心匀速运动到A 正上方的时间. 【解析】 棒开始与A 、B 两轮有相对滑动,棒受向左摩擦力作用,做匀加速运动,末速度v =ωr =8×0.2 m/s =1.6 m/s ,加速度a =μg =1.6 m/s 2,时间t 1=va=1 s ,t 1时间内棒运动位移s 1=12at 21=0.8 m.此后棒与A 、B 无相对运动,棒以v =ωr 做匀速运动,再运动s 2=s -s 1=0.8 m ,重心到A 的正上方需要的时间t 2=s 2v =0.5 s ,故所求时间t =t 1+t 2=1.5 s. 【答案】 1.5 s例2.小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算脚踏板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t 内脚踏板转动的圈数为N ,那么脚踏板转动的角速度ω=________;要推算自行车的骑行速度,还需要测量的物理量有____________________;自行车骑行速度的计算公式v =________.【解析】 依据角速度的定义式ω=θt=2N πt;要推算自行车的骑行速度,由于v =ω后R ,还要知道自行车后轮的半径R ,又因后轮的角速度ω后=ω飞轮,而ω飞轮r 2=ω牙盘r 1,ω牙盘=ω,联立以上各式解得v =r 1r 2Rω=2πR Nr 1tr 2.故还需知道后轮半径R ,牙盘半径r 1,飞轮半径r 2.【答案】 2N πt自行车后轮半径R ,牙盘半径r 1,飞轮半径r 2r 1r 2Rω或2πR Nr 1tr 2考点2:圆周运动的动力学分析 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 3.解决圆周运动问题的主要步骤 (1)审清题意,确定研究对象.(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等. (3)分析物体的受力情况,画出受力示意图,确定向心力的来源. (4)据牛顿运动定律及向心力公式列方程. (5)求解、讨论.例3:(2012·福建高考)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求: (1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ.【审题视点】 (1)应理解把握好“转台边缘”与“恰好滑离”的含义.(2)临界问题是静摩擦力达到最大值.【解析】 (1)物块做平抛运动,在竖直方向上有H =12gt 2①在水平方向上有s =v 0t ②由①②式解得v 0=s g 2H③ 代入数据得v 0=1 m/s.(2)物块离开转台时,最大静摩擦力提供向心力,有f m =m v 20R ④f m =μN =μmg ⑤由④⑤式得μ=v 20gR代入数据得μ=0.2.【答案】 (1)1 m/s (2)0.2规律总结:(1)无论是匀速圆周运动还是非匀速圆周运动,沿半径方向指向圆心的合力均为向心力. (2)当采用正交分解法分析向心力的来源时,做圆周运动的物体在坐标原点,一定有一个坐标轴沿半径方向指向圆心.例4.(2013届淮州中学四月调研)如图所示,用一根长为l =1 m 的细线,一端系一质量为m =1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T .(g 取10 m/s 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?【解析】 (1)若要小球刚好离开锥面,则小球受到重力和细线拉力如图示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=g l cos θ,即ω0= gl cos θ=12.5 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式:mg tan α= mω′2l sin α解得:ω′2=g l cos α,即ω′= g l cos α= 20 rad/s.【答案】 (1)12.5 rad/s (2)20 rad/s考点3:“轻绳模型”与“轻杆模型”轻绳模型轻杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由mg=mv2r得v临=grv临=0讨论分析(1)过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N(2)当v<gr时,不能过最高点,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心(2)当0<v<gr时,mg-F N=mv2r,F N背离圆心,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=mv2r,F N指向圆心并随v的增大而增大例5:长L=0.5 m质量可忽略的轻杆,其一端可绕O点在竖直平面内无摩擦地转动,另一端固定着一个小球A.A的质量为m=2 kg,当A通过最高点时,如图所示,求在下列几种情况下杆对小球的作用力:(1)A在最高点的速率为1m/s(2)A在最高点的速率为4m/s(3)如果将原题中的轻杆换成轻绳,则结果如何?【解析】(1)向上的支持力16N(2)向下的压力44N(3)换成细绳最小速度为根号5,故只能是向下压力44N课后思考:(4)A在最低点的速率为21m/s;(5)A在最低点的速率为6 m/s.(1)动能定理求出最高点速度1m/s, 向上的支持力16N(2) 动能定理求出最高点速度4m/s,向下压力44N.圆周运动及其应用课后练习:●考查圆周运动中的运动规律1.(2010·大纲全国高考)如图是利用激光测转速的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料.当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图).(1)若图中示波器显示屏横向的每大格(5小格)对应的时间为5.00×10-2 s ,则圆盘的转速为______转/s.(保留3位有效数字)(2)若测得圆盘直径为10.20 cm ,则可求得圆盘侧面反光涂层的长度为______ cm.(保留3位有效数字)【解析】 (1)从图可知圆盘转一圈的时间在横坐标上显示22格,由题意知图中横坐标上每小格表示 1.00×10-2 s ,所以圆盘转动的周期是0.22 s ,则转速为4.55 转/s.(2)反射光引起的电流图象在图中的横坐标上每次一小格,说明反光涂层的长度占圆盘周长的122,则涂层长度L =2πr 22=3.14×10.2022 cm =1.46 cm. 【答案】 (1)4.55 (2)1.46●利用圆周运动测分子速率分布 2.(多选)(2012·上海高考)图为测量分子速率分布的装置示意图.圆筒绕其中心匀速转动,侧面开有狭缝N ,内侧贴有记录薄膜,M 为正对狭缝的位置.从原子炉R 中射出的银原子蒸汽穿过屏上S 缝后进入狭缝N ,在圆筒转动半个周期的时间内相继到达并沉积在薄膜上.展开的薄膜如图b 所示,NP ,PQ 间距相等.则( ) A .到达M 附近的银原子速率较大 B .到达Q 附近的银原子速率较大C .位于PQ 区间的分子百分率大于位于NP 区间的分子百分率D .位于PQ 区间的分子百分率小于位于NP 区间的分子百分率【解析】 分子在圆筒中运动的时间t =dv ,可见速率越大,运动的时间越短,圆筒转过的角度越小,到达位置离M 越近,所以A 正确,B 错误;根据题图b 可知位于PQ 区间的分子百分率大于位于NP 区间的分子百分率,即C 正确,D 错误. 【答案】 AC●圆周运动的动力学问题 3.(多选)(2012·绍兴一中月考)如图所示,放于竖直面内的光滑金属圆环半径为R ,质量为m 的带孔小球穿于环上同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能是( ) A.32 g R B. 3g RC. g RD.12 g R【解析】 如图所示,若绳上恰好无拉力,则有mg tan 60°=mRω2sin 60°,ω= 2g R,所以当ω>2gR时,物体受三个力的作用A 、B 选项正确. 【答案】 AB●圆周、平抛相结合4.(多选)(2012·浙江高考)由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是( ) A .小球落到地面时相对于A 点的水平位移值为2RH -2R 2B .小球落到地面时相对于A 点的水平位移值为22RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的最小高度H min =52R【解析】 要使小球从A 点水平抛出,则小球到达A 点时的速度v >0,根据机械能守恒定律,有mgH -mg ·2R =12m v 2,所以H >2R ,故选项C 正确,选项D 错误;小球从A 点水平抛出时的速度v =2gH -4gR ,小球离开A 点后做平抛运动,则有2R =12gt 2,水平位移x=v t ,联立以上各式可得水平位移x =22RH -4R 2,选项A 错误,选项B 正确. 【答案】 BC●竖直面内圆周运动问题 5.(2011·北京高考)如图所示,长度为l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小可以忽略).(1)在水平拉力F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力图,并求力F 的大小;(2)由图示位置无初速释放小球,求当小球通过最低点时的速度大小及轻绳对小球的拉力.(不计空气阻力).【解析】 (1)受力分析如图根据平衡条件,应满足T cos α=mg , T sin α=F则拉力大小F =mg tan α.(2)运动中只有重力做功,系统机械能守恒mgl (1-cos α)=12m v 2则通过最低点时,小球的速度大小 v =2gl (1-cos α)根据牛顿第二定律T ′-mg =m v 2l解得轻绳对小球的拉力T ′=mg +m v 2l=mg (3-2 cos α),方向竖直向上.【答案】 (1)见解析(2)2gl (1-cos α) mg (3-2 cos α),方向竖直向上。

2022高考物理一轮复习课时作业十二圆周运动及其应用含解析新人教版

2022高考物理一轮复习课时作业十二圆周运动及其应用含解析新人教版

圆周运动及其应用(建议用时40分钟)1.洗衣机是现代家庭常见的电器设备。

它是采用转筒带动衣物旋转的方式进行脱水的,下列有关说法中错误的是( )A.脱水过程中,衣物是紧贴筒壁的B.加快脱水筒转动的角速度,脱水效果会更好C.水能从筒中甩出是因为水滴与衣物间的作用力不能提供水滴需要的向心力D.靠近中心的衣物脱水效果比四周的衣物脱水效果好【解析】选D。

脱水过程中,衣物由于离心作用而紧贴筒壁,A正确,不符合题意;加快脱水筒转动的角速度,脱水效果会更好,B正确,不符合题意;水能从筒中甩出是因为水滴与衣物间的作用力不能提供水滴需要的向心力而做离心运动,C正确,不符合题意;四周的衣物脱水效果比靠近中心的衣物脱水效果好,D错误,符合题意。

故选D。

2.(2020·眉山模拟)转笔是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。

转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其手上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及的物理知识的叙述正确的是( )A.笔杆上的点离O点越近的,角速度越大B.笔杆上的点离O点越近的,做圆周运动的向心加速度越大C.笔杆上的各点做圆周运动的向心力是由万有引力提供的D.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动被甩走【解析】选D。

笔杆上的各个点都做同轴转动,所以角速度是相等的,但转动半径不同,所以线速度不同,故A错误;由向心加速度公式a n=ω2R,笔杆上的点离O点越近的,做圆周运动的向心加速度越小,故B错误;笔杆上的各点做圆周运动的向心力是由笔杆的弹力提供的,与万有引力无关,故C错误;当转速过大时,提供的向心力小于需要的向心力,笔尖上的小钢珠有可能做离心运动被甩走,故D正确。

【加固训练】如图所示,计算机硬盘盘面在电机的带动下高速旋转,通过读写磁头读写下方磁盘上的数据。

普通家用电脑硬盘的转速通常有5 400 r/min 和7 200 r/min两种,硬盘盘面的大小相同,则正常运转时,下列说法中正确的是( )A.5 400 r/min与7 200 r/min的硬盘盘面边缘的某点的角速度大小之比为4∶3B.磁头的位置相同时,两种硬盘读写数据速度相等C.磁头的位置相同时,7 200 r/min的硬盘读写数据速度较慢D.5 400 r/min与7 200 r/min的硬盘盘面边缘的某点的角速度大小之比为3∶4【解析】选D。

2020版高考物理一轮复习课后限时集训12圆周运动含解析新人教版

2020版高考物理一轮复习课后限时集训12圆周运动含解析新人教版

课后限时集训(十二) 圆周运动(建议用时:40分钟)[基础对点练]题组一:匀速圆周运动的描述1.下列关于匀速圆周运动中向心加速度的说法正确的是 ( )A .向心加速度表示速率改变的快慢B .向心加速度表示角速度变化的快慢C .向心加速度描述线速度方向变化的快慢D .匀速圆周运动的向心加速度不变C [匀速圆周运动中速率不变,向心加速度只改变线速度的方向,显然A 错误;匀速圆周运动的角速度是不变的,所以B 错误;匀速圆周运动中速度的变化只表现为速度方向的变化,作为反映速度变化快慢的物理量,向心加速度只描述速度方向变化的快慢,所以C 正确;匀速圆周运动的向心加速度的方向是变化的,所以D 错误。

]2.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是( )A .它们的半径之比为2∶9B .它们的半径之比为1∶2C .它们的周期之比为2∶3D .它们的周期之比为1∶3AD [由v =ωr ,得r =,故r 甲∶r 乙=(v 甲ω乙)∶(v 乙ω甲)=2∶9,A 正确,B 错误;vω由T =,得T 甲∶T 乙=∶=1∶3,C 错误,D 正确。

]2πω2πω甲2πω乙3.(多选)如图所示为某一皮带传动装置。

M 是主动轮,其半径为r 1,M ′半径也为r 1,M ′和N 在同一轴上,N 和N ′的半径都为r 2。

已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。

则下列说法正确的是( )A .N ′轮做的是逆时针转动B .N ′轮做的是顺时针转动C .N ′轮的转速为n(r 1r2)2D .N ′轮的转速为n(r2r 1)2BC [根据皮带传动关系可以看出,N 轮和M 轮转动方向相反,N ′轮和N 轮的转动方向相反,因此N ′轮的转动方向为顺时针,A 错误,B 正确。

皮带与轮边缘接触处的速度相等,所以2πnr 1=2πn 2r 2,得N (或M ′)轮的转速为n 2=,同理2πn 2r 1=2πn ′2r 2,得N ′轮转nr 1r 2速n ′2=n ,C 正确,D 错误。

人教版高三物理小专题复习 12圆周运动及其应用

人教版高三物理小专题复习 12圆周运动及其应用

12.圆周运动及其应用一、单项选择题(每小题6分,共36分。

每小题给出的四个选项中,只有一个选项是正确的)1.如图所示,一个水平圆盘绕中心竖直轴匀速转动,角速度是4rad/s,盘面上距圆盘中心0.10m的位置有一个质量为0.10kg的小物体,与圆盘相对静止随圆盘一起转动。

小物体所受向心力大小是()A.0.14NB.0.16NC.8ND.16N【解析】选B2.如图所示,小强正在荡秋千。

关于绳上a点和b点的线速度和角速度,下列关系正确的是()A.v a=v bB.v a>v bC.ωa=ωbD.ωa<ωb【解析】选C3. “玉兔号”月球车依靠太阳能电池板提供能量,如图ABCD是一块矩形电池板,能绕CD转动,E为矩形的几何中心(未标出),则电池板旋转过程中()A.B、E两点的转速相同B.A、B两点的角速度不同C.A、B两点的线速度不同D.A、E两点的向心加速度相同【解析】选A4.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶,做匀速圆周运动,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h。

下列说法中正确的是()A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大C.h越高,摩托车做圆周运动的角速度将越大D.h越高,摩托车做圆周运动的向心力将越大5.如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为M,到小环的距离为L,其两侧面与夹子间的最大静摩擦力均为F。

小环和物块以速度v向右匀速运动,小环碰到杆上的钉子P后立刻停止,物块向上摆动。

整个过程中,物块在夹子中没有滑动。

小环和夹子的质量均不计,重力加速度为g。

下列说法正确的是()A.物块向右匀速运动时,绳中的张力等于2FB.小环碰到钉子P时,绳中的张力大于2FC.物块上升的最大高度为D.速度v不能超过【解析】选D6.近年许多电视台推出户外有奖冲关的游戏节目,如图(俯视图)是某台设计的冲关活动中的一个环节。

【高考复习】2020版高考物理 全程复习课后练习12 圆周运动的规律及应用(含答案解析)

【高考复习】2020版高考物理 全程复习课后练习12 圆周运动的规律及应用(含答案解析)

2020版高考物理全程复习课后练习12圆周运动的规律及应用1.如图为学员驾驶汽车在水平面上绕O点做匀速圆周运动的俯视示意图,已知质量为60 kg的学员在A点位置,质量为70 kg的教练员在B点位置,A点的转弯半径为5.0 m,B点的转弯半径为4.0 m,学员和教练员(均可视为质点)( )A.运动周期之比为5:4B.运动线速度大小之比为1:1C.向心加速度大小之比为4:5D.受到的合力大小之比为15:142.如图所示,一木块放在圆盘上,圆盘绕通过圆盘中心且垂直于盘面的竖直轴匀速转动,木块和圆盘保持相对静止,那么( )A.木块受到圆盘对它的摩擦力,方向沿半径背离圆盘中心B.木块受到圆盘对它的摩擦力,方向沿半径指向圆盘中心C.木块受到圆盘对它的摩擦力,方向与木块运动的方向相反D.因为木块与圆盘一起做匀速转动,所以它们之间没有摩擦力3.如图所示,ABC为竖直平面内的金属半圆环,AC连线水平,A、B两点间固定着一根直金属棒,在直金属棒和圆环的BC部分上分别套着小环M、N(棒和半圆环均光滑),现让半圆环绕竖直对称轴以角速度ω1做匀速转动,小环M、N在图示位置.如果半圆环的角速度变为ω2,ω2比ω1稍微小一些.关于小环M、N的位置变化,下列说法正确的是( )A.小环M将到达B点,小环N将向B点靠近稍许B.小环M将到达B点,小环N的位置保持不变C.小环M将向B点靠近稍许,小环N将向B点靠近稍许D.小环M向B点靠近稍许,小环N的位置保持不变4.半径为1 m的水平圆盘绕过圆心O的竖直轴匀速转动,A为圆盘边缘上一点,在O点的正上方将一个可视为质点的小球以4 m/s的速度水平抛出时,半径OA方向恰好与该初速度的方向相同,如图所示,若小球与圆盘只碰一次,且落在A点,则圆盘转动的角速度大小可能是( )A.2π rad/s B.4π rad/s C.6π rad/s D.8π rad/s5.两粗细相同内壁光滑的半圆形圆管ab和bc连接在一起,且在b处相切,固定于水平面上。

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C 点后,再落回到水平面上时距B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少? 【答案】(1) (2)4R (3)或【解析】【详解】(1)由动能定理得W =在B 点由牛顿第二定律得:9mg -mg =m解得W =4mgR(2)设物块经C 点落回到水平面上时距B 点的距离为S ,用时为t ,由平抛规律知 S=v c t 2R=gt 2从B 到C 由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知 EP≤mgR若物块刚好通过C 点,则物块从B 到C 由动能定理得物块在C 点时mg =m 则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+,解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.有一水平放置的圆盘,上面放一劲度系数为k 的弹簧,如图所示,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体A ,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l .设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A 开始滑动?(2)当转速缓慢增大到2ω0时,A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少? 【答案】(1) glμ(2)34mglkl mgμμ-【解析】 【分析】(1)物体A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x . 【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n 0时,A 即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg =ml ω02, 解得:ω0= glμ.即当ω0=glμ时物体A 开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg +k △x =mr ω12, r=l+△x 解得:34mglx kl mgμμ-V =【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.4.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ①v 1=2Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小5.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

2020-2021高中物理新人教版必修第二册 6.4生活中的圆周运动 课时作业12(含解析)

2020-2021高中物理新人教版必修第二册 6.4生活中的圆周运动 课时作业12(含解析)
19.轨道赛车是一种集娱乐、竞技、益智为一体的儿童游乐设备。设备主要由轨道、控制盒、控制手柄、赛车四大部分组成。图甲为某种简易轨道赛车的轨道图,图乙为拼接直轨道的直板,图丙为部分轨道的简化示意图,其中OA、BC、CD段为直轨道,由多个长为L=0.25m的直板拼接而成,AB为半圆形水平弯道,其半径R=1.0m,两条单轨能承受最大的侧向压力为20N,1和2为竖直平面内的圆轨道,圆轨道1的半径为R1=0.4m,圆轨道2的半径R2=0.2m。已知该赛车的额定功率为100W,赛车行驶时,可以通过遥控器控制赛车的实际功率。设赛车在水平轨道所受阻力恒为5N,不计竖直圆轨道对赛车的阻力,赛车的质量为0.2kg。重力加速度g=10m/s2。求:
C. 是b开始滑动的临界角速度
D.当 时,a所受摩擦力的大小为
9.如图所示,两个可视为质点的相同物体a和b放在水平圆转盘上,且物体a、b与转盘中心在同一条水平直线上,物体a、b用细线连接,它们与转盘间的动摩擦因数相同。当圆盘转动到两物体刚好还未发生滑动时,烧断细线,两物体的运动情况是( )
A.物体b仍随圆盘一起做匀速圆周运动
A.小球均静止时,弹簧的长度为L-
B.角速度ω=ω0时,小球A对弹簧的压力为mg
C.角速度ω0=
D.角速度从ω0继续增大的过程中,弹簧的形变量增大
11.如图所示,目前世界上最大的无轴式摩天轮是位于山东潍坊的空心摩天轮,直径125米,旋转一周大约需要半个小时.摩天轮在竖直平面内匀速转动,乘客始终相对吊厢静止,则( )
故选C。
6.C
【详解】
设AB=r,则有
OB=2AB=2r,OA=3r
设每个小球的质量为m,角速度为ω,根据牛顿第二定律得
对A球
对B球
联立可得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后限时自测(十二)圆周运动及其应用(时间:45分钟)一、选择题(本题共10小题)1.(多选)如图4-3-18所示,一质点沿螺旋线自外向内运动,已知其走过的弧长s与运动时间t成正比,关于该质点的运动,下列说法正确的是()图4-3-18A.小球运动的线速度越来越大B.小球运动的加速度越来越小C.小球运动的角速度越来越大D.小球所受的合外力越来越大[解析]由s=kt=v t可知小球运动的线速度大小不变,由a=v2r、ω=vr、F=ma可知,随着小球运动半径r的减小,小球的加速度、角速度、合外力均越来越大,故A、B错误、C、D正确.[答案]CD2.如图4-3-19所示,某物体沿14光滑圆弧轨道由最高点滑到最低点过程中,物体的速率逐渐增大,则()图4-3-19 A.物体的合外力为零B.物体所受合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)[解析]物体做加速曲线运动,合力不为零,A错;物体做速度大小变化的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合外力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.[答案] D3.(2014·湖北重点中学期中联考)自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图4-3-20所示.当自行车正常骑行时A、B、C三轮边缘的向心加速度的大小之比a A∶a B∶a C等于()图4-3-20A.1∶1∶8B.4∶1∶4C.4∶1∶32 D.1∶2∶4[解析]A、C角速度相等,由a=ω2R可知a A∶a C=1∶8.AB线速度相等,由a=v2/R可知,a A∶a B=4∶1,所以a A∶a B∶a C=4∶1∶32,选项C正确.[答案] C4. (2014·大连模拟)如图4-3-21所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮上质量相等的两个质点,则偏心轮转动过程中a、b两质点()图4-3-21A.角速度大小相同B.线速度大小相同C.向心加速度大小相同D.向心力大小相同[解析] 同轴转动,角速度大小相等,选项A 正确;角速度大小相等,但转动半径不同,根据v =ωr 、a =ω2r 和F =mω2r 可知,线速度、向心加速度和向心力大小均不同.选项B 、C 、D 错误.[答案] A5.(多选)(2014·湖北省重点中学高三十月联考)如图4-3-22所示,绳子的一端固定在O 点,另一端拴一重物在水平面上做匀速圆周运动( )图4-3-22A .转速相同时,绳长的容易断B .周期相同时,绳短的容易断C .线速度大小相等时,绳短的容易断D .线速度大小相等时,绳长的容易断[解析] 由F =mω2l =m 4π2T 2·l =m v 2l 可得,转速相同时,则周期相同,绳越长,F 越大,绳越易断,A 正确,B 错误;线速度大小相等时,绳越短,F 越大,绳越易断,C 正确,D 错误.[答案] AC6.(2014·安徽高考)如图4-3-23所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )图4-3-23A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .5 rad/s[解析] 考查圆周运动的向心力表达式.当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r解得ω=1.0 rad/s故选项C正确.[答案] C7. (多选)(2013·新课标全国卷Ⅱ)公路急转弯处通常是交通事故多发地带.如图4-3-24,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()图4-3-24A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小[解析]抓住临界点分析汽车转弯的受力特点及不侧滑的原因,结合圆周运动规律可判断.汽车转弯时,恰好没有向公路内外两侧滑动的趋势,说明公路外侧高一些,支持力的水平分力刚好提供向心力,此时汽车不受静摩擦力的作用,与路面是否结冰无关,故选项A正确,选项D错误;当v<v c时,支持力的水平分力大于所需向心力,汽车有向内侧滑动的趋势,摩擦力向外侧;当v>v c时,支持力的水平分力小于所需向心力,汽车有向外侧滑动的趋势,在摩擦力大于最大静摩擦力前不会侧滑,故选项B错误、选项C正确.[答案]AC8.如图4-3-25所示,是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小球穿在光滑细杆上与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O处,当转盘转动的角速度为ω1时,指针指在A处,当转盘转动的角速度为ω2时,指针指在B 处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为()图4-3-25A.12B.12C.14D.13[解析] 小球随转盘转动时由弹簧的弹力提供向心力.设标尺的最小分度的长度为x ,弹簧的劲度系数为k ,则有kx =m ·4x ·ω21,k ·3x =m ·6x ·ω22,故有ω1∶ω2=1∶2,B 正确.[答案] B9.(多选)质量为m 的小球由轻绳a 、b 分别系于一轻质木架上的A 和C 点,绳长分别为l a 、l b ,如图4-3-26所示,当轻杆绕轴BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a 在竖直方向,绳b 在水平方向,当小球运动到图示位置时,绳b 被烧断的同时轻杆停止转动,则( )图4-3-26A .小球仍在水平面内做匀速圆周运动B .在绳b 被烧断瞬间,绳a 中张力突然增大C .若角速度ω较小,小球在垂直于平面ABC 的竖直平面内摆动D .绳b 未被烧断时,绳a 的拉力大于mg ,绳b 的拉力为mω2l b[解析] 根据题意,在绳b 被烧断之前,小球绕BC 轴做匀速圆周运动,竖直方向上受力平衡,绳a 的拉力等于mg ,D 错误;绳b 被烧断的同时轻杆停止转动,此时小球具有垂直平面ABC 向外的速度,小球将在垂直于平面ABC 的平面内运动,若ω较大,则在该平面内做圆周运动,若ω较小,则在该平面内来回摆动,C 正确,A 错误;绳b 被烧断瞬间,绳a 的拉力与重力的合力提供向心力,所以拉力大于物体的重力,绳a 中的张力突然变大了,B 正确.[答案]BC10.(2014·山东省桓台二中高三期中)如图4-3-27所示,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道在竖直面内作圆周运动.A、C点为圆周的最高点和最低点,B、D点是与圆心O同一水平线上的点.小滑块运动时,物体M在地面上静止不动,则物体M对地面的压力N和地面对M的摩擦力有关说法正确的是()图4-3-27A.小滑块在A点时,N>Mg,摩擦力方向向左B.小滑块在B点时,N=Mg,摩擦力方向向右C.小滑块在C点时,N=(M+m)g,M与地面无摩擦D.小滑块在D点时,N=(M+m)g,摩擦力方向向左[解析]因为轨道光滑,所以小滑块与轨道之间没有摩擦力.小滑块在A点时,与轨道的作用力在竖直方向上,水平方向对轨道无作用力,所以轨道相对于地面没有相对运动趋势,即摩擦力为零;当小滑块的速度v=gR时,对轨道的压力为零,轨道对地面的压力N=Mg,当小滑块的速度v>gR时,对轨道的压力向上,轨道对地面的压力N<Mg,故选项A错误;小滑块在B点时,对轨道的作用力沿水平方向向左,所以轨道对地有向左运动的趋势,地面给轨道向右的摩擦力;竖直方向上对轨道无作用力,所以轨道对地面的压力N=Mg,故选项B 正确;小滑块在C点时,在水平方向对轨道无作用力,所以地面对轨道没有摩擦力;小滑块做圆周运动,轨道对小滑块的支持力大于其重力,其合力提供向上的向心力,所以滑块对轨道的压力大于其重力,所以轨道对地面的压力N>(M+m)g,故选项C错误;小滑块在D点时,对轨道的作用力沿水平方向向右,所以轨道对地有向右运动的趋势,地面给轨道向左的摩擦力;竖直方向上对轨道无作用力,所以轨道对地面的压力N=Mg,故选项D错误.[答案] B二、计算题(本题共2小题)11.(2014·河北正定中学高三月考)城市中为了解决交通问题,修建了许多立交桥,如图4-3-28所示.桥面为圆弧形的立交桥AB ,横跨在水平路面上,长为L =100 m ,桥高h =10 m .可以认为桥的两端A 、B 与水平路面的连接处的平滑的.一辆质量m =1000 kg 的小汽车冲上立交桥,到达桥顶时的速度为130 m/s.试计算:(g 取10 m/s 2)图4-3-28(1)汽车在桥顶处对桥面的压力的大小.(2)若汽车到达桥顶时对桥面的压力为0,此时汽车的速度为多大?[解析] (1)小汽车通过桥顶时做圆周运动,竖直方向受重力mg ,支持力F 的作用,根据牛顿第二定律,有mg -F =m v 2R设圆弧半径为R ,由几何关系得R 2=⎝ ⎛⎭⎪⎫L 22+(R -h )2 解得R =130 m小汽车对桥面的压力大小等于支持力F =9×103 N(2)在最高点对车支持力为0,v 2=gR =1013 m/s[答案] (1)9×103 N (2)1013 m/s12.(2014·青岛模拟)物体做圆周运动时所需的向心力F 需由物体运动情况决定,合力提供的向心力F 供由物体受力情况决定.若某时刻F 需=F 供,则物体能做圆周运动;若F 需>F 供,物体将做离心运动;若F 需<F 供,物体将做近心运动.现有一根长L =1 m 的刚性轻绳,其一端固定于O 点,另一端系着质量m =0.5 kg 的小球(可视为质点),将小球提至O 点正上方的A 点处,此时绳刚好伸直且无张力,如图4-3-29所示.不计空气阻力,g 取10 m/s 2,则:图4-3-29(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.[解析] (1)小球做圆周运动的临界条件为重力刚好提供在顶点时物体做圆周运动的向心力,即mg =m v 20L解得v 0=gL =10 m/s(2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F T +mg =m v 21L代入数据得绳中张力F T =3 N(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,设所用时间为t ,水平、竖直位移分别为x 、y ,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2x =v 2ty=12gt2代入数据联立解得t=0.6 s(t=0舍去) [答案](1)10 m/s(2)3 N(3)0.6 s。

相关文档
最新文档