大肠杆菌代谢生产精氨酸
大肠杆菌发酵经验总结
⼤肠杆菌发酵经验总结⼤肠杆菌发酵经验总结⾸先,补料速率与⽐⽣长速率直接影响着⼄酸的⽣成速率和积累量(主要是补料速率与⽐⽣长速率影响发酵液中的残糖量,进⽽影响),所以适当的控制补料速率和⽐⽣长速率,对于控制⼄酸的量有很好的效果。
其次,必须要保证充⾜的溶氧,并严格控制pH值,⽽且补酸碱的速率尽量缓和,不能太快;温度对于蛋⽩的表达也有很重要的影响,较低的发酵温度下所⽣产出的蛋⽩⼤多是有活性的,⽽较⾼的发酵温度下产⽣的蛋⽩⼤多⼀包涵体形式存在。
第三,选取合理的诱导时间⾮常重要,⼀般的诱导时间选在指数⽣长后期,⽽且诱导时的⽐⽣长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速⽣长期与蛋⽩合成期分开,使这两个阶段互不影响,有利于蛋⽩的⾼表达;2.已经得到了⼤量的菌体,⽽且菌体的⽣物量基本接近稳定,不论是从动⼒学⾓度,还是能耗,物料成本⽅⾯,都⽐较合理。
第四,补料过程中的碳氮⽐也很重要。
若氮源过⾼,会使菌体⽣长过于旺盛,pH偏⾼,不利于代谢产物的积累,氮源不⾜,则菌体繁殖量少从⽽影响产量;碳源过多,则容易刑场较低的pH,抑制菌体⽣长,碳源不⾜,则容易引起菌体的衰⽼和⾃溶。
另外,碳氮⽐不当还会引起菌体按⽐例的吸收营养物质,从⽽直接影响菌体的⽣长和产物的合成。
根据⾃⼰的经验,⼀般情况下,对于⼀个稳定的发酵⼯艺下,如果总是在固定的发酵时间段出现溶菌现象,⽽且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮⽐不合理造成的。
可以适当调整碳氮⽐。
⼤家讨论得较多的是关于代谢副产物⼄酸对⼤肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下⼏点,并作出相应解决措施。
⼀、代谢副产物-⼄酸⼄酸是⼤肠杆菌发酵过程中的代谢副产物,在多⼤的浓度下产⽣抑制作⽤各种说法不⼀,⼀般认为在好⽓性条件下,5~10g/L 的⼄酸浓度就能对滞后期、最⼤⽐⽣长速率、菌体浓度以及最后蛋⽩收率等都产⽣可观测到的抑制作⽤。
当⼄酸浓度⼤于10或20g/L 时,细胞将会停⽌⽣长,当培养液中⼄酸浓度⼤于12g/L 后外源蛋⽩的表达完全被抑制。
精氨酸脱亚胺酶基因在大肠杆菌中的克隆、表达及纯化
关 键 词 :精 氨 酸 脱 亚 胺 酶 ; 隆 ; 达 ; 化 克 表 纯 中 图 分 类 号 : 1 Q 89 文献标 识 码 : A
Cl ni o ng,Ex r s i n a r fc to f Ar i i i i s r m p e s o nd Pu i i a i n o g n ne De m na e f o
I Lif n SU N d e g ~. Zhiha , o
( .Ke b r tr fI d sr l itc n lg M iityo d c t n,in n n Unv r i W u i 1 1 2, ia 2 1 yLa o a o yo n u ti oe h oo y, nsr fE u ai Ja g a ie st a B o y, x 4 2 Chn : 2
h pa o e l a a cno s (HCCs . I hi t d e t c lulr c r i ma ) n t s s u y,t r A n ha nc de AD1 wa l ne he a c ge e t t e o s sco d
fom P .pl c gl c dn CG M CC20 9 w h c w a io a e a i ntfe by ou l b a or r e o osi i s 3 ih s s l t d nd de iid r a or t y p e i s y T h r A e a ub l ne n o e r s i n v c o r v ou l . e a c g new s s c o d i t xp e so e t rpET24 nd ispr duc D1w a a a t o tA s o e — x e s d i c r c a c l BI2 DE3) T he fe t f if r n I v r e pr s e n Es he i hi o i 1( . e f c s o d fe e t PTG c c n r tons on e t a i , i du ton e p r t r s nd ndu to tm e n c i t m e a u e a i c i n i w e e nv s i a e . U n r h o i a e pr s i r i e tg t d de t e ptm l x e son
代谢工程
代谢工程之利用谷氨酸棒状杆菌来生产L-精氨酸精氨酸是一种为不同工业和医疗产品所应用的重要的氨基酸。
这里我们报道了代谢工程中利用谷氨酸棒状杆菌来生产精氨酸的改进方法。
首先进行的是随机诱变,来增加谷氨酸棒状杆菌对精氨酸类似物的耐受性。
接下来进行是系统性的代谢工程来进一步对菌株进行改良。
涉及精氨酸操纵子调控阻遏物的去除,NADPH水平的最优化,破坏L-谷氨酸的生成来增加精氨酸的前体物质还有限制精氨酸合成反应的通量优化。
最终菌株的流加培养发酵在5L和大规模1500L的生物反应器中进行,分别允许生产92.5g/L和81.2g/L的精氨酸,产量为每g 碳源(葡萄糖加蔗糖)可分别产出0.40g和0.35g精氨酸。
这里描述的系统代谢工程结构对于构建棒状杆菌菌株来进行精氨酸及相关产品的工业生产是有用的。
L-精氨酸是一种工业中重要的半必需氨基酸,它在食品和补加健康食品、制药以及化妆品中有很多应用。
与其他的氨基酸和有价值的化学物质相比,利用谷氨酸棒状杆菌作为精氨酸生产工程菌有很大优势,因为它带有强烈的面向L-谷氨酸形成的通量。
跟大肠杆菌相比,谷氨酸棒状杆菌不含有argA和argE基因,但取而代之,它含有可以编码乙酰转移酶的argJ基因,可以催化两种不同的精氨酸生物合成途径的生化反应。
重要的是,谷氨酸棒状杆菌缺乏精氨酸降解酶以及在大肠杆菌中发现的精氨酸脱氨酶,因此,细胞内生产的精氨酸不能被积极地降解。
可被谷氨酸棒状杆菌利用的碳源范围也相对广阔,包括己糖和戊糖两种。
对于精氨酸的过度生产来说,调节子对精氨酸生物合成操纵子的抑制以及精氨酸对乙酰谷氨酸激酶的反馈抑制在谷氨酸棒状杆菌中被显著地移除了。
在这次研究中,我们针对谷氨酸棒状杆菌ATCC 21831菌株进行代谢工程研究,最初经过随机诱变来增强精氨酸的产量。
逐步地合理地代谢工程建立在针对通过菌株工程步骤实现的精氨酸产量逐步增加的代谢结果的分析的基础上。
由本次研究建立的最终菌株的流加培养获得了有效的精氨酸产量,使用5L和大规模1500L生物反应器使浓度分别达到92.5和81.2g/L。
精氨酸的生理作用及其在动物生产中的应用
精氨酸(Arginine),分子式为C6 H14 N4 O2。
分子质量为174.2,为白色晶体或晶体状粉末。
在自然界中有两种异构体存在:D-精氨酸(D-Arg)和L-精氨酸(L-Arg),动物体内主要以L-精氨酸的形式存在。
Arg 在人医方面的研究较多,但是对于家禽的研究较少,早期的研究大多集中在1994年以前。
当前随着人们认识的深入,人们对L-Arg的研究主要集中在L—Arg提高免疫力,在感染、烧伤、手术、动脉粥样硬化及胎儿发育障碍等的治疗方面开展系列研究。
1 精氨酸来源与代谢动物机体精氨酸主要有三个来源:①来源于日粮;②机体蛋白质的分解;③机体内其他氨基酸(谷氨酸和瓜氨酸等)的转化[1]。
日粮中氨基酸是动物机体合成蛋白质的重要来源。
内源性合成的精氨酸主要来源于小肠和肾脏。
虽然精氨酸只是健康成年哺乳动物的条件性氨基酸,但对禽类而言,精氨酸却是必需氨基酸。
主要原因在于家禽机体缺乏如氨甲酰磷酸酶等关键酶,因而不能通过生化途径(如鸟氨酸循环途径)来合成精氨酸,因此只能由日粮来满足。
精氨酸是体蛋白的组成部分,可以由动物内源合成。
血浆瓜氨酸和线粒体内的鸟氨酸是其合成的前体,瓜氨酸在细胞液中合成精氨酸。
在提供瓜氨酸的情况下,家禽可在肾和巨噬细胞内合成精氨酸,但效率很低。
精氨酸体内代谢途径有:①通过精氨酸酶分解为尿素和鸟甘酸。
鸟甘酸是合成多胺类物质的前体,它们是调节细胞生长的重要物质,是细胞增殖的促进剂;②通过氧化途径,经一氧化氮合成酶(NOS)催化生成具有生物活性的一氧化氮(NO)。
NO是一种内皮舒张因子,有利于维持血管的通透性,改善肠道的缺血缺氧功能。
③精氨酸可以由甘氨酸转脒基酶分解为鸟氨酸和肌酐酸,由精氨酸分解酶降解为鸟氨酸和尿素。
精氨酸在相关酶作用下最终分别转化成腐胺、脯氨酸和谷氨酰胺,腐胺可以生成亚精胺和精胺,三者统称为多胺,谷氨酰胺可进入三羧酸循环,氧化供能产生CO2 。
④精氨酸在家禽体内通过鸟氨酸循环分解成氨后,合成嘌呤,然后降解为尿酸排出[2]。
最新大肠杆菌发酵经验总结
大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比。
大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。
一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。
当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。
大肠杆菌中重构的鸟氨酸循环用于胍乙酸的生物合成
大肠杆菌中重构的鸟氨酸循环用于胍乙酸的生物合成背景胍乙酸(GAA)是一种具有多种生物活性的胍基化合物,它可以提高肌肉力量和耐力,也是人体中创伤素(CT)的前体。
CT是一种可以促进伤口愈合和抗炎的激素。
目前,GAA主要通过化学合成的方法得到,但是这种方法存在一些缺点,比如高能耗、低效率、高成本和环境污染等。
因此,开发一种生物合成的方法来生产GAA具有重要的意义。
目标本研究的目标是利用大肠杆菌作为一种细胞工厂,通过转酰胺反应来生产GAA。
转酰胺反应是一种以精氨酸为胍基供体的反应,可以把胍基转移给另一个分子,同时产生鸟氨酸。
本研究的挑战是如何提高精氨酸的供应和消除鸟氨酸的抑制,从而提高GAA的产量和效率。
方法本研究采用了以下的方法:•引入一种异源的精氨酸:甘氨酸酰胺转移酶(AGAT),来催化精氨酸和甘氨酸之间的转酰胺反应,产生GAA和鸟氨酸。
•构建一个柠檬酰胺合成模块,把多余的鸟氨酸转化为柠檬酰胺。
柠檬酰胺可以参与尿素循环,把多余的氮排出体外。
•构建一个精氨酸合成模块,把柠檬酰胺再转化为精氨酸。
这样就形成了一个循环:精氨酸->GAA+鸟氨酸->柠檬酰胺->精氨酸。
这个循环可以让精氨酸不断地再生利用,同时消耗掉多余的鸟氨酸。
•引入一些其他的系统,让大肠杆菌可以自己合成甘氨酸、谷氨酰胺和天门冬氨酸等分子。
这些分子可以提供碳和氮的来源,让大肠杆菌可以更高效地生产GAA。
•结果通过这些工程改造,本研究成功地提高了大肠杆菌生产GAA的效率和产量。
在22小时的生物转化中,得到了8.61 g/L GAA(73.56 mM),生产率为0.39 g/L/h。
这是目前报道的最高水平。
此外,本研究还证明了这种重构的鸟氨酸循环可以用于生产其他的胍基化合物,如创伤素、牛磺酸和牛黄素等。
讨论本研究展示了一种利用大肠杆菌作为全细胞催化剂生产胍乙酸的方法。
这种方法具有以下的优点:•利用了生物体内存在的代谢途径,如鸟氨酸循环和尿素循环,实现了胍基的高效转移和氮的有效排出。
生产精氨酸工艺流程
生产精氨酸工艺流程生产精氨酸工艺流程精氨酸(L-arginine)是一种重要的氨基酸,广泛应用于医药、食品、化妆品和饲料等领域。
下面将介绍一种常见的精氨酸工艺流程。
首先,精氨酸的生产通常采用微生物发酵的方法。
选用产精氨酸能力强、耐高温、耐酸碱的微生物菌株,如大肠杆菌、蛮荒态放线菌等,以这些微生物为种子菌,通过菌种培养的方式扩大种群。
接下来是发酵过程。
首先,将选用的微生物菌种接入发酵罐中,在一定的培养基、酸碱条件和温度下生长和繁殖。
发酵罐中的培养基是由大豆蛋白、葡萄糖、氯化钠、磷酸二氢钾等原料按一定比例混合而成。
在发酵过程中,还需要控制培养基的pH 值、温度、氧气供应以及搅拌速度等因素,以保证微生物菌株的正常生长和产氨酸的效果。
随着发酵过程的进行,微生物会消耗培养基中的养分,同时产生精氨酸。
经过一段时间的发酵,发酵液中的精氨酸逐渐积累,达到一定的浓度后,可进行下一步的分离纯化工序。
分离纯化是精氨酸生产过程中的关键步骤之一。
一般采用离心、滤液、酸碱沉淀、透析等技术方法将发酵液中的粗制精氨酸与其他杂质进行分离。
其中,酸碱沉淀是一种常用的分离技术,通过调节发酵液的pH值,使得经过酸碱处理后,精氨酸以固体形式沉淀下来,悬浮液中的杂质则可被沉淀物分离开。
最后,对精氨酸进行精制和干燥处理。
这一步骤主要是通过蒸馏、结晶、洗涤、再结晶等工艺操作,去除其中的余量杂质,得到纯度更高的精氨酸产物。
将精制后的产物进行干燥,以降低水分含量,保证产品的贮存稳定性和品质。
在整个生产工艺过程中,需要严格控制各个环节的操作条件,保证菌种的活力和稳定性,控制发酵条件和分离纯化过程的技术参数。
同时,要做好卫生防护工作,确保产品的质量和安全。
总之,精氨酸的生产工艺流程主要包括菌种培养、发酵、分离纯化和精制干燥等步骤。
通过合理控制各个环节的操作,能够高效地生产出优质的精氨酸产品,满足市场需求。
精氨酸生产工艺
精氨酸生产工艺
精氨酸是一种重要的氨基酸,对于人体和动物的生长发育、蛋白质合成以及免疫系统的调节具有重要作用。
精氨酸的生产工艺可以通过天然发酵、微生物突变和基因重组等方式进行。
下面将介绍一种通过微生物突变的精氨酸生产工艺。
首先,选择一种适合生产精氨酸的微生物菌株,常用的菌种有放线菌、大肠杆菌和酵母等。
这里以放线菌为例进行介绍。
其次,对选定的放线菌菌株进行初级代谢的突变筛选。
通过诱变剂的作用,使得菌株在培养基中出现自生突变,并筛选出产生精氨酸能力较强的菌株。
这一步骤的目的是通过基因突变来增加微生物合成精氨酸的能力。
然后,对初步筛选出的菌株进行二次突变筛选。
使用自生突变菌株进行亲缘融合或杂交,产生具有更强合成精氨酸能力的菌株。
这样可以通过菌株间的杂交来进一步增加合成精氨酸的效率。
接着,将优良菌株进行长时间连续培养。
在培养基中添加适当的碳源、氮源、矿物质和生长因子等,使菌株能够快速繁殖和合成精氨酸。
同时,控制培养条件,如温度、pH值和氧气供
应等,以获取最佳的产酸效果。
最后,对发酵液进行提取和精制。
通常采用一系列的分离、过滤、浓缩、精制和干燥等工艺步骤,得到高纯度的精氨酸产品。
同时,还需要对产生的菌液进行废水处理,以防止对环境造成
污染。
总之,通过微生物突变的精氨酸生产工艺能够大大提高精氨酸的产量和纯度,是目前主要的生产方式之一。
随着基因工程技术和生物技术的不断发展,精氨酸的生产工艺还将不断改进和创新,为精氨酸产业的发展提供更多可能性。
大肠杆菌氨基酸碱基
大肠杆菌氨基酸碱基
大肠杆菌是一种常见的细菌,它的氨基酸碱基主要包括赖氨酸(Lysine)、精氨酸(Arginine)、组氨酸(Histidine)。
这些氨
基酸在大肠杆菌的生物化学过程中扮演着重要的角色。
赖氨酸在蛋
白质合成中起到重要作用,它是一种带正电荷的氨基酸,对于蛋白
质的结构和功能具有重要影响。
精氨酸也是一种带正电荷的氨基酸,它在DNA结合和细胞信号传导中发挥作用。
组氨酸在酶的催化过程
中起到关键作用,它能够接受或者释放质子,参与调节酶的活性。
此外,大肠杆菌的氨基酸碱基还参与到细胞壁的合成以及细胞
内环境的调节中。
这些氨基酸在蛋白质合成、细胞代谢和生长繁殖
等方面发挥着重要的作用。
总的来说,大肠杆菌的氨基酸碱基在细菌的生物化学过程中扮
演着重要的角色,它们对细菌的生长、代谢和适应环境具有重要的
影响。
希望这个回答能够满足你的要求。
精氨酸品质标准
精氨酸品质标准
一、含量
精氨酸的含量应符合产品规格和相关标准,一般应在98.0%以上。
二、纯度
精氨酸的纯度应符合产品规格和相关标准,一般应大于99.0%。
三、外观
精氨酸的外观应为白色或类白色粉末,无可见杂质和其他异物。
四、水分
精氨酸的水分应符合产品规格和相关标准,一般应小于1.0%。
五、溶解性
精氨酸应易溶于水,在溶解过程中不出现沉淀或浑浊现象。
六、微生物污染
精氨酸应符合国家相关卫生标准,不得含有大肠杆菌、沙门氏菌等微生物。
七、稳定性
精氨酸应具有良好的稳定性,在常温下保存不易变质。
八、安全性
精氨酸应无毒、无害、无刺激性,使用安全。
精氨酸的生产工艺
精氨酸的生产工艺
精氨酸是一种重要的氨基酸,广泛应用于食品、医药和化妆品等领域。
其生产工艺主要有两种方法,一种是通过微生物发酵法,另一种是通过化学合成法。
微生物发酵法是目前主要的生产工艺之一。
这种方法主要是利用大肠杆菌、激动杆菌等微生物进行发酵产生精氨酸。
首先,将具有高精氨酸产量的菌种进行培养,提供适宜的温度、pH
和营养物质等环境条件。
好氧条件下,通过底物氨和酮戊二酸进行一系列脱羧反应和脱氨反应,最终生成精氨酸。
然后,通过离心、过滤和浓缩等步骤对培养液进行处理,获得粗品。
最后,通过结晶、过滤和干燥等工艺对粗品进行纯化和干燥,得到精氨酸。
化学合成法是另一种常用的生产工艺。
这种方法主要是通过一系列化学反应合成精氨酸。
首先,选择适当的底物和试剂,进行胺化和羧化反应,生成精氨酸的中间体。
然后,经过一系列保护基的转化和反应,得到目标产物精氨酸。
最后,通过结晶、过滤和干燥等工艺对产物进行纯化和干燥,得到精氨酸。
两种方法各有优缺点。
微生物发酵法具有资源可持续利用、工艺相对简单等特点,但也存在菌种选择和培养条件控制的难题。
化学合成法具有工艺成熟、产量可控等特点,但也对原料和试剂的纯度要求较高,同时对环境有一定的污染。
总之,精氨酸的生产工艺主要包括微生物发酵法和化学合成法。
随着科技的发展和工艺的改进,这两种方法将得到进一步的优化和推广,在满足市场需求的同时,也将更加环保和可持续。
精氨酸产生菌的代谢机制及选育进展
精氨酸产生菌的代谢机制及选育进展伊廷存1,袁建国2*,李 峰3,高艳华3(1. 山东师范大学生命科学学院,山东 济南 250014;2. 山东省食品发酵工业研究设计院,山东 济南 250013;3. 济南京鲁生物技术研发中心,山东 济南 250013)摘 要:L-精氨酸是氨基酸的一种,是蛋白质和肌酸的重要组成成分。
作为一种条件必需性氨基酸,L-精氨酸在营养生理、医药工业和饲料工业方面有重要作用和良好的应用前景,本文综述了精氨酸的代谢机制及精氨酸产生菌的选育研究进展。
关键词:精氨酸;代谢;选育;诱变;基因工程中图分类号:Q538 文献标识码:A 文献编号:1672-9791(2010)05-0203-04收稿日期:2009-10-28作者简介:伊廷存(1982-),男,山东蒙阴人,硕士,研究方向为微生物资源与发酵工程*通讯作者:袁建国,男,研究员 E-mail:yitc_999@Metabolism and Advances in Research of High Yielding Strains of L -ArginineYI Ting-cun 1, YUAN Jian-guo 2, LI Feng 3 ,GAO Y an-hua 3(1 .College of Life Sciences, Shandong Normal University, Jinan 250014, China;2. Shandong Food & Fermentation Industry Research & Design Institute, Jinan 250013,China;3.JingluBiotechnology Research and Development Center of Shandong Province ,Jinan 250013, China )Abstract: L -arginine is one kind of amino acid, and a building block of proteins and creatine. As a conditionally essential amino acid, it plays an important role and has good application prospects in nutrition physiology, medicine industry and feed industry. This paper reviews the metabolic mechanism and breeding development of L -arginine-producing strains.Key Words: L -arginine; metabolism; breeding; mutagenesis; genetic engineeringL -精氨酸是具有多种用途的氨基酸。
鸟氨酸、瓜氨酸和精氨酸发酵
第十二章鸟氨酸、瓜氨酸和精氨酸发酵L-精氨酸(L-Arginine, L-Arg)是具有胍基的碱性氨基酸,是合成蛋白质和肌酸的重要原料。
精氨酸是人体和动物体的半必需氨酸,在医药和食品工业上具有广泛的用途。
L-鸟氨酸(L-Ornithine, L-Orn)和L-瓜氨酸(L-Citrulline, L-Cit)是精氨酸生物合成的前体物质。
L-精氨酸是生物体尿素循环中的一种重要中间代谢产物,临床上除作为复合氨基酸输液的主要成分之一外,L-精氨酸及其盐类广泛用作氨中毒性肝昏迷的解毒剂和肝功能促进剂。
对病毒性肝炎疗效显著,对肠道溃疡、血栓形成、神经衰弱和男性无精病等症都有治疗效果。
它也是配制营养支持用或特殊治疗用要素膳的重要原料。
第一节生物合成途径和代谢调节机制一、鸟氨酸、瓜氨酸、精氨酸的相互转化图12-l 鸟氨酸、瓜氨酸、精氨酸的结构从结构(见图12-1)上看,鸟氨酸虽与谷氨酸都是五碳酸,但是鸟氨酸却是一羧基二氨基的氨基酸。
如果在鸟氨酸末端氨基的氮上接上氨甲酰基,则生成瓜氨酸。
瓜氨酸经过精氨琥珀酸,将瓜氨酸的酮基转换成亚氨基,则成为精氨酸。
当然,精氨酸放出尿素,就转变为鸟氨酸。
因此,鸟氨酸、瓜氨酸和精氨酸的生物合成,可认为是从谷氨酸出发,逐步合成鸟氨酸、瓜氨酸和精氨酸,从而组成以精氨酸为最终产物的不分支代谢途径。
但是,如果精氨酸发生分解,放出尿素,则生成鸟氨酸。
这样在代谢途径上,就使所谓的终产物精氨酸与鸟氨酸相衔接,形成一个循环,即尿素循环或鸟氨酸环(图12-2)。
图12-2 尿素循环二、生物合成途径和代谢调节机制从谷氨酸经鸟氨酸、瓜氨酸生物合成L-精氨酸,由八个酶催化的反应组成(见图12-3),第一步和第五步反应因微生物的种类不同而不同。
谷氨酸N-乙酰谷氨乙酰谷氨酸磷酸乙酰谷氨酸半醛N-乙酰鸟氨鸟氨酸精氨酰琥珀NADPHNADP×酸α-酮瓜氨门冬氨×氨基甲酰磷酸××⑴⑶⑸⑹精氨酸反丁烯二酸I型大肠杆菌、枯草杆菌×谷氨酸N-乙酰谷氨酸N-乙酰谷氨酸磷酸N-乙酰谷氨酸半醛N-乙酰鸟氨酸精氨酰琥珀酸精氨酸××××⑴⑵⑶⑷鸟氨酸瓜氨酸×⑸⑹⑺⑻×反馈抑制×阻遏×可能存在的阻遏II型谷氨酸产生菌、酵母菌×图12-3 L-精氨酸生物合成途径及调节机制大肠杆菌、枯草杆菌等微生物由图12-3 I的途径合成L-精氨酸,称为I型途径。
2022-2023学年北京市海淀区高三(下)期中(一模)模拟考试生物试卷+答案解析(附后)
2022-2023学年北京市海淀区高三(下)期中(一模)模拟考试生物试卷1. 细胞是最基本的生命系统,下列事实不支持该观点的是( )A. 离体的核糖体在一定条件下可合成多肽链B. T2噬菌体只有侵入大肠杆菌后才能增殖C. 去核变形虫不能摄食且对外界刺激无反应D. 一切动物和植物都是由细胞发育而来的2. 细胞色素c位于线粒体内膜上,参与细胞呼吸过程。
当细胞受到内部或外部凋亡信号刺激,线粒体膜通透性改变时,细胞色素c被释放到细胞质基质,并与A蛋白结合促进凋亡小体形成,引起细胞凋亡。
下列叙述不正确的是( )A. 细胞色素c可能参与有氧呼吸的第三阶段B. 线粒体内膜是线粒体产生ATP的唯一场所C. A蛋白结构改变会影响凋亡小体的形成D. 细胞凋亡是信号调控引起的程序性死亡3. 如图表示最适温度下反应物浓度对酶催化反应速率的影响。
下列叙述正确的是( )A. 最适温度下,酶提高化学反应活化能的效果最好B. a点时温度升高10℃,曲线上升幅度会增大C. b点时向体系中加入少量同种酶,反应速率加快D. c点时,限制酶促反应速率的因素是反应物浓度4. 辣椒果实有多对相对性状,其中包括着生方向(下垂、直立)和颜色(绿色、紫色、中间色)。
为探究上述两种性状的遗传,研究者选取两种辣椒进行杂交,F1自交,结果如下表。
下列叙述正确的是( )果实形状亲本组合F2表现型及比例着生方向下垂×直立下垂:直立=3:1颜色绿色×紫色绿色:中间色:紫色=9:3:4A. 上述两种性状中下垂和中间色为显性性状B. 果实着生方向的遗传遵循基因的分离定律C. F2果实中间色的个体中纯合子约占D. F2果实直立且为绿色的个体约占5. 细胞周期包括分裂间期和分裂期(M期),分裂间期包括G1期、S期和G2期,DNA 复制发生在S期。
若发生一个DNA分子的断裂和片段丢失,则产生的影响是( )A. 若断裂发生在G1期,则同源染色体的4条染色单体异常B. 若断裂发生在G1期,则姐妹染色单体中的1条染色单体异常C. 若断裂发生在G2期,则姐妹染色单体中的1条染色单体异常D. 若断裂发生在G2期,则一条染色体的2条染色单体异常6. 研究者将不同拷贝数量的反义基因导入牵牛花细胞,产生的反义RNA能与正常mRNA 互补结合,使牵牛花细胞中花青素合成酶的表达量降低,花青素不同程度减少,花色由紫红变为粉白相间或全白色。
L-精氨酸产生菌的选育及其代谢调控的初步研究的开题报告
L-精氨酸产生菌的选育及其代谢调控的初步研究的开题报告1. 研究背景和意义L-精氨酸是一种重要的营养补充剂,其具有改善体力和增强免疫力等多种生理功能。
目前,市场上的L-精氨酸主要是通过化学合成或提取天然产物得到的。
然而,化学合成过程繁琐、成本高,而天然产物又存在来源有限、纯度不高等问题。
因此,以微生物发酵生产L-精氨酸成为了研究的热点。
目前已知可产生L-精氨酸的微生物主要有肠球菌、大肠杆菌、嗜热菌等。
然而,它们的产量都相对较低,且生产过程中会受到多种因素的限制。
因此,寻找高效产L-精氨酸的微生物菌种及其代谢调控机制,对于实现L-精氨酸的大规模生产和进一步提高其市场竞争力具有重要意义。
2. 研究目的和内容本研究旨在从自然界中筛选出高效产L-精氨酸的微生物菌株,并通过代谢调控等手段进一步提高其产L-精氨酸的能力。
具体研究内容包括:(1)筛选产L-精氨酸高效的微生物菌株。
(2)探索不同培养条件对菌株产L-精氨酸的影响。
(3)采用基因工程技术对L-精氨酸产生菌进行代谢调控,提高其产L-精氨酸的能力。
3. 研究方法和技术路线(1)微生物菌株筛选。
通过从自然界中采集样本、菌落筛选、形态学鉴定、16S rRNA序列分析等多种手段筛选出高效产L-精氨酸的微生物菌株。
(2)培养条件优化。
分别调查培养温度、初始pH、培养时间等因素对L-精氨酸产量的影响,并结合响应曲面法确定最优的培养条件。
(3)基因工程调控。
通过基因克隆、表达筛选关键代谢调控基因,并利用基因工程技术对L-精氨酸产生菌进行代谢调控,进一步提高其产L-精氨酸的能力。
4. 预期结果和意义通过此研究,预计能够筛选出高效产L-精氨酸的微生物菌株,并利用培养条件优化和基因工程调控等手段提高其产L-精氨酸的能力。
这将有助于实现L-精氨酸的大规模生产,为相关产业提供更高效、更低成本的生产方式。
同时,该研究还可为其他类似代谢过程的研究提供一定的借鉴意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Metabolic engineering of Escherichia coli for enhanced arginine biosynthesisMireille Ginesy 1†,Jaroslav Belotserkovsky 2†,Josefine Enman 1,Leif Isaksson 2and Ulrika Rova 1*BackgroundL-arginine has gained considerable interest from the pharmaceutical industry,notably because it is a precursor to nitric oxide,a blood vessel dilator [1].Arginine is also commonly used in cosmetics,dental care products,dietary supplements and flavoring agents.It has also recently been shown that arginine can be used as an efficient nitrogen source and a potential alternative to inorganic nitrogen in plant fertilizers [2].Given the wide utilization of arginine,there is a signifi-cant industrial demand for this amino acid,especially from sources that can guarantee an environmentally andeconomically sustainable production.Biotechnology pro-cesses,encompassing microbial biosynthesis,for the pro-duction of arginine from renewable resources need to be further explored to enable an industrial vital production.L-arginine can be synthesized de novo from L-glutamate by a large group of microorganisms.Members of the genus Corynebacterium are well-known L-glutamic acid producers [3]and are widely used for commercial produc-tion of amino acids [4],therefore they have been the or-ganism of choice for microbial L-arginine production [5].Recently,Park et al.[6]engineered a C.glutamicum strain able to produce 92.5g/L L-arginine during fed-batch fermentation in 5L bioreactors.However,other organisms can also be considered as arginine producers;for a review on the production of L-arginine by different microorgan-isms,including members of the Corynebacterium family,see [7].Favorable traits of Escherichia coli ,such as fast growth in inexpensive media,robust organism for industrial*Correspondence:ulrika.rova@ltu.se †Equal contributors 1Biochemical Process Engineering,Division of Chemical Engineering,Department of Civil,Environmental and Natural Resources Engineering,LuleåUniversity of Technology,SE-97187Luleå,SwedenFull list of author information is available at the end of thearticle©2015Ginesy et al.;licensee BioMed Central.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (/licenses/by/4.0),which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly credited.The Creative Commons Public Domain Dedication waiver (/publicdomain/zero/1.0/)applies to the data made available in this article,unless otherwise stated.Ginesy et al.Microbial Cell Factories (2015) 14:29 DOI 10.1186/s12934-015-0211-yprocesses,and its well characterized metabolism and avail-able molecular tools for genetic engineering,render it an or-ganism of interest for the production of arginine.A number of patents regarding arginine production by E.coli strains exist(e.g.[8-10]).The inventors claim to have obtained up to19.3g/L in batch-fermentations with an acetate utilizing mutant derived from an arginine producing E.coli strain[8] and11.6g/L in2mL test tubes by attenuating the expres-sion of genes encoding the lysine/arginine/ornithine ABC transporter[9].However,the literature concerning E.coli and arginine biosynthesis has mainly been focused on the genetics and regulation systems rather than the production.To the best of our knowledge,no study has been published on the fermentative production of arginine by E.coli.In E.coli,arginine biosynthesis follows a linear pathway starting from the precursors glutamate and acetyl-CoA (Figure1).The first enzyme in the biosynthetic pathway,N-acetylglutamate synthase(NAGS)encoded by the argA gene,is inhibited by arginine through feedback inhibition [11].In addition,the arginine responsive repressor protein ArgR,encoded by the argR gene,negatively regulates tran-scription of arginine biosynthesis genes[12].E.coli also possesses machineries for the export of some amino acids,including arginine.The arginine exportpumpArgO,encoded by the argO gene,is transcriptionally regu-lated by ArgP[13-15].The latter is responsive to intracellu-lar arginine levels and activates the transcription of argOaccordingly[15-17].In addition,E.coli has degradativepathways for both L-arginine and its precursor L-ornithine.Two ornithine decarboxylases(encoded by the speC andspeF genes)are responsible for the conversion of ornithineto putrescine[18,19],whereas arginine is first degraded intoagmatine by an arginine decarboxylase(encoded by adiA),which is subsequently converted to putrescine and urea[18].In summary,the biosynthesis pathway of arginine isconstrained by several layers of metabolic and transcrip-tional regulations resulting in a complex network to engin-eer for arginine overproduction.Arginine overproducing E.coli strains have been classically obtained by selection ofcanavanine-resistant mutants[20].Canavanine,an arginineanalogue,inhibits growth by competing for arginine in pro-tein synthesis[21].The rationale for using this selectionsystem is that mutants resistant to canavanine are likely tobe derepressed for arginine synthesis,as over-production ofarginine will release the inhibition caused by canavanine.When characterized,these mutants have subsequently beenfound to carry mutations in argA,argR and in some in-stances argP[12,22,23].Not surprisingly,mutations in argAcommonly resulted in an ArgA feedback resistant to argin-ine,which led some workers to derive further mutants bydirected selection[24].Similarly,mutations in argP resultedin ArgP acting in a constitutive manner,independent of thepresence of arginine[14,17].In this study we used both rational design based onknown regulatory and metabolic information and selectionprocedures aiming for E.coli strains with enhanced pro-duction of arginine.Experimental validation of the engi-neered strains was carried out in1-L fermenters undercontrolled conditions.We examined first the impact of de-leting the speC,speF,adiA and argR genes and introducinga feedback-resistant argA.Then,the wild type argA wasknocked-out and the feedback-resistant variant overex-pressed.Finally,arginine production was significantly in-creased by overexpression of either argP or argO. Results&discussionEffect of introduction of feedback resistant variants of argA and selection of glutamate producing strainsIn the first rate-limiting step of the arginine synthesis,NAGS,encoded by argA,catalyzes the acetylation of glu-tamate.To block the feedback inhibition of NAGS theplasmids pKH15and pKH19,derived from the ASKA-plasmid pCA24N,were transferred into C600+Δ4(see Table1)to over-express the feedback resistant variants ofargA(H15Y for argA214and Y19C for argA215)underthe control of an IPTG-inducible promoter[25](Table1).The strain C600+Δ4carrying either plasmid pKH15or pKH19could not be grown on M9minimal media containing IPTG without exogenous glutamate supple-mentation and only weak growth was observed on the same medium when both glutamate and IPTG were ab-sent.This suggested that over-expression of the feedback resistant argA in this strain resulted in glutamate starva-tion.To overcome this limitation,spontaneous mutants able to grow in the absence of glutamate were selected by plating washed and diluted cell cultures on M9medium supplemented with IPTG without glutamate.Twelve col-onies were picked at random and screened for arginine production based on the bioassay method.The three clones with the highest arginine production were chosen for subsequent work(SJB001,003and004).Although these three strains were constructed in the same way,fermentations revealed very different growth behavior and arginine production abilities(Table2).Indeed,SJB003 produced more arginine,with a productivity of0.14g/L/h and a final arginine concentration(3.03g/L)significantly higher than that of the other similar mutants.The higher ar-ginine producing capability of SJB003compared to that of SJB001and004indicates that this strain had acquired benefi-cial mutations during growth under glutamate limitation. SJB003was therefore chosen as a chassis for further genetic manipulation,although its beneficial mutations were not characterized.Control fermentations with the parent strain C600+ were also performed.This strain did not yield any argin-ine(data not shown),which confirmed that the arginine productions displayed by the other strains are the result of their genetic modifications.Effect of overexpression of a feedback resistant argA on arginine productionTo avoid the use of IPTG in an industrial process,it is of interest to place the feedback resistant argA gene under a constitutive promoter.First the SJB003was cured of the pKH19plasmid,harboring argA215,by re-peated streaking on Luria Agar(LA)medium without antibiotic,giving rise to SJB003A.The argA214allele was chosen as the argA variant to be introduced in the strain since we found this allele to be slightly better for arginine productivity in preliminary shake flask experi-ments(data not shown).To avoid potential recombin-ation with the new argA214plasmid,the chromosomal copy of the wild type argA gene was deleted in the SJB003A strain,resulting in SJB005.The feedback resistant argA214was cloned into a high copy number plasmid pJB044downstream of the infA gene encoding the translation initiation factor IF1.pJB044carries a tetracycline resistance gene that can be removed by hom-ologous recombination due to the presence of direct repeats flanking the gene,as previously described[27].The argA214gene was placed downstream of the ribosome binding site(RBS)(AGGAGG)either with or without astrong constitutive rRNA promoter(rrsBp1)upstream (Table1).The argA start codon GUG was changed by site-directed mutagenesis to the more efficient AUG codon in both constructs,termed pJB044argA15and pJB044p1argA15.Strain SJB005was the host of the pJB044derived plasmids,resulting in the two IPTG-independent strains SJB0015and SJB025that differ only by the absence or presence of a strong rRNA promoter upstream of the argA214gene respectively.When cultivated in bioreactors,SJB015displayed a slightly improved arginine production compared to the previous constructs(T able2).In particular,Y P/x was relatively high (0.50g arg/g dcw).However,cell growth was seriously ham-pered for this strain and SJB015had the lowestμand Y X/S and the final cell density was lower than that of the other strains(data not shown).Consequently the volumetric prod-uctivity of SJB015was relatively low(0.08g/L/h).In addition,SJB015produced high levels of acetate.When a DCW of about7g/L was reached(Figure2d),cell growth stopped,arginine production drastically decreased and the remaining sugar(approximately30%of the initial glucose) was mainly used for acetate formation(up to28g/L).SJB025exhibited slow growth on both rich(LA)and minimal medium(M9)with the appearance of some large colonies(data not shown).This suggested that the strong promoter driven argA214was toxic for the strain, with large colonies representing revertants.50of these colonies were screened for fast growing mutants withTable1Plasmids and strains used in this studyPlasmid/Strain Relevant characteristics/genotype Source/ReferencePlasmidspKH15pCA24N(clone JW2786),argA214ASKA-collection[26],this work pKH19pCA24N(clone JW2786),argA215ASKA-collection[26],this work pTrc99a Amp-R,lacIq Lab stockpTrcArgP216pTrc99a with a mutant argP216allele This workpJB044pBR322derived,infA,rop-Lab stock[27]pJB044argA15pJB044with argA214downstream of infA This workpJB044p1argA15Same as pJB044argA15but with rrsBp1This workpArgObla Arginine bio-sensor plasmid with bla(Amp-R)under transcriptional control of argOp This workpArgObla10C Arginine bio-sensor plasmid with bla(Amp-R)under transcriptional controlof argOp with mutation in RBSThis workpTrcArgP216pTrc99a with argP216cloned under transcriptional control of trc promoter This workpJB044argAO pJB044argA15with argO cloned downstream of argA214This workpJB044argAP pJB044argA15with argp216cloned downstream of argA214This workStrainsE.coli K-12C600thr-,1leuB6,thi-1,lacY1,glnV44,supE44,rfbD1,mcrA1Lab stock[28]MG1655ilvG-,rfb-50,rph-1Lab stockC600+Same as C600but thr+,leu+This workC600+Δ4Same as C600+butΔadiA,ΔspeC,ΔspeF,ΔargR This workpTrcArgP216/C600+Δ4C600+Δ4with a mutant argP216allele This workJW3932Auxotrophic for arginineΔargH[29]SJB001Glutamate independent mutant of C600+Δ4with pKH15(clone2)This workSJB003Glutamate independent mutant of C600+Δ4with pKH19(clone2)This workSJB004Glutamate independent mutant of C600+Δ4with pKH19(clone4)This workSJB003A SJB003but no plasmid This workSJB005SJB003A butΔargA This workSJB015SJB005with pJB044argA15This workSJB025SJB005with pJB044p1argA15This workSJB006Arginine producing mutant of C600+Δ4from biosensor selection,argP216This workSJB007Derivative of SJB006from second round biosensor selection This workSJB009SJB005with pJB044argAO This workSJB010SJB005with pJB044argAP This workenhanced ability to produce arginine.However,none had retained this capacity(ascertained by the bioassay method)and consequently,neither these clones nor the parental SJB025were used for further work.For this strain it is likely that the rate of arginine forma-tion exceeds the capacity of the arginine export system due to the overexpression of argA214in combination with the presence of a strong promoter upstream of argA214.The resulting accumulation of arginine inside the cellmight have a variety of negative effects on cellular pro-cesses,which could explain why cell growth was seriouslyhampered in SJB025and the ability for enhanced arginineproduction easily lost.This is consistent with previous re-ports,where mutants of C.glutamicum with deletion oflysE,encoding an exporter similar to ArgO[30,31],weregrowth inhibited in the presence of intracellular arginine[30-32].Growth arrest due to intracellular arginine in ΔargO andΔargP mutants of E.coli has also been re-ported[14].The increased nitrogen flow towards arginineproduction might also hinder the biosynthesis of othermetabolites required for cell growth.Identification of novel mutations for enhanced arginine production using a biosensorTo complement the above described rational strain im-provement strategies,a selection procedure wasemployed to select novel or previously unidentified mu-tants with increased arginine production.C600+Δ4car-rying the biosensor plasmid pArgObla10C was used fordirect selection and screening of arginine accumulatingmutants on M9plates supplemented with2,3and4mg/mL Amp.Only mutants with increased expressionof the bla gene,most likely through increased transcrip-tion of the argOp promoter,can grow on media withAmp concentration higher than0.6mg/mL.High Amp resistant mutants were randomly chosenfrom each Amp concentration and assayed for arginineproduction using the bioassay method.The isolated mu-tant showing the highest production was cured of theplasmid by repeated streaking on M9plates without anti-biotic(resulting in SJB006).After the biosensor plasmidremoval an improved arginine production was retained,indicating that the acquired increased arginine accumula-tion was due to chromosomal mutations.Chromosomalsequencing of argA and argP genes in this clone revealedwild type argA and a T647C mutation in argP resulting ina valine to alanine mutation in position216(V216A).To assess the effect of the V216A mutation on arginineproduction the mutant allele argP216was cloned into ahigh copy number plasmid downstream of an IPTG indu-cible promoter(pTrc99a)to give pTrcArgP216.Evenwithout IPTG induction,the arginine accumulation of thestrain pTrcArgP216/C600+Δ4was equivalent to SJB006, as based on the bioassay method(data not shown).We thus concluded that the increase in arginine accumulation observed in SJB006was at least partly due to the presence of the argP216allele.Selection of mutants with increased arginine accumula-tion was extended by transforming SJB006with pArgO-bla10C anew,and screening on LA plates supplementedwith6,8and10mg/mL of Amp.Several colonies wereassayed for arginine production;the best clone was cured of the biosensor plasmid and used for further work (SJB007).Sequencing of argA and argP showed that SJB007 also carried wild-type argA and no other mutation on the argP gene,other than the V216A mutation present in the parent strain SJB006.Even with only the wild type argA,SJB006produced simi-lar amounts of arginine as SJB001and SJB004during fer-mentation(Table2).Further,the productivity of SJB006 (0.11g/L/h)was even slightly higher due to a faster growth. SJB007,which results from a second level biosensor selec-tion,displayed increased arginine production compare to its parent SJB006.This demonstrates the potential effects of the mutation V216A carried by these two strains on the argP gene,but also that there might be some additional unknown mutation in SJB007promoting arginine production.Effect of co-overexpression of a feedback resistant argA and argP or argO on arginine productionThe mutant allele argP216resulted in increased accu-mulation of arginine.Amongst other physiological func-tions in the cells,ArgP also controls the transcription of argO.It was therefore of interest to combine overexpres-sion of each of these two genes with the known feedback resistant argA214allele.The plasmid pJB044argAP was constructed such that the argP216allele was placed downstream of argA214, under the control of the RBS sequence AGGAGG.The plasmid pJB044argAO was constructed by placing an argO ORF with the RBS sequence AGGAGG,downstream of argA214.In addition the inefficient start codon GUG was changed for the canonical AUG.The plasmids pJB044ar-gAO and pJB044argAP were transferred to SJB005,to yield SBJ009and SJB010respectively.Slow growth was also observed in the strains having a gene involved in arginine transport overexpressed in combination with the argA214allele(Figure2d,g and h).In particular,SJB009had almost the sameμand Y X/S as SJB015and also produced significant amounts of acetate.Nevertheless,cells grew to a somewhat higher density and arginine was steadily formed throughout the whole fermentation.Furthermore,SJB009had the highest arginine production per amount of cells(1.18g arg/g DCW),2to13-fold that of the other strains.Consequently this strain yielded the highest final arginine titer(11.64g/L) at a fair production rate(0.24g/L/h).Also,a low growth associated with a high Y P/X means that a large part of the glucose is used for arginine formation.SJB009therefore showed the highest Y P/S(0.17g arg/g glc)of all strains eval-uated.ArgO is directly responsible for the transport of ar-ginine outside the cytoplasm and the high Y P/S might be the result of an immediate excretion,enhanced by ArgO,of the large amount of arginine produced,due to argA214. Interestingly,despite overexpression of the argP gene,re-sponsible for argO transcription,SJB010had significantlylower product yields than SJB009,yet higher than the other mutants.However,the cells of this strain grew twice as fast as cells of SJB009and therefore SJB010had the highest productivity of all strains(0.29g/L/h).Unlike SJB015and SJB009,SJB010did not form high levels of acetate but pro-duced both acetate and succinate(4–5g/L).SJB009and SJB010are similar to SJB015except that one of their genes responsible of arginine export has been altered(argO and argP,respectively).This resulted in an important increase in the final arginine concentration (+183%and+93%),productivity(+200%and+262%)and product yield Y P/S(+143%and+57%)for SJB009and SJB010,respectively,compared to SJB015.This positive ef-fect of argO and argP overexpression has previously been observed,showing that E.coli strains carrying multicopy yggA+(argO)and argP d(S94L mutation)had a greatly in-creased arginine production as determined from cross-feeding ability on agar plate[14].Export has been identified as the rate-limiting step for the production of different amino acids when using C.glutamicum[33-35].Similarly, it seems that the arginine export system plays a major role for the arginine production by E.coli.Formation of acetate during arginine fermentationAll mutants produced acetate as the main by-product. Acetate is formed during the5th step of L-arginine bio-synthesis from L-glutamate(Figure1).However,for most strains the ratio of ac:arg produced was higher than1:1(Table2),which means that acetate was also formed via another pathway.The accumulation of acetate by E.coli,even in aerobic environment,when growing under conditions of high glucose consumption is known as overflow metabolism. It occurs when the rate of glucose consumption is greater than the capacity of the cell to reoxidize the re-duced equivalents,i.e.NAD(P)H,generated by glycolysis. Instead of entering the tricarboxylic acid(TCA)cycle, the carbon flux from acetyl-CoA is diverted to acetate, likely to prevent any further NAD(P)H accumulation as only ATP is formed during acetate formation while the TCA cycle generates several reducing equivalents [36,37].As fermentations were run in batch mode with high initial glucose concentration(70g/L)overflow metabolism is to be expected.The acetate production depends on the specific glucose uptake rate,with acetate formation occurring only after a certain threshold[36].SJB001;3;4;6and7indeed produced large amounts of acetate compared to arginine, which allowed them to have a high glucose uptake(0.44to 0.54mol glc/mol dcw/h)and a fast growth(μ>0.13h−1). SJB009and SJB010however had a considerably lower ac/ arg ratio,i.e.3.72and1.17mol/mol,respectively,compared to at least5.9mol/mol for the other strains.The glucose up-take was also reduced(0.33and0.36mol glc/mol dcw/h)as well as the growth(μ<0.09h−1).It is possible that the redir-ection of carbon and nitrogen toward arginine results in a shortage of other essential amino acids,thereby limiting the growth and the need for fast glucose assimilation.This could also be because the carbon flow from acetyl-CoA is forced toward arginine biosynthesis by the overexpressed argA214, thereby limiting the formation of acetate from acetyl-CoA. However SJB015had the highest ac/arg ratio (11.37mol/mol)despite having a low specific glucose uptake(0.36mol glc/mol dcw/h).This strain produced 15.85g/L of acetate,which is comparable to the14.56g/L produced by SJB009.It is therefore likely thata large part of the acetate produced by SJB015comes from the increased carbon flux through the arginine pathway,but that mainly acetate was excreted while ar-ginine accumulated inside the cell due to the export limitation.ConclusionWe reported the development E.coli strains overproducing arginine,by targeting genes regulating repression of arginine biosynthesis and competing degradation pathways in addition to amplification of genes for N-acetylglutamate for-mation and arginine export.The two final strains obtained (SJB009and SJB010)had the highest arginine yield(1.18 and0.44g arg/g glc,respectively)and productivity(0.24and 0.29g arg/L/h,respectively)and will be used for further gen-etic improvement and/or process optimization.The fermen-tation process developed for the comparison of the different constructs needs to be further optimized regarding fermen-tation medium,process conditions and process control. Materials and methodsStrain constructionBacterial strains and plasmidsTable1lists the plasmids and bacterial strains used in this study.In addition,the E.coli strain DH5αwas used as a primary host for all cloning work.Cultivation mediaStrains were grown for24–48h in15mL tubes at37°C and 220rpm on Luria Bertani(LB)or in M9minimal media supplemented with thiamine5μg/mL and with the addition of1.5%agar when solid media was used.When necessary, glutamate was supplemented at0.8mM.Unless otherwise indicated,antibiotics were used at the following concentra-tions:tetracycline20μg/mL;chloramphenicol50μg/mL; kanamycin50μg/mL;ampicillin(Amp)200μg/mL.For in-duction experiments,IPTG was used at a final concentra-tion of0.1mM.DNA manipulationCloning of genes and regulatory elements was achieved ei-ther through standard restriction enzyme based cloningmethods,or with the use of the sequence-and ligation-in-dependent cloning method[24].Site directed mutagenesis was used in order to introduce single nucleotide alterations into plasmids[38].All gene deletions were done according to the in-frame gene excision method described by Link et al.[39].Deletions were verified by PCR and DNA sequencing.Construction of a base strain for arginine production(C600+Δ4)A base strain with deletions of key genes involved in the arginine and ornithine degradation pathways and the ar-ginine repression system was first constructed.The threonine and leucine auxotrophic E.coli strain K-12 C600[18]was used as a starting strain.C600was made autotrophic by moving wild type alleles from MG1655 donor strain via P1transduction and subsequent selec-tion on M9plates without any amino acids.The result-ant strain was termed C600+.One target for increased arginine production was inactivation of the arginine re-pressor argR and genes in the arginine and ornithine degradation pathways.The genes argR,adiA,speC and speF were subsequently deleted in order to obtain the strain termed C600+Δ4.Biosensor plasmid constructionTo select for arginine producing mutants with previously unidentified mutations,a biosensor plasmid termed pArgO-bla,was engineered based on one previously described[40]. The arginine sensitive promoter argOp was used to control the transcription of the ampicillin resistance gene bla.In addition,the T1T2terminator was placed upstream to pre-vent any transcription from upstream promoters.Plasmid sensitivity to arginine was decreased by mutating the core RBS AAGGA upstream of the bla gene to ACGGA to re-duce the efficiency of the translation initiation.The Amp minimum inhibitory concentration was considerably re-duced for C600+Δ4carrying this new biosensor variant pAr-gObla10C,compared to pArgObla(from>5mg/mL to 0.6mg/mL).Bioassay for screening of arginine producing mutants Spent M9growth media from cultures of candidate argin-ine producers were separated from the cell biomass by centrifugation at10500×g for5minutes.The supernatant was then sterilized with a0.2μm filter and diluted into the assay medium,i.e.M9supplemented with Kan.The strain JW3932,which was obtained from the Keio collection [29],is auxotrophic for arginine(ΔargH).This strain was inoculated into the assay medium and its growth(mea-sured as OD590)was used to determine the arginine con-centration,based on a reference curve constructed from known concentrations of arginine.FermentationsSeed cultures preparationCultures of the strains constructed as described above were stored in LB at−80°C as15%glycerol stocks.The medium used for cultivation of the strains consisted of (per liter):70g glucose,15g corn steep liquor,15g(NH4) 2SO4,1g KH2PO4,0.5g MgSO4·7H2O,20mg FeSO4·7 H2O,12mg MnSO4·H2O,0.5mg thiamine·HCl and ap-propriate concentrations of antibiotics.1mL of the stock culture was inoculated to a500-mL shake flask containing 100mL of sterile medium and4g CaCO3to maintain a pH of about7.The seed culture was incubated at32°C in an orbital shaker at200rpm until an optical density at 562nm(OD562)between1.6and2.5was reached.FermentationsBatch fermentations were conducted in1L bioreactors(Bio-bundle1L,Applikon Biotechnology,the Netherlands).The medium used was the same as described above,supple-mented with0.4g/L of antifoam.100mL of seed culture were added in a sterile bioreactor containing600mL of medium.Prior to inoculation,pH was adjusted to7and thereafter maintained at that pH by automatic addition of NH3solution(14-15%v/v).Fermentations were performed at32°C and initial stirring was set at500rpm.The dissolved oxygen concentration(DO)was controlled with pulses of air (at10vvm)and to maintain a DO level above30%the stir-ring was gradually increased from500rpm to1000rpm.All fermentations were carried out in duplicates.Samples were regularly taken throughout the fermen-tations for analysis of optical density,glucose,organic acids and arginine concentrations.Cell growth measurementCell growth was estimated by measuring the OD562of ap-propriately diluted samples.Dry cell weight(DCW,in g/L) was determined from the optical density using a linear relationship between OD562and DCW established in our laboratory under similar conditions:DCW=0.4507×OD562+0.6095.Glucose and organic acids analysisThe samples were centrifuged for10min at10621×g and 4°C.The supernatant was then diluted five times with water and filtered through a0.2μm syringe filter.Quantifi-cation of glucose and organic acids was performed by HPLC using a guard column(Micro-Guard IG Cation H Cartridge,BioRad),a cation exchange column(Aminex HPX87-H,BioRad)and a Series200refractive index de-tector(PerkinElmer).The column was kept at65°C and 0.005M H2SO4at a flow rate of0.6mL/min was used as mobile phase.。