1.5 三角形全等的判定(第2课时)

合集下载

12.2三角形全等的判定(第2课时)-公开课-优质课(人教版教学设计精品)

12.2三角形全等的判定(第2课时)-公开课-优质课(人教版教学设计精品)

12.2三角形全等的判定(第2课时)-公开课-优质课(人教版教学设计精品)12.2 三角形全等的判定(第2课时)一、内容和内容解析1.内容“SAS”判定方法及其简单应用.2.内容解析本节内容是在学生已探明了两个三角形全等至少需要满足三个条件,及三边分别相等的两个三角形全等的基础上,探究两边和一角分别相等的情形.两边和一角分别相等包括两种情况:一是两边和它们的夹角分别相等;二是两边和其中一边的对角分别相等.其中第一种情况教科书采用了作图实验的方法,让学生验证两边及夹角分别相等的两个三角形全等,与“SSS”判定方法的探究过程类似,“SAS”也是证明线段、角相等的一种重要方法.第二种情况由于三角形的形状不固定,作图对学生的要求过高,所以教科书采用了教具演示的方法予以解释.基于以上分析,本节课的教学重点是:理解“SAS”判定方法,并会用“SAS”判定方法证明两个三角形全等.二、目标和目标解析1.目标(1)探索并理解“SAS”判定方法.(2)会用“SAS”判定方法证明两个三角形全等.(3)了解“SSA”不能作为两个三角形全等的条件.2.目标解析达成目标(1)的标志是:学生能类比“SSS”判定方法的探索过程,通过动手操作,探究出“SAS”判定方法.达成目标(2)的标志是:学生会运用“SAS”证明两个三角形全等,并能通过证明三角形全等来证明线段相等或角相等.达成目标(3)的标志是:学生通过操作、试验,认识到两边及一边对角分别相等不能作为判定两个三角形全等的依据.三、教学问题诊断分析在本节课中,教科书没有通过作图来解释“SSA”不成立,虽然教师通过教具进行了演示、说明,但学生缺乏作图、比对的切身体验,而且八年级学生的理性思维还不强,很容易。

全等三角形的判定 (1-5课时)Microsoft Word 文档

全等三角形的判定 (1-5课时)Microsoft Word 文档

全等三角形的判定第一课时:SSS教学目标知识与能力:(1)经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。

过程与方法:在探索三角形全等条件的过程中,让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力,发展学生的空间观念。

情感态度与价值观:培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。

教学重点:经历探索三角形全等条件的过程。

教学难点:对三角形全等条件的分析和探索。

教学过程引入:三角形全等的判定是中学数学重要内容之一,是证明线段相等、角相等的重要方法,是今后几何学习的基础。

本节课是探索三角形全等条件的第一课时,学好了将为下节课探索三角形全等的其他条件打下坚实的基础;同时为今后探索直角三角形全等的条件以及三角形相似的条件提供很好模式和方法,因此本节课占有相当重要的地位和作用。

复习回顾1.怎样的两个三角形是全等三角形?2.全等三角形的性质?2.创设情景,提出问题大家知道:一个三角形有三个角与三条边,那么两个三角形全等是否一定要三个角与三条边都对应相等,即这六个条件都成立。

如果满足这六个条件中的一个或两个,那么两个三角形会全等吗?小组合作完成课本第六页探究1。

通过探究可以发现满足上述条件中的一个和两个两个三角形不一定全等。

满足上述六个条件中的三个,能保证两个三角形全等吗?需分境况来讨论。

探究2:先画出一个三角形△ABC,你能画一个△A′B′C′,使AB= A′B′,AC= A′C′,BC= B′C′吗?教师介绍尺规作图。

师生一起完成:A B C D EF并△A ′B ′C ′剪下,放到△ABC 拼一拼,他们是否全等?4.归纳总结,得出新知三边对应相等的两个三角形全等简写为“边边边”或“SSS ”用符号语言表达为: 在∆ABC 和∆DEF 中AB=DE∵AC=DFBC=EF∴∆ABC ≌∆DEF5.应用新知,体验成功要证明这两个三角形的三条边是否对应相等,从题目中得知,AB=AC ,AD 是BC 边上的中线,所以有BD=DC ,而AD=DA 是公共边,这样根据“SSS ”,所以题目所求证的这两个三角形就全等了。

1.5 三角形全等的判定(2)

1.5  三角形全等的判定(2)

∴ △ABC ≌△ DEF(SAS). E
F
有一个角和夹这个角的两边对应相等的两个 三角形全等(简写成“边角边”或“SAS”)
➢注 意
A
BD
E
这个角一定要是两条边的夹角
用数学语言表述:
在△ABC和△DEF中,
C
AB=DE, ∠B=
∠ E,
BC=EF,
∴ △ABC ≌△ DEF(SAS)
F
以2.5cm,3.5cm为三角形的两边,长度 为2.5cm的边所对的角为40° ,情况又怎 样?动手画一画,你发现了什么?
在△ABE中,AE<AB+BE(三角形两边之和大于第三边)
AD 1 (AB AC) 2
说一说
1、今天我们学习哪种方法判定两三角形全等? 答:边角边(SAS)
2、通过这节课,判定三角形全等的条件有哪些?
答:SSS、SAS、
“边边角”不能判定两个 三角形全等
注意哦!
C
F
A 40°
B
40°
D
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等.
SAS中 对于这个角有什么要求
夹 注意:这个角一定要是这两边所 的角
请在下列图中找出全等三角形,并把它们用 符号写出来.
30º


ⅣⅣ ⅢⅢ
5 cm
30º


30º


1.根据已知条件,再补充一个条件,使图1中的 △ABC≌△A′B′C′. (1)AB=A′B′,AC=A′C′,_B_C_=_B_′C_′;(要求用SSS)
OA=OB
(已知)
∠AOB=∠COD
(对顶角相等)
OB=OD

《三角形全等的判定》全等三角形PPT课件(第2课时)

《三角形全等的判定》全等三角形PPT课件(第2课时)

证明:在△ABC 和△DEC中,
CA = CD,
∠ACB =∠DCE,
CB =CE ,
A
B
∴△ABC ≌△DEC.(SAS)
C
∴AB=DE.(全等三角形的对应边相等)
E
D
探究2:两边和其中一边的对角对应相等时,两三角形是否全等?
试一试:以10cm,8cm为三角形的两边,长度为8cm的边所对的角
为45°,动手画一画,你发现了什么?
A
1
4
2
B
3C
证明:过点C做AB边平行线L,即L∥BC
L ∵ L∥BC
∴ ∠1=∠4, ∠3+∠4+∠2=180° (两直线平行,内错角相等,同旁内角回补) ∴ ∠1+∠2+∠3=180°(等量代换)
直角三角形特殊性
在直角三角形ABC中,∠C=90°
A
斜边 直 角 边
C
直角边
B
由三角形内角和定理
∠ A+∠ B+∠C=180° 而∠C=90°, 所以∠ A+∠ B=90° 直角三角形的两个锐角互余
而∠B=∠C
∴∠B=∠C=400
B
C
课堂测试
例2:已知三角形三个内角的度数之比为2:3:7,求这三个内角的度数。 解:设三个内角度数分别为:2x、3x、7x,由三角形内角和为180°得:
2x+3x+7x=180° 解得x=15°
所以三个内角度数分别为30°,45°,105°。
生活中常见的图形
例3:如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏
A 点的直线l。
A
l

八年级数学上册第1章三角形的初步知识1-5三角形全等的判定第2课时作业浙教版

八年级数学上册第1章三角形的初步知识1-5三角形全等的判定第2课时作业浙教版

解:测出 ME 的长度,就是 M 与 F 之间的距离.理 由如下:连结 ME,MF,∵点 M 是 BC 的中点,∴MB =MC,在△MBE 和△MCF 中, BE=CF, ∠B=∠C, BM=CM,
∴△MEB≌△MFC(SAS),∴ME=MF,∴测出 ME 的
长度,就是 M 与 F 之间的距离.
13.如图,在△ABC 和△ADE 中,∠BAC=∠DAE= 90°,AB=AC,AD=AE,C,D,E 三点在同一条直 线上,连结 BD. (1)求证:△BAD≌△CAE. (2)试猜想 BD,CE 有何特殊的位置关系,并证明.
4.如图,四边形 ABCD 中,AC 垂直平分 BD,垂足
为 E,下列结论不一定成立的是( C )
A.AB=AD B.AC 平分∠BCD C.AB=BD D.△BEC≌△DEC
5.如图,AD 是△ABC 的中线,E,F 分别是 AD 和 AD 延长线上的点,且 DE=DF,连结 BF,CE,下列 说法:①CE=BF;②△ABD 和△ACD 面积相等;③
足为点 D,AB=CD,BC=DE,则∠ACE=__9_0_°___.
8.(2020·上海)如图,△ABC 中,AB=AC=14 cm,
AB 的垂直平分线 MN 交 AC 于点 D,连接 BD,且△
DBC 的周长是 24 cm.则 BC=_1__0_ cm.
9.如图,点 D 在 AB 上,点 E 在 AC 上,AB=AC, AD=AE.求证:BE=CD.
第1章 三角形的初步知识 1.5 三角形全等的判定
第2课时 “边角边”与线段的垂直平分线的性质
课时目标
1.掌握基本事实:SAS
A
2.掌握线段的垂直平分线的概念及性质 定理
1.下图中全等的三角形有( D )

三角形全等的判定(第2课时)八年级数学教师集体备课教案

三角形全等的判定(第2课时)八年级数学教师集体备课教案

八年级数学教师集体备课教案1.知道“角边角”“角角边”条件的内容,会用“角边角”“角角边”证明全等.2.能运用全等三角形的条件,解决三角形全等的问题.3.通过探究三角形全等条件的活动,体验用操作、归纳得出数学结论的过程,培养学生发现问题、解决问题的能力.一、情境导入,初步认识导入一:教师:观察下列一组图片(图1),同学们,小明踢球时不慎把一块三角形的玻璃打碎成两块,他要去玻璃店买一块大小相同的玻璃,那么:图1请问:(1)要不要两块都带去?(2)带哪块去呢?(3)带第②块,带去了三角形的几个元素?带第①块呢?导入二:1.教师:三角形中已知三个元素,有哪几种情况?学生:三个角、三条边、两边一角、两角一边.教师:到目前为止,可以作为判定两个三角形全等的方法有几种?各是什么?学生:三种,分别是:①定义;②SSS;③SAS.注意:AAA是不能判定两个三角形全等的.2.在三角形中,已知三个元素的四种情况,我们研究了三种,今天我们探究已知两角一边是否可以判断两个三角形全等.二.探究新知教师:三角形中已知两角一边有几种可能?学生:(1)两角和它们的夹边;(2)两角和其中一角的对边.活动一:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?鼓励学生积极动手操作.教师:将你画的三角形剪下来,与同伴比较,观察它们是不是全等,你能得出什么规律?学生归纳:将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.活动二:我们刚才作的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?按下列步骤完成作图(如图2):图2(1)先用量角器量出∠A 与∠B 的度数,再用直尺量出边AB 的长; (2)画线段A ′B ′,使A ′B ′=AB ; (3)分别以A ′,B ′为顶点,A ′B ′为一边作∠DA ′B ′,∠EB ′A ′,使∠DA ′B ′=∠CAB ,∠EB ′A ′=∠CBA.(4)射线A ′D 与B ′E 交于一点,记为C ′,即得到△A ′B ′C ′. 教师:将△A ′B ′C ′剪下来,放在△ABC 上,你们发现了什么? 学生:两个三角形完全重合,即它们全等.学生总结:两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA ”).思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA ”推出“两角和其中一角的对边分别相等的两个三角形全等”呢?探究:如图3,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?图3证明:∵ ∠A+∠B+∠C=∠D+∠E+∠F=180°, ∠A=∠D ,∠B=∠E ,∴ ∠A+∠B=∠D+∠E ,∴ ∠C=∠F.在△ABC 和△DEF 中,{∠B =∠E,BC =EF,∠C =∠F,∴ △ABC ≌△DEF(ASA).学生总结:两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS ”).三.新知应用例1 如图4,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C.求证:AD=A E.例2 如图5,AB ⊥BC,AD ⊥DC ,∠1=∠2,求证:AB=AD.四.课堂小结1.三角形全等的判定:ASA 和AAS.2.至此,除了定义外,我们有四种判定三角形全等的方法:(1)边边边(SSS);(2)边角边(SAS);(3)角边角(ASA);(4)角角边(AAS).证明两个三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.。

第2课时 直角三角形全等的判定

第2课时 直角三角形全等的判定

已知:如图,在△ABC和△A′B′C′中, B
B′
AC=A′C′,AB=A′B′,
∠C=∠C′=90°。
求证:△ABC≌△A′B′C′。
C
A C′
A

分析:要证明△ABC≌△A′B′C′,只要能满足公理(SSS),
(SAS),(ASA)和推论(AAS)中的一个即可。由已知
和根据勾股定理易知,第三条边也对应相等。
B
B′
B′
A●
(1 )
C A′ ● (2)
C′ A′

(3 C′ )
由图(1)和图(2)可知,这两个三角形全等;
由图(1)和图(3)可知,这两个三角形不全等;
因此,两边及其中一边的对角对应相等的两个三角形不一定全等。
举反例证明假命题千万不可忘记噢!
两边分别相等且其中一组等边的对角分别相等的两个三角形 不一定全等。但如果其中一边所对的角是直角,那么这两个三 角形全等。
直角三角形
第二课时
三角形全等的判定
公理:三边对应相等的两个三角形全等(SSS)。 公理:两边及其夹角对应相等的两个三角形全等(SAS)。 公理:两角及其夹边对应相等的两个三角形全等(ASA)。 推论:两角及其中一角的对边对应相等的两个三角形全等 (AAS)。
1.能够证明直角三角形全等的“HL”的判定定理, 进一步理解证明的必要性; 2.利用“HL”定理解决实际问题。
想一想:
两边及其中一边的对角对应相等的两个三角形全等? 两边及其中一边的对角对应相等的两个三角形
不一定全等。
如果其中一边所对的角是直角呢? 如果其中一边所对的角是直角,那么这两个三
角形全等。
你能证明这些结论吗?
命题:两边及其中一边的对角对应相等的两个三角形不一定全等。

三角形全等的判定第2课时“边角边”精选练习含答案

三角形全等的判定第2课时“边角边”精选练习含答案

三角形全等的判定第2课时“边角边”精选练习含答案一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,能够添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D5.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对6.在△ABC和CBA'''∆中,∠C=C'∠,b-a=ab'-',b+a=ab'+',则这两个三角形()A. 不一定全等B.不全等C. 全等,依照“ASA”D. 全等,依照“SAS”第1题第3题图第4题图第5题图7.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD ≌△ACD 的条件是( )A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )A .22B .24C .26D .28 二、填空题9. 如图,已知BD=CD ,要依照“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是.10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°, 则∠CBO= 度.11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: , 使得AC =DF .12.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的第9题图第7题图第8题图第10题图第11题图条件是 (写出一个即可).13.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.14. 如图,若AO=DO ,只需补充 就能够依照SAS 判定△AOB ≌△DOC.15. 如图,已知△ABC ,BA=BC ,BD 平分∠ABC ,若∠C=40°,则∠ABE 为度.16.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则 AE= cm .40D CBAE17. 已知:如图,DC=EA ,EC=BA ,DC ⊥AC , BA ⊥AC ,垂足分别是C 、A ,则BE 与DE 的位置关系是 .18. △ABC 中,AB=6,AC=2,AD 是BC 边上的中线,则AD 的取值范畴是 .ACE B 0CEDB A第13题图第14题图第12题图第15题图第16题图第17题图D三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。

全等三角形的判定第二课时教案

全等三角形的判定第二课时教案

全等三角形的判定第二课时教案学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界,而数学教育,要抓住关键问题,引导学生形成正确的数学解题思路。

下面是为大家整理的全等三角形的判定第二课时教案5篇,希望大家能有所收获!全等三角形的判定第二课时教案1一、教材分析(一)本节内容在教材中的地位与作用。

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。

它是两三角形间最简单、最常见的关系。

本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。

因此,本节课的知识具有承上启下的作用。

同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。

(二)教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。

同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。

为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。

(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。

(3)培养学生勇于探索、团结协作的精神。

(三)教材重难点由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。

同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。

12.2全等三角形的判定(第2课时)

12.2全等三角形的判定(第2课时)

证明:在△ABC和△ADC中,
A
AB=AD ∠BAC=∠DAC AC=AC
∴△ABC≌△ADC(SAS).
BC D
探究新知 探索“SSA”能否识别两三角形全等
思考:两边一角分别相等包括“两边夹角”和“两边及其中
一边的对角”分别相等两种情况,前面已探索出“SAS”判定 三角形全等的方法,那么由“SSA”的条件能判定两个三角形
人教版.八年级上册
12.2 三角形全等的判定 (第2课时)
学习目标
3. 了解“SSA”不能作为两个三角形全等的 条件.
2. 会用“SAS”判定定理证明两个三角形 全等并能应用其解决实际问题.
1. 探索并正确理解三角形全等的判定定理 “SAS”.
课堂导入 除了SSS外,还有其他情况吗?
当两个三角形满足六个条件中的3个时,有四种情况:
AB=CB(已知)
而问题改∠变A成BD:=∠CBD(已知)
B
问AD=CD吗B?D=BBDD平(公分共∠边AD)C吗?
∴△ABD≌△CBD(SAS)
A D
C
由△ABD≌△CBD可得 AD=CD,∠ADB=∠CDB(全等三角形的对应边相等,对应角相等) ∴BD平分∠ADC(角平分线的定义)
变式训练
如图,已知∠BAC=∠DAC,AB=AD.求证:△ABC ≌△ADC.
全等吗?请举例说明.
A
如图,在△ABC 和△ABD 中,
AB =AB,AC = AD,∠B =∠B,
但△ABC 和△ABD 不全等.
BC
D
注:这个角一定要是这两边所夹的角
归纳小结
注意:(1)牢记“边边角”不能判定两个三角形全等,只有两 边及其夹角分别相等才能判定两个三角形全等.

1.5三角形全等的判定2

1.5三角形全等的判定2

1.5三角形全等的判定(2) 【基础部分】1. 的三角形,叫做全等三角形。

2. 已知在ΔABC 中,∠B=70°, AB=3厘米,BC=4厘米,根据上述条件,我们能画出一个三角形吗?如果能,我们应该如何操作?(1)在纸上画出满足上述条件的ΔABC ;(2)与你身边的同学对一对,你发现了什么?判定公理 如果 ,那么 ,简记为:说明:(1)这个判定方法可以简单的用“边角边”或“SAS ”来表示。

(2)用符号表示:在ΔABC 和ΔDEF 中,⎪⎩⎪⎨⎧ ∴ΔABC ≌ΔDEF(SAS) 注意思考:“边角边”判定公里可以换成“边边角”吗?如果不能,你能不能画一对三角形,两条边和一个角对应相等,但是又不全等3.如图所示,D 是BC 的中点,AD ⊥BC ,求证AB=AC ;由此我们可以得到结论:B C A D F D【巩固练习】1如图,OA=OC ,OD=OB.求证:∠A=∠C.2如图,已知∠A=∠B , AD=BC ,AE=BF ,求证:∠ADF=∠BCE3、如图所示,在△ABC 中,已知AB=AC ,延长AB 到D ,使BD=AB ,延长AC 到E ,使CE=AC ,连结CD 、BE ,求证:CD=BE.4、如图,已知点A 、B 、C 、D 在同一条直线上,AB=CD ,∠D=∠ECA ,EC=FD ,求证:AE=BF .【拓展应用】5如图,要在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量A 、B 两点间的距离.请你用学过的数学知识按以下要求设计一测量方案.(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB 的距离(写出求解或推理过程,结果用字母表示).C B DA O。

人教初中数学八上《三角形全等的判定(第2课时)》教案 (公开课获奖)

人教初中数学八上《三角形全等的判定(第2课时)》教案 (公开课获奖)

12.2 三角形全等的判定教学目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 3.掌握三角形全等的“SAS”条件,了解三角形的稳定性. 4.能运用“SAS”证明简单的三角形全等问题.重点难点重点:三角形全等的条件. 难点:寻求三角形全等的条件. 教学过程一、创设情境,复习提问1.怎样的两个三角形是全等三角形? 2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合: 图(1)图(1)中:△ABD≌△ACE,AB 与AC 是对应边; 图(2) 图(2)中:△ABC≌△AED,AD 与AC 是对应边. 4.三角形全等的判定Ⅰ的内容是什么? 二、导入新课 1.三角形全等的判定(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC 、BD 相交于O ,A O 、BO 、CO 、DO 的长度如图所标,△ABO和△CDO是否能完AD CEBDCABE全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB=∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1 cm,AC=2.8 cm.③连接BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3.边角边公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三、例题与练习1.填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).2、例1 已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF=CE或AE=CF)?怎样证明呢?例2 已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌ △ACE.四、小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.五、作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△AB E≌△ACF.2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等. [生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且DCA BD CABDCA BBD=BC=AD ,求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1.如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CA答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和D C A B∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高. 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究 如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形EDCA B P二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入 1.说出分数混合运算的顺序. 2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解 (教科书)例7 计算 [分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)b a ab - (3)3 五、1.(1)22yx xy - (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

全等三角形的判定第二课时

全等三角形的判定第二课时

《三角形全等的判定》第二课时一、教案背景面向学生:中学学科数学二、教学课题《义务教育课程标准实验教科书》人教版八年级上册12.2三角形全等的判定。

教学目标(1)、探索出三角形全等的识别方法——边角边,并能应用它们来识别两个三角形是否全等。

(2)、熟练掌握边角边的识别方法,提高学生的逻辑思维能力;通过观察几何图形,培养学生的识图能力。

(3)、使学生养成尊重客观事实和形成质疑的习惯;通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

三、教材分析对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。

它是两三角形间最简单、最常见的关系。

本节《三角形全等的判定》是学生在认识三角形的基础上,在了解三角形全等边边边的方法以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、角相等以及两线互相垂直、平行的重要依据。

因此,本节课的知识具有承上启下的作用。

同时,教材将“边角边”识别方法作为五个基本事实之一,本节内容对学生学习几何推理具有举足轻重的作用。

学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

四、教学方法探究法、研讨法五、教学过程(1)、创设情境,导入新课:【回忆提问】我们已经学习了全等三角形有关知识,全等的三角形有什么特点?生:三条边都相等,三个内角也都相等,将全等的三角形放在一起能够重合。

【引入问题】如果两个三角形满足刚才大家说的特点,那么这两个三角形就全等,并且我们又知道如果两个三角形的三边对应相等,那么,这两个三角形全等。

还有其它较简便的判定方法吗?(2)、创设情境,探究新知:情境一:请同学们各自画一个有一个角是50°的三角形。

【动手实践】让学生先在角的基础上各画出一个三角形。

【验证】同学们可以拿自己画的三角形与其他同学对照一下,你们画的三角形“全等”么?【学生总结】不全等,一个角能有好多三角形。

三角形全等的判定第二课时教案

三角形全等的判定第二课时教案

12.2三角形全等的判定第二课时一、教学目标1.经历三角形全等的判定方法“边角边”的探索过程.2.会应用全等三角形的判定方法“边角边”证明三角形全等.3.学会在探索过程中发现题设条件中的隐含条件,熟悉证明两个三角形全等的方法及步骤.4.学会综合运用“边边边”和“边角边”证明有关三角形边、角相等关系的问题.二、教学重难点重点:运用“边角边”判定两个三角形全等.难点:综合运用“边边边”和“边角边”的有关证明.教学过程一、情境引入大家知道,两个三角形仅有两个元素分别相等,这两个三角形不一定会全等;而三边分别相等的两个三角形一定全等.那么,下面我们一起来探索两边及一角分别相等的情形.1.两边和它们的夹角分别相等的两个三角形会全等吗?2.两边和其中一边的对角分别相等的两个三角形会全等吗?二、互动新授【探究3】先任意画出一个△ABC.再画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC 上,它们全等吗?学生动手画图,教师多媒体呈现作法:画一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A:(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.教师引导:教材图12.2-5给出了画△A′B′C′的方法.你是这样画的吗?探究3的结果反映了什么规律?学生交流、讨论后,教师总结:由探究3可以得到以下基本事实,用它可以判定两个三角形全等:两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”).也就是说,三角形的两条边的长度和它们的夹角的大小确定了,这个三角形的形状、大小就确定了.【例2】 如教材图12.2-6所示,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?【分析】 如果能证明△ABC≌△DEC,就可以得出AB =DE.由题意可知,△ABC 和△DEC 具备“边角边”的条件.【证明】 在△ABC 和△DCE 中,⎩⎪⎨⎪⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS).∴AB =DE .想一想:∠1=∠2的根据是什么?AB =DE 的根据是什么?学生自主探究,得出:根据对顶角相等,得∠1=∠2.根据全等三角形的对应边相等,得AB =DE .【思考】如教材图12.2-7,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?教师演示实验后,学生观察、交流.师生共同分析:教材图12.2-7中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边对角分别相等的两个三角形不一定全等.三、课堂小结四、板书设计五、教学反思本节课主要学习三角形全等的判定方法“边角边”,学生有用“边边边”判定三角形做为基础,学习起来并不感到困难,但在教学中要引导学生善于发现题设中隐含的相等关系,诸如“公共边”、“公共角”、“对顶角”,以及线段、角相等的恒等变形,从中挖掘出三角形全等的条件.另外,让学生动手操作,动口与同伴交流,动手写出证明过程是落实本节学习目标的关键.导学方案一、学法点津学生通过动手操作演示,或动手画图,真切地感受到“两边和它们的夹角分别相等的两个三角形全等”,但“两边和其中一边的对角分别相等的两个三角形不一定全等”这些事实,并在解题实践中加以应用.二、学点归纳总结(一)知识要点总结1.两边和它们的夹角分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).2.两边和其中一边的对角分别相等的两个三角形不一定全等.(二)规律方法总结1.在证明中要养成按对应顶点写全等三角形的习惯.这样便于正确地写出对应边和对应角.2.要养成发现题设条件中隐含的相等关系的意识,如“公共边”、“公共角”、“对顶角”,以及线段、角相等的恒等变形等.第二课时作业设计一、选择题1.下列各组条件中,能判别△ABC≌△A′B′C′的个数是( ).(1)∠A=∠A′,∠B=∠B′;(2)AB=A′B′, BC=B′C′;(3)AB=A′B′,BC=B′C′,CA=C′A′;(4)AB=A′B′,∠B=∠B′, BC=B′C′.A.1个 B.2个C.3个 D.4个2.如图,已知AC=AD,添加下列条件( )后,能直接应用“SAS”证明△ABC≌△ABD.A.∠C=∠D B.BC=BDC.∠CAB=∠DAB D.∠CBA=∠DBA第2题图第3题图二、填空题3.如图,已知AB=AC,再添加一个条件后,就能直接应用“SAS”证明△ABD≌△ACE.这个条件是____________________.三、解答题4.如右图,已知AC=DC,BC=EC,∠ACD=∠BCE,求证△ABC≌△DEC.5.如右图,已知AB=AC,∠B=∠C,BD=CE.求证△ABE≌△ACD.【参考答案】1.B 2.C3.AD=AE(或BE=CD)4.证明:∵∠ACD=∠BCE,∴∠ACD+∠DCB=∠BCE+∠BCD,即∠ACB=∠DCE,又∵AC =DC,BC=EC,∴△ABC≌△DEC(SAS).5.证明:∵BD=EC,∴BD+DE=EC+DE,即BE=CD,又∵∠B=∠C,AB=AC,∴△ABE ≌△ACD(SAS).。

数学:11.2《三角形全等的判定》(第2课时)课件2(人教新课标八年级上)

数学:11.2《三角形全等的判定》(第2课时)课件2(人教新课标八年级上)

3.汽车油箱中原有油50升,如果 行驶中每小时用油5升,求油箱中的 油量y(升)随行驶时间x(时)变 化的函数关系式,并写出自变量x的 取值范围.y是x的一次函数吗?
b决定直线y=kx+b与y轴交点的坐标 (0,b).当b>0时,交点在原点上 方. 当b=0时,交点即原点.
当b<0时,交点在原点下方.
4.把一个长10cm,宽5cm的矩形 的长减少xcm,宽不变,矩形面积y (cm2)随x的值而变化.
这些问题的函数解析43;22. 4.y=-5x+50.
一次函数的概念
一般地,形如y=kx+b(k、b是常数, k≠0 )的函数, 叫做一次函数 ( linearfunction).当b=0时, y=kx+b即y=kx.所以说正比例函数 是一种特殊的一次函数.
练习: 1.下列函数中哪些是一次函数,
哪些又是正比例函数? 8 (1)y=-8x. (2)y= X (3)y=5x2+6.(3)y=-0.5x-1.
2.一个小球由静止开始在一个斜坡向 下滚动,其速度每秒增加2米.
(1)一个小球速度v随时间t变化的 函数关系.它是一次函数吗? (2)求第2.5秒时小球的速度.
备用题:
1.若函数y=mx-(4m-4)的图象 过原点,则m=_______,此时函数是 ______ 函数.若函数y=mx-(4m-4) 的图象经过(1,3)点,则m=______, 此时函数是______函数.
2.若一次函数y=(1-2m)x+3图 象经过A(x1、y1)、B(x2、y2)两 点.当x1<x2时,y1> y2,则m的取 值范围是什么?
1.有人发现,在20~25℃时蟋蟀 每分钟鸣叫次数C与温度t(℃)有关, 即C 的值约是t的7倍与35的差. 2.一种计算成年人标准体重G(kg) 的方法是,以厘米为单位量出身高值

八年级数学上册 12.2三角形全等的判定第2课时边角边课件1-5

八年级数学上册  12.2三角形全等的判定第2课时边角边课件1-5
第十二章 全等三角形 12.2三角形全等的判定
第2课时 “边角边”
学习目标
1.探索并正确理解三角形全等的判定方法“SAS”.(重情境点引)入 2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用.(重 Байду номын сангаас)
3.了解“SSA”不能作为两个三角形全等的条件.(难点)
1.回顾三角形全等的判定方法1
讲授新课
一 三角形全等的判定(“边角边”定理)
问题:已知一个三角形的两条边和一个角,那么这两条边
与这一个角的位置上有几种可能性呢?
A
A
B
C
“两边及夹角”
B
C
“两边和其中一边的对角”
它们能判定两个三角 形全等吗?
”水塘说。 水牛终日辛劳耕作,年年为粮食丰收作贡献,主人很满足,评水牛为“劳动模范”,奖励它一捆干稻草。他又向店主人要了些吃的。
综艺在线观看 https:///index.php/vod/type/id/3.html ”“可是仅凭我们俩,怎么斗得过凶残的狼呢?”他们正在议论着,一眼瞥见大狼并不在,窝里只有两只小狼,于是计上心来。
森林里,老虎蜷伏在那里打盹。, 老渔夫没有说话,从自己的口袋里掏出一颗晶莹剔透的珍珠,没有等年轻人看清楚,又随便地扔在了沙滩上,然后对年轻人说:“你能不能把我刚才扔在沙滩上的那颗珍珠捡起来呢?” “这个,当然可以!” “为什么找珍珠可以,找沙子却不可以呢?” “因为沙子太多了,根本无法分清你扔下去的是哪一粒,而珍珠只有一颗,且光彩夺目,当然容易找出来了
三边对应相等的两个三角形全等(可以简写为
“边边边”或“SSS”).
A
2.符号语言表达: 在△ABC和△ DEF中
AB=DE BC=EF CA=FD ∴ △ABC ≌△ DEF(SSS)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5
想一想:
星期天,小刚在家玩蓝球,不小心将一块
三角形玻璃摔坏了(如图所示)。情急之
中,小刚量出了AB、BC的长,然后便去了 玻璃店,他想重新裁得一块和原来一样的 三角形玻璃。小刚能如愿吗?
A
B
C
让我们动手做一做:用量角器和刻度尺画 △ABC,AB=4cm,BC=6cm,∠ABC=60°
将你画出的三角形和其他同学画的三 角形进行比较,它们互相重合吗?
由此,你得到了什么结论?
全等三角形的判定公理2:
有一个角和夹这个角的两边对应相等的两 个三角形全等(简写成“边角边”或 “SAS”)
注 意
这个角一定要是两条边的夹角
以2.5cm,3.5cm为三角形的两边,长 度为2.C F
A
A
B
DE
C
想一想:
1.如图,直线a和直线b分别是线段AB和 C 线段AC的垂直平分线, 且相交于点O,请说出 点O到点A、B、C的 b 距离相等的理由. O
a
A
B
2.如图,有一湖的湖岸在A,B之间呈一段 圆弧状,A,B间的距离不能直接测得.你能用 已学过的知识或方法设计测量方案,求出A,B 间的距离吗?
做课内练习1
C
例2 如图,已知AE=AC,AD=AB,
∠EAC=∠DAB,则ED=CB. 请说明理由.
角的公共部分
E C D
A
B
解:∵DE⊥AC于E,BF⊥AC于F
2、如图,已知DE⊥AC于E,BF⊥AC于F, DE=BF,AE=CF,求证:∠A=∠C . D C
∴ ∠1 =∠2=900
∵AE=CF 1 E ∴AE+EF=CF+EF,即AF=CE 在∆CDE 和 ∆ABF 中, A DE = BF (已知), ∠2=∠1(已证) , CE = AF (已证), ∴ ∆CDE ≌ ∆ABF (SAS). ∴ ∠A =∠C(全等三角形对应角相等).
A
—— 办法总比困难多!
B
皮尺
2.如图,有一湖的湖岸在A,B之间呈一段圆弧状,
A,B间的距离不能直接测得.你能用已学过的知识
或方法设计测量方案,求出A,B间的距离吗?
A D
O
B
C
结束寄语 数学源于生活,又反过来 服务于生活.如果你无愧 于数学,那数学就可以助 你到达胜利的彼岸.
2
F
边的公 共部分
B

垂直于一条线段,并且平分这条线段 的直线叫做这条线段的垂直平分线,简 称中垂线.
点C是线段AB的垂直平分线上的特殊的
点,还是任意的点?由此你能得到什么结论? 线段垂直平分线 上的点到线段两 端的距离相等。
l C A O B
C是线段AB的垂直平分线上的点 CA CB (线段垂直平分线的性质)
40°
B
D
40°
E
结论:两边及其一边所对的角相 等,两个三角形不一定全等
例1 如图AC与BD相交于点O.已 知OA=OC,OB=OD,说△AOB≌△COD 的理由.
解;在AOB和COD中
A O
B
OA OC (已知) AOB COD (对顶角相等) D OB OD (已知) ∴△AOB≌△COD (SAS)
做一做
如图,AC是线段BD的垂直平分 线, △ABC与△ADC全等吗?请说 明理由.
1.如图,在△ABC中, AB=AC=10厘米,DE E 是AB的中垂线,若 △BDC的周长为16厘米, 则BC的长为________B .
做一做
D
C
2. 如图, △ABC中, BC=10cm,AB的中垂 线交于BC于D,AC的 中垂线交BC于E,则 △ADE的周长是______.
相关文档
最新文档