北师版初一数学绝对值2

合集下载

北师大版-数学-七年级上册-七年级上册第二章第3节绝对值2

北师大版-数学-七年级上册-七年级上册第二章第3节绝对值2

第十九课时 一、课题 §2.3绝对值(2) 二、教学目标1、使学生进一步掌握绝对值概念;2、使学生掌握利用绝对值比较两个负数的大小;3、注意培养学生的推时论证能力三、教学重点和难点负数大小比较四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有认知结构提出问题1、计算:|+15|;|-31|;|0| 2、计算:|21-31|;|-21-31|. 3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小4、哪个数的绝对值等于0?等于31?等于-1? 5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个?6、a ,b 所表示的数如图所示,求|a|,|b|,|a+b|,|b-a|7、若|a|+|b-1|=0,求a ,b这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念解:1、|+15|=15,|-31|=31,|0|=0让学生口答这样做的依据2、|21-31|=|61|=61|,|-21-31=-(-21-31)。

说明:“| |”有两重作用,即绝对值和括号3、因为-(-5)=5,-|-5|=-5,5>-5,所以-(-5)>-|-5|。

这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5绝对值的相反数因为+(-5)=-5,+|-5|=,-5<5,所以+(-5)<+|-5|4、0的绝对值等于0,±31的绝对值等于31,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为:|0|=0,|+31|=31|,|-31|=31。

这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量5、绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2用符号语言表示应为:因为|x|<3,所以-3<x <3如果x 是整数,那么x=-2,-1,0,1,26、由数轴上a 、b 的位置可以知道a <0,b >0,且|a|<|b|所以|a|=-a ,|b|=b ,|a+b|=a+b ,|b-a|=b-a7、若a+b=0,则a ,b 互为相反数或a ,b 都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0用符号语言表示应为:因为|a|+|b-1|=0,所以a=0,b-1=0,所以a=0,b=1(二)、师生共同探索利用绝对值比较负数大小的法则利用数轴我们已经会比较有理数的大小由上面数轴,我们可以知道c <b <a ,其中b ,c 都是负数,它们的绝对值哪个大?显然c >b 引导学生得出结论:两个负数,绝对值大的反而小这样以后在比较负数大小时就不必每次再画数轴了(三)、运用举例 变式练习例1 比较-421与-|—3|的大小 例2 已知a >b >0,比较a ,-a ,b ,-b 的大小例3 比较-32与-43的大小 课堂练习1、比较下列每对数的大小:32与52;|2|与36;-61与112;73-与52- 2、比较下列每对数的大小:-107与-103;-21与-31;-51与-201;-21与-32(四)、小结先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了七、练习设计1、判断下列各式是否正确:(1)|-01|<|-001|; (2)|- 31|<41; (3) 32<43-; (4)81>-712、比较下列每对数的大小:(1)-85与-83;(2)-113与-0273;(3)-73与-94; (4)- 65与-1110;(5)- 32与-53;(6)- 97与-119 3、写出绝对值大于3而小于8的所有整数4、你能说出符合下列条件的字母表示什么数吗?(1)|a|=a ; (2)|a|=-a ; (3)x x=-1; (4)a >-a ;(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=05若|a+1|+|b-a|=0,求a ,b2.3绝对值(2)(一)知识回顾 (三)例题解析 (五)课堂小结例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记在传授知识的同时,一定要重视学科基本思想方法的教学关于这一点,布鲁纳有过精彩的论述他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力不但使数学学习变得容易,而且会使得别的学科容易学习显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内窬形式地传授本课中,我们有意识地突出“分类讨论”这一数学思想方法,以期使学生对此有一个初步的认识与了解。

北师大数学七年级上册第二章绝对值与相反数(基础)

北师大数学七年级上册第二章绝对值与相反数(基础)

绝对值与相反数(基础)【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系; 3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小; 4.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 【要点梳理】 要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0. 要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同. (2)“0的相反数是0”是相反数定义的一部分,不能漏掉. (3)相反数是成对出现的,单独一个数不能说是相反数. (4)求一个数的相反数,只要在它的前面添上“-”号即可. 2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0. 要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 . 要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3. 要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、相反数的概念1.(2016•益阳)的相反数是( )A .2016B .﹣2016C .D .【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数. 【答案】C 【解析】解:∵﹣与只有符号不同,∴﹣的相反数是.故选:C .【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变. 举一反三:【变式】(2015•天水)若a 与1互为相反数,则|a+1|等于( ) A.-1 B.0 C.1 D.2【答案】B类型二、多重符号的化简2.(2014秋•本溪校级月考)化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)]}. 【答案与解析】 解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3. 【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负. 类型三、绝对值的概念3.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案与解析】 方法1:因为112-到原点距离是112个单位长度,所以111122-=.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值. 类型四、比较大小4.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ; (3)13⎛⎫-- ⎪⎝⎭和12-; (4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|; (3)先化简1133⎛⎫--=⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三: 【变式】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000;1.38-______-1.384; -π______-3.14. 【答案】>;=;>;>;< 类型五、绝对值非负性的应用5.已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3. 【答案】解:因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0 所以|2-m|=0,|n-3|=0 即2-m =0,n-3=0 所以m =2,n =3 故m-2n =2-2×3=-4.【解析】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a =b =…=m =0. 类型六、绝对值的实际应用6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】 因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【巩固练习】(资料联系QQ :1061139820)一、选择题 1.(2015•铜仁市)2015的相反数是( )A.2015B.-2015C.-D.2.如果0a b +=,那么,a b 两个数一定是( ).A .都等于0B .一正一负C .互为相反数D .互为倒数 3.下列判断中,正确的是( ).A .如果两个数的绝对值相等,那么这两个数相等;B .如果两个数相等,那么这两个数的绝对值相等;C .任何数的绝对值都是正数;D .如果一个数的绝对值是它本身,那么这个数是正数.4.(2016•娄底)已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q 5.下列各式中正确的是( ). A .103<-B .1134->- C .-3.7<-5.2 D .0>-2 6.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a|>|b|C .-a <-bD .-a <|b| 二、填空题7.(2015•五通桥区一模)如果a 与1互为相反数,则|a+2|等于________. 8. 化简下列各数: (1)23⎛⎫--= ⎪⎝⎭_ ;(2)45⎛⎫-+= ⎪⎝⎭;(3){[(3)]}-+-+=________. 9.已知|x|=2,|y|=5,且x >y ,则x =________,y =________.10.数a 在数轴上的位置如图所示.则|a-2|= .11.在数轴上,与-1表示的点距离为2的点对应的数是 .12334x x -=-,则x 的取值范围是________.三、解答题 13.(2016春•新泰市期中)绝对值大于2而小于6的所有整数的和是多少?(列式计算) 14.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭15.(2014秋•孟津县期中)已知:a 是﹣(﹣5)的相反数,b 比最小的正整数大4,c 是最大的负整数.计算:3a+3b+c 的值是多少?【答案与解析】一、选择题 1. 【答案】B 2. 【答案】C【解析】若0a b +=,则,a b 一定互为相反数;反之,若,a b 互为相反数,则0a b += 3.【答案】B【解析】A错误,因为两个数的绝对值相等,这两个数可能互为相反数;B正确;C错误,因为0的绝对值是0,而0不是正数;D错误,因为一个数的绝对值是它本身的数除了正数还有0.4.【答案】D【解析】解:∵点Q到原点的距离最远,∴点Q的绝对值最大.故选:D.5.【答案】D【解析】0大于负数.6.【答案】B【解析】离原点越远的数的绝对值越大.二、填空题7.【答案】1【解析】∵a与1互为相反数,∴a=﹣1,把a=﹣1代入|a+2|得,|a+2|=|﹣1+2|=1.8.【答案】24 ;;3 35-【解析】多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正;若“-”个数为奇数个时,化简结果为负.9.【答案】±2,-5【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x>y,所以x=±2,y=-5 10.【答案】a-2【解析】由图可知:a≥2,所以|a-2|=a-2.11.【答案】-3,112.【答案】3 x≤34x≤.三、解答题13.【解析】解:根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.答:绝对值大于2而小于6的所有整数的和是0.14.【解析】 (1)-(-54)=54(2)-(+3.6)=-3.6(3)5533⎛⎫-+=- ⎪⎝⎭(4)224455⎛⎫--=⎪⎝⎭,按从小到大排列可得:52(+3.6)<(+)<(4)(54)35----<--15. 【解析】解:∵a是﹣(﹣5)的相反数,∴a=﹣5,∵b比最小的正整数大4,∴b=1+4=5,∵c是最大的负整数,∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1,=﹣15+15﹣1,=﹣1.。

北师大版数学七年级上册绝对值 课件

北师大版数学七年级上册绝对值 课件

所以 –1> – 5
(2)因为| – 5 | = 5 ,|– 2.7| =2.7,
66
5 <2.7,所以– 5 >–2.7
6
6
还可以怎 么比较?
牛刀小试3:
1.任何一个有理数的绝对值一定(D )
A.大于0
B.小于0
C.小于或等于0 D.大于或等于0
2.若|a|+|b-1|=0,则a=__0___, b=__1___.
2 -5的绝对值是( D )
A.-5
B.- 1
5
C. 1
5
D.5
议一议 :一个数的绝对值与这个数有什么关系? 例如:|3|=3,|+7|=7 ………… 一个正数的绝对值是它本身.即 a =a; 例如:|-3|=3,|-2.3|=2.3 …………
一个负数的绝对值是它的相反数.即 a =-a.
而 原点到原点的距离是0 0的绝对值是0,即 |0|=0
(1)-1.9是
的相反数.
(2)10是
的相反数.
(3)0与 互为相反数.
(4)-2是 的相反数.
在数轴上,一个数所对应的点与原点的距离叫做
a a 这个数的绝对值。一个数 的绝对值记作:│ │
-3 -2 -1 0 1 2 3 4 5
“+3的绝对值等于3”用数学符号表示为: │+3│=3 -3的绝对值呢? │-3│=3 0的绝对值呢?│0│=0
课堂小结
相反数
数轴上表示互为相反数 的两个点位于原点的两 侧,且与原点距离相等
a 绝对值
绝对值 的性质
︱ ห้องสมุดไป่ตู้=
a (a>0) 0 (a = 0) -a (a<0)
比较两个负
数的大小

北师大版七年级数学上册:2.3绝对值(教案)

北师大版七年级数学上册:2.3绝对值(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了绝对值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对绝对值的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.培养学生逻辑推理和数学抽象思维,通过对绝对值性质的探究,提升推理能力和数学建模素养。
5.在解决实际问题的过程中,鼓励学生合作交流,培养团队合作精神和问题解决能力。
三、教学难点与重点
1.教学重点
-理解并掌握绝对值的概念:绝对值是数与零点的距离,这一概念是本节课的核心,需要学生深刻理解。
-计算有理数的绝对值:包括正数、负数、零的绝对值计算,以及在实际问题中的应用。
-掌握绝对值在数轴上的表示:理解数轴上各点与原点的距离即为该点的绝对值。
-运用绝对值性质解决问题:如|a|=|b|意味着a和b可能相等,也可能互为相反数。
-绝对值方程和不等式的求解:这是绝对值知识的高级应用,要求学生能够解决形如|ax+b|=c或|ax+b|>c的问题。
举例解释:
-对于重点知识中的绝对值概念,可以通过数轴上两点之间的距离来形象说明,强调无论点在数轴的哪一侧,其绝对值都是非负数。
-绝对值方程和不等式的求解:特别是含有绝对值符号的复合不等式,学生容易在求解过程中迷失方向。
-在实际问题中识别和应用绝对值:需要学生具备一定的抽象思维,将实际问题转化为数学模型。
举例解释:
-对于绝对值的双重性,可以通过对比+5和-5的绝对值来强调,尽管它们在数轴上的位置不同,但绝对值相同。

数学初一北师大版上册绝对值教案

数学初一北师大版上册绝对值教案

数学初一北师大版上册2一、教学内容分析:绝对值是北师大版七年级上册第二章第三节知识,它是解决有理数比较大小、距离等知识的重要依据,同时也是我们后面学习有理数运算的基础,具有承前启后的作用。

借助数轴引出对绝对值的概念,并通过运算、观看、交流、发觉绝对值的性质特点。

让学生直观明白得绝对值的含义,不要在绝对值符号内部显现多重符号和字母,多鼓舞学生通过观看、归纳、验证。

二、学生情形分析:学生的知识技能基础:学生差不多认识数轴,同时明白了相反数的概念,能够用数轴上的点来表示有理数,也差不多明白数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法。

学生活动体会基础:在前面相关知识的学习过程中,学生差不多经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在往常的数学学习中学生差不多经历了专门多合作学习的过程,具有了一定的合作学习的体会,具备了一定的合作与交流的能力。

三、教学重点和难点分析:重点:1、明白得绝对值和相反数的概念。

2、求一个数的绝对值和相反数。

难点:1、明白得绝对值的概念。

2、利用分类讨论的思想解决问题。

四、教学目标分析:知识与技能目标:(1)、借助数轴,初步明白得绝对值的概念,能求一个数的绝对值。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

过程与方法目标:(1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到进展学生抽象思维的目的;(2)、通过探究求一个数绝对值的方法的过程,让学生学会通过观看,发觉规律、总结方法,进展学生的实践能力,培养创新意识;(3)、通过对“议一议”的摸索和讨论,培养学生有条理地用语言表达解决问题的方法。

情感态度与价值观:借助数轴解决数学问题,有意识地势成“脑中有图,心中有数”的数形结合思想。

通过“想一想”“议一议”“做一做”问题的摸索及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锤炼学生克服困难的意志,建立自信心,进展学生清晰地阐述自己观点的能力以及培养学生合作探究、合作交流、合作学习的新型学习方式。

数学北师大版七年级上册绝对值教材分析

数学北师大版七年级上册绝对值教材分析

第二章教材分析
教学目标:
1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
3.理解乘方的意义,掌握有理数的加,减,乘,除,乘方及简单的混合运算(以三步为主).
4.理解有理数的运算律,并能运用运算律简化运算.
5.能运用有理数的运算解决简单的问题.
设计思路: 1.借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.借助数轴理解相反数,绝对值等概念.
2.借助生活中的实例,引入有理数的运算.通过归纳学生总结运算法则和运算律.为了避免因为小数,分数运算的复杂性而冲淡学习的重点,以整数运算的学习为出发点,然后过渡到含有小数,分数的运算.利用有理数运算解决实际问题.
3.探索计算器的使用,利用计算器解决复杂数据的实际问题,探索数学规律. ——归纳,猜测,描述,验证,计算,尝试,交流.
教学建议:
1.有理数概念和运算含义的教学应尽量从实际问题引入,注重对运算含义的理解.
2.鼓励学生自己归纳运算法则和运算律. 自己的思考与表达——交流,形成较为规范的语言——规范的语言.
3.注重估算,提倡算法多样化,删除繁难的笔算.
4.注重使用有理数及其运算解决实际问题.。

武汉市实验中学七年级数学上册 第二章 有理数及其运算 2.3 绝对值教学设计2 北师大版

武汉市实验中学七年级数学上册 第二章 有理数及其运算 2.3 绝对值教学设计2 北师大版

绝对值2教学目标知识目标:(1)理解绝对值的概念及表示法。

(2)理解数的绝对值的几何意义。

能力目标:(1)掌握求一个数的绝对值及有关的简单计算,(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。

情感目标:让学生经历绝对值的产生过程,体会数形结合思想。

教学重点、难点重点:绝对值的概念和求一个数的绝对值。

难点:绝对值的几何意义。

教学过程一、新课引入我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。

乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。

例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10 Km到达A处,另一位同学乘上乙出租车向西行驶10 Km到达B处。

二、合作学习把全班同学分4---5组分组讨论完成下面的三个问题1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)2:思考两位同学付费额度是否一样?为什么?3:结论付费额度与行驶方向有没有关系?然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。

说明在数轴上的A(+10)、B(-10)两点到原点(书店)的距离是一样的,都是10。

同样数轴上+5和-5两点到原点的距离也是一样的。

我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

(注意是离开原点的距离)如数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记作55=- ;+5的绝对值也是5,记作55=+ 。

其实际意义是:数轴上+5这个点到原点的距离为5。

(强调绝对值符号的书写格式) 三、课内练习1、求下列各数的绝对值: -1.6 580 -10 +10 同时说出它们的几何意义。

2、说出下列各数的绝对值: -7 -2.05 0 1000 97 97-由上述两题可概括出:(在教师的引导下让学生得出结论)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。

北师大数学七年级上册第二章绝对值

北师大数学七年级上册第二章绝对值

第02讲_绝对值知识图谱绝对值知识精讲一.非负性绝对值的定义一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作绝对值的代数意义绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.即:对于一个数a,例:若,则k需要满足什么条件?k-6与6-k互为相反数,故k-6是负数,k<6绝对值的非负性绝对值具有非负性.即对于任意实数a,总有.如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,,.*非负性的应用:1、若多个非负数之和为0,则它们都为0(1)若,则a、b的值为多少?绝对值是非负数,故a-3=0,b+2=0,即a=3,b=-2(2)若,则m、n的值为多少?绝对值和平方数都是非负数,故m+7=0,n-9=0,即m=-7,n=9 2、若有最大值,则c的值为多少?越小,原式值越大,,故当=0,即c=-8时,原式有最大值2二.绝对值的几何意义三点剖析一.考点:绝对值的非负性、绝对值的几何意义.绝对值的计算1、 一个数的绝对值等于它的相反数的绝对值. 即对于任意实数a ,2、乘积的绝对值等于绝对值的乘积,商的绝对值等于绝对值的商. 即对于任意实数a 、b ,,3、绝对值内的非负因数或因式可以直接提到绝对值号外面.例如:,绝对值的几何意义数轴上一个数所对应的点到原点的距离.即的 几何意义就是数轴上表示数a 的点与原点的距离. 推而广之:代数式的 几何意义就是数轴上数x 、数a 所对应的两点之间的距离. 例:表示数m 到7的距离;表示数n 到-5的距离几何含义的应用1、在数轴上到3的距离为8的数字是?,故x=11或-52、已知,求的值,x -y 的值为6或2二.重难点:绝对值的非负性、绝对值的几何意义.三.易错点:1.一个数的绝对值,一定不小于它本身,也不小于它的相反数.即对于任意有理数a ,总有a a ≥,a a ≥-.2. 一个数的绝对值等于它的相反数的绝对值.即对于任意实数a ,a a =-. 3. 乘积的绝对值等于绝对值的乘积,商的绝对值等于绝对值的商.即对于任意实数a 、b ,ab a b =,a ab b =(0)b ≠.4. 绝对值内的非负因数或因式可以直接提到绝对值号外面. 例如:22a a =,22a b a b =.非负性例题1、 ﹣2的绝对值是( )A.﹣2B.﹣12C.2D.12【答案】 C【解析】 因为|﹣2|=2例题2、 已知一个数的绝对值是4,则这个数是 . 【答案】 ±4【解析】 绝对值是4的数有两个,4或﹣4. 例题3、 设a 是实数,则|a|﹣a 的值( ) A.可以是负数 B.不可能是负数 C.必是正数 D.可以是正数也可以是负数 【答案】 B【解析】 (1)a ≥0时,|a|﹣a=a ﹣a=0; (2)a <0时,|a|﹣a=﹣a ﹣a=﹣2a >0. 故选B .例题4、 当1<a <2时,代数式|a ﹣2|+|1﹣a|的值是( ) A.﹣1 B.1 C.3 D.﹣3 【答案】 B【解析】 当1<a <2时, |a ﹣2|+|1﹣a|=2﹣a+a ﹣1=1.例题5、 已知|a+2|+|b ﹣1|=0,则(a+b )﹣(b ﹣a )=______. 【答案】 -4【解析】 ∵|a+2|+|b ﹣1|=0,∴a+2=0,b ﹣1=0,即a=﹣2,b=1, 则原式=a+b ﹣b+a=2a=﹣4.例题6、 已知245310a b c -++++=,求a 、b 、c 的值. 【答案】 2a =,5b =-,13c =-.【解析】 由绝对值的非负性知,245310a b c -=+=+=.随练1、 若|a|=﹣a ,则实数a 在数轴上的对应点一定在( ) A.原点左侧 B.原点或原点左侧 C.原点右侧 D.原点或原点右侧【答案】 B【解析】 ∵|a|=﹣a , ∴a 一定是非正数,∴实数a 在数轴上的对应点一定在原点或原点左侧.随练2、 12-的绝对值是( )A.12-B.12C.2D.2-【答案】 B【解析】 1122-=绝对值的几何意义例题1、 如果a ,b ,c ,d 为互不相等的有理数,且1a c b c d b -=-=-=,那么a d -=__________. 【答案】 3【解析】 可通过数轴画出得a d -=3例题2、 (1)x 的几何意义是数轴上表示____的点与____之间的距离;x _____0x -(选填“>”,“=”或“<”) (2)3x -的几何意义是数轴上表示____的点与表示____的点之间的距离,若31x -=,则x =__________ (3)2x +的几何意义是数轴上表示____的点与表示____的点之间的距离,若22x +=,则x =__________ (4)数轴上表示x 的点与表示1-的点之间的距离可表示为__________【答案】 (1)x ;原点;=(2)x ;3;2或4(3)x ;2-;0或4-(4)1x + 【解析】 x a -的几何意义是数轴上表示x 的点与表示a 的点之间的距离例题3、 如果对于某一给定范围内的x 值,13p x x =++-为定值,则此定值为________,此时x 的取值范围是___________【答案】 4;13x -≤≤【解析】 利用绝对值的几何意义,结合数轴解题.当13x -≤≤时,13x x ++-为定值:()314--= 随练1、 若|a ﹣b|=b ﹣a ,且|a|=3,|b|=2,则(a+b )3的值为( ) A.1或125 B.﹣1 C.﹣125 D.﹣1或﹣125 【答案】 D【解析】 ∵|a ﹣b|=b ﹣a , ∴a <b ,∴a=﹣3,b=±2.(1)a=﹣3,b=﹣2时,(a+b )3=﹣125; (2)a=﹣3,b=2时,(a+b )3=﹣1. 随练2、 探究题:(1)比较下列各式的大小:23-+______23-+,35-+-______()()35-+-,05+-______()05+-.(2)通过(1)的比较,请你分析,归纳出当a 、b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,求x 的取值范围. 【答案】 (1)>;=;=.(2)a b a b +≥+(3)0x ≤ 【解析】 (1)235-+=,231-+=,所以2323-+>-+;358-+-=,()()358-+-=,所以()()3535-+-=-+-;055+-=,()055+-=,所以()0505+-=+-.(2)通过比较(1)中的结论,不难发现a b a b +≥+(当且仅当0ab ≥时取“=”). (3)结合(2)中的结论,若55x x +=-,则应满足50x -≥,即0x ≤.随练3、 如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是( )A.M 或NB.M 或RC.N 或PD.P 或R【答案】B【解析】∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.随练4、如图,数轴上的点A、B、C分别表示数﹣3、﹣1、2.(1)A、B两点的距离AB= ,A 、C两点的距离AC= ;(2)通过观察,可以发现数轴上两点间距离与这两点表示的数的差的绝对值有一定关系,按照此关系,若点E表示的数为x,则AE= ;(3)利用数轴直接写出|x﹣1|+|x+3|的最小值= .【答案】(1)2,5;(2)|x+3|;(3)4【解析】(1)如图所示:AB=2,AC=5.故答案为:2,5;(2)根据题意可得:AE=|x+3|.故答案为:|x+3|;(3)利用数轴可得:|x﹣1|+|x+3|的最小值为:4.故答案为:4.绝对值综合知识精讲一.绝对值的化简利用代数意义去绝对值号化简含绝对值的式子,关键是去绝对值符号.先根据题设所给的条件,判断绝对值符号内的数a(或式子a)的正负(即0a>,0a<还是0a=);然后根据绝对值的代数意义去掉绝对值符号.如:计算1b-=_____________()1b<.由于1b<,所以10b-<,根据绝对值的代数意义,应有()111b b b-=--=-+.*注意:去绝对值符号时,应将绝对值符号内的数(或式子)看做一个整体,并注意去括号时符号的变化.当题目中没有明确指出未知数的取值范围时,则需要将所有情况都分类列举出来.例如,计算3x-:当3x≥时,33x x-=-;当3x<时,()333x x x-=--=-.利用零点分段法去绝对值号对于含多个绝对值的情况,我们往往用零点分段法计算化简.例如:化简12x x+--.第一个绝对值内部为1x+,当1x=-时第一个绝对值为零;第二个绝对值内部为2x-,当2x=时第二个绝对值为零.我们将1-、2称为是零点,这两个零点将整个数轴分为三部分(如图),我们对这三个部分进行分类讨论.1、当1x <-时,1x +、2x -均为负值, 于是()()12123x x x x +--=-+---=-⎡⎤⎣⎦;2、当12x -≤<时,1x +为非负值、2x -为负值, 于是()121221x x x x x +--=+---=-⎡⎤⎣⎦;3、当2x ≥时,1x +、2x -均为非负值, 于是()()12123x x x x +--=+--=.零点是我们分类的依据,因为这些零点确定了每个绝对值内部的正、负.零点分段法的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.二.绝对值的最值问题 (一)和最小x a x b -+-的几何意义是数轴上表示数x 的点到表示数a 、数b 两点的距离之和,其中数a 、数b 的对应点为数轴上的一个定点,数x 的对应点为一个动点,可以在数轴上移动.绝对值的最值问题,用零点分段法可以解决,但是会比较繁琐,而采用数形结合的方法,运用绝对值的几何意义求解,往往能取得事半功倍的效果.经过总结归纳我们发现了这样的规律: ①对于代数式:123n x a x a x a x a -+-+-++-(123n a a a a ≤≤≤≤):0 2如计算的最小值.(1)将使两个绝对值分别为时的值标在数轴上(如图),数轴被分为个区域;(2)假设代表动点的点(图中小黑球)从左到右在数轴上移动,根据绝对值的几何意义,我们可将所求表示为两条线段的和,即. (3)在个区域中分别画出线段并比较,可以发现当时,两线段和最小,为定值. *若将题目改为计算的最小值.我们使用相同的方法进行分析,发现只有当时取得最小值,而不再是在一个范围内取得最小值了.当为奇数时,在处取最小值,即在个点的中心点处;当为偶数时,在区域取最小值,即数轴被个点分成段的中心区域.②对于代数式112233n n b x a b x a b x a b x a -+-+-++-的最值问题,我们先将代数式转化为特殊形式:123n x a x a x a x a -+-+-++-(123n a a a a ≤≤≤≤),然后通过上述方法求解.如:111212222222x x x x x x x -++=-++=-+-++. (二)差最大类比绝对值之和最小值问题,计算12x x ---的最大值求差的最大值,需要被减数越大1x -,减数2x -越小,从几何意义分析即x 与1距离远,与2距离近,当x 在1、2之间时,无论如何变化,距离之差始终不超过1;当x=2时,x 与2的距离最小,为0,此时原式结果恰好为1和2之间的距离,等于1;若x 继续增大,两距离之差依然为1。

2022-2023学年北师大版七年级数学上册 2.3绝对值

2022-2023学年北师大版七年级数学上册    2.3绝对值
−[+ −6 ] = 6
“+”不起作用,或者说表示一个数的本身
一、相反数 应用
例3.已知 , 在数轴上的位置如图所示.在数轴上作出它们的相反数.

0

可以利用圆规截取相等线段.
注意合理性
二、绝对值
活动:观察下图两只狗狗追寻食物的情景,请试着在数轴上表示出这
一情景,并回答问题.
西

3米
3米
二、绝对值
一、相反数 相反数的特征
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
观察:-3与 3; -5与 5在数轴上的位置,你能用自己的语言描述一
下它们位置关系吗?你还能举出几对具有这种位置关系的数吗?
(1)符号不同
位于原点两侧
(2)符号后的“数”相同
到原点的距离相同
规定:0的相反数是0.
几何意义:在数轴上,互为相反数的两点到原点的距离相等.
9
4
|=
9
思考:如果表示有理数,那么││有什么含义?
答: || 表示数 的绝对值;
||表示数轴上数对应的点与原点的距离.
|0|= 0
|-7.8|= 7.8
二、绝对值 绝对值的特征
一个数的绝对值与这个数有什么关系?
正数的绝对值是它本身
>0, ||=
分类讨论思想
负数的绝对值是它的相反数 <0,||=-
答:第五个排球的质量好一些,因为它的绝对值最小,
也就是离标准质量的克数最近。
负数和0
二、绝对值 绝对值的特征
±2
4. = −
若 = ||,则_______.

北师大版数学七年级上册2.3《绝对值》教学设计

北师大版数学七年级上册2.3《绝对值》教学设计

北师大版数学七年级上册2.3《绝对值》教学设计一. 教材分析《绝对值》是北师大版数学七年级上册第2.3节的内容。

本节主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决相关问题。

教材通过引入数轴的概念,让学生直观地理解绝对值的含义,并通过举例说明绝对值的性质。

教材还提供了丰富的练习题,帮助学生巩固所学知识。

二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数轴有一定的了解。

但他们对绝对值的概念和性质可能还不够清晰,需要通过实例和练习来加深理解。

此外,学生可能对解决含绝对值的问题感到困惑,需要教师的引导和解答。

三. 教学目标1.了解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决相关问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.绝对值的概念和性质。

2.解决含绝对值的问题。

五. 教学方法采用问题驱动法、实例教学法和练习法。

通过提问引导学生思考,通过实例讲解让学生理解绝对值的概念和性质,通过练习题让学生巩固所学知识。

六. 教学准备1.PPT课件:包含绝对值的概念、性质和例题。

2.练习题:含不同类型的问题,以便学生巩固所学知识。

3.数轴教具:用于直观地展示绝对值。

七. 教学过程1.导入(5分钟)提问:什么是绝对值?引导学生回顾已学的知识,为新课的学习做好铺垫。

2.呈现(15分钟)讲解绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值。

呈现绝对值的性质,如正数的绝对值是正数,负数的绝对值是正数,零的绝对值是零等。

3.操练(15分钟)展示例题,让学生跟随教师一起解答。

例如:求|3|、|-5|、|0|的值。

让学生独立完成练习题,检测学生对绝对值的掌握程度。

4.巩固(10分钟)让学生分组讨论,用自己的语言总结绝对值的性质。

每组选代表进行汇报,教师点评并总结。

5.拓展(10分钟)提问:绝对值在实际生活中有什么应用?让学生举例说明,引导学生将所学知识与生活实际相结合。

七年级数学及其运算3绝对值素材2北师大版

七年级数学及其运算3绝对值素材2北师大版

利用绝对值的意义解题绝对值的概念:一个数a的绝对值就是数轴上表示数a的点与原点的距离,记作|a|.如:|-2|表示-2的点到原点的距离.那么|x|则是在数轴上表示x的点到原点的距离,那么|x-1|呢?在数轴上表示(x-1)的点到原点的距离,但x-1这个数相当于把x这个数减少了一个,在数轴上相当于左移了一个单位,若把点x不动,相当于把原点右移了一个单位,即|x-1|相当于在数轴上表示x的点到表示1的点的两点间的距离.如图所示:有了这个知识就可解决像|x-1|=2此类问题.解:到表示数1的点的距离为2的点.图上的A、B两点都满足等于∴x1=3,x2=-1又如|x+3|=1∵|x+3|的意义相当于数轴表示x的点到-3的距离(因为|x+3|相当于将x右移3个单位到原点距离或是把原点左移3个单位到x的距离)∴观察数轴即可得到解答:可见x1=-4,x2=-22019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的正方体的展开图是( )A .B .C .D .2.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是( )A .90°B .60°C .45°D .30°3.如图,AOB V 是直角三角形,90AOB ∠=o ,2OB OA =,点A 在反比例函数1y x =的图象上.若点B 在反比例函数k y x=的图象上,则k 的值为( )A .2B .-2C .4D .-44.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mn B.(m+n)2C.(m-n)2D.m2-n25.下列大学的校徽图案是轴对称图形的是()A.B.C.D.6.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为()A.62°B.56°C.60°D.28°7.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.68.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.29.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30°B.36°C.54°D.72°10.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣111.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.12.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.14.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.15.已知m=444153,n=44053,那么2016m﹣n=_____.16.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.17.关于x的方程1101axx+-=-有增根,则a=______.18.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程x 2+(2m+3)x+m 2=1有两根α,β求m 的取值范围;若α+β+αβ=1.求m 的值.20.(6分)观察下列等式:第1个等式:a 1=212=+-1, 第2个等式:a 2=3223=-+, 第3个等式:a 3=32+=2-3, 第4个等式:a 4=525=+-2, …按上述规律,回答以下问题:请写出第n 个等式:a n =__________.a 1+a 2+a 3+…+a n =_________.21.(6分)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值.22.(8分)2019年1月,温州轨道交通1S 线正式运营,1S 线有以下4种购票方式:A .二维码过闸B .现金购票C .市名卡过闸D .银联闪付 某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D 的有200人,求选择方式A 的人数.小博和小雅对A ,B ,C 三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).23.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.24.(10分)如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示﹣,设点B 所表示的数为m .求m 的值;求|m ﹣1|+(m+6)0的值.25.(10分)如图,已知反比例函数y=k x (x >0)的图象与一次函数y=﹣12x+4的图象交于A 和B (6,n )两点.求k 和n 的值;若点C (x ,y )也在反比例函数y=k x (x >0)的图象上,求当2≤x≤6时,函数值y 的取值范围.26.(12分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;若存放x 天后将苹果一次性售出,设销售总金额为y 元,求出y 与x 的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?27.(12分)小明遇到这样一个问题:已知:1b c a -=. 求证:240b ac -≥. 经过思考,小明的证明过程如下:∵1b c a-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥. 根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a c b+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A 正确. 故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.2.B【解析】【分析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【详解】连接AB ,根据题意得:OB=OA=AB ,∴△AOB 是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.3.D【解析】【分析】要求函数的解析式只要求出B 点的坐标就可以,过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,根据条件得到ACO ODB ~V V ,得到:2BD OD OB OC AC OA===,然后用待定系数法即可.【详解】过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,设点A 的坐标是(),m n ,则AC n =,OC m =,Q 90AOB ∠=︒,∴90AOC BOD ∠+∠=︒,Q90DBO BOD∠+∠=︒,∴DBO AOC∠=∠,Q90BDO ACO∠=∠=︒,∴BDO OCA~V V,∴BD OD OB OC AC OA==,Q2OB OA=,∴2BD m=,2OD n=,因为点A在反比例函数1yx=的图象上,则1mn=,Q点B在反比例函数kyx=的图象上,B点的坐标是()2,2n m-,∴2244k n m mn=-⋅=-=-.故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.4.C【解析】【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.5.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.A【解析】【详解】连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故选A7.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.8.A【解析】试题解析:由于点A 、B 在反比例函数图象上关于原点对称,则△ABC 的面积=2|k|=2×4=1.故选A .考点:反比例函数系数k 的几何意义.9.B【解析】【分析】在等腰三角形△ABE 中,求出∠A 的度数即可解决问题.【详解】解:在正五边形ABCDE 中,∠A=15×(5-2)×180=108°又知△ABE 是等腰三角形,∴AB=AE,∴∠ABE=12(180°-108°)=36°. 故选B .【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.10.B【解析】【详解】0.056用科学记数法表示为:0.056=-25.610 ,故选B.11.D【解析】【分析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,22AE BE+=5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.12.D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.14.215【解析】【分析】如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=12OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=15,即CD=2CH=215.【详解】解:如图,作OH⊥CD于H,连结OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,22OC OH15-=故答案为【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可15.1【解析】【分析】根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.【详解】解:∵m=444153=4?444353=44053,∴m=n,∴2016m-n=20160=1.故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n. 16.3【解析】【分析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx (a≠0)和直线y=-c有交点是解决问题的关键.17.-1【解析】根据分式方程11axx+--1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数. 18.(-23,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=23,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,3,则tan∠BOA=3 ABOA=,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB≌△HB 1O ,∴B 1H=OA=6,OH=AB=23,∴点B 1的坐标为(-23,6),故答案为(-23,6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1)m≥﹣;(2)m 的值为2.【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m 的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m 2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m 2,∵α+β+αβ=1,∴﹣(2m+2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m≥﹣,所以m 1=﹣1应舍去,m 的值为2.【点睛】本题考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx+c =1(a≠1)的两根时,x 1+x 2=﹣,x 1x 2=是解答此题的关键. 20.(1)1n a n n =++1n n + (211n +.【解析】【分析】 (1)根据题意可知,12112a ==+,23223a ==+32332a ==+, 45225a ==+,…由此得出第n 个等式:a n 11n n n n =+++ (2)将每一个等式化简即可求得答案.【详解】解:(1)∵第1个等式:12112a ==+, 第2个等式:23223a ==+ 第3个等式:3 2332a ==-+ 第4个等式:4 5225a ==+, ∴第n 个等式:a n 11n n n n =+++ (2)a 1+a 2+a 3+…+a n=(()(()2-1+3-2+2-3+5-2++n+1n L =11n +.=1.【点睛】 此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.21.12【解析】解:∵2410x x --=,∴241x x -=.∴()22222222(23)()()4129312934931912x x y x y y x x x y y x x x x --+--=-+-+-=-+=-+=⨯+=.将代数式应用完全平方公式和平方差公式展开后合并同类项,将241x x -=整体代入求值.22. (1)600人(2)13 【解析】【分析】(1)计算方式A 的扇形圆心角占D 的圆心角的分率,然后用方式D 的人数乘这个分数即为方式A 的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.【详解】(1)120200600(36090110)⨯=--(人),∴最喜欢方式A 的有600人 (2)列表法:树状法:∴P (同一种购票方式)13=【点睛】 本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(1)1(2)10%.【解析】试题分析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y ,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.试题解析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据题意得6000480080x x =-, 解得x=1.经检验,x=1是原方程的根.答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y ,根据题意得1(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用.24.(1) ;(2【解析】试题分析:()1 点A 表示 向右直爬2个单位到达点B ,点B 表示的数为2m =,()2把m 的值代入,对式子进行化简即可.试题解析:()1 由题意A 点和B 点的距离为2,其A 点的坐标为 因此B 点坐标2.m =()2把m 的值代入得:()()00162126m m -++=-+, (018=+,11=+,=25.(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.【详解】(1)当x=1时,n=﹣12×1+4=1, ∴点B 的坐标为(1,1).∵反比例函数y=k x 过点B (1,1), ∴k=1×1=1;(2)∵k=1>0,∴当x >0时,y 随x 值增大而减小,∴当2≤x≤1时,1≤y≤2.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.26.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯Q25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.27.证明见解析【解析】 解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac -≥,∴24b ac ≥.。

北师版初一数学绝对值2

北师版初一数学绝对值2
7728彩票赢钱能提出来么
[单选]人们沿着不同的方向思考,探索问题答案的思维是()A.发散思维B.辐合思维C.再造思维D.创造思维 [单选]发展中国家税收中的征收成本较低的税是()A.进口关税B.所得税C.土地税D.农业税 [单选]某患者80岁,记忆力障碍,对答不切题,常外出后无法救回家,你建议该患者最好做什么筛查()A.汉语失语症检查法B.构音障碍检查法C.简易精神状态检查(MMSE.D.韦氏记忆量表(WMS)E.韦氏成人智力量表(WAIS) [单选]人体的血液循环路径是().A、左心室&mdash;动脉&mdash;毛细血管&mdash;静脉&mdash;右心房B、左心室&mdash;静脉&mdash;毛细血管&mdash;动脉&mdash;右心房C、右心房&mdash;动脉&mdash;毛细血管&mdash;静脉&mdash;左心室 [单选,A1型题]"热因热用"属于()A.正治B.反治C.扶正D.因地制宜E.标本兼治 [单选,A1型题]具有化湿解暑功效的化湿药物是()A.苍术B.佩兰C.豆蔻D.砂仁E.草豆蔻 [单选]下列关于仲裁程序与民事诉讼程序的说法,正确的是:()A.仲裁和民事诉讼都基于双方合意启动B.仲裁庭人员可以由仲裁委员会指定,民事诉讼中法官则是由法院指定C.仲裁员不能达成一致意见,以首席仲裁员意见为准,民事诉讼中的合议则以审判长意见为准D.仲裁与民事诉讼的立案审 [单选]患者以皮肤黏膜出血为主要临床表现,应选下列哪一组筛选试验()A.血小板计数,束臂试验,出血时间测定B.血小板计数,凝血酶时间,出血时间测定C.部分活化凝血活酶,凝血酶原时间测定及凝血酶时间测定D.纤维蛋白原,血块收缩,血小板计数E.血小板计数,部分活化凝血活酶时间 [单选]以下应用中,

北师大版七年级数学上册 第二章2 相反数、绝对值

北师大版七年级数学上册 第二章2 相反数、绝对值
0的绝对值是0。即:
注:①绝对值表示一个数的数量大小,由于数量大小总是正数或零, 则有理数的绝对值不可能是负数,即a取任意有理数,都有|a|≥0。 ②互为相反数的两个数的绝对值相等。如:|2|=2,|-2|=2。③ 如果两个数的绝对值相等,那么这两个数相等或互为相反数。
知识点3:有理数比较大小(难点) ①正数>负数;0>负数;正数>0。②两个负数,绝对值大的反 而小。
根据教材27-28页“思考·交流”,回答下列两个问题: (1)你能仿照气温的比较将下列这组数按照从小到大的顺序进行排
列吗?-1,0,-3,2.5,-1.5,4。 -3<-1.5<-1<0<2.5<4 (2)你认为负数和正数应怎样比较大小?负数和0呢?两个负数呢? 正数大于负数。负数小于0。两个负数,绝对值大的反而小
ቤተ መጻሕፍቲ ባይዱ
数量相等,只有符号不同。其他两组数也一样。能,比如: 10和-10。如果两个数只有符号不同,那么称其中一个 数为另一个数的相反数,也称这两个数互为相反数(代数 意义)。注意:0的相反数是0
2.请同学们根据绝对值的概念思考以下问题: ①如果a表示有理数,那么|a|有什么含义? |a|表示a这个数的数量大小 ②互为相反数的两个数的绝对值有什么关系? 相等,即 |a|=|-a| ③一个数的绝对值与这个数有什么关系? 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对 值是0
数学史导入
符号类型,并且也载入了书本中,成为表达绝对值的一种方式,这种 表达方式为“| |”,既简单也很直接,并且在计算机中使用也很直观, 当然在使用的时候也是有相关规定的。
1.请同学们阅读教材27页,思考下列问题:
3与-3有什么关系? 3与- 2
3 2
,5与-5呢?你还能列举一

2.1.2绝对值 (课件)北师大版(2024)数学七年级上册)

2.1.2绝对值 (课件)北师大版(2024)数学七年级上册)
A.1
B.-1
C.0
D.正数
)
)
Hale Waihona Puke 巩固练习3.已知a=-a,则数a等于(
)
A.0
B.-1
C.1
D.不确定
知识点2
绝对值
探究新知

知识点2
绝对值
一个数的数量大小叫作这个数的绝对值,
0的绝对值等于0.
如 3和 -3 的绝对值都等于 3,0的绝对值
等于0,通常用|a|表示数a的绝对值,如3的绝对
值记作|3|=3,-5 的绝对值记作|-5|=5。
没有绝对值是-2的数.
(2) 绝对值是0的数有几个?各是什么?
答:绝对值是0的数有1个,就是0.
(3) 绝对值小于3的整数一共有多少个?
答:绝对值小于3的整数一共有5个,
它们分别是-2,-1,0,1,2.
当堂检测
想一想:因为正数可用a>0表示,负数可用a<0表示,那么上述
三条可怎么表述呢?
(1)如果a>0,那么|a|=a
绝对值,0的绝对值等于0.
比较两个负数的大小
绝对值大的反而小
当堂检测
1.怎样表示a的相反数?
相反数
a
2.互为相反数的两个数的绝对值又有什么关系呢?
|a|= |-a|
3.若:|a|= |b|,则:a与b有什么关系?
a=b
a=-b
4.你理解上面的“符号后的‘数’ 相同”的意思了吗?
-a
当堂检测
(1) 绝对值是7的数有几个?各是什么?有没有绝对
值是-2的数?
答:绝对值是7的数有两个,各是7与-7.
也就是说5号球与规定的质量相差比较小,因此其质量比较好。
答:5号质量好一些。

北师大版数学七年级上册2.3绝对值教案

北师大版数学七年级上册2.3绝对值教案

绝对值教学设计一、教学目标1、借助数轴,理解绝对值的概念。

2、知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

3、能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

4、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

二、教学重点及难点教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

教学难点:利用绝对值比较两个负数的大小。

三、教学过程本节课设计了四个环节:第一环节:知识回顾;第二环节:创设问题,导入新课;第二环节:总结归纳得到新知;第三环节:当堂检测,及时反馈;第四环节:课堂小结。

第一环节知识回顾问题1:什么叫做数轴?数轴是规定了、、的一条直线。

问题2:下图过程说明了什么?目的:绝对值的学习是以相反数为基础的,在学生动手画 数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。

第二环节 创设问题,导入新课问题1:鸭子和公鸡从原点O 出发,分别向东、西方向行走,最后它们距原点多远?目的:利用动画展示,让学生在有趣的问题情境中获取对绝对值概念的感性认识。

并激发学生学习的积极性与主动性。

问题2:在数轴上找到-5,5,43 ,43。

-5在数轴上对应的点到原点的距离为( )5在数轴上对应的点到原点的距离为( )43-与43呢? 0到原点的距离是( )目的:巩固相反数的概念,为绝对值概念的引入做好铺垫。

第二环节: 总结归纳得到新知。

1、通过上面例子,引导学生归纳总结出:定义:数轴上表示数 a 的点与原点的距离叫做数a 的绝对值. 一个数a 的绝对值记作: |a|例如:10和-10与原点的距离都是10个单位的长度,所以10和-10的绝对值都是10,即|10|=10,|-10|=10,显然|0|=0.那么你能说出4的绝对值和-8的绝对值是多少吗?2、写出下列各数的绝对值6,-8,-0.9 ,25,112-,100, 通过以上几个题你能得出什么结论?(1)正数的绝对值是它本身;(2)负数的绝对值是它的相反数:(3)0的绝对值是0;(4)互为相反数的两个数的绝对值相等.目的:学生从“特殊到一般” 归纳出互为相反数的两个数的绝对值相等,分类归纳出绝对值的代数意义,总结出绝对值的内在涵义,体现学生的主体性。

北师版数学七年级上册2绝对值教案与反思

北师版数学七年级上册2绝对值教案与反思

2.3绝对值路漫漫其修远兮,吾将上下而求索。

屈原《离骚》江南学校 李友峰1、使学生掌握有理数的绝对值概念及表示方法;2、使学生熟练掌握有理数绝对值的求法和有关的简单计算;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力教学重点和难点 正确理解绝对值的概念教学方法 三疑三探教学一、设疑自探1.创设情景,导入新课1、复习引入1、下列各数中:+7,-2,31,-83,0,+001,-52,121,哪些是正数?哪些是负数?哪些是非负数?2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:-3,4,0,3,-15,-4,23,2 2.学生设疑例、两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米这样,利用有理数就可以明确表示每辆汽车在公路上的位置了我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值 现在我们撇开例题的实际意义来研究有理数的绝对值,那么,+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;0的绝对值是0,表明它到原点的距离是0一般地,一个数a 的绝对值就是数轴上表示a 的点到原点的距离 为了方便,我们用一种符号来表示一个数的绝对值约定在一个数的两旁各画一条竖线来表示这个数的绝对值如|+5|、|-5|二.解疑合探利用数轴求5,32,7,-2,-71,-05的绝对值由学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0 这也是绝对值的代数定义把绝对值的代数定义用数学符号语言如表达? 把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步1、用a 表示一个数,如何表示a 是正数,a 是负数,a 是0?由有理数大小比较可以知道:a 是正数:a >0;a 是负数:a <0;a 是0:a=02、怎样表示a 的本身,a 的相反数?a 的本身是自然数还是a.a 的相反数为-a. 现在可以把绝对值的代数定义表示成 如果a >0,那么a =a ;如果a <0,那么a =-a ;如果a=0,么a =0 由绝对值的代数定义,我们可以很方便地求已知数的绝对值了例4 求8,-8,41,-41,0,6,-π,π-5的绝对值. 三.质疑再探说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.小结指导学生阅读教材,进一步理解绝对值的代数和几意义.1、下列哪些数是正数?-2,错误!未找到引用源。

北师版初一数学绝对值2

北师版初一数学绝对值2
龙王的傲娇日常 https:///232_232964/
适合采用水飞法的是A.乳香B.羚羊角C.炉甘石D.樟脑E.鹿茸 在厂房施工时,基础下出现流沙层,这种情况下的工程变更属于。A.设计变更B.施工条件变更C.进度计划变更D.工程项目变更 安全阀打压时间一般为A.2年B.3年C.1年 医学道德评价的标准中哪项是医疗行为善恶的基本出发点和根本标准</br>医学道德评价的标准中哪项是有利于人类生存,有利于人类健康的A.疗效标准B.经济标准C.行为标准D.社会标准E.科学标准 三一混凝土泵车的S阀具有自动补偿功能,眼镜板和切割环采用硬质合金。A.正确B.错误 初中生个性发展的重要特征是A.自我意识的发展B.感受能力的发展C.有意记忆的发展D.抽象思维能力的发展 流行性乙型脑炎的治疗重点是A.高热、惊厥、循环衰竭B.高热、惊厥、呼吸衰竭C.高热、惊厥、昏迷D.惊厥、昏迷、呼吸衰竭E.高热、昏迷、休克 下面对专职监护人的叙述正确的是:。A.专职监护人不得做其他工作B.专职监护人可以做其他工作C.专职监护人可以兼任其他工作D.专职监护人应当协助其他人员工作 关于心腔内电生理的描述,不正确的是。A.高位右心房刺激可形成接近窦性心律时的部位刺激形成正常QRS波群时,该部位记录到的是右束支电位D.在右心室心尖部刺激,体表心电图常呈左束支阻滞图形E.导管电极在心腔内某个部位 关于儿童梦魇的表现,叙述错误的是A.醒来后往往不能记忆梦境B.常发生在夜间睡眠的后1/3阶段C.常伴紧张、出汗、恐惧表情D.严重病例可以使用苯二氮卓类药物治疗E.脑电图检查有特征性的发现 下列关于百科全书的表述,错误的是。A.百科全书具有知识标准的性质B.百科全书是供长期查检和引据的权威工具书,通过重印制保证内容的新颖性C.百科全书兼具各类工具书的寻检、查阅功能D.百科全书的基本寻检单元是条目,条目一般由条头、释文和参考文献构成 神经系统实现其调节功能的基本方式是A.正反馈与负反馈B.兴奋和抑制C.感受和处理信息D.条件反射与非条件反射E.记忆和思维 以下是“关闭计算机”对话框中的选项。A、关闭;B、注销;C、等待;D、重新启动。 资产负债管理的核心策略是A.表内资产负债匹配B.表外工具规避表内风险C.利用证券化剥离表内风险D.表内表外合并 排汽装置的端差是指的饱和蒸汽温度和温度之差。 恶心与呕吐概述? X胸片上示肺纹理减少,右心室增大,肺动脉段明显突出,透视下肺动脉搏动明显的A.肺动脉瓣狭窄B.室间隔缺损C.动脉导管未闭D.法洛四联症E.房间隔缺损 下列哪一项不是鸡胚培养的注意事项A.控制污染B.胚龄选择C.立克次体的繁殖部位D.培养温度和湿度E.细胞的选择性与细胞病变 女性,68岁,进行性乏力,间断痰中带血10个月。近3个月来晨起干咳,咳少量暗红色痰,胸片示左肺门阴影。既往吸烟史30年。该患者最可能的诊断是()A.慢性支气管炎B.支气管扩张C.肺脓肿D.肺结核E.支气管肺癌 患者,因服毒昏迷不醒,入急诊室抢救,其家属不能准确地说出毒物的名称及性质,观察患者双侧瞳孔缩小。根据患者瞳孔变化初步判断患者可能是()A.碱性物中毒B.酸性物中毒C.有机磷、吗啡类中毒D.颠茄类中毒E.酒精中毒 患者,男性,28岁,2周来上前牙咬物不适,喝冷、热水引起疼痛。近2日来,夜间痛影响睡眠,并引起半侧头、面部痛,痛不能定位。检查时见右侧上、下前牙见多个充填体。当日最有效的治疗措施是()A.局麻下开髓,封失活剂B.局麻封闭止痛C.口服消炎止痛药D.针灸合谷穴、平安穴E.以 麻醉前用药的方法是于当日术前肌注抗胆碱类药和镇静催眠药,紧急手术可在麻醉开始前给药。 根据《综合交通网中长期发展规划》,综合交通枢纽的衔接,应充分体现客货流汇集、换乘或换装和疏散的。A.承载性B.顺畅性C.集中性D.统一性E.兼容性 下列关于自然失业率的说法哪一个是正确的()A.自然失业率是历史上最低限度水平的失业率B.自然失业率与一国的经济效率之间关系密切C.自然为比率恒定不变D.自然失业率包含摩擦性失业 25岁,初孕妇,妊娠36周合并急性乙型肝炎入院。本例不恰当措施是A.卧床休息,加强营养,避免过劳B.静滴红霉素预防感染C.静滴葡萄糖液内加维生素CD.静滴保肝药E.肌注维生素K 中国人民银行在国务院领导下,,,维护金融稳定。 系统性硬皮病患者ANA阳性率约为A.80%B.90%C.50%D.30% 关于斗谱排列原则说法错误的是A.常用饮片应放在斗架的中上层B.质地较轻且用量较少的饮片应放在斗架的高层C.矿石类、化石类和贝壳类应放在斗架的低层D.炭药类应放在斗架的高层E.质地松泡且用量大的饮片应放在斗架最下层的大药斗内 中学阶段的课程应符合()。A.强制性、普及性和统一性B.科学性、选择性和统一性C.普及性、基础性和发展性D.科学性、基础性和发展性 目视检查减速器的情况,有无渗油或漏油现象。A、紧固B、运转C、密封D、发热 随着人类社会生产力的进步、机器的使用和劳动生产力的提高,在大量使用机器提高了劳动生产力的同时,也产生了劳动者伤亡、病害等不安全、不卫生的因素。安全人机工程学研究的目的主要是:为保障劳动者的安全与健康,对这些不利因素发生的机理和预防措施进行研究,以便创造更和更文 救援列车的出发或返回有哪些规定? 含有相同或相似抗原表位的不同抗原称为A.共同抗原B.异嗜性抗原C.同种异型抗原D.自身抗原E.独特型抗原 决策的前提是A.调查研究B.确立问题C.确定目标D.拟订方案E.组织协商 关于破伤风的临床表现中,下列哪项是错误的A.前期症状可有疲乏无力、头晕头痛、烦躁不安、咀嚼无力、局部肌肉发紧、反射亢进等B.出现典型的肌肉持续性收缩或僵硬C.在肌紧张性收缩的基础上伴阵发性强烈痉挛,形成&quot;角弓反张&quot;或&quot;侧弓反张&quot;D.持续高热E.常见并发症

北师大版2024年新版七年级数学上册课件:2.1 课时2 相反数、绝对值

北师大版2024年新版七年级数学上册课件:2.1 课时2 相反数、绝对值
北师大版 七年级(上册) 2024新版教材
2.1 课时2 相反数、绝对值
学习目标
1.理解相反数和绝对值的概念; 2.能求一个数的绝对值和相反数,会利用绝对值比较两个 负数的大小; 3.通过运用绝对值解决实际问题,体会绝对值的意义和作 用.
探究新知
问题 3与-3,32与-32,5与-5这三组数有什么共同特点? 你还能列举几组具有这种特点的数吗?
求-2的相反数的绝对值, 即求2的绝对值.
|-52| =52, | -10.5 | =10.5, | 0 | =0,
| -(-2) | =2=2.
课堂练习
4.已知|x-4|+|y-3|=0,求x+y的值.
解:由题可知, |x-4|≥0,|y-3|≥0, 所以x-4=0,y-3=0, 即x=4,y=3, 所以x+y=7.
课堂练习
5.比较下列各对数的大小:
(1) 0.1和-1; (2) -(-0.01)和| 0 |;
(3) -345 和 -334;
(4)
|
-
2 3
|

|
3 4
|.
解:(3)因为-345<0,-334<0,
| -345 | = 345
=
76 20
,| -334 | = 334
= 7250,
因为 76 20
相反数: 如果两个数只有符号不同,那么称其中一个数为 另一个数的相反数,也称这两个数互为相反数. 0的相反数是0.
绝对值: 一个数的数量大小叫作这个数的绝对值. 正数的绝对值是它本身;负数的绝对值是它的相 反数;0的绝对值是0.
比较两个负数的大小: 两个负数比较大小,绝对值大的反而小.
因为182>192,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3 计算
(1)
2 3
(3)
3 1 4 4
2 1 (2) 3 2 (4) 3.4 4 1 2 3
因为正数可用a>0表示,负数可用 a<0表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
(1)-7
2 3 (2) (3) 3
做一做 (1)在数轴上表示下列各数,并比较它们的 大小: -1.5, -3, -1, -5.
(2)求出(1)中各数的绝对值,并比较它们的大小;
(3)你发现了什么?
两个负数比较大小,绝对值大的反而小
例2 比较下列 各组数的大小: (1)-1和-5; (2)-5/6和-2.7; (3)2/3, -4/5, -3/7.
绝对值
1.若点M在数轴原点的右边,则点M表 示的数是___数, -3在数轴原点的 边, 距离原点有____长度单位。 2. 数轴上表示3和-3的点离开原点的距 离是____ 。这两个点的位置关于原点 _____
4.在数轴上表示的两个数 ___边的数总 比 边的数大 二.用“>”或“<”号填空。 (1)3.5
(3)-1.95 (4)0 -4
0
(2)-2.8
-1.59 (5)-7
0
-3
1.在数轴上两个互为相反数表示 的点到原点的距离是否相等? 2.-8到原点的距离是多少? 3.表示两点的距离的数一定是正数或者 是0吗?
一、引入绝对值的概念
在数轴上,一个数所对应的点与原点的距 离叫做该的绝对值。 例1 求下列各数的绝对值:
小结:
1.绝对值的定义
2.绝对值的性质:
(1)正数的绝对值是它本身;
(2)负数的绝对值是它的相反数:
(3)0的绝对值是0
3.两个有理数的在小比较除了有数轴上的点的 位置比较外,还可用:零大于负数而小于正数;两 个负数,绝对值大的反而小.
因为正数可用a>0表示,负数可用 a<0表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
;/ 微信刷票;
快速の凝聚出第三元神了,确实是快."伊莲娜尔也觉得很稀奇,原来这雾影之术是小紫倩告诉根汉の,根汉才练习了壹个月而已,现在这雾影俨然已经结出来了.而且刚刚还能说话了,经有了壹些自己の意识了.如今这九华红尘界中,仙术壹抓壹大把,那鸟仙从封仙榜中,弄出了大量の仙术.这些 仙术有不少被传到了普通人の手里了,所以现在大把の人在修行仙术,只不过此仙术非彼仙术,显然不太可能全是真正强横无比の仙术,还是有很大の差距の.而这雾影之术,堪称神绝の仙术之壹了.所谓雾影就是人为の凝结出来像雾气壹样の影子,而这种影子可以赋予意识,从而成为自己の第 三元神,第四元神,甚至是第n元神.而成为至尊之后,也就是步入天神之境之后.可以说实力の强弱,与分神の数量有着密切の关系.像小紫倩当年,乃是上品天神之境,其分神数量达到了几十个.而像伊莲娜尔那样の至高神の话,有些传说可能有上万の分神,甚至是更多.虽说实力の强弱与分神数 量の多少,并没有绝对の关系,但是普通情况就是,壹般来说分神数量越强,其实力也越强.因为那时候の天地受限了,壹个人の实力不能太强了,不然の话会被天地所压制,被天所毁灭.所以强者才会将自己分神,将实力分别放到不同の分神中,这样子分散开来,才能确保自己不会被压制.只有在 特别需要,迫不得已の时候,才会将分神齐聚,发挥最强大の实力.所以说壹般来说肯定是分神の数量越多,总体本尊の实力越强,要不然不会分散出这么多の分神出来.不过也有壹些特别の人物,因为有壹些特别の方法,可以让自己本尊和分神快速の凝聚,或者干脆就是分神の实力很弱.像伊莲 娜尔就是这样の壹类人物,她当年の实力达到了至高神之强,可以说是强到了没朋友了.所以说她本尊の实力肯定是远远超出了当时の天地所能承受の极限の,若是不分神の话,壹定会受到天地の压制の.不过因为她是海神,可以借助水の力量.只要是有水の地方,她往那边壹站,直接就能在旁边 の海里,凝出无数の水影来,然后这些水影就可以逃过当时の天地の压制.只不过练成那种水影之术,她可是花费了至少几百年の时间才行の.而根汉现在练习の这种雾影之术,和她当年の水影之术,可以说是有着异曲同工之妙,但是根汉现在只花了壹个月の时间就已经有所小成了."这雾影之术 虽然不错,不过现在咱还没有小成,还远着很,也不知道能不能赶上成仙路."根汉叹了口气.伊莲娜尔说:"着什么急呀,这成仙路也不是壹下子就能到这里の,倒是这成仙路来得有些蹊跷.""呵呵,肯定了,无缘无故冒出了壹个成仙路,从未有过の事情,事出无常必有妖呀."根汉笑了."那你为什么 还要去?"伊莲娜尔现在也有些郁闷了.因为根汉现在成为了至尊之后,其实她再想知道根汉の心声,却并不容易了.倒也不是根汉刻意の要瞒着她不让她知道,而是他现在心境变了,元灵强大了许多了,伊莲娜尔想再直接就知道就不容易了.根汉说:"世人都去咱不去不行呀.""可若是有风险呢?" 伊莲娜尔无法理解,"你应该知道,这绝对不是纯粹の什么让人成仙の路,要是の话那鸟仙自己还没成仙呢."那鸟仙の实力,也就是真仙不到の水平,连至高神都没有到达の地步.他哪来の资格叫成仙呢,就算是当年の伊莲娜尔海神至高神,也不敢说自己是仙,还在求仙の路上呢.对方上哪尔引来 の成仙路,现在这个事情本身就透着诡异.根汉说:"这件事情只能说是半真半假吧,也有可能那鸟仙自己也不清楚这成仙路,到底是壹条什么路.""你为什么这么觉得?"伊莲娜尔问.根汉说:"咱也说不上来为什么,只是壹种直觉吧,其实咱可能是误解了那鸟仙,或许这里也不是他の志向.""他想 要做の事情,肯定不会是统治这九华红尘界这么简单,费这么大心思发放仙牌,又传播仙术,引来成仙路这本身就不合理.""如果真有成仙路,自己悄悄の藏着掖着还来不及呢,为什么要引到这里来呢.也许他是迫不得已,也许他也是菩萨心肠,总之这件事情咱必须要亲自上壹上这成仙路才行."伊 莲娜尔问他:"你是不是觉得这成仙路,也许是壹条星空古路,会通向别の星域是吧?""这个倒有可能."根汉说:"只不过这星域太广了,就这壹条路,又能通到哪里去呢,顶多还是这附近の一些星域,倒也没什么可能带咱回地球.""不过现在这九华红尘界,确实是没意思了,也是时候得离开了."根 汉也有些疲惫了.当年从这里进入星空古路,后来又从乱星海中回来了,本以为今生无法再离开这九华红尘界了.可是现在又出来了更广阔の天地,更大の舞台了.成仙路,不管是真是假,总之是可以离开这里の.从现在每天晚上出来の光束来对是比乱星海还要遥远の古域,不会是在这九华红尘界 中了.有机会到别の星域去闯壹闯,倒也是壹件好事.而且这鸟仙到底是有什么意图,他现在也弄不明白,其实他壹直觉得这鸟仙可能是更强の人物の壹些代言人而已.在更大の舞台,这里の人们都不知道の地方,可能还有更大の天地.如果到了那边,或许可以接触到当年,像伊莲娜尔,小紫倩她们 当年能够接触到の天地了.甚至有可能走上,当年の最强人,有史以来の最强修仙者,北天の步伐.而根汉の终极目标,就是超越他,超越这个北天,成为史上最强者.带着最强者の光环,重回地球,回到那个最土,最简陋,却最熟悉,最喜欢の故乡.本书来自</enter><div叁叁捌7叶待壹秒记住【恋♂ 上÷弹窗,免费读!而且这鸟仙到底是有什么意图,他现在也弄不明白,其实他壹直觉得这鸟仙可能是更强の人物の壹些代言人而已.在更大の舞台,这里の人们都不知道の地方,可能还有更大の天地.如果到了那边,或许可以接触到当年,像伊莲娜尔,小紫倩她们当年能够接触到の天地了.甚至有 可能走上,当年の最强人,有史以来の最强修仙者,北天の步伐.而根汉の终极目标,就是超越他,超越这个北天,成为史上最强者.带着最强者の光环,重回地球,回到那个最土,最简陋,却最熟悉,最喜欢の故乡.这不是根汉の臆想,而是他の终极目标,既然要做,就要做最强の那壹个.雾影之术,他 需要用此术将自己の分影给打造出来,必要の时候可以将分神以雾影の形式分散开来,然后分散实力到时候可以分担风险.风家圣地.华巧尔也在这里,这壹天,风家圣地の祖地内.传来了壹声响亮の婴尔蹄哭声,声音响彻整个风家祖地,几乎所有人都听到了.这是壹声很震撼人心の婴尔哭叫声, 正在外室中等待の华巧尔,还有远到而来の潇湘尔,此时也都是很惊叹."这个孩子了不得."潇湘尔只是说了壹句,便端起茶杯,慢悠悠の喝了壹口.对面の华巧尔也是兴奋の直说:"风家有望了,以后就靠这个孩子了,肯定是壹个天赋异禀の仙才."屋里还有一些风家の长老,此时也都是十分の欣 喜.而在内屋内,里面十一些女人在忙前忙后の,她们也没想到她们の圣主会生小孩子.此时已经又过了几年了,现在距离当初风若尔怀上根汉の骨肉,已有十年了.十年怀胎,现在生子,婴尔降临了.虽说壹开始风家の长老们,还有些蒙,不知道这圣主什么时候竟然怀上了孩子了,也不知道这个孩 子到底是谁の,不过既然有新の生命,她们也都很高兴.现在风若尔终于是生了,她们个个也都有些兴奋.毕竟这些长老,她们都没有生过孩子,现在都还全是元阴之身,此生也不太可能再生了.内屋内,华巧尔第壹个进来了.见到壹位女子手中抱着の壹个小婴尔,立即眉开眼笑,凑4;女子还担心华巧尔没抱过小孩,让她小心壹些,华巧尔立即笑了笑,接过婴尔然后朝这个小婴尔笑,小婴尔虽然很小,但是可以来,是壹个很白の女孩子.而且五官十分清秀,壹道以后是壹个大美人胚子,只不过现在眼睛还没怎么睁开,刚刚哭了壹声之后现在好像睡着 了."可尔,你还好吗?"华巧尔抱着孩子,坐在了产床边.风可尔脸色有些白,现在还有些虚弱,毕竟刚生完孩子,就算是神仙生完孩子,也会很虚弱."还好,让咱."风可尔挤出笑容,华巧尔赶紧将宝宝给放在了她の床边,风可尔扭头旁自己の女尔,眼角突然就溢出了两行清泪."家主,您可不能哭,您 现在刚刚生产,会哭坏眼睛の."壹旁の有经验の产婆,赶紧劝阻风可尔.华
相关文档
最新文档