13.3.1等腰三角形的性质课件

合集下载

13.3.1等腰三角形(1)课件2024—2025学年人教版数学八年级上册

13.3.1等腰三角形(1)课件2024—2025学年人教版数学八年级上册
第十三章 轴对称
13.3.1 等腰三角形(1)
人教版八年级(上)
复习回顾:
1.三角形全等的判定方法:
(1)
;(2)
;(3)
;(4)
;(5)

2. 我们学习三角形分类时,按边分可以把三角形分成哪几类?
3.等腰三角形的有关概念:
,叫做等腰三角形,
相等的两条边叫做
,另一条边叫做

两腰所夹的角叫做
,底边与腰的夹角叫做
(2) 如图(2)是屋架的一种形式,在△ABC 中,AB = AC,点 B,C 在横梁 MN 上,现有一把等腰直角三 角形尺(底边的中点处有一颗钉子)一个端点挂有铅锤 的线绳(足够长)、一卷皮尺(足够长),如果要判断横 梁 MN 是否水平,你会选择哪两个工具?如何使用?请 用数学知识解释你的方法(忽略测量人员的人数).
在 Rt△ABD 与 Rt△ACD 中,
AB=AC (已知),
B
D
C
AD=AD (公共边), ∴ Rt△ABD≌Rt△ACD (HL). ∴∠B=∠C.
方法3:作顶角的角平分线 AD.
A
∵ AD 是 ∠BAC 的角平分线,
∴∠BAD=∠CAD.
在 △ABD 与 △ACD 中,
AB=AC (已知),
底边上的中线、高线、顶角角平分线有什么特点?
完全重合.
A
A
A
B
D
CB
D
CB
D
C
任务三:猜一猜 猜想2:等腰三角形的顶角平分线、底边上的中线、 底边上的高相互重合.
已知:如图,在△ABC 中,AB = AC,BD = DC,求证
AD⊥BC,DA 平分∠BAC.
A

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

归纳总结
性质1:等腰三角形的两个底角相等(等边对等角). A
如图,在△ABC中,
∵AB=AC(已知),
∴∠B=∠C(等边对等角).
B
C
性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高
线互相重合(三线合一).
顶角平分线 即:等腰三角形 底边上的高线
底边上的中线
具备其 中一条
另外两 条成立
探究新知
C1 C5
这样分类 就不会漏
啦!
C3
C6
A
8个
C7
B
C4
C8
C2
分别以A、B、C为顶角 顶点来分类讨论!
课堂小结
等边对等角
注意是指同一个三角形中


注意是指顶角的平分线,底边上的高和中

三线合一
线才有这一性质.而腰上的高和中线与底

角的平分线不具有这一性质



(1)求等腰三角形角的度数时,如果没有
(×)
(4)等腰三角形的顶角平分线一定垂直底边.
(√)
(5)等腰三角形的角平分线、中线和高互相重合.
( ×)
(6)等腰三角形底边上的中线一定平分顶角.
(√)
探究新知
素ቤተ መጻሕፍቲ ባይዱ考点 1 等腰三角形性质的应用
例1 如图,在△ABC中 ,AB=AC,点D在AC上,且
BD=BC=AD,求△ABC各角的度数.
分析:(1)找出图中所有相等的角; ∠A=∠ABD,∠C=∠BDC=∠ABC; (2)指出图中有几个等腰三角形?
数学语言:如图, 在△ABC中,
∵AB=AC, ∠1=∠2(已知),
A
∴BD=CD, AD⊥BC.(等腰三角形三线合一)

13. 等腰三角形的性质 PPT课件(华师大版)

13. 等腰三角形的性质 PPT课件(华师大版)
分析:由上述操作可以得到启示,即添加
等腰三角 形的顶角平分线AD,然
后证明△ABD≌ △ACD.
证明:画∠ABC的平分线AD. 在 △ABD和 △ACD中, ∵ AB=AC (已知), ∠ 1 = ∠ 2(角平分线的定义), AD =AD (公共边), ∴ △ABD≌ △ACD(S.A.S.). ∴ ∠B=∠C(全等三角形的对应角相等)•
2.等腰三角形“三线合一”的性质常常可以用来证明角相 等、线段相等和线段垂直.在遇到等腰三角形的问题 时, 尝试作这条辅助线,常常会有意想不到的效果.
例4 如图 13.3.4,在△ABC中, AB=AC ,D是BC 边上的中点, ∠B =30°.求 :
(1)∠ADC的大小; (2)∠1的大小. 解: (1)∵ AB=AC ,BD=DC (已知),
3 (中考·丹东)如图,在△ABC中,AB=AC,∠A=30° ,E为BC的延长线上一点,∠ABC与∠ACE的平 分线交于点D,则∠D的度数为( ) A.15° B.17.5° C.20° D.22.5°
知识点 2 等腰三角形的轴对称性:三线合一
探索
由前面的“做一做”,你还可以发现什么结论?请 写 出你的发现:
例2 已知:在△ABC中, AB=AC , ∠B =80°.求 ∠C和∠A的大小.
解: ∵ AB=AC (已知), ∴ ∠C=∠B = 80°(等边对等角). 又∵ ∠A + ∠B + ∠C = 180°(三角形的内角和 等于 180 °), ∴ ∠A = 180 °- ∠B - ∠C (等式的性质) = 180°- 80°- 80°= 20°.



剪一张等腰三角形的半透明纸片,每人所剪的等腰三角 形的大小和形状可以不一样,如图13.3.2,把纸片对折,让

人教版八年级数学上册《等腰三角形》(第1课时)课件

人教版八年级数学上册《等腰三角形》(第1课时)课件

底边BC上的高AF,得出AF是顶角∠BAC的
平分线,再证AF∥DE即可. 1
1
2
证明:过点A作AF⊥BC于F,
∵AB=AC,AF⊥BC于F,
F
∴AF平分∠BAC,∴∠1= ∠BAC.
又∵∠BAC=∠D+∠AED,AD=AE, ∴∠D=∠AED,∴∠AED= 1 ∠BAC.
2 ∴∠1=∠AED, ∴AF∥DE, ∴DE⊥BC.
20cm或22cm
20 36°或90°
70°或40°
解:设∠A=x, ∵CD=AD,∴∠ACD=∠A=x, 又∵∠BDC=∠A+∠ACD=2x, ∵CD=CB,∴∠B=∠BDC=2x, 在△ABC中,∵AB=AC,∴∠B=∠BCA=2x, 又∵∠A+∠B+∠BCA=180°, ∴x+2x+2x=180°,x=36°, ∴∠A=36°,∠B=∠BCA=72°
13.3.1 等腰三角形
(第一课时)
1.了解等腰三角形的概念. 2.掌握等腰三角形的性质. 3.会运用等腰三角形的概念和性质解决有关问题.
重点:等腰三角形的概念和性质及其应用. 难点:等腰三角形的“三线合一”的性质的理解及 其应用.
阅读课本P75-77页内容,了解本节主要内容.
等腰
轴对称 底边上的高(顶角的平分线或底边上的中线) 所在的直线;
例1:如图,在△ABC中,AB=AC,点D在AC上,且BD =BC=AD.求△ABC各角的度数. 解析:根据等腰三角形的性质,两底角相 等,利用三角形内角和定理建立方程. 解:设∠A=x°,
∵AD=BD,∴∠ABD=∠A=x°, ∴∠BDC=∠A+∠ABD=2x°.
∵BD=BC,∴∠C=∠BDC=2x°.
∵AB=AC,∴∠ABC=∠C=2x°. 在△ABC中, ∵∠A+∠ABC+∠C=180°,x°+2x°+2x°=180°, ∴x=36°,∴∠A=36°, ∴∠ABC=∠C=72°.

人教版八年级数学上册等腰三角形的性质优秀

人教版八年级数学上册等腰三角形的性质优秀
你知道为什 么吗?
21
思考、应用2
已知:如图,△ABC中,∠ACB=90°, AD=AC,BE=BC,求∠DCE的度数。
22
一.基本概念
等边三角形
1.定义: 三条边都相等的三角形叫做等边三角形.
如图AB=AC=BC ,△AB,C就是等边(正三三角角形 形)
A
2.等边三角形的基本性质:
三条边都相等。即AB=AC=BC
A
证明: 作顶角的平分线AD,
则有∠1=∠2
12
在△ABD和△ACD中
AB=AC ∠1=∠2
BD C
AD=AD (公共边)
∴ △ABD≌ △ACD (SAS)
∴ ∠B=∠C(全等三角形对应角相等)
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)
变式1.已知,在△ABC中,AB=AC, ∠A=80º,求∠C和∠B的度数.
变式2.已知,在△ABC中,AB=AC,
底角比顶角大15º,
A
求∠A、∠B 和∠C
的度数.
B
C
19
例2
如图,在△ABC中,AB=AC,D是BC边上的中点, ∠B=30。求∠ADC 和∠1的度数.
(1)∵ AB=AC,BD=DC(已知)
图片欣赏
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)
(二)回顾定义,引出新知
定义:有两条边相等的三角形叫做等腰三角形.
A
顶角
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)

13.3.1等腰三角形的性质课件

13.3.1等腰三角形的性质课件

三线合一)
B
D
C
·→ 画出任意A一个等腰
三角形的底角平分线、 腰上的中线和高,看看 它们是否重合?
B
C
D
“三线合一”应该对应等腰三
角形的顶角平分线,底边上
的中线和底边上的高
B
A
E D
F
C
同步练习1
填空:在△ABC中,AB=AC, D 在BC上, 1、如果AD⊥BC,那么∠BAD = ∠_C_A__D__,
• •
∠∠• 简ABAD称DB“==∠∠三AC线DA合DC,一,A”ADD为为顶底角边平上分的线高线
• BD=CD,AD为底边上的中线 A
等腰三角形的顶角
平分线、底边上的
中线、底边上的高
互相重合
B
C
D
等腰三角形的性质1 “边”和“角”必须在同一三角形
中!
等腰三角形的两底角相等.(简写成“等边对等
角”) 已知:如图,在△ABC中,AB=AC
考考你的能力!
如图,在△ABC中,点D是BC上一点,AB=AD=DC,∠BAC= 1050,求∠C的度数。
解: 设∠C=x0
∵在△ACD中,AD=DC
A
∴∠1=∠C=x0 (等边对等角)
1
同理可得:∠B=∠2
B
在△ACD中 ∠2=∠1+∠C=2x0
2
C
D
(三角形的一个外角等于和它不相邻的两个内角的和)

= 60°
练功房三
试一试你准行!
已知: 如图 AB=AC AD=AE 试
说明 BD=CE
解:作AF⊥BC垂足为点F ∵ AB=AC AD=AE (已知) ∴ BF=CF DF=EF(三线合一) ∴BF ﹣ DF=CF ﹣ EF(等式的性质)

等腰三角形的性质 课件 公开课一等奖课件

等腰三角形的性质 课件  公开课一等奖课件

C
底边上的中线,底边上的高互相重合 A 在△ABC中,AB =AC, 点 D在BC上
1、∵AD ⊥ BC 1 2 BD DC 。 ∴∠ 1 = ∠ ,____= 2、∵AD是中线, 1 1 2 2 AD BC 1 2 ∴ ⊥ ,∠ =∠ 。 3、∵AD是角平分线, B BD AD DC BC ∴ ⊥ , = 。 D 等腰三角形是轴对称图形.对称轴是底边上的 中线(顶角平分线,底边上的高)所在直线
• 活动2:探索等腰三角形性质
• 上面剪出的等腰三角形是轴对称图形吗? • 把剪出的等腰三角形ABC沿折痕AD对折,找出其中相等的线 段和角,填入下表
B
重合的线段
A C D
重合的角
AB 和 AC
∠B和 ∠C




你能发现等腰三角形有什么性质吗?说一
说你的猜想.
性质1:等腰三角形的 两底角相等。(简写成 “等边对等角” )
C
活动3:等腰三角形性质定理的证明
证明性质1:等腰三角形的两个底角相等 (等边对等角) 。
提问:这性质的条件和结论是什么?用数学符号如何 表达条件和结论?
已知:△ABC中,AB=AC 求证:∠B=C 分析:1.如何证明两个角相等? 2.如何构造两个全等的三角形? 证明:在△ABC中,AB=AC,作底边 BC的中线AD, 在 △ BAD 与△ CAD 中 ∵ AB=___ AC CD BD=___ AD AD=___ B ∴ △ BAD ≌△ CAD( SSS ) ∠C ∠B= ___
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋

八年级数学上册 13.3 等腰三角形课件 (新版)新人教版

八年级数学上册 13.3 等腰三角形课件 (新版)新人教版
13.3 等腰三角形
第一页,共22页。
13.3 等腰三角形
第1课时(kèshí) 等腰三角形的 性质
第二页,共22页。
等腰三角形的性质:等腰三角形的两个
相等(简写成
底角(dǐ jiǎo)
“等边对等 ”);等腰三角形的顶角平分线、底边(dǐ biān)

上的 、底边(dǐ biān)上的中线互相重合(简写成
AB=AD=DC,则∠C=
. 25°
第七页,共22页。
7.(6分)已知一个三角形两边长为4 cm,5 cm,且第三边长x为 整数.
(1)由4 cm,5 cm,x cm为边可组成多少个不同的三角形?说说 你的理由;
(2)如果这个(zhège)三角形是等腰三角形,试确定x的值. 解:(1)x值可取2,3,4,5,6,7,8共有7个,因而可组成7个 不同的三角形 (2)x为4 cm或5 cm.
10°
A3A4,若∠B=20°,则∠A4=

15.等腰三角形一腰上的高与另一腰的夹角(jiā jiǎo)为30°,则它的
顶角的度数是

60°或120°
第十六页,共22页。
三、解答题(共30分) 16.(8分)如图,△ABC中,AB=AC,点E在CA的延长线上,且 ∠AEF=∠AFE.试问直线EF和BC有何位置关系(guān xì)?为什 么?(提示:过点A作AD⊥BC于点D)
第五页,共22页。
5.(3分)如图,在△ABC中,AB=AC,D为BC的中点(zhōnɡ diǎn),
有下列四个结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;
④S△ABD=S△ACD.其中正确的有( )
D
A.1个
B.2个

13.3.1 第1课时 等腰三角形的性质

13.3.1   第1课时 等腰三角形的性质

13.3.1第1课时等腰三角形的性质知识点1等腰三角形的性质(等边对等角)图13-3-11.如图13-3-1,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是() A.55°B.45°C.35°D.65°2.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°3.如图13-3-2,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()图13-3-2A.35°B.40°C.45°D.50°4.在△ABC中,AB=AC,∠A=100°,则∠B=________°.5.如图13-3-3,在等腰三角形ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=________°.图13-3-36.如图13-3-4,在△ABC中,AB=AC,D是△ABC内的一点,且BD=CD.求证:∠ABD=∠ACD.图13-3-47.如图13-3-5,在△ABC中,AB=AC,∠CAD是外角,AE是∠CAD的平分线.求证:AE∥BC.图13-3-5知识点2等腰三角形的性质(三线合一)8.如图13-3-6,在△ABC中,AB=AC,D是BC边的中点,下列结论中不正确的是()图13-3-6A.∠B=∠C B.AD⊥BCC.AD平分∠BAC D.AB=2BD9.如图13-3-7,在△ABC中,AB=AC,AD⊥BC于点D.若AB=6,CD=4,则△ABC 的周长是________.图13-3-710.如图13-3-8所示,在△ABC中,AB=AC,D是BC的中点,P是AD上任意一点,PE⊥AB于点E,PF⊥AC于点F.求证:PE=PF.图13-3-811.2018·凉山州如图13-3-9,在△ABC 中,按以下步骤作图:①分别以点A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连接AD.若AD =AC ,∠B =25°,则∠C 的度数为( )图13-3-9A .70°B .60°C .50°D .40°12.如图13-3-10,在△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC =CD =BD =BE ,∠A =50°,则∠CDE 的度数为( )图13-3-10A.50°B.51°C.51.5°D.52.5°13.如图13-3-11,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()图13-3-11A.60°B.70°C.75°D.90°14.已知:如图13-3-12,AB=AC,D是BC的中点,AD=AE,AE⊥BE,垂足为E.AB平分∠DAE吗?请说明理由.图13-3-1215.如图13-3-13所示,已知AB=AC,AD=AE,求证:BE=CD.(要求:请用两种不同的方法证明)图13-3-1316.在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图13-3-14①,当点D在BC的什么位置时,DE=DF?并证明你的结论.(2)如图②,过点C作AB边上的高CG,则DE,DF,CG之间存在怎样的等量关系?并加以证明.图13-3-14教师详解详析1.A[解析] ∵DE∥BC,∠1=125°,∴∠B=180°-125°=55°. ∵AB=AC,∴∠C=∠B=55°.2.C[解析] 如图所示,在△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②若底角是50°,∵AB=AC,∴∠B=∠C=50°.∵∠A+∠B+∠C=180°,∴∠A=180°-50°-50°=80°.∴这个等腰三角形的顶角为50°或80°.3.A4.405.18[解析] 由AB=AC,∠A=36°得∠C=180°-36°2=72°.所以在Rt△BCD中,∠CBD=90°-∠C=90°-72°=18°,故填18.6.证明:如图.∵AB=AC,∴∠ABC=∠ACB.∵BD=CD,∴∠1=∠2.∴∠ABC-∠1=∠ACB-∠2,即∠ABD=∠ACD.7.证明:由三角形外角与内角的关系知∠CAD=∠B+∠C.∵AB=AC,∴∠B=∠C(等边对等角).∵AE是∠CAD的平分线,∴∠DAE=∠CAE(角平分线的定义).∵∠CAD=∠DAE+∠CAE=2∠DAE,∴∠DAE=∠B.∴AE∥BC.8.D[解析] 由“等边对等角”可得∠B=∠C,故选项A正确;由等腰三角形“三线合一”的性质,可得AD⊥BC,AD平分∠BAC,故选项B,C都正确;只有选项D不能得出,故选D.9.20[解析] ∵在△ABC中,AB=AC,∴△ABC是等腰三角形.又∵AD⊥BC于点D,∴BD=CD.∵AB=6,CD=4,∴△ABC的周长=6+4+4+6=20.10.证明:∵AB=AC,D是BC的中点,∴AD平分∠BAC.又∵PE⊥AB,PF⊥AC,∴PE=PF.11.C [解析] 由作图可知MN 为线段AB 的垂直平分线, ∴AD =BD.∴∠DAB =∠B =25°.∵∠CDA 为△ABD 的一个外角, ∴∠CDA = ∠DAB +∠B =50°.∵AD =AC ,∴∠C =∠CDA =50°.故选C. 12.D [解析] ∵AC =CD , ∴∠ADC =∠A =50°. ∵CD =BD ,∴∠B =∠BCD.又∵∠ADC =∠B +∠BCD ,∴∠B =25°. ∵BD =BE ,∴∠BDE =∠BED =12(180°-∠B)=12×(180°-25°)=77.5°.∵∠ADC +∠CDE +∠BDE =180°, ∴∠CDE =180°-50°-77.5°=52.5°. 13.A [解析] ∵AB =BC =CD =DE =EF ,∴∠A =∠ACB ,∠CBD =∠CDB ,∠DCE =∠CED ,∠EDF =∠EFD. ∵∠A =15°,∴∠ACB =15°.∴∠CDB =∠CBD =∠A +∠ACB =30°.∴∠CED =∠DCE =∠A +∠ADC =15°+30°=45°.∴∠EFD =∠EDF =∠CED +∠A =45°+15°=60°.∴∠DEF =180°-∠EDF -∠EFD =60°.14.解:AB 平分∠DAE.理由:∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC.又AE ⊥BE ,∴∠E =∠ADB =90°.在Rt △ABE 和Rt △ABD 中,⎩⎪⎨⎪⎧AE =AD ,AB =AB , ∴Rt △ABE ≌Rt △ABD(HL).∴∠EAB =∠DAB ,即AB 平分∠DAE.15.证明:(证法一)∵AB =AC ,∴∠B =∠C. ∵AD =AE ,∴∠ADE =∠AED.∴∠ADB =∠AEC. 又∵AB =AC ,∠B =∠C ,∴△ABD ≌△ACE.∴BD =CE.∴BE =CD.(证法二)如图所示,过点A 作AF ⊥BC 于点F. ∵AB =AC ,∴BF =CF.∵AD =AE ,∴DF =EF.∵BE =BF +EF ,CD =CF +DF ,∴BE =CD.(方法不唯一)16.解:(1)当D 为BC 的中点时,DE =DF. 证明:连接AD.∵AB =AC ,D 为BC 的中点,∴AD平分∠BAC.∵DE⊥AB,DF⊥AC,∴DE=DF.(2)CG=DE+DF.证明:连接AD. ∵S△ABC=S△ADB+S△ADC,∴12AB·CG=12AB·DE+12AC·DF.∵AB=AC,∴CG=DE+DF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• “等边对等角”必须在同一 个等腰三角形中才成立
• “三线合一”是对等腰三角 形的顶角平分线、底边上的 中线和高而言的
课堂练习:
1 填空:( 根据等腰三角形性质定理及推论)
(1) ∵ AB=AC, ∴∠____=∠____ B C ; (2) ∵AB=AC, AD⊥BC, BAD CAD , ∴∠_____=∠______ _____ =_____; BD CD (3) ∵AB=AC, AD是中线, ∴_____⊥_____ AD BC , BAD CAD ; ∠_____=∠_______ B (4) ∵AB=AC, AD是角平分线, AD BC , ∴_____⊥_____ BD CD _____=_____.
CD BD = ______ BC BD = CD 2、如果∠BAD= ∠CAD,那么AD⊥___, ____ 3、如果BD=CD,那么∠BAD =∠ _____ CAD , AD⊥___, BC
A
90° ∠ADB =∠ ADC _____=___
B
D
C
1.等腰三角形是轴对称图形 2.等腰三角形两个底角相等, 简写成“等边对等角” 3.等腰三角形的顶角平分线、 底边上的中线、底边上的高 互相重合.简称“三线合一”
180 60 3
B
图8.3.3
C
课堂练习:
2
在△ ABC中,若AB=BC=CA, 则 ∠A=______ 60 ° ∠B=______ 60 ° ∠C=______ 60 ° B
A
C
3 、推论2:
等边三角形的各角都相等,并且每 一个角都等于60 ° 。
例1
已知:在△ABC中,AB=AC,∠B=80 求∠C和∠A的度数. A
解:解方程组得:X=2,Y=1
当取腰长为2,则三角形三边2,2,1 (满足三角形三边要求)
当取腰长为1,则三角形三边1,1,2
(不满足三角形三边)
所以这个三角形的边为2,2,1
C
B
D
·→ 画出任意一个等腰 三角形的底角平分线、 腰上的中线和高,看看 它们是否重合?
E D F
A
A
B
D
C
“三线合一”应该对应等腰三 角形的顶角平分线,底边上 B 的中线和底边上的高
C
同步练习1
填空:在△ABC中,AB=AC, D 在BC上,
1、如果AD⊥BC,那么∠BAD = ∠______, CAD
如图,在△ABC中,AB=AC,D是BC边上 。 的中点,∠B=30 求∠1和∠ADC的度数.
BAC 1 2
∵ AB=AC,D是BC边上的中点
∠ADC= 90 (三线合一)
。 。 。

∵ ∠BAC=180 -30 -30 =120

A
1 60
B
1
D
C
练习
.等腰三角形的底角可以是直角或钝角吗? 为什么?

∠A=80


∴ ∠B=∠C=50
B
C
同步练习4

1.等腰三角形一个角为40°,它的另外 70°,70°或40°,100° 两个角为 ________________________ 2.等腰三角形一个角为120°,它的另 30°,30° 外两个角为_________________
动脑筋
例2
或55 ° 55 ° 70 °
5、等腰三角形一个外角为50 °呢?
例题
已知:如图,房屋的顶角∠BAC=100° ,过屋顶 A的立柱AD⊥BC,屋椽AB=AC。求顶架上∠B、 ∠C、∠BAD、∠CAD的度数。
A
B
D
C
已知△ABC中,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数。
2)等腰三角形的底边上的中线,底边上的高 和顶角平分线、互相重合(简称“三线合一”) 3)等 边三角形的三个内角都相等,都等于60度
课堂练习:
3 口答:
(1) 已知等腰三角形的一 个底角为70 °,那么此 等 腰三角形各内角的度数分 别是 ( ). (2) 已知等腰三角 形的顶角为70° ,那么 此 等腰三角形各内角的 度数分别是( )。
因为如果底角大于或等于 90 ,则2倍底角 大于或等于 180 ,这样三角形的内角和就大 于 180 ,显然不可能
建筑工人在盖房子时,用一块等腰三 角板放在梁上,从顶点系一重物,如果系 重物的绳子正好经过三角板底边中点,就 说房梁是水平 的,你知道其中 反映了什么数学 原理?
1、等腰三角形的定义以及相关概念。 2、等腰三角形的性质: 1)等腰三角形的两底角相等(简写“等边 对等角”)
一、复习
1、什么叫轴对称图形和轴对称?
答:如果一个图形沿一条直线折叠后,直线 两旁的部分能够互相重合,那么这个图形叫做 轴对称图形。这条直线叫做对称轴。 对于两个图形,如果沿一条直线对折 后,它们能完全重合,那么称这两个图形 成轴对称。这条直线就是对称轴。
二、复习 1、角是轴对称图形吗?对称轴是什么?性质有哪些? 答:是,对称轴是角平分线所在的直线 角平分线上的点到角两边的距离相等。 2、线段是轴对称图形吗?对称轴是什么?性质有哪 些呢? 答:是,对称轴是它的垂直平分线,线段的垂直平分 线到线段的两个端点的距离相等。
A
D
C
等腰三角形中,有一种特殊的情况.就是 底边与腰相等.这时三角形三边都相等. 我们把三条边都相等的三角形叫做等边三 角形
A
B
图8.3.3
C
三条边都相等的三角形叫做等边三角形
A B C 60
根据“等边对等角”可得:
A B C
A
而 A B C 180 所以 A B C
1.等腰三角形一个底角为75°,它的另外两个 75°, 30° 角为_______
⒉等腰三角形一个角为70°,它的另外两个角 70°,40°或55°,55° 为________________ ⒊等腰三角形一个角为110°,它的另外两个角 35°,35° 为___________ 4 、等腰三角形一个外角为110° ,那它 70 ° 70 ° 40 ° 的三个内角为
B
D
C
• 等腰三角形是轴对称图形 • ∠B=∠C 等腰三角形两个底角相等 简写成“等边对等角” •∠ BAD=∠CAD,AD为顶角平分线 简称“三线合一” • ∠ADB=∠ADC ,AD为底边上的高线 A • BD=CD,AD为底边上的中线 等腰三角形的顶角 平分线、底边上的 中线、底边上的高 互相重合
A
70 °
B
A 70 ° B
C
C
(3) 已知等腰三角形的一个内角为70°,那 么此 等腰三角形各内角的度数分别是( )。
等腰三角形的底边长为4cm,腰长为7cm,
则周长为 18cm ;
等腰三角形的一边长为4,另一边长为7,则周长 为 15或18 ; 等腰三角形的两边为3cm、7cm,则周长17cm 等腰三角形的周长为21,其中一边长为 9,则另两边的长 9、3或6、6 ; 其中一边长为5呢? 8、8
A
解: ∵ AB=AC,(已知) ∴ ∠ABC=∠C (等角对等边) ∵ BD=BC=AD, (已知) ∴ ∠C=∠BDC (等角对等边) ∠A=∠ABD 设∠A=x°,则∠ABD= x°, ∠BDC=2 x°, ∠C=2 x°

B
D X° 2X° 2X° C
根据题意得:x+2x+2x=180 X=36 即∠A=36°∠ABC =∠ACB=的两个底角相等 (简写成“等边对等角”)。
A
几何书写:
∵AB=AC(已知) ∴B=C(等边对角)
B C
推论1: 等腰三角形 顶角的平分线、底边上的 高、底边上的中线 互相重合。(三 线合一)
A
1 2
几何书写:
∵AB=AC (已知) ∠1=∠2 (已知) ∴AD⊥BC BD=CD(等腰三角形 三线合一)
要记得 哦!!
A
B
D
C
同步练习2
判断正误(口答) 如图,在△ABC中, ∵ AC=BC, ∴ ∠ADC=∠BDC. (等边对等角) C
A
D
B
练习:判断正误(口答)
(2) 如图,在△ABC中, ∵ AC=BC, ∴ ∠ADC=∠BEC. C
“等边对等 角”只能在同 一个三角形中 使用.
A
D
E
B
请注意哦!
AB AC(已知)

C B 80(等边对等角) A B C 180
(三角形内角和等于 180 )
A 180 80 80 20
B
C
同步练习3
已知:在△ABC中,AB=AC,∠A=80 求∠C和∠B的度数. A
∵ AB=AC, ∴ ∠C=∠B( 等边对等角) 。 ∵ ∠A+∠B +∠C=180 (三角形内角和等于180。)
三 复习
1、什么样的三角形叫做等腰三角形?
(有两边相等的三角形)
定义:两条边相等的三角形叫做等腰三角形.
等腰三角形中,相等的两条边都叫做腰,
另一边叫做底边,两腰的夹角叫做顶角,
腰和底边的夹角叫做底角.
结合以下图形,指出等腰三角形的腰,底边,顶角, 底角。
现在请同学们将刚才所画的等腰三角形对折, 使两腰 AB、AC重叠在一起,折痕为AD, A 你能发现什么现象呢?
关于撑伞的数学问题
已知:如图,AB=AC,DB=DC
问:AD与BC有什么关系?
猜想:AD垂直平分BC 证明: ∵AB=AC,
A
∴A在线段BC的垂直平分线上 ∵ BD=CD
C
B D
∴D在线段BC的垂直平分线上 ∴AD垂直平分BC
相关文档
最新文档