2.3.1直线与平面垂直的判定(第2课时)

合集下载

第二章 2.3.1 直线与平面垂直的判定

第二章 2.3.1  直线与平面垂直的判定

§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标 1.了解直线与平面垂直的定义;了解直线与平面所成角的概念.2.掌握直线与平面垂直的判定定理.3.会用直线与平面垂直的判定定理判定线面垂直.知识点一直线与平面垂直的定义思考空间两条直线垂直一定相交吗?答案不一定相交,空间两条直线垂直分为两种情况:一种是相交垂直,一种是异面垂直. 知识点二直线与平面垂直的判定定理知识点三 直线与平面所成的角1.若直线l ⊥平面α,则l 与平面α内的直线可能相交,可能异面,也可能平行.( × )2.若直线l 与平面α内的无数条直线垂直,则l ⊥α.( × )3.直线与平面所成角为α,则0°<α≤90°.( × )4.如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的所有直线.( √ )题型一 直线与平面垂直的定义及判定定理的理解 例1 下列命题中,正确的序号是________. ①若直线l 与平面α内的一条直线垂直,则l ⊥α; ②若直线l 不垂直于平面α,则α内没有与l 垂直的直线; ③若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直; ④过一点和已知平面垂直的直线有且只有一条. 考点 直线与平面垂直的判定 题点 判定直线与平面垂直 答案 ③④解析 当l 与α内的一条直线垂直时,不能保证l 与平面α垂直,所以①不正确;当l 与α不垂直时,l 可能与α内的无数条平行直线垂直,所以②不正确,③正确;过一点有且只有一条直线垂直于已知平面,所以④正确.反思感悟(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.跟踪训练1(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)考点直线与平面垂直的判定题点判定直线与平面垂直答案(1)C(2)①③④解析(1)∵OA⊥OB,OA⊥OC,OB∩OC=O,OB,OC⊂平面OBC,∴OA⊥平面OBC.(2)根据直线与平面垂直的判定定理,平面内这两条直线必须是相交的,①③④中给定的两直线一定相交,能保证直线与平面垂直,而②梯形的两边可能是上、下底边,它们互相平行,不满足定理条件.题型二直线与平面垂直的判定例2如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.考点直线与平面垂直的判定题点直线与平面垂直的证明证明(1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.反思感悟(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.跟踪训练2如图,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM.(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明(1)∵AB为⊙O的直径,∴AM⊥BM.又P A⊥平面ABM,∴P A⊥BM.又∵P A∩AM=A,∴BM⊥平面P AM.又AN⊂平面P AM,∴BM⊥AN.又AN⊥PM,且BM∩PM=M,∴AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,∴AN⊥PB.又∵AQ⊥PB,AN∩AQ=A,∴PB⊥平面ANQ.又NQ⊂平面ANQ,∴PB⊥NQ.求直线与平面所成的角典例如图,在正方体ABCD-A1B1C1D1中,(1)求A 1B 与平面AA 1D 1D 所成的角; (2)求A 1B 与平面BB 1D 1D 所成的角. 考点 直线与平面所成的角 题点 直线与平面所成的角 解 (1)∵AB ⊥平面AA 1D 1D ,∴∠AA 1B 就是A 1B 与平面AA 1D 1D 所成的角, 在Rt △AA 1B 中,∠BAA 1=90°,AB =AA 1, ∴∠AA 1B =45°,∴A 1B 与平面AA 1D 1D 所成的角是45°. (2)连接A 1C 1交B 1D 1于点O ,连接BO .∵A 1O ⊥B 1D 1,BB 1⊥A 1O ,BB 1∩B 1D 1=B 1,BB 1,B 1D 1⊂平面BB 1D 1D , ∴A 1O ⊥平面BB 1D 1D ,∴∠A 1BO 就是A 1B 与平面BB 1D 1D 所成的角. 设正方体的棱长为1,则A 1B =2,A 1O =22. 又∵∠A 1OB =90°,∴sin ∠A 1BO =A 1O A 1B =12,又0°≤∠A 1BO ≤90°,∴∠A 1BO =30°,∴A 1B 与平面BB 1D 1D 所成的角是30°. [素养评析] (1)求直线与平面所成角的步骤 ①寻找过斜线上一点与平面垂直的直线.②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角. ③把该角归结在某个三角形中,通过解三角形,求出该角.(2)从求直线与平面所成角的步骤看,可以归纳为作、证、求三个环节,作、证充分体现了逻辑推理的数学核心素养,而求又突出了数学运算的素养.1.在正方体ABCD -A 1B 1C 1D 1的六个面中,与AA 1垂直的平面的个数是( ) A.1 B.2 C.3 D.6 答案 B2.给出下列三个命题:①一条直线垂直于一个平面内的三条直线,则这条直线和这个平面垂直;②一条直线与一个平面内的任何直线所成的角相等,则这条直线和这个平面垂直;③一条直线在平面内的射影是一点,则这条直线和这个平面垂直.其中正确的个数是()A.0B.1C.2D.3答案 C解析①错,②③对.3.空间中直线l和三角形的两边AC,BC同时垂直,则这条直线和三角形的第三边AB的位置关系是()A.平行B.垂直C.相交D.不确定考点直线与平面垂直的性质题点根据线面垂直的性质判定线线垂直答案 B解析由于直线l和三角形的两边AC,BC同时垂直,而这两边相交于点C,所以直线l和三角形所在的平面垂直,又因三角形的第三边AB在这个平面内,所以l⊥AB.4.如图,在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1CB.平面A1DB1C.平面A1B1C1D1D.平面A1DB答案 B解析∵AD1⊥A1D,AD1⊥A1B1,A1D∩A1B1=A1,A1D,A1B1⊂平面A1DB1,∴AD1⊥平面A1DB1.5.如图,在正方体ABCD-A1B1C1D1中,异面直线BD1与A1D所成的角为________.考点异面直线所成的角题点求异面直线所成的角答案90°解析连接AD1,∵AB⊥A1D,AD1⊥A1D,AB∩AD1=A,AB,AD1⊂平面ABD1,∴A1D⊥平面ABD1,∴A1D⊥BD1.1.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).一、选择题1.给出下列条件(其中l为直线,α为平面):①l垂直于α内三条不都平行的直线;②l垂直于α内无数条直线;③l垂直于α内正六边形的三条边.其中能得出l⊥α的所有条件序号是()A.②B.①C.①③D.③答案 C2.在正方体ABCD-A1B1C1D1中,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1DD.异面直线AD与CB1所成的角为45°考点直线与平面垂直的判定题点判定直线与平面垂直答案 C解析由正方体的性质得BD∥B1D1,且BD⊄平面CB1D1,所以BD∥平面CB1D1,故A正确;因为BD⊥平面ACC1A1,所以AC1⊥BD,故B正确;异面直线AD与CB1所成的角即为AD 与DA1所成的角,故为45°,所以D正确.3.下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个考点直线与平面垂直的判定题点判定直线与平面垂直答案 B解析①④不正确,其他三项均正确.4.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直考点直线与平面垂直的性质题点根据线面垂直的性质判定线线垂直答案 C解析连接AC.因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.5.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定答案 C解析∵AB⊥α,l⊂α,∴AB⊥l,又∵BC⊥β,l⊂β,∴BC⊥l,∴l⊥平面ABC,∴l⊥AC.6.如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥△EFH所在平面B.AH⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面考点直线与平面垂直的判定题点判定直线与平面垂直答案 B解析根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH.7.如图所示,在正三棱柱ABC-A1B1C1中,若AB∶BB1=2∶1,则AB1与平面BB1C1C所成角的大小为()A.45°B.60°C.30°D.75°答案 A解析取BC的中点D,连接AD,B1D,∵AD⊥BC且AD⊥BB1,∴AD⊥平面BCC1B1,∴∠AB1D即为AB1与平面BB1C1C所成的角.设AB=2,则AA1=1,AD=62,AB1=3,∴sin∠AB1D=ADAB1=22,∴∠AB1D=45°.故选A.8.如图,在三棱锥P-ABC中,P A⊥平面ABC,AB⊥BC,P A=AB,D为PB的中点,则下列结论正确的有()①BC⊥平面P AB;②AD⊥PC;③AD⊥平面PBC;④PB⊥平面ADC.A.1个B.2个C.3个D.4个考点直线与平面垂直的判定题点判定直线与平面垂直答案 C解析∵P A⊥平面ABC,∴P A⊥BC,又BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,故①正确;由BC⊥平面P AB,得BC⊥AD,又P A=AB,D是PB的中点,∴AD⊥PB,又PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,∴AD⊥PC,故②③正确.故选C.二、填空题9.已知直线l,a,b,平面α,若要得到结论l⊥α,则需要在条件a⊂α,b⊂α,l⊥a,l⊥b中另外添加的一个条件是________.答案a与b相交10.如图所示,三棱锥P-ABC中,P A⊥平面ABC,P A=AB,则直线PB与平面ABC所成角的度数为________.答案45°解析因为P A⊥平面ABC,所以斜线PB在平面ABC上的射影为AB,所以∠PBA即为直线PB与平面ABC所成的角.在△P AB中,∠BAP=90°,P A=AB,所以∠PBA=45°,即直线PB 与平面ABC所成的角等于45°11.如图,在直三棱柱ABC-A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)考点直线与平面垂直的判定题点判定直线与平面垂直答案∠A1C1B1=90°解析如图所示,连接B1C,由BC=CC1,可得BC1⊥B1C,因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.因为A1C1∥AC,B1C1∥BC,故只要证A1C1⊥B1C1即可.(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)三、解答题12.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形.已知AD=2,P A=2,PD=22,求证:AD⊥平面P AB.考点直线与平面垂直的判定题点直线与平面垂直的证明证明在△P AD中,由P A=2,AD=2,PD=22,可得P A2+AD2=PD2,即AD⊥P A.又AD⊥AB,P A∩AB=A,P A,AB⊂平面P AB,所以AD⊥平面P AB.13.如图,在四面体A-BCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF= 2.求证:BD⊥平面ACD.证明取CD的中点G,连接EG,FG.又∵E,F分别为AD,BC的中点,∴FG∥BD,EG∥AC.∵AC=BD=2,则EG=FG=1.∵EF=2,∴EF2=EG2+FG2,∴EG⊥FG,∴BD⊥EG.∵∠BDC=90°,BD⊥CD.又EG∩CD=G,∴BD⊥平面ACD.14.如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC ⊥SBB.AB ∥平面SCDC.SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D.AB 与SC 所成的角等于DC 与SA 所成的角考点 直线与平面所成的角题点 直线与平面所成的角答案 D解析 对于选项A ,由题意得SD ⊥AC ,AC ⊥BD ,SD ∩BD =D ,∴AC ⊥平面SBD ,故AC ⊥SB ,故A 正确;对于选项B ,∵AB ∥CD ,AB ⊄平面SCD ,∴AB ∥平面SCD ,故B 正确;对于选项C ,由对称性知SA 与平面SBD 所成的角与SC 与平面SBD 所成的角相等,故C 正确.15.如图,P A ⊥矩形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN ∥平面P AD ;(2)若PD 与平面ABCD 所成的角为45°,求证:MN ⊥平面PCD .考点 直线与平面垂直的判定题点 直线与平面垂直的证明证明 (1)取PD 的中点E ,连接NE ,AE ,如图.又∵N 是PC 的中点,∴NE ∥DC 且NE =12DC . 又∵DC ∥AB 且DC =AB ,AM =12AB , ∴AM ∥CD 且AM =12CD ,∴NE ∥AM ,且NE =AM , ∴四边形AMNE 是平行四边形,∴MN ∥AE .∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.(2)∵P A⊥平面ABCD,∴∠PDA即为PD与平面ABCD所成的角,∴∠PDA=45°,∴AP=AD,∴AE⊥PD.又∵MN∥AE,∴MN⊥PD.∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD. 又∵CD⊥AD,P A∩AD=A,P A,AD⊂平面P AD,∴CD⊥平面P AD.∵AE⊂平面P AD,∴CD⊥AE,∴CD⊥MN.又CD∩PD=D,CD,PD⊂平面PCD,∴MN⊥平面PCD.。

必修2《2.3.1直线与平面垂直的判定》(新人教版)

必修2《2.3.1直线与平面垂直的判定》(新人教版)
A1B1CD内的射影就可以求出
A
1
直线A1B和平面A1B1CD所成
的角
D
B1
O
C
解:见板书
A
B
四:知识小结
1.直线与平面垂直的概念 2.直线与平面垂直的判定
(1)利用定义; 垂直于平面内任意一条直线 (2)利用判定定理.
即:线线垂直
线面垂直
3. 线面角的概念及范围: 0° ≤θ≤ 90°
五:作业 课本P67练习
生活中的线面垂直现象:
旗杆与底面垂直
塔与地面垂直
大桥的桥柱与水面垂直
军人与地面垂直
思 考 一条直线 与一个平面垂直
的意义是什么? A
C
C1
α
B
B1
如果直线 l 与平面内的任意一条直线都垂直, 我们说直线 l 与平面 互相垂直, 记作 l .垂足平面的垂线 Nhomakorabeal
P
直线 l 的垂面
画法:画直线与平面垂直时,常把直线画成与
总结:如果两条平行直线中的一条垂直于一个平面,
那么另一条也垂直于这个平面。
三、直线和平面所成的角:
如图所示,一条直线PA和平面 相交,但不垂直,这
条直线叫这个平面的斜线,斜线和平面的交点A叫做斜足。
过斜线上斜足以外的一点P向平面引垂线PO ,过垂 足O和斜足A的直线AO叫做斜线在这个平面上的射影。
la
lb
a
l
b
abA
线不在多,相交就灵
l
b
Aa
作用: 判定直线与平面垂直. 记忆:线线垂直,则线面垂直
例1 如图
a
b
已知:a//b,a , 求证:b .
n m

2.3.1直线与平面垂直的判定(经典)

2.3.1直线与平面垂直的判定(经典)

如图,点Q是_点_P_在_平_面_内_的_射_影_ _线_段_PQ_是点P到平面 的垂线段
(2)斜线
一条直线和一个平面相交,但不和
这个平面垂直,这条直线叫做这个平面
的斜线.
P
斜线和平面的交点
叫做斜足。
从平面外一点向平 面引斜线,这点与斜
R
足间的线段叫做这点
到这个平面的斜线段
思考:平面外一点到一个平面的垂线段有 几条?斜线段有几条?
A
B
O
D
α
C
这条直线垂直于梯形所在的平面。(√ )
(4)若一条直线与一个平面不垂直,则这个平面内
没有与这条直线垂直的直线。(× )
定理应用
四:典型例题
例1 如图,已知 a//b,a,求证 b.
证明:在平面 内作两条相交
直线m,n.
a
b
m n
巩固练习
例2 如图,在三棱锥V—ABC中,VA=VC, AB=BC,求证:VB⊥AC。
如图,长方体ABCD—A1B1C1D1中,棱
AA1,BB1,CC1,DD1 所在直线与底面ABCD的 位置关系如何?它们彼此之间具有什么
位置关系? C1
D1
B1
A1
C
D
B
A
一、线面垂直的性质定理
垂直于同一个平面的两条直线平行
已知:a⊥α, b⊥α, 求证:a // b
证明:
假设 a与b不平行.
记直线b和α的交点为o,
A
A
B
D
CB
C D
过 ABC 的顶点A翻折纸片,得到折痕AD,将翻
折后的纸片竖起放置在桌面上(BD,DC于桌面接
触).
(1)折痕AD与桌面垂直吗?

高中数学第二章点直线平面之间的位置关系2.3.1直线与平面垂直的判定课件新人教A版必修2

高中数学第二章点直线平面之间的位置关系2.3.1直线与平面垂直的判定课件新人教A版必修2

错解:因为F,G分别为棱B1B,C1C的中点,所以BC∥FG. 因为BC⊥AB,BC⊥B1B,且B1B∩AB=B, 所以BC⊥平面A1ABB1. 又因为B1E⊂平面A1ABB1, 所以BC⊥B1E, 即FG⊥B1E. 同理A1D1⊥B1E,所以B1E⊥平面A1FGD1. 纠错:本题的错误在于只证明了直线和平面内的两条平行直线垂直,不符
(2)求直线A1B和平面BB1C1C所成的角的正弦值.
(2)解:作 A1F⊥DE,垂足为 F,连接 BF. 因为 A1E⊥平面 ABC,所以 BC⊥A1E. 因为 BC⊥AE,所以 BC⊥平面 AA1DE.所以 BC⊥A1F,所以 A1F⊥平面 BB1C1C. 所以∠A1BF 为直线 A1B 和平面 BB1C1C 所成的角.
(1)证明:A1D⊥平面A1BC;
(1)证明:设E为BC的中点,连接A1E,AE.由题意得A1E⊥平面ABC,所以 A1E⊥AE. 因为AB=AC,所以AE⊥BC. 故AE⊥平面A1BC. 连接DE,由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B, 从而DE∥A1A且DE=A1A, 所以AA1DE为平行四边形. 于是A1D∥AE. 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.
和这个平面所成的角.
锐角
(2)一条直线垂直于平面,称它们所成的角是 直角 ;一条直线在平面内或 一条直线和平面平行,称它们所成的角是 0° 的角,于是,直线与平面 所成的角θ 的范围是0°≤θ ≤90°.
自我检测
1.(线面垂直的性质)已知直线a⊥平面α ,直线b∥平面α ,则a与b的关系为
(B ) (A)a∥b
在 Rt△A1NB1 中,sin∠A1B1N= A1N = 1 ,因此∠A1B1N=30°.所以,直线 A1B1 与平面 BCB1 所成的角为 A1B1 2

2.3.1直线与平面垂直的判定定理

2.3.1直线与平面垂直的判定定理
l
C

B
直线与平面垂直的判定定理
a 如果直线 和平面 内的两条相交直线 m,n都垂直,那么直线a 垂直平面 m , a 即: n , m n P a am m P n an
线线垂直 线面垂直

直线与平面垂直的性质
1、线垂直于面,线垂直 于面内的所有直线 a 符号语言: ab b 简记:线面垂直,则线线垂直
拓展思考
P是△ABC所在平面外一 点, PA、PB、PC两两垂 直,PH⊥平面ABC于H. 求证: 1 1 1 1
PA 2 PB 2 PC 2
D
PH 2
• 在△ABC中,∠BAC= 60°,线段AD⊥平面 ABC,AH⊥DBC,H为 垂足,求证:H不可能是 △BCD的垂心.
V
求证VB AC
D
C
A
B
教材74页B组练习2题
如图,在三棱锥 S ABC中,ABC 90 D是AC的中点,且SA SB SC
(1 )求证:SD 平面ABC;
(2)若AB BC, 求证BD 平面SAC
教材67页练习2
练习2、如图,PA垂直于圆O所在面,AB是圆O的直径, C是圆周上一点,那么图中有几个直角三角形?
PA⊥α 于Α ,
P
PB⊥β于B,
AQ⊥l于Q,
求证:BQ⊥l .

A
l Q
B

平面α∩平面β=CD,EA⊥α,垂足为A, EB⊥β,垂足为B,求证:CD⊥AB
练习4
3.正方体ABCD A1 B1C1 D1中,P为DD1中点, O为底面ABCD中心,
求证:B1O 平面PAC
练习5、折叠问题

人教版高中数学必修二 第2章 2.3 2.3.1 直线与平面垂直的判定

人教版高中数学必修二 第2章   2.3   2.3.1 直线与平面垂直的判定

2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标核心素养1.了解直线与平面垂直的定义.(重点)2.理解直线与平面垂直的判定定理,并会用其判断直线与平面垂直.(难点)3.理解直线与平面所成角的概念,并能解决简单的线面角问题.(易错点)1.通过学习直线与平面垂直的判定,提升直观想象、逻辑推理的数学素养.2.通过学习直线与平面所成的角,提升直观想象、数学运算的数学素养.1.直线与平面垂直定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直文字语言一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α图形语言3.直线和平面所成的角有关概念对应图形斜线与平面α相交,但不和平面α垂直,图中直线P A斜足斜线和平面的交点,图中点A射影过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影,图中斜线P A在平面α上的射影为AO直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角.规定:一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角取值范围[0°,90°]有直线”“无数条直线”?[提示]定义中的“任意一条直线”与“所有直线”是等效的,但是不可说成“无数条直线”,因为一条直线与某平面内无数条平行直线垂直,该直线与这个平面不一定垂直.1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABCC[由线面垂直的判定定理知OA垂直于平面OBC.]2.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定B[一条直线和三角形的两边同时垂直,则其垂直于三角形所在平面,从而垂直第三边.]3.在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于________.45°[如图所示,因为正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以AB即为AB1在平面ABCD中的射影,∠B1AB即为直线AB1与平面ABCD所成的角.由题意知,∠B1AB=45°,故所求角为45°.]直线与平面垂直的判定【例1】如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[证明](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.证线面垂直的方法:(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直,也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图,AB是圆O的直径,P A垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,垂足为N.求证:AN⊥平面PBM.[证明]设圆O所在的平面为α,∵P A⊥α,且BM⊂α,∴P A⊥BM.又∵AB为⊙O的直径,点M为圆周上一点,∴AM⊥BM. 由于直线P A∩AM=A,∴BM⊥平面P AM,而AN⊂平面P AM,∴BM⊥AN.∴AN与PM、BM两条相交直线互相垂直.故A N⊥平面PBM.直线与平面所成的角[探究问题]1.若图中的∠POA是斜线PO与平面α所成的角,则需具备哪些条件?[提示]需要P A⊥α,A为垂足,OA为斜线PO的射影,这样∠POA就是斜线PO与平面α所成的角.2.空间几何体中,确定线面角的关键是什么?[提示]在空间几何体中确定线面角时,过斜线上一点向平面作垂线,确定垂足位置是关键,垂足确定,则射影确定,线面角确定.【例2】在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.[证明](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=2 2.(2)连接A1C1交B1D1于O(见题图),在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt △A 1BO 中,A 1O =12A 1C 1=12A 1B , ∴∠A 1BO=30°,即A 1B 与平面BDD 1B 1所成的角为30°.在本例正方体中,若E 为棱AB 的中点,求直线B 1E 与平面BB 1D 1D所成角的正切值.[解] 连接AC 交BD 于点O ,过E 作EO 1∥AC 交BD 于点O 1,易证AC ⊥平面BB 1D 1D ,∴EO 1⊥平面BB 1D 1D ,∴B 1O 1是B 1E 在平面BB 1D 1D 内的射影, ∴∠EB 1O 1为B 1E 与平面BB 1D 1D 所成的角. 设正方体的棱长为a , ∵E 是AB 的中点,EO 1∥AC , ∴O 1是BO 的中点,∴EO 1=12AO =12×2a 2=2a4, B 1O 1=BO 21+BB 21=⎝ ⎛⎭⎪⎫2a 42+a 2=3a 22, ∴tan ∠EB 1O 1=EO 1B 1O 1=2a 43a 22=13.求斜线与平面所成角的步骤:(1)作图:作(或找)出斜线在平面内的射影,作射影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算.(2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算.1.线线垂直和线面垂直的相互转化:2.证明线面垂直的方法:(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.1.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直A[若l∥m,l⊄α,m⊂α,则l∥α,这与已知l⊥α矛盾.所以直线l与m 不可能平行.]2.垂直于梯形两腰的直线与梯形所在平面的位置关系是()A.垂直B.相交但不垂直C.平行D.不确定A[因为梯形两腰所在直线为两条相交直线,所以由线面垂直的判定定理知,直线与平面垂直.选A.]3.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30°D.120°A[∠ABO即是斜线AB与平面α所成的角,在Rt△AOB中,AB=2BO,所以cos∠ABO=12,即∠ABO=60°. 故选A.]4.在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D. [证明]如图,连接AC,∴AC⊥BD,又∵BD⊥A1A,AC∩AA1=A,AC,A1A⊂平面A1AC,∴BD⊥平面A1AC,∵A1C⊂平面A1AC,∴BD⊥A1C.同理可证BC1⊥A1C.又∵BD∩BC1=B,BD,BC1⊂平面BC1D,∴A1C⊥平面BC1D.。

直线与平面垂直的判定(详细教案 )

直线与平面垂直的判定(详细教案 )

2.3.1 直线与平面垂直的判定壶关一中杨贺强教材分析空间中直线与平面的三种位置关系中,垂直是相交时的一种非常重要的位置关系。

它不仅应用较多,而且是空间问题平面化的典范。

直线与平面的垂直问题是连接“线线垂直”和“面面垂直”的桥梁和纽带,可以说线面垂直是立体几何问题的重要考点之一。

三维目标(知识与技能):探究直线与平面垂直的判定定理,培养学生的空间想象能力。

(过程与方法):掌握直线与平面垂直的判定定理的应用,培养学生分析问题、解决问题的能力。

(情感态度与价值观):让学生明确直线与平面垂直在立体几何中的重要地位。

重点难点教学重点:直线与平面垂直的判定。

教学难点:灵活应用“直线与平面垂直判定定理”解决问题。

教学过程,板书设计1、探究“直线与平面垂直的定义”。

2、探究“直线与平面垂直的判定定理”。

3、使用三种语言(文字、图形、符号)描述直线与平面垂直的判定定理。

4、探究斜线在平面内的射影,讨论“直线与平面所成的角”。

教学过程一、回顾复习,情境导入已经学过的直线与平面的位置关系有哪些?-----垂直是相交时的特殊情况。

在日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象。

二、新知探究(小组活动):(一)直线与平面垂直的定义问题1:(由第1小组学生回答)你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?问题2:(由第2小组学生回答)结合对下列问题的思考,试着给出直线和平面垂直的定义。

(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)。

2.3.1直线与平面垂直的判定定理(优质课教学设计)

2.3.1直线与平面垂直的判定定理(优质课教学设计)
培养学生主动探究的习惯。
二、教学重点、难点:Fra bibliotek重点对直线与平面垂直的定义和判定定理的理解及其简单应用。
难点
探究、归纳直线与平面垂直的判定定理,线面角的求法。
三、教学设想
问题
设计意图
师生活动
1.直线与平面之间的有哪些位置关系?
回顾旧知,使学生在已有知识和经验的基础上,探索新知。
学生回顾,并回答。然后教师总结展示,直线的三种位置关系:平行、相交、在平面内。
12.提出问题:前面讨论了直线与平面垂直的问题,那么直线与平面不垂直时情况怎么样呢?
提出问题,激发学生的求知欲。
教师停顿给予疑问。
13.给出斜线与平面所成的角的相关概念
通过动态图,使学生直观的感受线面角的概念。
教师展示斜线与平面所成角的概念。
14.直线与平面所成角的范围
通过提问,使学生深刻的理解直线与平面所成角的范围。
通过辨析,加深定义的理解,掌握定义的实质。即“任意一条直线”是“所有直线”的意思,而不是“无数条直线”。定义的实质就是直线与平面内所有直线都垂直。
学生思考回答,教师展示反例。
7.思考:根据直线与平面的垂直的定义是否把平面中的直线一一找出,才能证明直线与平面垂直?能否有更简单的做法得到直线和平面垂直?
3、直线与平面所成的角;
17.布置作业(导学案)
巩固深化
学生课后独立完成。
(2)求直线A1B和平面A1B1CD所成的角.
应用判定定理解决数学内部的问题,加强线面角的认识。
学生独立思考,小组讨论合作,用小黑板展示结果,教师点评,及时给予鼓励。
16.本课小结
使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。
教师引导学生概括:

2.3.1 直线与平面垂直的判定

2.3.1 直线与平面垂直的判定

§2.3.1 直线与平面垂直的判定一、课前准备复习:当两条直线的夹角为______,这两条直线互相垂直;它们的位置关系是_______或________.二、新课导学探究1:直线和平面垂直的概念新知1:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直,记做l α⊥.l 叫做垂线,α叫垂面,它们的交点P 叫垂足.如图所示.由定义可知线面垂直的性质1:探究2:直线与平面垂直的判定定理问题1:如果直线与平面内无数条直线都垂直,那么它和这个平面垂直吗?问题2:用定义证明直线和平面垂直好证吗?如何改进?新知2:直线和平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.探究3:直线与平面所成的角新知3:如图,直线PA 和平面α相交但不垂直,PA 叫做平面的斜线,PA 和平面的交点A 叫斜足;PO α⊥,AO 叫做斜线PA 在平面α上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫这条直线和平面所成的角.特别地:(1)直线垂直于平面,则它们所成的角是直角;(2)直线和平面平行或在平面内,则它们所成的角是0°角.思考:直线与平面所成的角的范围为_______________.※ 典型例题例1 已知a ∥b ,a α⊥,求证:b a ⊥.例2. 如图,在正方体中,O 是底面的中心,B H D O ''⊥,H 为垂足,求证:B H '⊥面AD C '.例3 如图,在正方体中,求直线A B '和平面A B CD ''所成的角.练习1. 如图 ,在三棱锥中,,VA VC AB BC ==,求证:VB AC ⊥.练习2. 如图,在Rt BMC ∆中,斜边5BM =,其射影4AB =,60MBC ∠=°,求MC 与平面CAB 所成角的正弦值.练习3.(课本67页练习第2题)三、总结提升1. 直线与平面垂直的定义、判定;线线垂直与线面垂直的转化;2. 直线与平面所成的角的定义及求法.步骤:(1)作(找)角;(2)证角;(3)求角。

【人教A版】高中数学必修二第2章:2.3.1直线与平面垂直的判定(盐池高中)

【人教A版】高中数学必修二第2章:2.3.1直线与平面垂直的判定(盐池高中)

垂足
平面 的垂线
l
直线 l 的垂面
P
对定义的认识
①“任何”表示所有.
②直线与平面垂直是直线与平面相交的一种特殊情况,在 垂直时,直线与平面的交点叫做垂足.

等价于对任意的直线
,都有
利用定义,我们得到了判定线面垂直的最基本方法,同时 也得到了线面垂直的最基本的性质.
直线与平面垂直 除定义外,如何判断一条直线与平面垂直呢?
解析:(1)如图 23,∵PO⊥平面 ABC, ∴PA 、PB、PC 在平面 ABC 上的射影分别是 OA、OB、OC. 又∵PA =PB=PC,∴OA=OB=OC. ∴O 是△ ABC 的外心.
图 23
图 24
(2)如图 24,∵PO⊥平面 ABC,
∴PA 在平面 ABC 上的射影是 OA.
∵BC⊥PA ,∴BC⊥OA. 同理可证 AC⊥OB, ∴O是△ ABC 的垂心.故填垂心.
4-1.P 为△ABC 所在平面外一点,O 为 P 在平面 ABC 上的 射影.
(1)若 PA =PB=PC,则 O 是△ABC 的_外__心__; (2)若 PA ⊥BC,PB⊥AC,则 O 是△ABC 的_垂__心__; (3)若 P 到△ABC 三边的距离相等,且 O 在△ABC 内部,则 O 是△ABC 的_内__心___; (4)若 PA 、PB、PC 两两互相垂直,则 O 是△ABC 的垂__心___.
斜线与平面所成的角θ的取值范围 是:______________
线面所成的角 关键:过斜线上一点作平面的垂线
斜线
斜足
A α
射影
P
线面所成角 (锐角∠PAO)
O
1.如图:正方体ABCD-A1B1C1D1中,求: (1)A1C1与面ABCD所成的角 (2) A1C1与面BB1D1D所成的角

高一数学必修二2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定导学案(解析版)

高一数学必修二2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定导学案(解析版)

2.3.1直线与平面垂直的判定 2.3.2平面与平面垂直的判定一、课标解读(1)使学生掌握直线和平面垂直的定义及判定定理; (2)使学生掌握直线和平面所成角的概念(3)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(4)使学生掌握两个平面垂直的判定定理及其简单的应用;(5)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

二、自学导引问题1:(1)请同学们观察图片,说出旗杆与地面、树干与地面的位置有什么关系?(2)请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系? (3)思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?有什么生活实例能验证这一关系呢?直线与平面垂直的定义:用符号语言表示为:问题2:如图,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个实验:过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上,(BD 、DC 与桌面接触).观察并思考:①折痕AD 与桌面垂直吗?DCBA②如何翻折才能使折痕AD 与桌面所在的平面垂直? 直线与平面垂直的判定定理:用符号语言表示为:问题3:直线与平面所成角的概念?问题4:怎样作出二面角的平面角?问题5:平面与平面垂直的定义?问题6:两个平面互相垂直的判定方法有哪些? 三、典例精析例1 已知两两垂直所在平面外一点,是PC PB PA ABC P ,,∆,H 是ABC ∆ 的垂心.求证:⊥PH 平面ABC变式训练1 如图所示,ABC PA O C O AB 平面上的一点,为圆的直径,为圆⊥, F CP AF E BP AE 于于⊥⊥,.求证:AEF BP 平面⊥例2 如图所示,已知 60,90=∠=∠=∠CSA BSA BSC ,又SC SB SA ==. 求证:平面SBC ABC 平面⊥变式训练2 如图所示,在四面体ABCD 中,AC CD CB AD AB a BD =====,2 =a ,求证:平面BCD ABD 平面⊥._ C例3 如图所示,已知的斜线,是平面内,在平面ααOA BOC ∠且AOCAOB ∠=∠=60,a OC OB OA ===,a BC 2=,求所成的角与平面αOA .变式训练3 如图所示,在矩形ABCD 中,3,33==BC AD ,沿着对角线BD 将BCD ∆折起,使点C 移到'C 点,且'C 点在平面ABD 上的射影O 恰在AB 上.(1)求证:D AC BC ''平面⊥(2)求直线AB 与平面D BC '所成角的正弦值四、自主反馈1. 如图BC 是Rt ⊿ABC 的斜边,过A 作⊿ABC 所在平面α 垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是 ( )A .4个B .6个C .7个D .8个2.下列说法正确的是 ( ) A .直线a 平行于平面M ,则a 平行于M 内的任意一条直线 B .直线a 与平面M 相交,则a 不平行于M 内的任意一条直线C .直线a 不垂直于平面M ,则a 不垂直于M 内的任意一条直线D .直线a 不垂直于平面M ,则过a 的平面不垂直于M3.直三棱柱ABC —A 1B 1C 1中,∠ACB =90°,AC =AA 1=a ,则点A 到平面A 1BC 的距离是 ( )A.aB. 2aC.22a D. 3a 4.已知PA 、PB 、PC 是从点P 发出的三条射线,每两条射线的夹角都是60︒,则直线PC 与平面PAB 所成的角的余弦值为 。

2.3.1直线与平面垂直的判定(二)

2.3.1直线与平面垂直的判定(二)
BO 面A1 DCB1,A 1O为A1 B在平面A1 B1CD 上的射影, BA1O是A1 B与平面A1 B1CD所成的角 2 在RtA1 BO中, 由A1 B 2,BO 知: 2 0 BA1O 30
即BA1与平面A1 B1CD所成的角为30
12
0
线面角的计算小结:
1、找出或作出线面角; 2、证明(1)中的角就是所求的角; 3、求出此角的大小。
la l b a b a b A
l
l
b

A
a
作用: 判定直线与平面垂直. 思想: 直线与平面垂直
3

直线与直线垂直
随堂练习
如图,直四棱柱 ABCD ABCD(侧棱与底面垂直 的棱柱成为直棱柱)中,底面四边形 ABCD 满足什么 条件时,AC BD ?
B
0是
ABC的垂心
O A C
PA、PB、PC两两垂直 (3)P到三边AB、BC、AC距离相等
0是 ABC的内心
15
知识小结
1.直线与平面垂直的概念 2.直线与平面垂直的判定 (1)利用定义;垂直与平面内任意一条直线 (2)利用判定定理. 线线垂直 线面垂直
(3)如果两条平行直线中的一条垂直于一个平面,那 么另一条也垂直于同一个平面
步骤: 一“作”二“证”三“求”
关键:确定斜线在平面内的射影.
13
变式:在正方体ABCD-A1B1C1D1中,
E,F分别是BC,CC1的中点,
求EF与面ACC1A1所成的角.
D1 C1 B1 F C
O
A1
D
E
14
1
A
B
特例:四面体P-ABC的顶点P在平面上的射影O

2.3直线、平面垂直的判定及其性质

2.3直线、平面垂直的判定及其性质

D′
C′ B′
A′
D A B
C
例3 在三棱锥P-ABC中,PA⊥平面ABC, AB⊥BC,PA=AB,D为PB的中点,求证:AD⊥PC.
P D A B
C
探究 如图,直四棱柱 A′B′C ′D′ − ABCD (侧棱与底面垂 直的棱柱称为直棱柱)中,底面四边形 ABCD 满足 什么条件时,A′C ⊥ B′D′ ?
平面 α的垂线 垂足lP来自直线 l 的垂面α
平面内任意一 条直线
思考4 思考4 如果一条直线垂直于一个平面内的无数条直线, 那么这条直线是否与这个平面垂直?
l α
探究
如图,准备一块三角形的纸片,做一个试验:
A A
D
C
B
D
C
α
B
过∆ABC的顶点A翻折纸片,得到折痕AD,将翻折后 的纸片竖起放置在桌面上(BD,DC于桌面接触). (1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面所在平面α垂直.
例1
在正方体ABCD-A1B1C1D1中.
(1)求直线A1B和平面ABCD所成的角; (2)求直线A1B和平面A1B1CD所成的角. D1 A1 B1 O D A B C C1
例2 如图,AB为平面α的一条斜线,B为斜足, AO⊥平面α,垂足为O,直线BC在平面α内,已知 ∠ABC=60°,∠OBC=45°,求斜线AB和平面α所 成的角. A
A
A
D
C
B
D
C
α
B
边上的高时, 当且仅当折痕AD 是BC 边上的高时,AD 所在 直线与桌面所在平面α垂直 垂直. 直线与桌面所在平面 垂直.
思考5 思考 (1)有人说,折痕AD所在直线与桌面所在平面α 上的一条直线垂直,就可以判断AD 垂直平面α ,你 同意他的说法吗? (2)如图,由折痕 AD ⊥ BC ,翻折之后垂直关系 不变, AD ⊥ CD , AD ⊥ BD .由此你能得到什么结 论?

直线、平面垂直的判定及其性质(二)(讲义及答案)

直线、平面垂直的判定及其性质(二)(讲义及答案)

直线、平面垂直的判定及其性质(二)(讲义)>知识点睛一、直线与平面垂直(线面垂直)性质定理:垂直于同一个平面的两条直线 ______________ .(Jb/ /■* b丄a.其他性质:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面;如果一条直线垂直于两个平行平面中的一个平面,那么这条直线也垂直于另一个平面•二、平面与平面垂直(面面垂直)性质定理:两个平面垂直,则一个平面内线与另一个平面垂直.其他性质:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面;如果一平面垂直于两平行平面中的一个平面,那么它必垂直于另一个平面.的直2 2精讲精练已知直线/垂直于直线AB 和AC.直线W 垂直于直线BC 和 AC.则直线/, /«的位置关系是( )A.平行B.异面 C •相交 m n 和平面6 0,能得出a 丄戶的一组条件是( .in//a^n//Par\p=in^ rtuan 邛、inca> /»丄0, «丄戶若川,心/是互不重合的直线,g 緘7是互不重合的平面, 给出下列命题:① 若a 丄0, «门0二川,② 若ct 〃0, a n y=zz/»③ 若m 不垂直于<z,④ 若《门0二"f,加〃“,且"E Q , «妙,则n//a 且《〃0;⑤ 若《门0二加,n y=n » aPl 尸/,且ct 丄0, a 丄y, 0丄y,贝J w 丄川丄/, «丄人其中正确命题的序号是 _________________ •边长为a对于直线, A. in//n, B- 川丄心 C. m//D- m//川丄心则《丄《或《丄0:0n 尸小则加〃”; 则加不可能垂直于a 内的无数条直线;D ・垂直A. C 6C. --- a D ・aD的正方形ABCD沿对角线BD折成直二面角,则AC 的长为(如图,以等腰直角三角形ABC 斜边BC 上的高AD 为折痕, 把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出 下列四个结论:① BD 丄AC^② 是等边三角形;③ 三棱锥DMBC 是正三棱锥;④ 平面ADC 丄平面ABC.其中正确的是(如图,在斜三棱柱ABC-AiBiCi中, 则C,在底面ABC 上的射影H必在()A.直线AB 上C.直线AC 上 已知直二面角0[-/-〃,点AEa. AC ■丄/,垂足为点C,点医0, BD 丄h 垂足为点D,若AB=2. AC=BD=i ,则CD 的长为3 CD. 1A.①②④B.①②③C.②③④ D-①③④ZBqC=90。

高中数学 第二章2.3.1直线与平面垂直的判定课件 新人教A版必修2

高中数学 第二章2.3.1直线与平面垂直的判定课件 新人教A版必修2

除定义外,如何判定一条直线与平面垂直呢? 除定义外,如何判定一条直线与平面垂直呢?
A A 如图,准备一块三角形的纸片,做一个试验: 如图,准备一块三角形的纸片,做一个试验: A
l
C
A
D
α
B B
D D
P
C
C
α C α
B B
D
边上的高时, 所在直 当且仅当折痕 AD 是 BC 边上的高时,AD所在直 的顶点A翻折纸片 得到折痕AD, 翻折纸片, 过 ∆ABC 的顶点 翻折纸片,得到折痕 ,将翻 α 垂直. 线与桌面所在平面 垂直. 折后的纸片竖起放置在桌面上( , 于桌面接触 于桌面接触) 折后的纸片竖起放置在桌面上(BD,DC于桌面接触)
⊥ α ,求证 b ⊥ α .
b
n
证明: 证明:在平面 α 内作 a 两条相交直线m, . 两条相交直线 ,n. 因为直线 a ⊥ α, 根据直线与平面垂直的定义知 α m a ⊥ m, a ⊥ n. 又因为 b // a 所以 b ⊥ m, b ⊥ n. 是两条相交直线, 又 m ⊂ α , n ⊂ α , m, n 是两条相交直线, 所以 b ⊥ α .
线面垂直
知识探究( 知识探究(二):直线与平面垂直的判定
思考1 对于一条直线和一个平面, 思考1:对于一条直线和一个平面,如果 根据定义来判断它们是否垂直, 根据定义来判断它们是否垂直,需要解 决什么问题?如何操作? 决什么问题?如何操作?
思考2 思考2:我们需要寻求一个简单可行的办 法来判定直线与平面垂直. 法来判定直线与平面垂直. 如果直线l与平面 内的一条直线垂直, 如果直线 与平面α内的一条直线垂直, 与平面 内的一条直线垂直 能保证l⊥α吗? 能保证 ⊥ 吗 如果直线l与平面 内的两条直线垂直, 与平面α内的两条直线垂直 如果直线 与平面 内的两条直线垂直, 能保证l⊥ 吗 能保证 ⊥α吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

'
第二课时
知识回顾
1.线面垂直的定义 如果直线 l 与平面 内的任意一条直线都 垂直,我们说直线 l 与平面 互相垂直, 记作 l 平面 的垂线
垂足
l
P
直线 l 的垂面

直线与平面的 一条边垂直



知识回顾
2.线面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直, 则该直线与此平面垂直. la l l b b

P
a
a l b P a b A
线面垂直
线线垂直
例题选析
例1. 如图,已知 a // b, a ,求证: b .
b
a

结论:如果两条平行直线中的一条垂直一个平面, 那么另一条也垂直与同一个平面。
课堂练习
1.如图,三角形ABC为Rt△, ∠C=90°, PA⊥面ABC。求证: BC ⊥ PC P
A C
B
2.圆O所在一平面为 ,AB是圆O 的直径, PA AB, C 是圆周上一点,且PA AC, 求证:BC 平面PAC
3.
证明线线垂直的方法归纳: 1.在等腰三角形中(前提) 顶角的角平分线,底边的中线,底边的高线, 三条线互相重合。简记为三线合一。
2.l , 任意m l m
3.正方形邻边、对角线,菱形的对角线互相垂直 4.圆中,直径所对的圆周角是直角。 5.三角形的高,直角三角形。
(09年朝阳一模)如图,在直三棱柱 ABC A B C
' '
' '
的侧棱AA 4, 底面三角形ABC中,AC BC
'
2, ACB 90 ,D是AB的中点。

求证:CD AB
相关文档
最新文档