一分钟看完计量经济学!!!------开学后的计量笔记
计量经济学读书笔记,李子奈
计量经济学读书笔记通过学习李子奈的“计量经济学应用研究的总体回归模型设定”这篇文章,我对计量经济学有了更深刻的认识,结合已学习的计量经济学知识,对真实总体回归模型的唯一性有了自己独到的见解。
一、真实总体回归模型的唯一性是否存在?对于这个问题,我认为这主要由人们所遵循的哲学观念来决定的。
如果人们遵循唯物主义哲学观,相信事物是客观存在的,那么就会认同我们目前所处的经济系统是客观存在的,则反映该经济系统变化的真实总体回归模型也是唯一的。
我同意李子奈所提出的真实总体回归模型应该具有唯一性的观点,因为这符合我们认识和研究世界的基本哲学观念。
当然,对于唯心主义者而言,由于每个人心目中的真实经济系统是不一样的,所以真实总体回归模型相应的也就不具有唯一性了。
现实中,人们在用计量经济学来研究客观现实世界时,一直在探求能够真实反映客观世界的真实总体回归模型。
目前主要从两方面进行探求:一是对于真实总体回归模型的形式的不断逼近,其中包括对影响因素的探求;二是对于其扰动项的真实分布形态的探求。
当然,人们对于真实总体回归模型的不断逼近,会受当时计量经济学研究的技术条件和人们对现实经济系统认识能力的限制,并随着它们的发展而不断发展。
由于我们对于客观存在的真实经济系统的认识总是有限的,而且该经济系统本身也受人类自身行为以及自然环境因素(如地震、海啸、疾病等)的影响,因此会表现出动态变化的一面。
所以,我认为,真实经济系统是不可知的(至少目前来说是不可知的),因为它本身的变化在很大程度上是人的行为活动作用的结果,因而我们前面所提出的唯一的真实总体回归模型事实上也是不可知的。
假定真实经济系统不受任何其他外在因素影响,仅受人自身行为因素的影响,也就是说该经济系统的变化是由处在系统中所有人的行为相互影响和相互作用结果的表现。
假定我们已经观测到唯一的真实总体回归模型,依此建立相应的回归模型用来刻画真实经济系统的变化,那么就会得出一个奇怪的结果!我们知道人是具有自我学习能力的,当我们发现能用一种真实总体回归模型来刻画现实经济时,所有人都会运用该计量模型来为自己谋利,那么这种行为往往会使经济系统表现得比以前更为复杂,从而使原有的真实总体回归模型变得不真实了。
(完整word版)计量经济学复习笔记
计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究主体是经济现象及其发展变化的规律。
2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。
被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。
内生变量:其数值由模型所决定的变量,是模型求解的结果。
外生变量:其数值由模型意外决定的变量。
外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。
前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。
前定变量:前定内生变量和外生变量的总称。
数据:时间序列数据:按照时间先后排列的统计数据。
截面数据:发生在同一时间截面上的调查数据。
面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性模型就变量而言是线性的;模型就参数而言是线性的。
Y i=β1+β2lnX i+u i线性影响随机影响Y i=E(Y i|X i)+u i E(Y i|X i)=f(X i)=β1+β2lnX i引入随机扰动项,(3)古典假设A零均值假定 E(u i|X i)=0B同方差假定 Var(u i|X i)=E(u i2)=σ2C无自相关假定 Cov(u i,u j)=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i 2^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。
计量经济学复习笔记要点
计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
一分钟看懂计量经济学
一分钟看完计量经济学!!!------开学后的计量笔记建模是计量的灵魂,所以就从建模开始。
一、建模步骤:A,理论模型的设计: a,选择变量b,确定变量关系c,拟定参数范围B,样本数据的收集: a,数据的类型b,数据的质量C,样本参数的估计: a,模型的识别b,估价方法选择D,模型的检验a,经济意义的检验1正相关2反相关等等b,统计检验:1检验样本回归函数和样本的拟合优度,R的平方即其修正检验2样本回归函数和总体回归函数的接近程度:单个解释变量显著性即t检验,函数显著性即F检验,接近程度的区间检验c,模型预测检验1解释变量条件条件均值与个值的预测2预测置信空间变化d,参数的线性约束检验:1参数线性约束的检验2模型增加或减少变量的检验3参数的稳定性检验:邹氏参数稳定性检验,邹氏预测检验----------主要方法是以F检验受约束前后模型的差异e,参数的非线性约束检验:1最大似然比检验2沃尔德检验3拉格朗日乘数检验---------主要方法使用 X平方分布检验统计量分布特征f,计量经济学检验1,异方差性问题:特征:无偏,一致但标准差偏误。
检测方法:图示法,Park与Gleiser检验法,Goldfeld-Quandt检验法,White检验法-------用WLS修正异方差2,序列相关性问题:特征:无偏,一致,但检验不可靠,预测无效。
检测方法:图示法,回归检验法,Durbin-Waston检验法,Lagrange乘子检验法-------用GLS或广义差分法修正序列相关性3,多重共线性问题:特征:无偏,一致但标准差过大,t减小,正负号混乱。
检测方法:先检验多重共线性是否存在,再检验多重共线性的范围-------------用逐步回归法,差分法或使用额外信息,增大样本容量可以修正。
4,随机解释变量问题:随机解释变量与随机干扰项独立----------对OLS没有坏影响。
随机变量与随机干扰项同期相关:有偏但一致-----扩大样本容量可以克服。
计量经济学读书笔记
计量经济学读书笔记在接触计量经济学这门学科之前,我一直觉得它是那种高深莫测、充满了复杂公式和抽象概念的学问。
但当我真正翻开教材,开始认真研读的时候,才发现它其实就像一个神秘的宝盒,里面装满了有趣又实用的宝贝。
我读的这本计量经济学教材,开篇并没有直接扔给我一堆让人眼花缭乱的公式,而是用了一个很通俗易懂的例子来引入主题。
说的是一家面包店,老板想要知道每天做多少面包才能既满足顾客需求,又不会有太多剩余造成浪费。
这看似简单的问题,背后却隐藏着计量经济学的原理。
随着阅读的深入,我了解到计量经济学其实就是通过建立数学模型,来分析各种经济现象之间的关系。
比如说,我们都知道房价和地段、面积、房屋年龄等因素有关,那到底这些因素是怎么具体影响房价的呢?计量经济学就能通过收集大量的数据,然后运用各种统计方法和工具,给我们一个相对准确的答案。
在学习回归分析这一部分的时候,我可真是费了不少劲。
书上的那些公式和图表,一开始让我感觉像是走进了一个迷宫。
但我静下心来,仔细琢磨每一个概念和步骤。
我就拿自己的零花钱做例子,想分析一下每个月零花钱的花费和我购买零食、文具、书籍等各类物品之间的关系。
我把每个月的支出都详细记录下来,然后试着建立一个简单的回归模型。
这过程中,我发现有时候数据并不像我想象的那么听话,总会有些偏差和异常值。
但也正是在处理这些问题的过程中,我对回归分析有了更深刻的理解。
还有一个让我印象特别深刻的是关于假设检验的内容。
书上说假设检验就像是法官判案,要根据证据来判断一个假设是否成立。
我就想到了之前在网上看到的一个关于某种减肥产品是否有效的争论。
有人说用了这个产品一个月瘦了好几斤,效果特别好;但也有人说根本没效果,纯粹是浪费钱。
这时候如果用计量经济学的假设检验方法,就可以通过收集使用该产品的人的体重数据,设定一个原假设(比如“该减肥产品无效”),然后根据数据计算出相关的统计量,来判断这个原假设是否应该被拒绝。
在学习多重共线性这个概念的时候,我发现它就像是一群人七嘴八舌地说话,让人分不清到底该听谁的。
古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
资料来源:EconomicReport ofthe President,2007,Table13-110,P.356.
答:a.把汇率的对数作为纵轴并把时间作为横轴进行描点,如图1-4所示,汇率的波动性很大。比如,在1985年,1美元只能兑换0.257比索,但到了2004年,它能兑换约11.29比索。
2.回归分析与相关分析的区别
回归分析中,对因变量和解释变量的处理方法存在着不对称性。因变量被当作是统计的、随机的,也就是它有一个概率分布。而解释变量则被看作是(在重复抽样中)取固定值的。
相关分析中,任何(两个)变量的处理方法都是对称的;因变量和解释变量之间不加区别;两个变量都被看作是随机的。
五、术语与符号
计量经济学可定义为实际经济现象的数量分析。这种分析基于理论与观测的并行发展,而理论与观测又通过适当的推断方法得以联系。
计量经济学可定义为这样的社会科学:它把经济理论、数学和统计推断作为工具,应用于经济现象的分析。
2.研究对象和研究方法
计量经济学研究经济定律的经验判定。计量经济学家的艺术,就在于找出一组足够具体且足够现实的假定,使他尽可能最好地利用他所获得的数据。
图1-3
b.如图1-3所示,这六个国家的通货膨胀率与美国的通货膨胀率正相关。
c.相关并不意味着因果关系。从逻辑上说,回归得到的统计关系式本身不可能意味着任何因果关系。肯德尔和斯图亚特认为,一个统计关系式永远不能确立因果方面的联系,对因果关系的理念,必须来自统计学以外的某种理论。
3.表1-3给出了9个工业化国家1985~2006年间的外汇汇率数据。除英国外,汇率都定义为一美元兑换外币的数量;而英国的汇率定义为一英镑兑换美元的数量。
资料来源:Economic Report of the President,2007,Table l08,P.354.
计量经济学笔记
解释变量观测值的平均值和被解释变量观测值的平均值处于 OLS 回归线上。
将被解释变量取值 yi 分解成拟合值和残差两个部分,������! = ������! + ������!。定义总体平方和 SST
N
2
∑ 为 ( yi − y) ,解释平方和 SSE 为 !!!!(������! − ������)!,残差平方和 SSR 为 !!!!(������!)!,则可定义
∑ 1
N
N
u
2 i
,但是由于
ui
是非观测值,所以我们可以用残差
u
来代替,但此时由于假定
1,2
i =1
∑ 对残差做了限制,所以这里的自由度是
N-‐2
而不是
N,即 σ2
=
1 N −2
N i=1
u i2
。将此估计量放
入到对 β1 的估计量的样本方差公式中就可以得到有关 β1 样本方差的无偏估计量。
Assumption 1-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐ E( y − β0 − β1x) = 0 Assumption 2-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐ E(x( y − β0 − β1x)) = 01
该无偏性应是以x!, … ,x!为条件的无偏性。但是对于横截面数据,在 Assumption2 的随机
抽样假定下,由于(x!, … ,x!)提供的信息集和 xi 提供的信息集一样都是总体的信息集,
计量经济学复习笔记(二):一元线性回归(下)
计量经济学复习笔记(⼆):⼀元线性回归(下)回顾上⽂,我们通过OLS推导出了⼀元线性回归的两个参数估计,得到了以下重要结论:ˆβ1=∑x i y i∑x2i,ˆβ0=¯Y−ˆβ1¯X.注意总体回归模型是Y=β0+β1X+µ,同时我们还假定了µ∼N(0,σ2),这使得整个模型都具有正态性。
这种正态性意味着许多,我们能⽤数理统计的知识得到点估计的优良性质,完成区间估计、假设检验等,本⽂就来详细讨论上述内容。
1、BLUE我们选择OLS估计量作为⼀元线性回归的参数估计量,最主要的原因就是它是最⼩⽅差线性⽆偏估计(Best Linear Unbiased Estimator),这意味着它们是:线性的。
⽆偏的。
最⼩⽅差的。
不过,光给你这三个词,你可能会对定义有所困扰——⽐如,关于什么线性?⼜关于什么是⽆偏的?我们接下来就对OLS估计量的BLUE性详细讨论,包括简单证明。
原本我认为,证明在后⾯再给出会更合适,引⼊也更顺畅,但是我们接下来要讨论的许多,都有赖于OLS估计量的BLUE性,因此我还是决定将这部分内容放在这⾥。
⾸先是线性性,它指的是关于观测值Y i线性,这有什么意义呢?注意到,在之前的讨论中,我们总讨论在给定X的取值状况下的其他信息,如µ的条件期望、⽅差协⽅差等,因此我们往往会在这部分的讨论中将X视为常数(⽽不是随机变量)看待,这会带来⼀些好处。
⽽因为µ∼N(0,σ2)且µi是从µ中抽取的简单随机样本,且µi与X i⽆关,所以由正态分布的性质,有Y i|X i∼N(β0+β1X i,σ2).实际上,由于参数真值β1,β1是常数,所以每⼀个Y i在给定了X i的⽔平下,都独⽴地由µi完全决定,⽽µi序列不相关(在正态分布的情况下独⽴),所以Y i之间也相互独⽴。
这样,如果有⼀个统计量是Y i的线性组合,那么由正态分布的可加性,这个统计量就⾃然服从正态分布,从⽽我们可以很⽅便地对其进⾏参数估计、假设检验等。
计量经济学复习笔记(注释)
计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究主体是经济现象及其发展变化的规律。
2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。
被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。
内生变量:其数值由模型所决定的变量,是模型求解的结果。
外生变量:其数值由模型意外决定的变量。
外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。
前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。
前定变量:前定内生变量和外生变量的总称。
数据:时间序列数据:按照时间先后排列的统计数据。
截面数据:发生在同一时间截面上的调查数据。
面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性 模型就变量而言是线性的;模型就参数而言是线性的。
Y i =β1+β2lnX i +u i线性影响 随机影响Y i =E (Y i |X i )+u i E (Y i |X i )=f(X i )=β1+β2lnX i引入随机扰动项,(3)古典假设A 零均值假定 E (u i |X i )=0B 同方差假定 Var(u i |X i )=E(u i 2)=σ2C 无自相关假定 Cov(u i ,u j )=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i2 ^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。
计量经济学重点内容笔记讲
一、基本概念:估计量与估计值所谓估计量就是指估计总体参数地一种方法•在该方法下,给定一个样本,我们可以获得一个具体地估计结果,该结果就是所谓地估计值•例如,基于一个样本容量为N地样本,其中为第i次观测值,我们用样本均值来作为对总体均值地估计.在这里,就属于估计量,由于其取值随着样本地变化而变化,因此它是随机地.现在假设我们持有A、B两个样本:与,则基于这两个样本,可以计算出:文档来自于网络搜索分别是估计量可能地取值,它们就是估计值•既然估计量是随机变量,那么它一定服从某种分布,由于估计量与抽样相联系,因此我们把估计量所服从地分布称为抽样分布.有关统计学地一些基本知识请参见本讲附录一一.文档来自于网络搜索笔记:观测值是随机变量地一个可能地取值.我们用样本均值来估计总体均值,实际上就是用来估计.在数理统计中,这被称为矩估计,因为被称为样本(一阶)矩,而被称为总体(一阶)矩.矩估计其要点可以归结为,符号与符号E相对应. 我们再来看看矩估计思想地一个应用.为了估计随机变量地方差E[- E()]2(也即总体方差),在矩估计法下,则方差估计量将是:.应该注意到,这个方差估计量是有偏估计,而才是方差地无偏估计.如果样本容量很大,这两个估计量相差无几,事实上两者都是方差地一致估计量.这个例子暗示,矩估计并不一定会获得一个无偏地估计量,但将获得一个一致地估计量.关于估计量无偏性与一致性地基本含义见附录1文档来自于网络搜索二、高斯-马尔科夫假定对于模型:,贝叽相应地OLS估计量就是:在一些重要地假定下,OLS估计量表现出良好地性质.我们把这些假定称为高斯-马尔科夫假定.•假定一:真实模型是:.有三种情况属于对该假定地违背:(1)遗漏了相关地解释变量或者增加了无关地解释变量;(2)y与x间地关系是非线性地;(3)并不是常数.文档来自于网络搜索笔记:1、遗漏了地解释变量将进入误差项,从而这很可能导致误差项不在满足下面所列举地一些假定;如果真实模型是非线性地,但我们却用一条直线来近似它,显然这是南辕北辙;如果参数并不是常数,然而我们却基于特定样本用一些常数去近似它们,这显然也不合理地.文档来自于网络搜索2、经济学理论或许很少直接认为y与x地关系是线性地,y与x具有非线性关系可能更符合现实.然而把模型建立成非线性形式常常会付出代价,因为非线性模型其待估计地参数可能更多,从而导致自由度地耗费,带来估计精度地下降.另外,从数学上讲,利用泰勒展开,我们也常常可以用一个线性模型去近似非线性模型.文档来自于网络搜索•假定二:对解释变量地N次观测即被预先固定下来,即不会随着样本地变化而发生变化,是一个非随机列向量.显然,如果解释变量含有随机地测量误差,那么该假定被违背.还存其他地违背该假定地情况.文档来自于网络搜索笔记:1、被假定不会随着样本地变化而发生变化,但这并不意味着在一个给定地样本中.事实上,在含有一个截距与一个解释变量地简单线性回归模型中,将意味着OLS 估计量失去意义,见高斯-马尔科夫假定六.文档来自于网络搜索2、被假定为非随机并不是一个标准假定,然而在该假定下数学处理要简单得多,而且OLS基本地涵义也并未丧失.是随机地情况更一般化,此时,高斯- 马尔科夫假定二被更改为:对任意与,与不相关,此即所谓地解释变量具有严格外生性.显然,当非随机时,与必定不相关•事实上,假定二其最终目地在于保证与不相关.文档来自于网络搜索3、在建立模型时,我们总是希望误差项是由一些不重要、没有任何信息价值地成分所构成.如果与相关,这意味着误差项还具有一定地信息价值,因此在某种程度上可以认为,我们预先建立地模型是不完备地.应该注意到,如果模型遗漏了解释变量,而这些被遗漏地解释变量又与已存在地解释变量是相关地,那么这将导致误差项与已存在地解释变量是相关地.文档来自于网络搜索4、为了理解非随机性地假定,我们考虑如下一个例子.我们试图考察受教育年限(x)对收入(y)地影响.假定我们预先知道总体中有1%地人口接受了22 年地学校教育;有3%地人口接受了19年地学校教育;有10%地人口接受了16 年地学校教育….现在,我们进行一个样本容量为1000地抽样调查.为了使样本尽量反映总体地情况,我们要求样本中有10人接受了22年地教育;有30人接受了19年地教育;有100人接受了16年地教育.这种抽样技术被称为分层随机抽样(Stratified random sample .在抽样中,设定前10次观测对象是那些接受了22年地教育地人,接下来是那些接受了19年教育地人….在这种方法下我们可以获得多个样本,但被预先固定下来,即它不会随着样本地变化而发生变化.文档来自于网络搜索•假定三:误差项期望值为0,即.笔记:1、当随机时,标准假定是:根据迭代期望定律有:,因此,如果成立,必定有:.另外,根据迭代期望定律也有:而•故有:因此,在是随机地情况下,假定二、三可以修正为一个假定:2、所谓迭代期望定律是指:如果信息集,则有.无条件期望所对应地信息集是空集,因此按照迭代期望定律必有:•本讲义第十讲对该定律进行了更为详细地介绍.文档来自于网络搜索3 、回忆第一讲,对模型,在OLS法下我们一定能保证:(1)残差均值为零;(2)残差与x样本不相关.我们希望残差是对误差地良好近似,但如果假定二、三不成立,即,误差项期望值不为零,误差项与解释变量相关,显然此时残差并不是对误差项地良好近似.由于,,因此,如果残差并不是对误差项地良好近似,那么参数地OLS估计量就不是对真实参数良好地近似.由此看来,为保证OLS估计量具有良好地性质,假定二、三地成立非常重要.文档来自于网络搜索4 、当假定成立时,必有;,进而(在这里对各随机变量未加注脚标,这是因为无论脚标是什么,相关等式都成立.现在我们来利用所谓地矩估计思想.误差项观测不到,故我们不得不把残差当做是对误差地观测.于是按照矩估计思想有:;,而这两个式子正是OLS估计法中地两个正规方程,由正规方程就可以得到参数地OLS估计量.由此看来,当假定成立时,OLS估计不过是矩估计地特例.如果知道了这一点,我们就会很快地记住OLS估计量公式:当时,.用样本协方差与样本方差代替总体协方差与总体方差,则有:.我们以后在学习工具变量估计法时,将再次体会到矩估计思想地重要性.文档来自于网络搜索可以发现,矩估计仅仅涉到了x与同期不相关地假定,从这个意义上讲,这个条件过于强了,但只有在这个条件下OLS估计量地无偏性才能保证成立,这可参见更高级地教科书.文档来自于网络搜索•假定四:,即所谓地同方差假定.笔记:1、在是随机地情况下,该假定修订为:2、如果误差项是异方差地,那么N个误差项将具有N个不同地分布.如果把残差近似为对误差地观测,则此时每一个分布下只有一次观测,显然仅凭一次观测我们很难对随机变量地分布性质进行统计分析.文档来自于网络搜索•假定五:,即所谓地序列不相关假定.笔记:1、在是随机地情况下,该假定修订为:2、如果误差项序列相关,这表明误差项还含有系统性地、可资利用地信息.但如果我们已建立地线性模型是完备地,那么假定误差项序列不相关就显得相当自然了.文档来自于网络搜索•假定六:,在多元回归中,该假定演变为地逆存在,即矩阵列向量线性无关.笔记:1、假定六是最基本地,因为违背该假定则OLS估计量地相关公式就失去了意义•但假定六在实践中最不值得担心,因为当该假定被违背时,计量软件将立即告诉我们此时无法进行计算.文档来自于网络搜索2、在模型含有截距地情况下,矩阵列向量线性无关这个条件要强于各解释变量线性无关这个条件.高斯-马尔科夫假定二、三、四、五都可以被归结为对误差项性质地假定,而假定一部分可以认为是对误差项性质地假定.假定六是关于参数可识别地假定.结合OLS地代数性质,我们是不是可以直接感觉到假定一、二、三地重要性?但不幸地是,初级计量经济学经常把重心放在了假定四、五上了.文档来自于网络搜索怎么让我们相信假定一至五是成立地呢?首先我们应尽量利用经济学理论来判断相关假定地合理性,其次我们可以进行一系列计量经济检验.应该注意到,假定一至五基本上都涉及到对误差项分布性质地假定,因此计量经济检验可以说就是检验误差项地分布性质.不过困难之处在于,误差项不可观测.但如果高斯-马尔科夫假定成立,残差将是对误差地良好近似,于是,我们可以通过分析残差地性质来间接推断误差项地分布性质.文档来自于网络搜索三、高斯-马尔科夫定理当高斯-马尔科夫假定成立时,在所有线性无偏估计量中,OLS估计量方差最小,即OLS估计量是最有效地.换句话说,当高斯-马尔科夫假定成立时,O LS估计量是最优线性无偏估计量(Best linear unbiased estimator, BLUE),此即高斯-马尔科夫定理.文档来自于网络搜索笔记:1、对一个估计量,我们希望它具有什么样地性质?(1)简单实用.随着计量软件地发展,这一点可能不那么重要了;(2)不同地人利用不同地样本得到不同地估计结果,但我们希望平均来看,估计结果将是准确地,此即估计量地无偏性;(3)不同地人利用不同地样本得到不同地估计结果,但我们希望这些结果差异不要太大,事实上差异越小越好,即估计量地方差越小越好,此即估计量地有效性;(4)如果把总体全部展示在我们面前,则我们希望所利用地估计量能够得到真实地参数值,此即估计量地一致性.显然一致性是一个合理地估计量应该满足地最低要求.如果把事情地真相都告诉你了,你却依据一估计方法得到错误地结果,那么这个估计方法一定是一个垃圾!文档来自于网络搜索2、我们很希望一个无偏估计量也是有效地.下面一个调侃计量经济学家地笑话或许有助于我们理解这一点.三个计量经济学家去森林中打猎.一个计量经济学家一枪击到一头野猪前面五米处,一个计量经济学家一枪击到这头野猪后面五米处,第三个计量经济学家高兴得跳起来喊道,“击中了!击中了!我们平均击中了!” .文档来自于网络搜索3、一个估计量可能是有偏地、无效地,但如果满足一致性,它也是有用地.因为当我们手中地样本容量确实很大时,那么基于这个一致估计量地估计结果应该是对真实参数良好地近似.我们在前面地笔记中曾提到,如果假定二、三不成立,则残差并不是对误差项地良好近似,进而参数地OLS估计量就不是对真实参数良好地近似•由此看来假定二、三地成立对于保证OLS估计量地一致性非常重要.文档来自于网络搜索(一)OLS估计量是线性估计量所谓OLS估计量是线性估计量,是指它能够被表示为地线性函数.例如:在这里我们定义.应该注意到,在假定二下,k i是非随机地.练习:把表示成地线性函数:,其中.笔记:可以从数学上验证:另外一种简单地验证方式是:(1)假定被解释变量与解释变量都是x,那么回归直线地斜率将为1,截距将为0,即有:文档来自于网络搜索(2)假定被解释变量取值恒为1,那么回归直线地斜率将为0,截距将为1,即有:(二)OLS估计量具有无偏性:;证明:注意到;,再利用高斯-马尔科夫假定三:,于是有:.笔记:1 、在是随机地情况下,我们需证:2、我们在证明无偏性实际上应用了高斯-马尔科夫假定一、二、三. 练习:证明(三)在所有线性无偏估计量中,OLS估计量方差最小1、OLS估计量地方差利用高斯-马尔科夫假定五:与高斯-马尔科夫假定四:有:.注意到:因此有:笔记:1、,当N趋于无穷大时,样本方差收敛于总体方差,故当N趋于无穷大时,趋于0.由于,因此,当N趋于无穷大时,在概率上收敛于,即是地一致估计量.你能够表明是地一致估计量吗?文档来自于网络搜索2我们得到上述方差公式时实际上利用了高斯-马尔科夫假定一、二、四、五.当上述假定不成立时,上述公式无意义.文档来自于网络搜索练习:(1)证明在高斯-马尔科夫假定下:(2)证明在高斯-马尔科夫假定下:2、OLS估计量地有效性任意一种线性估计量都可表示为,当时,该估计量即为地OLS估计量.现在我们将证明:在所有无偏地地线性估计量中,OLS估计量具有最小地方差.文档来自于网络搜索“在所有无偏地地线性估计量中”是一个前提条件.我们地任务是,在给定前提下(约束条件),证明OLS估计量所对应地权数使方差(目标函数)取最小值.文档来自于网络搜索首先分析前提条件:线性估计量地表达是为了保证地无偏性,那么下面地等式应该恒成立:因此,.其次分析方差表示:在高斯-马尔科夫假定四、五下,有:■最后,形成数学问题:常数只影响目标函数值但不影响地选择,因此在求解上述优化问题时可以省去. 对上述极值问题,其拉格朗日函数是:相应地一阶条件是:把(3group)中各式相加并利用(4)有:把(3group)中第i式两边同时乘以后再各式相加,然后利用(5),有:由(6)、(7)有:于是我们已知道这个权数正是地OLS估计量所对应地权数,故问题得证.练习:证明在所有地线性无偏估计量中OLS估计量其方差是最小地.笔记:线性性质不过是OLS估计量在假定一下所具有地代数性质,无偏性与有效性才是高斯-马尔科夫定理所强调地•高斯-马尔科夫定理为OLS地广泛应用提供了理论依据.当然问题是,该定理涉及到如此众多地假定,这些假定同时成立实属罕见!从而这涉及到两个问题:(1)如何检验这些假定?(2)如果一些假定并不成立,那么OLS估计量具有什么性质?此时我们应该采取何种估计方法?本讲义后续章节将讨论这些问题.文档来自于网络搜索在附录二中,本讲义提供了很多教科书对高斯-马尔科夫地另外一种证明形式四、补充知识点(一)估计误差地方差模型中地误差项其方差经常未知而有待估计.可以证明,在高斯-马尔科夫假定下,对误差项地一个无偏估计是:为简单计,考虑一元线性回归模型地情况,此时k=1.我们需要证明.证明:在高斯马尔科夫假定下,有:因此,,故.注意到:而因此有:故:因此,笔记:1、实际上是残差地样本方差[在含截距地简单线性回归模型中,残差地自由度是N-2].误差是观测不到地,但我们能利用样本得到残差.直观来看,我们可以利用残差地样本方差来作为对误差方差地估计.上述证明结果表明,这个估计还是无偏地.文档来自于网络搜索2、在第一讲谈到自由度调整时,我们曾经举个一例:当计算样本方差时如果注意自由度调整,我们将得到一个对总体方差地无偏估计.文档来自于网络搜索3、只有残差是对误差地良好近似时,基于残差地样本方差来估计误差地方差才是合理地.因此,高斯-马尔科夫假定非常重要地.例如,如果违背假定四,即误差项是异方差地,那么我们利用一个不会随着i地变化而变化地数(会随着i地变化而变化吗?)去估计一系列随i而变化地参数(误差项方差随i地变化而变化),显然这是不合理地.文档来自于网络搜索应该注意,尽管在高斯-马尔科夫假定下是对地无偏估计,然而并不是对地无偏估计,不过可以证明是对地一致估计.被称为“回归地标准误”(standard error of regression,SER .文档来自于网络搜索笔记:1、为什么在高斯-马尔科夫假定下是对地无偏估计,但并不能由此推出是对地无偏估计?从数学上可以表明,当是非线性函数时,由不能推出•事实上由利用Jen sen不等式有:文档来自于网络搜索,而所谓Jen sen不等式是指:,g是凸函数(凸向原点);,g是凹函数(凹向原点)•2、另外还可以证明是对地一致估计,即:.概率极限运算具有如下性质:由上述性质,则•按照定义,是标准差,是非负地,故有:,即,如果是对地一致估计,则是对地一致估计,反之亦然.文档来自于网络搜索(二)基于样本回归直线地预测假定真实模型是:,模型满足高斯-马尔科夫假定.利用OLS法得到:•现在我们获得一次新地观测,然而此次观测只获得X地取值X f,现在我们考虑基于样本回归直线来预测y f和E(y f).文档来自于网络搜索1、预测y f以作为对y f地预测.则预测误差是:.显然E(ei)=0 ;笔记:1、地随机性来源于.与是不相关地,因此与无关.2、根据上述表达式可知,当时,预测误差方差最小.直觉是什么呢?以工资对教育水平回归为例.首先你基于一个样本得到估计结果,该样本主要由具有初中和高中学教育水平地人构成.想一想,如果利用已有地回归结果去预测一位博士地收入,预测精度会高吗?如果利用已有地回归结果去预测一位小学可能都未读完地人地收入,预测精度会高吗?文档来自于网络搜索2、预测E(y f)以作为对E(y f)地预测.此时预测误差是:显然,E(62)=0.比较可知,尽管既是y f地无偏预测也是E(y f)地无偏预测,但它更适合作为对E(y f) 地预测.直觉上,由于y f是随机地而E(y f)是非随机地,因此对y f地预测应该难于对E(y f)地预测,即对y f地预测精度应该低于对E(y f)地预测精度上述两种预测都属于点预测.还有一种预测被称为区间预测,参见第三讲附录附录一:通过例子学习统计学知识(一)期望值、均值、估计量、估计值在座各位所形成地班级是一个总体,总体地平均身高()等于各位同学身高之和除以总人数.我打算利用样本平均身高来估计总体参数.现在我将从在座各位中随机抽取N 位同学以形成一个样本容量为N地样本.记为第i次被抽取同学地身高.在第i次抽取具体实施之前,是一个随机变量,而各位同学地身高都是该随机变量可能地取值.由于班级中地每位同学都等可能地被抽到,因此,这个随机变量地期望值()就是总体地平均身高().我将进行N次抽取,当N次抽取都未具体实施时,那么由所构成地样本是随机样本,而相应地样本均值也是随机地,即,作为地估计量,它是随机地•在N次抽取都已经具体实施之后,我获得了一个特定地样本,该样本均值是非随机地,它实际上就是随机变量地一个可能取值,即所谓地估计值.文档来自于网络搜索(二)无偏性、一致性事实上我可以获得无限多个样本容量等于N地特定地样本,因此相应会有无限多地样本均值.如果这些样本均值地再平均等于总体均值,这就意味着样本均值是总体均值地一个无偏估计量[成立吗?请证明].应该注意到,利用特定地样本计算出一个样本均值,该样本均值恰好等于是不太可能地.但如果样本均值是总体均值地无偏估计,那么平均来看,样本均值等于总体均值[对谁平均?].文档来自于网络搜索对于随机样本,如果样本容量越大,那么利用样本情况来反映总体情况就会越准确.如果样本容量为无穷大,那么该样本应该包含了在座地各位,因此,关于总体地任何信息都会被样本所包含.故从直觉上看,随着N地增加,估计量地方差应该会越来越小;当N趋于无穷时,等于地概率应该趋于1[请对这些结论进行严格地数学证明].如果当N趋于无穷时,等于地概率趋于1,则就是地一致估计量[回忆一下,数理统计中哪一个定理表明了样本均值是总体均值地地一致估计]. 文档来自于网络搜索附录二:证明高斯-马尔科夫定理地其他方式(一)无偏性再利用高斯-马尔科夫假定三:,贝即是地无偏估计量.(二)最小方差性1关于方差在高斯-马尔科夫假定五:及其假定四:下,2、证明方差最小我们已知道OLS估计量是线性无偏估计量,即,.假设是用其他估计方法得到地线性无偏估计量,设.因此,.当然,也是成立地.令,贝U必有:现在来求地方差:在高斯-马尔科夫假定五与假定四下,有:而故,.当时等号成立.注意,恰好是OLS估计量地方差.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
计量经济学读书笔记一
计量经济学读书笔记一一、计量经济学的概念计量经济学是指统计技术在处理金融问题中的应用。
计量经济学可用于检验金融理论、决定资产价格或收益、检验关于变量互相关系的假设、考察经济状况变化对金融市场的影响、预测金融变量的未来价值以及制定金融决策等方面。
数据类型金融问题的数量分析中,大致有三类数据可供使用:时间序列数据、横截面数据及综列数据。
(一)时间序列数据时间序列数据是指在一段时间内所收集的一个或多个变量的数据,与数据的观测、收集频率相关。
序列频率工业产值月度或季度货币供给周股票价值交易发生时通常要求同一模型中的所有数据具有相同的观测值。
运用时间序列数据可以解决以下问题:1、一国股票指数价值如何随国家宏观经济基础变量的变化而变化。
2、当一家公司宣布股利支付额时,其股票价格如何变化。
3、一国贸易赤字上升对该国汇率的影响。
(二)横截面数据横截面数据是某一时点上可收集的一个或多个变量的数据,比如这些数据可以是:1、关于网络股票交易经纪服务使用情况的调查。
2、纽约证券交易所股票收益率的横截面数据。
3、英国银行债券信用评级样本。
运用横截面数据可以解决以下问题:1、公司规模与其进行股票投资的回报率之间的关系。
2、一国GDP水平与其主权债务违约率之间的关系。
(三)综列数据综列数据同时具有时间序列数据和横截面数据的维度,如两年内一些蓝筹股的每日股价。
本书主要集中于时间序列数据及其应用,因为它在金融领域的应用更为普遍。
对于实际序列数据,通常用t来表示单个样本观测值,用T表示所有可用于分析的观测值。
对于横截面数据,单个样本观测值用i来表示,所有可用于分析的观测值用N表示无论回归方程式使用横截面数据还是时间序列数据,都用T来表示所有的观测值。
(四)金融模型中的收益率由于统计上的多种原因,一般直接使用价格序列,通常是把原始价格序列转换成收益率序列。
因为收益率具有无计量单位的优点。
有两种方法可用于从价格序列中计算出收益率:1、简单收益率Rt=(Pt-Pt-1)/Pt-1*100%一个资产组合的简单收益率是单个资产简单收益率的加权平均数。
计量经济学读书笔记
计量经济学读书笔记【篇一:很好的计量经济学读书笔记】很好的计量经济学读书笔记第一章:统计基础 ....................................................................................................... .. (2)第二章:计量经济学总论 ....................................................................................................... .. (7)第三章:双变量回归分析 ....................................................................................................... .. (9)第3.1回归方法 ....................................................................................................... .. (9)第3.2结果检验 ....................................................................................................... (10)第3.3回归参数的分布 ....................................................................................................... . (11)第四章:多变量回归分析 ....................................................................................................... (13)第五章:ols的基本假设 ....................................................................................................... .. (13)第六章:多重共线性 ....................................................................................................... .. (15)第七章:异方差性 ....................................................................................................... (16)第八章:自相关 ....................................................................................................... . (17)第九章:时间序列分析 ....................................................................................................... . (19)第十章:面板数据分析 ....................................................................................................... . (29)第十一章:其他重要的分析方法 ....................................................................................................... (47)******加权最小二乘法 ....................................................................................................... .. (48)******二阶段最小二乘法tsls ..................................................................................................... (48)******非线性最小二乘法 ....................................................................................................... . (49)******多项分布滞后(pdls) ............................................................................................ . (49)******广义矩估计 ....................................................................................................... . (50)******logit和probit模型 ....................................................................................................... (50)******因子分析 ....................................................................................................... .. (51)******granger因果分析 ....................................................................................................... .. (52)****** 广义线性回归(generalized leastsquares) (52)******格兰格因果检验 ....................................................................................................... .. (55)******误差修正模型(ecm) ............................................................................................ (55)第十二章:eviews ............................................................................................... .. (55)第12.1节eviews基本操作 ....................................................................................................... (55)第12.3节eviews时间序列分析 ....................................................................................................... . (57)第十三章:spss ................................................................................................... . (58)第13.1spss基本操作 ....................................................................................................... . (58)第十四章:数据分析实战经验 ....................................................................................................... . (67)第一章:统计基础0 常用英文词汇的统计意义 panel data=longitudinal data 是对各个个体进行连续观察的截面数据。
计量经济学复习笔记
第一章统计概念1.什么是计量经济学计量经济学是对经济的测度,利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学。
2.计量经济学的方法论(计量经济分析步骤)(1)建立理论假说。
(2)收集数据。
(3)假定数学模型。
(4)设立统计或计量模型。
(5)估计经济模型参数(6)核查模型的适用性:模型设定检验。
(7)检验源自模型的假定(8)利用模型进行预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。
特征是一般变量如 Y t、X t下标为t。
(2)截面数据:同一时点上的一个或多个变量的数据集合。
如:各地区2002年人口普查数据。
(3)合并数据:既包括时间序列数据有包括截面数据。
例:20年间10个国家的失业数据。
20年失业数据是时间序列,10个国家又是截面数据。
(4)面板数据:同一个横截面的单位的跨期调查数据。
例:对相同的家庭数量在几个时间间隔内进行的财务状况调查。
5.理解回归关系回归关系是一种统计上的相关关系,并不意味着自变量和因变量之间存在着因果关系。
第二章线性回归的基本思想1.回归分析的含义: 回归分析是反映的自变量和因变量之间的统计关系,回归分析是在自变量给定条件下的因变量的变化,是一种条件回归分析E(Y i|X i)=B1+B2X i2.随机误差项的性质(为什么要引入随机误差项)(1)随机误差项代表着未纳入模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。
(3)μ还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项 μ 。
(奥卡姆剃刀原则)3.参数估计方法———普通最小二乘法的基本思想 选择参数使得残差平方和最小——Min ∑e i 2=Min ∑(Y i −Yi ̌)2=Min ∑(Y i −b 1−b 2X i )^24.根据Ols 法得出参数 b 1 b 2 称为最小二乘估计量,最小二乘估计量的性质: (1)Ols 方法获得样本回归直线过样本均值点(X ,Y ) (2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。
经济计量学学习笔记
经济计量学学习笔记最近看了一段时间经济计量学,主要是用起来发现自己根本就不会,本来想看一个星期的,后来看了三个星期,也不敢说看懂了,感觉经济计量真的比较难。
怕自己忘记了,就赶紧记下来。
我学习的书主要由易丹辉老师的《数据分析与Eviews应用》、沃尔特·恩斯特(Walter Enders)的《应用计量经济学—时间序列分析》、杰弗里·M·伍德里奇(Jeffrey M. Wooldridge)的《计量经济学导论》,还打算看格林的《计量经济分析》,发现太难了,不适合我这种初学者。
这些书里面易丹辉老师的书非常好,适合初学计量和使用Eviews的人,《应用计量学—时间序列分析》对时间序列讲的很详细,《计量经济学导论》是一本入门书,但非常容易懂,不包括比较高深的VAR模型之类的内容。
经济计量学是用计量方法来反映经济数据之间的关系,由于现实生活有很多无法测量的因素,所以概率论在计量经济学中有极其重要的作用。
数据主要分为下列几种:1)横截面数据:形象来说就是某一时间点上对个人、家庭、企业、城市、省份、国家或一系列单位采集的样本数据。
主要是用来分析某些变量在这些实体内部的关系,比如学校的规模、级别是否对学生的成绩有影响,企业的规模、行业是否对CEO的业绩有影响,这都可以通过收集多个学校或多个企业的数据来进行分析。
2)时间序列数据:对一个或几个变量在一个时间轴上收集的数据,比如每天的股票信息、每年的GDP、每月的CPI数据等。
3)面板数据:是在一个时间轴上收集的横截面的数据的集合,比如收集10年的企业规模、行业以及CEO薪酬的数据,可以不仅可以分析出规模和行业对薪酬的影响,还可以分析出时间的影响。
一、横截面数据(一)、前言学习经济计量学一定会学到几个经典假设,对于线性模型来说,基本来说是要求如下:1)假定1 (参数线性)总体模型可以写成其中是未知参数(常数),是无法观测的随机误差或者随机干扰。
计量经济学读书笔记
计量经济学读书笔记计量经济学是经济学最具有科学性的领域之一。
在理解计量经济学的同时,我意识到它不仅仅是一个工具,而且是一种思维方式。
在这里,我将分享一些我在阅读计量经济学方面学到的重要概念和思考方式。
首先,我注意到计量经济学的核心是关于如何建立数学模型和研究统计数据的方法。
正如经济学领域的其他分支一样,建立模型是十分重要的,因为模型能够使我们推断出一些有用的结论。
为了建立一个有效的模型,我们必须确定我们要研究的变量,以及它们之间的关系。
我们也需要考虑到其他可能影响这些变量的因素,以便我们可以隔离出我们关注的因素。
建立模型和使用经济理论来指引我们的研究是计量经济学的核心。
其次要注意到的是,统计分析是计量经济学研究的基础。
当我们有了一个模型,我们需要从数据中收集信息来验证我们的模型是否准确。
然后,我们需要使用统计分析方法来计算出研究结果和模型是否存在显著的关系。
这个过程并不容易,因为我们必须考虑到潜在的偏差,把数据分开来观察,分析数据误差和其他问题。
然而,正确的统计分析结果是研究的关键,它可以提供我们的模型是否正确的真实反馈。
另一个有趣的角度是,计量经济学强调众多可能导致结论不准确的问题和难题。
例如,可能会出现一个误差项。
当我们的模型没有考虑到特定的变量,或者数据不够详细,误差项就会出现。
我们必须尝试最小化误差项的影响,并且考虑如何在未来的研究中避免其出现。
此外,其他问题,如共线性问题,也需要考虑和避免,以使我们的估计结果更为精确。
在计量经济学的研究中,应该注意到数据源的问题。
这些数据源可能不够及时,准确或者无偏。
因此,我们需要仔细考虑如何处理数据并尽量减少数据误差的影响。
我们可以使用各种方法,比如样本对齐,插值,外推等,来完善我们的数据。
最后总结下来,在学习计量经济学的过程中,我已经学到了许多重要的概念和思考方式。
例如,建立模型和使用统计分析可以帮助我们更好地理解我们关心的变量及其之间的关系。
此外,我们还需要关注误差项,共线性以及数据源本身的问题,以便我们的研究结果更为精确。
计量经济学笔记
1、费里希(R.Frish)是经济计量学的主要开拓者和奠基人。
2、经济计量学与数理经济学和树立统计学的区别的关键之点是“经济变量关系的随机性特征”。
3、经济计量学识以数理经济学和树立统计学为理论基础和方法论基础的交叉科学。
它以客观经济系统中具有随机性特征的经济关系为研究对象,用数学模型方法描述具体的经济变量关系,为经济计量分析工作提供专门的指导理论和分析方法。
4、时序数据即时间序列数据。
时间序列数据是同一统计指标按时间顺序记录的数据列。
5、横截面数据是在同一时间,不同统计单位的相同统计指标组成的数据列。
6、对于一个独立的经济模型来说,变量可以分为内生变量和外生变量。
内生变量被认为是具有一定概率分布的随机变量,它们的数值是由模型自身决定的;外生变量被认为是非随机变量,它们的数值是在模型之外决定的。
7、对于模型中的一个方程来说,等号左边的变量称为被解释变量,等号右边被称为解释变量。
在模型中一个方程的被解释变量可以是其它方程的解释变量。
被解释变量一定是模型的内生变量,而解释变量既包括外生变量,也包括一部分内生变量。
8、滞后变量与前定变量。
有时模型的设计者还使用内生变量的前期值作解释变量,在计量经济学中将这样的变量程为滞后变量。
滞后变量显然在求解模型之前是已知量,因此通常将外生变量与滞后变量合称为前定变量。
9、控制变量与政策变量。
由于控制论的思想不断渗入经济计量学,使某些经济计量模型具有政策控制的特点,因此在经济计量模型中又出现了控制变量、政策变量等名词。
政策变量或控制变量一般在模型中表现为外生变量,但有时也表现为内生变量。
10、经济参数分为:外生参数和内生参数。
外生参数一般是指依据经济法规人为确定的参数,如折旧率、税率、利息率等。
内生参数是依据样本观测值,运用统计方法估计得到的参数。
如何选择估计参数的方法和改进估计参数的方法,这是理论经济计量学的基本任务。
11、用数学模型描述经济系统应当遵循以下两条基本原则:第一、以理论分析作先导;第二模型规模大小要适度。
(财务知识)计量经济学读书笔记最全版
(财务知识)计量经济学读书笔记最全版(财务知识)计量经济学读书笔记计量经济学读书笔记第壹部分基础内容一、计量经济学和相关学科的关系二、古典假设下计量经济学的建模过程1.依据经济理论建立模型2.抽样数据收集3.参数估计4.模型检验(1)经济意义检验(包括参数符号、参数大小等)(2)统计意义检验(拟合优度检验、模型显著性检验、参数显著性检验)(3)计量经济学检验(异方差检验、自相关检验、多重共线性检验)(4)模型预测性检验(超样本特性检验)5.模型的应用(结构分析、经济预测、政策评价、检验和发展经济理论)三、几个重要的“变量”1.解释变量和被解释变量2.内生变量和外生变量3.滞后变量和前定变量4.控制变量四、回归中的四个重要概念1.总体回归模型(PopulationRegressionModel,PRM)--代表了总体变量间的真实关系。
2.总体回归函数(PopulationRegressionFunction,PRF)--代表了总体变量间的依存规律。
3.样本回归函数(SampleRegressionFunction,SRF)--代表了样本显示的变量关系。
4.样本回归模型(SampleRegressionModel,SRM)---代表了样本显示的变量依存规律。
总体回归模型和样本回归模型的主要区别是:①描述的对象不同。
总体回归模型描述总体中变量y和x的相互关系,而样本回归模型描述所关的样本中变量y和x的相互关系。
②建立模型的依据不同。
总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。
③模型性质不同。
总体回归模型不是随机模型,而样本回归模型是壹个随机模型,它随样本的改变而改变。
总体回归模型和样本回归模型的联系是:样本回归模型是总体回归模型的壹个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
五、随机误差项的内容1.模型中被忽略的影响因素的影响2.模型关系设定不准确的影响3.变量的测量误差影响4.随机因素影响六、壹元线性回归模型的基本假定(古典假定)①零均值②同方差③无自相关性④解释变量和随机扰动项不相关⑤随机扰动项服从正态分布⑥解释变量之间不相关(多重共线性)(属于多元线性回归假定)七、OLS估计式特性(BestLinearUnbiasedEstimators)线性性(Linear,指参数估计量和分别为观测值和随机误差项的线性函数或线性组合)无偏性(Unbiased,指参数估计量和的均值分别等于总体参数值和)最小方差性(Best,有效性,指在所有的线性、无偏估计量中,最小二乘估计量和的方差最小)第二部分计量经济检验在古典线性回归模型中,应用最小二乘法估计的估计量具有BLUE 的特性,可是当模型不是线性模型和不满足古典假设的时候,最小二乘法估计的估计量不再有BLUE的特性。
计量经济学笔记(1-9章)
引言计量经济学建模方法:1)理论或假设的陈述;2)理论的数学模型的设定;3)理论的计量经济模型的设定;4)获取资料;5)计量经济模型的参数估计;6)假设检验;7)预报或预测;8)利用模型进行控制或制定政策。
第一章回归分析的性质1、回归分析:研究一个叫应变量的变量对另一个或多个叫做解释变量的变量的依赖关系,其用意在于通过后者的已知或设定值,去估计和预测前者的均值。
2、虚拟变数:定性变量或范畴变量。
3、时间序列数据:一个变量在不同时间取值的一组观测结果。
4、横截面数据:一个或多个变量在同一时间点上收集的数据。
5、实验资料:在保持一些因素不变的情况下收集数据。
、6、非实验资料:收集的资料不受研究者控制。
、7、回归分析的主要用意,是分析一个叫做应变量的变量,对另一个或多个叫做解释变量的变量的统计依赖性,这种分析的目的,是要在解释变量已知或固定值的基础上,估计和预测应变量的均值,实际上,回归分析的成功有赖于适用资料的获得。
、、第二章 双变量回归分析:一些基本概念1、总回归函数(PRF ):)()(i i X f X Y E =它仅仅表明在给定i X 下Y 分布的均值与i X 有函数关系,换句话说,他说出应变量的均值或平均值是怎样随解释变量变化的。
在几何意义上,总体回归曲线就是解释变量给定值时应变量的条件均值或期望值的轨迹。
、i i X X Y E 21)/(ββ+=:称为线性总体回归函数或简称线性总体回归。
2、PRF 的随机设定)/(i i i X Y E Y u -= 或 i i i u X Y E Y +=)/(i u 称为随机干扰项或随机误差。
是从模型中省略下来的而又集体地影响这应变量的全部变量的替代物。
)/(i X Y E 这一个成分被称为系统性或确定性成份;i u 为随机或非系统性成分。
若i i X X Y E 21)/(ββ+=ii i u X Y ++=21ββ3、随机干扰项的意义 1)理论的模糊性。
古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(时间序列计量经济学:一些基本概念)【圣才出品】
第21章时间序列计量经济学:一些基本概念21.1 复习笔记考点一:随机过程★★★★1.定义一个随机过程就是随机变量按时间编排的集合,也称作时间序列。
如果令Y表示一个随机变量,而且是连续的,那么就记之为Y(t),但若它是离散的,则记之为Y t。
2.平稳随机过程(1)弱平稳性弱平稳过程又称协方差平稳、二阶平稳或广义随机过程,是指一个随机过程的均值和方差在时间过程上保持常数,并且在任何两时期之间的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间。
(2)弱平稳性时间序列的性质均值:E(Y t)=μ;方差:var(Y t)=σ2;协方差:γk=E[(Y t-μ)(Y t+k-μ)]。
如果一个时间序列是平稳的,它的均值、方差和(各种滞后的)自协方差都是常数,不随时间变化。
(3)纯随机或白噪音过程若一个随机过程的均值为0,不变方差为σ2,而且不存在序列相关,那就称之为纯随机过程或者白噪音过程。
3.非平稳随机过程经典的例子就是随机游走模型(RWM)。
把随机游走分为两类:不带漂移的随机游走(即不存在常数项或截距项)和带漂移的随机游走(即出现常数项)。
(1)不带漂移的随机游走不带漂移的随机游走,对于Y t,有Y t=Y0+∑u t。
因此,E(Y t)=E(Y0+∑u t)=Y0。
同理,可以证明var(Y t)=tσ2。
上式表明,不带漂移的随机游走模型是一个非平稳的随机过程。
随机游走模型的特征是,随机冲击(即随机误差项)的持久性:Y t等于初始的Y0加上各期随机冲击项之和。
结果是,一个特定的冲击永远也不会消失。
若将方程写成Y t-Y t-1=ΔY t=u t,容易证明,尽管Y t是非平稳的,但其一阶差分却是平稳的。
换言之,一个随机游走时间序列的一阶差分是平稳的。
(2)带漂移的随机游走方程为:Y t=Y t-1+δ+u t,其中δ被称为漂移参数,若将上述方程写成:Y t-Y t-1=ΔY t =δ+u t。
庞皓《计量经济学》笔记和课后习题详解(自相关)【圣才出品】
第6章 自相关6.1 复习笔记考点一:什么是自相关 ★★★1.自相关的概念自相关又称序列相关,是指总体回归模型的随机误差项u i 之间存在相关关系的一种现象。
在古典假定中假设随机误差项是无自相关的,即:Cov (u i ,u j )=E (u i u j )=0(i ≠j )。
如果该假定不能满足,就称u i 与u j 存在自相关,即不同观测点上的误差项彼此相关。
自相关系数可用来表示自相关的程度。
随机误差项u t 与滞后一期的u t -1的自相关系数ρ的计算公式为:1nt t u uρ-=∑式中u t -1是u t 滞后一期的随机误差项,因此上式计算的自相关系数ρ称为一阶自相关系数。
自相关系数ρ的取值范围为-1≤ρ≤1。
如果ρ<0,则u t 与u t -1间存在负相关关系;如果ρ>0,则u t 与u t -1间存在正相关关系;如果ρ=0,则u t 与u t -1不相关。
2.自相关产生的原因(见表6-1)表6-1 自相关产生的原因自相关关系主要存在于时间序列数据中,但是在横截面数据中也可能会出现,通常称横截面数据中出现的自相关为空间自相关。
多数经济时间序列在较长时间内都表现为上升或下降的趋势,因此大多表现为正自相关。
但就自相关本身而言,既有正相关也有负相关。
3.自相关的表现形式(1)一阶自相关随机误差项的一阶自相关形式为:u t=ρu t-1+v t(-1<ρ<1)。
其中,ρ为自相关系数;v t为满足古典假定的误差项,即E(v t)=0,Var(v t)=σ2,Cov(v t,v t+s)=0,s ≠0。
一阶自回归形式记为AR(1),相应的式中的ρ称为一阶自相关系数。
(2)m阶自相关如果一阶自相关中的随机误差项v t是不满足古典假定的误差项,即v t中包含有u t的成分,如包含有u t-2,…,u t-m的影响,则需将u t-2,…,u t-m包含在回归模型中,即:u t=ρ1u t -1+ρ2u t -2+…+ρm u t -m +v t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一分钟看完计量经济学!!!开学后的计量笔记
建模是计量的灵魂,所以就从建模开始。
一、
建模步骤:A,理论模型的设计:a ,选择变量b,确定变量关系c,拟定参数范围
B,样本数据的收集:a,数据的类型b,数据的质量
C,样本参数的估计:a,模型的识别b,估价方法选择
D,模型的检验
a , 经济意义的检验1 正相关
2反相关等等
b,统计检验:1 检验样本回归函数和样本的拟合优度, R 的平方即其修正检验
2 样本回归函数和总体回归函数的接近程度:单个解释变量显著性即t 检验,函数显著性即F 检验,接近程度的区间检验
c,模型预测检验1 解释变量条件条件均值与个值的预测
2 预测置信空间变化
d,参数的线性约束检验:1 参数线性约束的检验
2 模型增加或减少变量的检验
3参数的稳定性检验:邹氏参数稳定性检验,邹氏预测检验 ----------- -主要方法是以F 检验受约束前后模型的差异
e,参数的非线性约束检验:1 最大似然比检验
2沃尔德检验
3拉格朗日乘数检验------ 主要方法使用X 平方分布检验统计量分布特征
f , 计量经济学检验
1, 异方差性问题:特征:无偏,一致但标准差偏误。
检测方法:图示法, Park 与Gleiser
检验法, Goldfeld-Quandt 检验法, White 检验法----- 用WLS 修正异方差
2,序列相关性问题:特征:无偏,一致,但检验不可靠,预测无效。
检测方法:图示法,
回归检验法, Durbin-Waston 检验法, Lagrange 乘子检验法------ 用GLS 或广义差分法修正序列相关性
3 ,多重共线性问题:特征:无偏,一致但标准差过大,t 减小,正负号混乱。
检测方法:
先检验多重共线性是否存在,再检验多重共线性的范围 ------------ 用逐步回归法,差分法或
使用额外信息,增大样本容量可以修正。
4,随机解释变量问题:随机解释变量与随机干扰项独立---------- 对OLS 没有坏影响。
随机变量与随机干扰项同期相关:有偏但一致 ---- 扩大样本容量可以克服。
随机变量与随机干扰项同期相关:有偏且非一致------ 工具变量法可以克服
参数估计量性质的分析:a 小样本和大样本性质b 无偏性
c 有效性
d 一致性
e Gauss-Markov 定理
A 虚拟解释变量问题
a ,加法方式:定性因素对截距的影响
b,乘法方式:定性因素对斜率项产生的影响
c,加法与乘法结合方式:定性应诉对截距和斜率项同时产生影响
B 滞后变量问题
a,分布滞后模型:经验加权法,Almon 多项式法,Koyck 方法--- 来减少滞后项的数目b,自回归模型:工具变量法,OLS 法
C 模型设定偏误问题
a ,解释变量选取偏误1 漏选相关变量:OLS 在小样本下有偏,大样本下不一致
2 多选无关变量:OLS 估计量无偏且一致,但无效
b,模型函数形式选取偏误:OLS 有偏非一致且无效
c,1用t检验和f检验检验无关变量
2 用RESET 检验是否遗漏相关变量或模型函数选取错误
四、
联立方程计量经济学模型的单方程估计
a,工具变量法IV
b , ILS - ab 适用于恰好识别
c ,2SLS--- 适用于恰好识别和过度识别
五、
二元离散选择模型
a ,Probit 离散选择模型: 将随机干扰项的概率分布设定为标准正态分布 ----- 用最大似然估计 法或 GLS
b ,Logit 离散选择模型:将随机干扰项的概率分布设定为 logisti
c 分布得到 --- 用最大似然估 计法或 GLS
六、 随机时间序列模型:
a ,纯自回归 AR 模型----用Yule-Walker 方程或 OLS 估计
b , 纯移动平均 MA 模型
c , 自回归移动平均 ARMA 模型 ---- bc 可以用矩估计法,对非平稳的时间序列检验协整性可 用 Engle-Granger 两步法或直接估计法。
注:此文只是小弟开学读书笔记的总结 了 另:据小弟开学后了解的教材方面 最初入门书首推古扎拉蒂的《 计量经济学基础 》,上下两本, 想很快对计量经济学有全方位 认识的弟兄可以看这本书的精写版 《 经济计量学精要 》,机械工业出版社, 世纪馆书店就有 第二版卖,好几十块 --- 想要免费电子版的姐妹们可以联系我 == 。
伍德里奇的 《计量经济学导论 》真是讨论风格的啊,适合于中级使用, 高级的书最经典的莫 过于格林的《 计量经济学分析 》 ,还有《 Econometrics Introduction 》,中国人写的 书还是李子奈的《 计量经济学 》比较清楚,难度中级偏高级。
研究的方面, 微观注意面板数据, 宏观注意时间序列, 面板数据推荐伍德里奇的 《 横截面与 面板数据的经济计量分析 》,68 元,人大出版社,时间序列推荐汉米尔顿的《 时间序列分 析》,传说中的经典教材。
在此小弟加一句,尽量对照着英文看中文,因为翻译的很难 ==
Stata 方面,咱们人大图书馆三层英文借阅室有本《 Using 的 stata 的书都是以它为模本,在以 F222 开头的书架好像。
就这么多了,大家一起努力,共同进步!!!
只能当个工程表,让大家知道所学阶段和所用罢
Stata 》开头的书,据说,所有。