高中数学专题-空间中的垂直关系
高中数学--空间中的垂直关系
a⊥α
论
线也_垂__直__这个平面
目录
(3)直线与平面垂直的性质定理 文字语言 图形语言
符号语言
性 垂直于同一个
质 平面的两条直
定 线___平__行____
理
a⊥α b⊥α
目录
2.平面与平面垂直 (1)平面与平面垂直的判定定理
文字语言
图形语言
符号语言
判
一个平面过另一个
定 平面的___垂__线___,
目录
(3)证明:如图,过E作EG∥AB交PA于G,连接DG. ∵E为PB的中点,∴G为PA的中点. ∵DA=DP,故△DPA为等腰三角形,∴DG⊥PA.
目录
∵AB⊥平面 PAD,DG⊂平面 PAD, ∴AB⊥DG. 又∵AB∩PA=A,AB⊂平面 PAB,PA⊂平面 PAB, ∴DG⊥平面 PAB. 又∵GE 綊12AB,DF 綊12AB,∴GE 綊 DF.
目录
【名师点评】 证明面面垂直时一般先证线面 垂直,确定这条直线时可从图中现有的直线中 去寻找,若图中不存在这样的直线,则应通过 添加辅助线来构造.
目录
跟踪训练 2.(2011·高考江苏卷)如图,在四棱锥P-ABCD中,平 面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E, F分别是AP,AD的中点. 求证:(1)直线EF∥平面PCD; (2)平面BEF⊥平面PAD.
目录
2.证明线线垂直的方法 (1)定义:两条直线所成的角为90°; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:a⊥α,b⊂α⇒a⊥b; (4)线面垂直的性质:a⊥α,b∥α⇒a⊥b. 3.证明面面垂直的方法 (1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a⊂α,a⊥β⇒α⊥β.
空间几何中的垂直关系
空间几何中的垂直关系空间几何是数学中的一个重要分支,研究了在三维空间中的图形、形态和位置关系。
其中垂直关系是几何中的基本概念之一,它在建筑、工程、设计等领域都有广泛的应用。
本文将介绍空间几何中的垂直关系及其相关概念和性质。
1. 垂直关系的定义在空间几何中,两条直线、两个平面或者两个曲面相互垂直,意味着它们的方向互相垂直,不在同一平面上,并且它们的夹角是90度。
具体来说,垂直关系可以分为以下几种情况:1.1 直线的垂直关系空间中的两条直线相互垂直的判定条件有多种,最常用的方法是利用两条直线的方向向量之间的垂直性。
设直线L1的方向向量为a,直线L2的方向向量为b,若a·b=0,则直线L1与直线L2垂直。
1.2 平面的垂直关系两个平面相互垂直的判定方法一般都涉及到它们的法向量。
设平面P1的法向量为n1,平面P2的法向量为n2,若n1·n2=0,则平面P1与平面P2垂直。
1.3 直线与平面的垂直关系直线与平面相互垂直的条件也涉及到它们的方向向量和法向量。
设直线L的方向向量为a,平面P的法向量为n,若a·n=0,则直线L与平面P垂直。
2. 垂直关系的性质垂直关系有一些重要的性质,下面将介绍几个常见的性质。
2.1 垂直平面的夹角如果两个平面相互垂直,则它们的夹角是90度。
这一性质在空间几何中非常重要,可以用来判断两个平面是否相互垂直。
2.2 垂直直线与平面的关系如果一条直线垂直于一个平面,那么它一定位于该平面上的某条直径上。
这一性质可以应用到建筑设计、物理力学等领域。
2.3 垂直向量与平面的关系设一个向量与平面上的任意一条向量都垂直,那么这个向量一定垂直于该平面。
这一性质常用于计算向量与平面的垂直关系。
3. 应用实例垂直关系在实际应用中有很多场景,下面举几个例子进行说明。
3.1 平面墙与地板的垂直关系在建筑设计中,我们常常需要确保墙面与地板垂直,以保证建筑的稳定性和美观性。
3.2 直线与曲面的垂直关系在机械制造中,我们需要确保某些直线与曲面垂直,来实现零件的配合与连接。
第11讲 空间中垂直关系的判定与性质
空间中垂直关系的判定与性质一.基础知识整合1.直线与平面存垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直,记作l ⊥α.直线l 叫作平面α的垂线,平面α叫作直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫作垂足.(2)画法:通常把直线画成与表示平面的平行四边形的一边垂直,如图(3)判定定理文字语言 符号语言 图形语言如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直 ⎭⎪⎬⎪⎫l ⊥a l ⊥b a αb αa ∩b =P ⇒l ⊥α2.二面角(1)二面角:从一条直线出发的两个半平面所组成的图形,叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的记法:如图,记作:二面角α-AB -β,也可记作2∠α—AB —β.(3)二面角的平面角:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角,其中平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理文字语言符号语言 图形语言 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直⎭⎪⎬⎪⎫a αa ⊥β⇒α⊥β 4.直线与平面垂直的性质定理文字语言图形语言 符号语言 如果两条直线同时垂直于一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b文字语言图形语言 符号语言 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=l a αa ⊥l ⇒a ⊥β 题型一:线面垂直的判定 例1:如图所示,在Rt △ABC 中,∠B =90°,且S 为所在平面外一点,满足SA =SB =SC .D为AC 的中点.求证:SD ⊥平面ABC . 证明:∵在Rt △ABC 中,∠B =90°,且D 为AC 的中点,∴BD =AD =DC .又∵SA =SB =SC ,SD 为公共边,∴△SBD ≌△SAD ≌△SCD ,∴∠SDB =∠SDA =∠SCD =90°,∴SD ⊥AD ,SD ⊥BD ,∵AD ∩BD =D ,∴SD ⊥平面ABC .变式训练1:如图,已知AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,P A ⊥⊙O 所在的平面,AF ⊥PC 于F ,求证:BC ⊥平面PAC . 证明:因为AB 为⊙O 的直径,所以BC ⊥AC .因为P A ⊥平面ABC ,BC平面ABC ,所以P A ⊥BC .因为P A ∩AC =A ,所以BC ⊥平面P AC .题型二:面面垂直的判定例2:已知四面体ABCD 的棱长都相等,E ,F ,G ,H 分别为AB ,AC ,AD ,BC 的中点.求证:平面EHG ⊥平面FHG .证明:如图,取CD 的中点M ,连接HM ,MG ,FM ,则四边形MHEG为平行四边形.连接EM 交HG 于O ,连接FO .在△FHG 中,O 为HG的中点,且FH =FG ,所以 FO ⊥HG .同理可证FO ⊥EM .又HG ∩EM =O ,所以FO ⊥平面EHMG .又FO 平面FHG ,所以平面EHG ⊥平面FHG .变式训练2:如图,在空间四边形ABDC 中,AB =BC ,CD =DA ,E 、F 、G 分别为CD 、DA 和对角线AC 的中点.:求证:平面BEF ⊥平面BDG .证明:∵AB =BC ,CD =AD ,G 是AC 的中点,∴BG ⊥AC ,DG ⊥AC ,又EF ∥AC ,∴EF ⊥BG ,EF ⊥DG .∴EF ⊥平面BGD .∵EF 平面BEF ,∴平面BDG ⊥平面BEF .题型三:垂直关系的综合应用例3:如图,在三棱锥P—ABC中,P A⊥底面ABC,P A=AB,∠BCA=90°.点D,E分别在棱PB,PC上,且DE∥BC.(1)求证:BC⊥平面P AC;(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.证明:(1)∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又P A∩AC=A,∴BC⊥平面P AC.(2)存在点E使得二面角A—DE—P为直二面角.由(1)知BC⊥平面P AC,又∵DE∥BC,∴DE⊥平面P AC.又∵AE平面P AC,PE平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP为二面角A—DE—P的平面角.又∵P A⊥底面ABC,∴P A⊥AC.∴∠P AC=90°.∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°.故存在点E使得二面角A—DE—P是直二面角.变式训练3:如图所示,P A⊥平面ABC,AC⊥BC,AB=2,BC=2,PB=6,求二面角P—BC—A的大小.解:∵P A⊥平面ABC,BC平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC.又PC平面P AC,∴BC⊥PC.又BC⊥AC,∴∠PCA为二面角P—BC—A的平面角.在Rt△PBC中,∵PB=6,BC=2,∴PC=2.在Rt△ABC中,∵AB=2,BC=2,∴AC= 2.∴在Rt△P AC中,cos∠PCA=2,∴2∠PCA=45°,即二面角P—BC—A的大小为45°.题型四:线面垂直性质定理的应用例4:如图,在正方体ABCD-A1B1C1D1中,点E、F分别在A1D、AC上,且EF⊥A1D,EF⊥AC.求证:EF∥BD1.证明:如图所示,连接AB1、B1C、BD.∵DD1⊥平面ABCD,AC平面ABCD.∴DD1⊥AC.又∵AC⊥BD,且BD∩DD1=D,∴AC⊥平面BDD1.∵BD1平面BDD1,∴BD1⊥AC.同理可证BD1⊥B1C.∴BD1⊥平面AB1C.∵EF⊥A1D,A1D∥B1C,∴EF⊥B1C.又EF⊥AC,且AC∩B1C=C,∴EF⊥平面AB1C,∴EF∥BD1.变式训练3:如图,在正方体ABCD-A1B1C1D1中,点E、F分别在A1D、AC上,且EF⊥A1D,EF⊥AC.若G是AB的中点,则E在A1D上什么位置时,能使EG⊥平面AB1C?解:若EG⊥平面AB1C,因为BD1⊥平面AB1C,所以EG∥BD1.因为G为AB的中点,所以E为AD1的中点,即E为A1D的中点时,EG⊥平面AB1C.题型五:面面垂直性质定理的应用例5:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,求证:P A⊥平面ABC.证明:如图所示,在BC上任取一点D,作DF⊥AC于F,DG⊥AB于G,∵平面P AC⊥平面ABC,且平面P AC∩平面ABC=AC,∴DF⊥平面P AC,又∵P A平面P AC,∴DF⊥P A,同理DG⊥P A,又∵DF∩DG=D且DF平面ABC,DG平面ABC,∴P A⊥平面ABC.变式训练5:如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.求证:AM⊥PM.证明:如图连接AP.矩形ABCD中,AD⊥DC,BC⊥DC,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,∴AD⊥平面PDC,BC⊥平面PDC,又∵PD平面PDC,PC平面PDC,∴AD⊥PD,BC⊥PC,在Rt△P AD和Rt△PMC中,易知AP2=AD2+PD2=(22)2+22=12,PM2=PC2+MC2=22+(2)2=6,又∵Rt△ABM中,AM2=AB2+BM2=22+(22)2=6,∴AP2=PM2+AM2,∴AM⊥PM.题型六:垂直关系的综合应用例6:如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F A=FE,∠AEF=45°.(1)求证:EF⊥平面BCE;(2)设线段CD、AE的中点分别为P,M,求证:PM∥平面BCE.证明:(1)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD =AB,所以BC⊥平面ABEF.所以BC⊥EF.因为△ABE为等腰直角三角形,AB=AE,所以∠AEB=45°.又因为∠AEF=45°,所以∠FEB=90°,即EF⊥BE.因为BC平面BCE,BE平面BCE,BC∩BE=B,所以EF⊥平面BCE.(2)取BE的中点N,连接CN,MN,则MN綊12AB綊PC,所以PMNC为平行四边形.所以PM∥CN.因为CN在平面BCE内,PM不在平面BCE内,所以PM∥平面BCE.变式训练6:如图,四棱锥S-ABCD中,SD⊥平面ABCD,AB∥DC,AD⊥DC,AB=AD =1,SD=2,BC⊥BD,E为棱SB上的一点,平面EDC⊥平面SBC.(1)证明:DE⊥平面SBC;(2)证明:SE=2EB.证明:(1)连接BD,∵SD⊥平面ABCD,故BC⊥SD,又∵BC⊥BD,BD∩SD=D,∴BC⊥平面BDS,∴BC⊥DE. 作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE. 又∵BK平面SBC,BC平面SBC,BK∩BC=B,∴DE⊥平面SBC. (2)由(1)知DE⊥SB,DB=2AD= 2.∴SB=SD2+DB2=6,DE=SD·DBSB=233,EB=DB2-DE2=63,SE=SB-EB=263,∴SE=2EB.三.方法规律总结1.线面垂直的判定定理是证明线面垂直的主要方法,证明的关键是在平面内找到两条相交直线与已知直线垂直.2.在证明面面垂直时,一般方法是从一个平面内寻找另一个平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决(所作辅助线要有利于题目的证明),即由线面垂直证面面垂直.3.空间中线线、线面、面面之间的垂直关系可以相互转化,其转化关系如下:4.会用线面垂直的性质定理证明平行问题,用面面垂直的性质定理证明垂直问题.四:课后练习作业一、选择题1.设l、m为不同的直线,α为平面,且l⊥α,下列为假命题的是(B)A.若m⊥α,则m∥l B.若m⊥l,则m∥αC.若m∥α,则m⊥l D.若m∥l,则m⊥α【解析】A中,若l⊥α,m⊥α,则m∥l,所以A正确;B中,若l⊥α,m⊥l,则m∥α或mα,所以B错误;C中,若l⊥α,m∥α,则m⊥l,所以C正确;若l⊥α,m∥l,则m⊥α,所以D正确.2.在正方体ABCD—A1B1C1D1中,与AD1垂直的平面是(A)A.平面A1DCB1 B.平面DD1C1C C.平面A1B1C1D1D.平面A1DB【解析】连接A1D、B1C,由ABCD—A1B1C1D1为正方体可知,AD1⊥A1B1,AD1⊥A1D.故AD1⊥平面A1DCB1.3.如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是(C)A.BC∥平面PDF B.DF⊥平面P AEC.平面PDF⊥平面ABC D.平面P AE⊥平面ABC【解析】由题意知BC∥DF,且BC⊥PE,BC⊥AE.∵PE∩AE=E,∴BC⊥平面P AE,∴BC∥平面PDF成立,DF⊥平面P AE成立,平面P AE⊥平面ABC也成立.4.设α、β是两个不同的平面,l是一条直线,以下命题正确的是(C) A.若l⊥α,α⊥β,则lβB.若l∥α,α∥β,则lβC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【解析】A错,可能l∥β;B错,可能l∥β;C正确;D错,不一定l⊥β.5.设平面α⊥平面β,且α∩β=l,直线aα,直线bβ,且a不与l垂直,b不与l垂直,那么a与b (B)A.可能垂直,不可能平行B.可能平行,不可能垂直C.可能垂直,也可能平行D.不可能垂直,也不可能平行【解析】当a,b都平行于l时,a与b平行,假设a与b垂直,如图所示,由于b与l不垂直,在b上任取一点A,过点A作b′⊥l,∵平面α⊥平面β,∴b′⊥平面α,从而b′⊥a,又由假设a⊥b易知a⊥平面β,从而a⊥l,这与已知a不与l垂直矛盾,∴假设不正确,a与b不可能垂直.6.空间四边形ABCD,若AB、AC、AD与平面BCD所成角相等,则A点在平面BCD的射影是△BCD的(A)A.外心B.内心C.重心D.垂心【解析】设A点在平面BCD内的射影为O.可知,△OAB≌△OAC≌△OAD.∴OB=OC=OD,∴点O为外心.7.下列说法中正确命题的个数为(B)①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l不垂直于α,则α内没有与l垂直的直线;③如果一条直线与平面内的一条直线垂直,则该直线与此平面必相交;④如果一条直线和平面的一条垂线垂直,该直线必在这个平面内;⑤如果一条直线和一个平面垂直,该直线垂直于平面内的任一直线.A.0B.1C.2D.3【解析】如图(1)所示,l与α相交(不垂直),此时也有无数条直线与l垂直.故①②错误;如图(2)所示,l与α平行,此时平面内也存在无数条直线与l垂直,故③④错误;如图(3)所示,直线l与平面α的垂线m垂直,但l不在平面α内;由线面垂直的定义可知,⑤正确.8.如图,在正方形ABCD中,E、F分别为边BC,CD的中点,H是EF的中点,现沿AE、AF,EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是(A)A.AG⊥平面EFG B.AH⊥平面EFGC.GF⊥平面AEF D.GH⊥平面AEF【解析】∵AG⊥GF,AG⊥GE,GF∩GE=G,∴AG⊥平面EFG.9.如图,在四边形ABCD中,AD∥BC,AB=AD,∠BCD=45°,∠BAD=90°,将△ABD 沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列命题正确的是(B)A.平面ADC⊥平面BDCB.平面ABD⊥平面ABCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC【解析】在图①中,∵∠BAD=90°,AD=AB,∴∠ADB=∠ABD=45°.∵AD∥BC,∴∠DBC=45°.又∵∠BCD=45°.∴∠BDC=90°,即BD⊥CD.在图②中,此关系仍成立.∵平面ABD⊥平面BCD,∴CD⊥平面ABD.∵BA平面ADB,∴CD⊥AB.∵BA⊥AD,∴BA⊥平面ACD.∵BA平面ABC,∴平面ABC⊥平面ACD.10.如图,在正方体ABCD—A1B1C1D1中,点P在侧面BCC1B1上运动,并且总保持AP⊥BD1,则动点P在(A)A.线段B1C上B.线段BC1上C.BB1中点与CC1中点的连线上D.B1C1中点与BC中点的连线上【解析】连接AC,B1C,AB1,由线面垂直的判定可知BD1⊥平面AB1C.若AP平面AB1C,则AP⊥BD1.这样只要P在B1C上移动即可.二、填空题11.如图,在正方体ABCD—A1B1C1D1中,平面ACD1与平面BB1D1D的位置关系是________.垂直【解析】∵ABCD是正方形,∴AC⊥BD.又∵D1D⊥平面ABCD,AC平面ABCD,∴D1D⊥AC.∵D1D∩DB=D,∴AC⊥平面BB1D1D.∵AC平面ACD 1,∴平面ACD1⊥平面BB1D1D.12.如图所示,已知P A⊥平面α,PB⊥平面β,垂足分别为A、B,α∩β=l,∠APB=50°,则二面角α-l-β的大小为________.130°【解析】如图,设平面P AB∩l=O,连接AO,BO,AB,∵P A⊥α,lα,∴P A⊥l.同理PB⊥l,而PB∩P A=P,∴l⊥平面P AB,∴l⊥AO,l⊥BO,∴∠AOB即为二面角α-l-β的平面角.结合图形知∠AOB+∠APB=180°,∴∠AOB=130°.13.如图,已知平面α⊥平面β,在α与β的交线l上,取线段AB=4,AC、BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,则CD=______.13 cm【解析】连接BC.因为平面α⊥平面β,且α∩β=l,又因为BD平面β,且BD⊥l,所以BD⊥平面α.又∵BC平面α,∴BC⊥BD.所以△CBD也是直角三角形.在Rt△BAC中,BC=32+42=5.在Rt△CBD中,CD=52+122=13.所以CD长为13 cm.14.α,β是两个不同的平面,m ,n 是平面α与β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.若①③④,则②(或若②③④,则①)【解析】利用面面垂直的判定,可知①③④⇒②为真;利用面面垂直的性质,可知②③④⇒①为真.15.如图平面ABC ⊥平面BDC ,∠BAC =∠BDC =90°,且AB =AC =a ,则AD =_______a【解析】如图所示,取BC 的中点E ,连接ED ,AE ,∵AB =AC ,∴AE ⊥BC ,∵平面ABC ⊥平面BDC .∴AE ⊥平面BDC ,∴AE ⊥ED .在Rt △ABC 和Rt △BCD 中,AE =ED =12BC =22a ,∴在Rt △AED 中,AD =AE 2+ED 2=a .三、解答题16.如图所示,AB 是圆O 的直径,P A 垂直于圆O 所在的平面,M 是圆周上任意一点,AN⊥PM ,垂足为N .求证:AN ⊥平面PBM .证明:设圆O 所在的平面为α,∵P A ⊥α,且BM α,∴P A ⊥BM .又∵AB 为⊙O 的直径,点M 为圆周上一点,∴AM ⊥BM ,∵直线P A ∩AM =A ,∴BM ⊥平面P AM .又AN 平面P AM ,∴BM ⊥AN .这样,AN 与PM ,BM 两条相交直线垂直.故AN ⊥平面PBM .17.如图所示,过S 引三条长度相等但不共面的线段SA ,SB ,SC 且∠ASB =∠ASC =60°,∠BSC =90°.求证:平面ABC ⊥平面BSC .【证明】(法一)取BC 的中点D ,连接AD ,SD .∵∠ASB =∠ASC ,且SA =SB=AC ,∴AS =AB =AC .∴AD ⊥BC .又△ABS 是正三角形,△BSC 为等腰直角三角形,∴BD =SD .∴AD 2+SD 2=AD 2+BD 2=AB 2=AS 2.由勾股定理的逆定理,知AD ⊥SD .又∵SD ∩BC =D ,∴AD ⊥平面BSC .又AD 平面ABC ,∴平面ABC ⊥平面BSC .(法二)同法一证得AD ⊥BC ,SD ⊥BC ,则∠ADS即为二面角A —BC —S 的平面角.∵∠BSC =90°,令SA=1,则SD =22,AD =22,∴SD 2+AD 2=SA 2.∴∠ADS =90°.∴平面ABC ⊥平面BSC .18.如图,在三棱锥S -ABC 中,SA ⊥平面ABC ,AB ⊥BC ,DE 垂直平分SC ,分别交AC 、SC 于D 、E ,且SA =AB =a ,BC =2a . (1)求证:SC ⊥平面BDE ;(2)求平面BDE 与平面BDC 所成二面角的大小.(1)证明:∵SA ⊥平面ABC ,又AB 、AC 、BD 平面ABC ,∴SA ⊥AB ,SA ⊥AC ,SA ⊥BD ,∴SB =SA 2+AB 2=2a .∵BC =2a ,∴SB=BC .∵E 为SC 的中点,∴BE ⊥SC .又DE ⊥SC ,BE ∩DE =E ,∴SC ⊥平面BDE .(2)由(1)及BD 平面BDE ,得BD ⊥SC .又知BD ⊥SA ,∴BD ⊥平面SAC .∴BD ⊥AC 且BD ⊥DE .∴∠CDE 为平面BDE 与平面BDC 所成二面角的平面角.∵AB ⊥BC ,AC =AB 2+BC 2=3a .∴Rt △SAC 中,tan ∠SCA =SA AC =33,∴∠SCA =30°.∴∠CDE =60°,即平面BDE 与平面BDC 所成二面角为60°.19.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M为AB 中点,D 为PB 中点,且PMB ∆为正三角形.(1)求证:DM APC ∥平面;(2)求证:ABC APC ⊥平面平面.证明:(1)∵M 为AB 中点,D 为PB 中点,∴MD //AP ,又MD不在平面APC 上,∴MD //平面APC .(2)∵△PMB 为正三角形,又D 为PB 中点. ∴MD ⊥PB .又由(1)知MD //A P , ∴AP ⊥PB . 又AP ⊥PC , 且PB ∩PC =P ,∴AP ⊥平面PBC , ∴AP ⊥BC , 又∵AC ⊥BC , 且AP ∩AC =A ∴BC ⊥平面APC , 又BC 在平面ABC 内,∴平面ABC ⊥平面APC .20.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中 点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1;(2)M 是AB 的中点.证明:(1)∵ADD 1A 1为正方形,∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,AD 1平面ADD 1A 1,∴CD ⊥AD 1.∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC .又∵MN ⊥平面A 1DC ,∴MN ∥AD 1. MD B P C A(2)连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM .又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.21.如图所示,P 是四边形ABCD 所在平面外一点,ABCD 是∠DAB =60°且边长为a 的菱形,侧面P AD 为正三角形,其所在平面垂直于底面ABCD . (1)若G 为AD 边的中点,求证:BG ⊥平面P AD ;(2)求证:AD ⊥PB .证明:(1)连接PG ,BD .由题知△P AD 为正三角形,G 是AD 的中点,∴PG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PG 平面P AD ,∴PG ⊥平面ABCD ,∴PG ⊥BG .又∵四边形ABCD 是菱形且∠DAB =60°,∴△ABD 是正三角形,∴BG⊥AD .又AD 平面P AD ,PG 平面P AD ,且AD ∩PG =G ,∴BG ⊥平面P AD .(2)由(1)可知BG ⊥AD ,PG ⊥AD .又BG 平面PBG ,PG 平面PBG ,且BG ∩PG =G ,AD ⊥平面PBG ,∴AD ⊥PB .。
空间中的垂直关系 课件
(2)若 AB =B C ,则 B D ⊥AC ,
由(1)可知,SD ⊥平面 AB C ,而 B D ⊂ 平面 AB C ,
因此 SD ⊥B D .
∵SD ⊥B D ,B D ⊥AC ,SD ∩AC =D ,∴B D ⊥平面 SAC .
T 题型二面
面垂直问题
例 2如图所示,已知△AB C 是等边三角形,E C ⊥平面 AB C ,B D ⊥
(1)求证:SD ⊥平面 AB C ;
(2)若 AB =B C ,求证:B D ⊥平面 SAC .
【证明】(1)如图所示,取 AB 中点 E ,连接 SE ,D E ,在 R t△AB C 中,D ,E 分别
为 AC ,AB 的中点,故 D E∥B C ,且 D E ⊥AB ,
∵SA=SB ,
∴△SAB 为等腰三角形.
从斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫斜线
在平面内的射影.
(2)斜线和平面所成的角的定义
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这
个平面所成的角.
若直线在平面内或直线和平面平行,则说直线和平面成 0°
角;若直线和
平面垂直,则说直线和平面成 90°
角.
任一直线和平面所成角 θ
由于平面 P D C⊥平面 AB CD ,而直线 CD 是平面 P D C 与平面 AB CD 的交
线,
故 P E ⊥平面 AB CD ,由此得∠P B E 为直线 P B 与平面 AB CD 所成的角.
在△P D C 中,由于 P D =C D =2,P C =2 3,
可得∠P CD =30°
.
在 R t△P EC 中,P E =P C sin30°
高中数学必修二《空间中的垂直关系》课件
(2) 由 (1) 知∠ EDC 为二面角 E- BD - C 的平面角,又 △SAC∽△DEC ,∴∠ EDC = ∠ASC,在Rt△SAB中,∠A=90° ,设SA=AB=1,则SB=. 由SA⊥BC,AB⊥BC,∴BC⊥平面SAB,∴BC⊥SB,在Rt△SBC中,SB=BC=, ∠ SBC = 90° , 则 SC = 2 , 在 Rt△SAC 中 , ∠ A = 90° , SA = 1 , SC = 2 ,
足,则∠AOB是α-l-β的平面角.
两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互 相垂直的平面. 7.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这 两个平面互相垂直. 8.两平面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它 们的交线的直线垂直于另一个平面.
【例1】如右图,在正方体ABCD—A1B1C1D1中,O为底面正方形 的中心,M为棱DD1的中点,试证:B1O⊥平面MAC.
证明:证法一:如图(1),连结AB1、CB1,
由AB1=CB1,又O为AC的中点, ∴B1O⊥AC.连结OM、MB1、B1D1, 可证,∴B1O⊥OM. 根据直线与平面垂直的判定定理知:B1O⊥平面MAC.
1.平面与平面的垂直问题可转化为直线与平面的垂直问题解决. 2.利用平面与平面垂直的性质定理,可以有所选择地作出一个平面的垂 线,进而可解决空间的成角和距离等问题,因此作平面的垂线也是 立体几何中最重要的辅助线之一.
解决二面角问题的主要过程是作图、论证与计算,首先要找出二面角的平面 角,作二面角的平面角方法主要有根据定义,利用三垂线定理和逆定理等. 【例3】如右图所示,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直
高考数学一轮总复习:空间中的垂直关系
空间中的垂直关系[基础梳理] 1.直线与平面垂直(1)定义:直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直.(2)判定定理与性质定理:⎭⎬⎫a ,b αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:⎣⎢⎡⎦⎥⎤0,π2.3.平面与平面垂直 (1)二面角的有关概念:①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫作二面角的平面角. (2)平面和平面垂直的定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. (3)平面与平面垂直的判定定理与性质定理:⎭⎪⎬⎪⎫l ⊥αl β⇒α⊥β⎭⎪⎬⎪⎫α⊥βl βα∩β=al ⊥a⇒l ⊥α1.判定定理的理解若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.a ∥b ,a ⊥α⇒b ⊥α. 2.性质定理α⊥β,P ∈β,PQ ⊥α⇒PQβ时垂直于第三个平面,[四基自测]1.下列命题中不正确的是( )A .如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案:A2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为() A.bαB.b∥αC.bα或b∥αD.b与α相交答案:C3.已知互相垂直的平面α,β交于直线l.若直线m、n满足m∥α,n⊥β,则() A.m∥l B.m∥nC.n⊥l D.m⊥n答案:C4.如图所示,在三棱锥V ABC中,∠VAB=∠VAC=∠ABC=90°,则构成三棱锥的四个三角形中直角三角形的个数为________.答案:4考点一线面垂直的判定与性质◄考基础——练透[例1](2019·河南商丘模拟)如图所示,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是A在PB、PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是________.解析:由P A⊥平面ABC,BC平面ABC,可得P A⊥BC,又AB是圆O的直径,C是圆O上一点,则有BC⊥AC,又P A∩AC=A,所以BC⊥面P AC,又AF面P AC,所以BC⊥AF,故③正确;因为AF⊥PC,PC∩BC=C,所以AF⊥面PBC,又PB面PBC,所以AF⊥PB,故①正确;因为AE⊥PB,AF⊥PB,AE∩AF=A,所以PB⊥平面AEF,又EF平面AEF,所以PB⊥EF,故②正确;由于AF⊥平面PBC,AF∩AE=A,所以AE不与面PBC垂直,故④错误.综上可知正确命题的序号为①②③.答案:①②③证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理:在平面内找两条相交直线与该直线垂直.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理:在平面内找与两平面交线垂直的直线.如图所示,三棱锥P ABC中,△ABC是正三角形,PC⊥平面ABC,PC=AC =2,E为AC中点,EF⊥AP,垂足为F.(1)求证:AP⊥FB;(2)求多面体PFBCE的体积.解析:(1)证明:由题意得BE⊥AC,又PC⊥平面ABC,∴PC⊥BE.又AC∩PC=C,∴BE⊥面P AC.∴BE⊥AP.又EF ⊥AP ,EF ∩BE =E ,∴AP ⊥面BEF . ∴AP ⊥FB .(2)在△ABC 中,AB =AC =BC =2,E 为AC 中点, ∴AE =1,BE = 3.在△PCA 中,∠PCA =90°,AC =PC =2,∴∠P AC =45°.又EF ⊥P A ,∴EF =AF =22,S △AEF =12EF ·AF =14.易知,BE ⊥平面AFE .∴V ABEF=V B AFE =13BE ·S △AEF =312,又V P ABC =13PC ·S △ABC =233,∴多面体PFBCE 的体积为V P ABC -V A BEF =7312. 考点二 平面与平面垂直的判定与性质◄考能力——知法[例2] (1)如图所示,一张A4纸的长、宽分别为22a,2a ,A ,B ,C ,D 分别是其四条边的中点.现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,从而得到一个多面体.下列关于该多面体的命题,正确的是________.(写出所有正确命题的序号)①该多面体是三棱锥; ②平面BAD ⊥平面BCD ; ③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为5πa 2.解析:由题意得该多面体是一个三棱锥,故①正确;∵AP ⊥BP ,AP ⊥CP ,BP ∩CP=P,∴AP⊥平面BCD,又∵AP平面ABD,∴平面BAD⊥平面BCD,故②正确;同理可证平面BAC⊥平面ACD,故③正确;通过构造长方体可得该多面体的外接球半径R=52a,所以该多面体外接球的表面积为5πa2,故④正确,综上,正确命题的序号为①②③④.答案:①②③④(2)(2018·高考全国卷Ⅰ)如图所示,在平行四边形ABCM中,AB=AC=3,∠ACM =90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.①证明:平面ACD⊥平面ABC;②Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.解析:①证明:由已知可得,∠BAC=90°,即BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.②由已知可得,DC=CM=AB=3,DA=3 2.又BP =DQ =23DA , 所以BP =2 2.如图所示,过点Q 作QE ⊥AC ,垂足为E ,则QE .由已知及(1)可得,DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×S △ABP ×QE =13×12×3×22sin 45°×1=1.应用线面垂直的判定与性质定理的思维(1)证明两个平面垂直,关键是选准其中一个平面内的一条直线,证明该直线与另一个平面垂直.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑. (2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2017·高考全国卷Ⅰ)如图所示,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.解析:(1)证明:由∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,又AP ∩PD =P ,从而AB ⊥平面P AD . 又AB平面P AB ,所以平面P AB ⊥平面P AD .(2)如图所示,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,可得PE ⊥平面ABCD . 设AB =x ,则由已知可得AD =2x ,PE =22x .故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而P A =PD =2,AD =BC =22,PB =PC =2 2.可得四棱锥P ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.考点三 空间垂直关系的探索与转化◄考基础——练透[例3] (1)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AC 1,A 1B 1的中点,点P 在其表面上运动,则总能使MP 与BN 垂直的点P 的轨迹的周长等于________.解析:分别取BB 1,CC 1的中点E ,F ,连接AE ,EF ,FD ,则BN ⊥平面AEFD ,过点M 作平面α,使α∥平面AEFD ,则平面α与正方体表面的交线即为点P 的轨迹,该轨迹为矩形,其周长与矩形AEFD 的周长相等,又矩形AEFD 的周长为2+5,所以所求轨迹的周长为2+ 5.答案:2+5(2)如图所示,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且P为AD的中点.①求证:CD⊥平面SAD;②若SA=SD,M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?并证明你的结论.解析:①证明:因为四边形ABCD为正方形,所以CD⊥AD.又平面SAD⊥平面ABCD,且平面SAD∩平面ABCD=AD,所以CD⊥平面SAD.②存在点N为SC的中点,使得平面DMN⊥平面ABCD.证明:连接PC、DM交于点O,连接PM、SP、NM、ND、NO,因为PD∥CM,且PD=CM,所以四边形PMCD为平行四边形,所以PO=CO.又因为N为SC的中点,所以NO∥SP.易知SP⊥AD,因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,并且SP⊥AD,所以SP⊥平面ABCD,所以NO⊥平面ABCD.又因为NO平面DMN,所以平面DMN⊥平面ABCD.探索垂直关系,常采用逆向思维一般假设存在线线垂直,所利用的关系常有:(1)等腰三角形的高、中线与底边垂直.(2)矩形的相邻边垂直.(3)直径所对的圆周角的两边垂直.(4)菱形的对角线垂直.(5)给出长度,满足勾股定理的两边垂直.(6)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路.(2019·安阳模拟)如图所示,平面ABDE⊥平面ABC,AC=BC,四边形ABDE是直角梯形,BD∥AE,BD=12AE,O,M分别为CE,AB的中点.(1)求证:OD∥平面ABC.(2)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.解析:(1)证明:取AC中点F,连接OF,FB.∵F为AC中点,O为CE中点,∴OF∥EA且OF=12EA.又BD∥AE且BD=12AE,∴OF∥DB,OF=DB,∴四边形BDOF是平行四边形,∴OD∥FB.∵FB平面ABC,OD平面ABC,∴OD∥平面ABC.(2)当N是EM中点时,ON⊥平面ABDE.取EM中点N,连接ON,CM.∵AC=BC,M为AB中点,∴CM⊥AB.又∵平面ABDE⊥平面ABC,平面ABDE∩平面ABC=AB,CM平面ABC,∴CM⊥平面ABDE.∵N是EM中点,O为CE中点,∴ON∥CM,∴ON⊥平面ABDE.直观想象——立体几何中高维与低维转化中的学科素养立体几何中的点与点、点与线、线与线、线与面、面与面之间的关系是由低维逐步到高维的转化过程,解决立体几何问题不仅用到高维、也要用到低维.其中直观想象是重点的核心素养,是培养空间想象能力的基本方法.[例]如图所示,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小为60,则点C到平面ABC1的距离为________.解析:设所求距离为d ,两次计算三棱锥C 1-ABC (即三棱锥C -ABC 1)的体积,得:13×34×32=13×12×1×3×h ,解得h =34.答案:34点评:本题将点到平面的距离问题转化为三棱锥的体积问题.课时规范练 A 组 基础对点练1.(2019·惠州模拟)P A 垂直于以AB 为直径的圆所在的平面,C 为圆上异于A ,B 两点的任一点,则下列关系不正确的是( ) A .P A ⊥BC B .BC ⊥平面P AC C .AC ⊥PBD .PC ⊥BC解析:由P A ⊥平面ACB ⇒P A ⊥BC ,故A 不符合题意;由BC ⊥P A ,BC ⊥AC ,P A ∩AC =A ,可得BC ⊥平面P AC ,所以BC ⊥PC ,故B ,D 不符合题意;无法判断AC ⊥PB ,故C 符合题意. 答案:C2.(2019·石家庄模拟)已知平面α,β,直线l ,若α⊥β,α∩β=l ,则( ) A .垂直于平面β的平面一定平行于平面α B .垂直于直线l 的直线一定垂直于平面α C .垂直于平面β的平面一定平行于直线l D .垂直于直线l 的平面一定与平面α,β都垂直解析:垂直于平面β的平面与平面α重合、平行或相交,故A不正确;垂直于直线l的直线若在平面β内,则一定垂直于平面α,否则不一定,故B不正确;垂直于平面β的平面可能垂直于直线l,故C不正确;由面面垂直的判定定理知,垂直于直线l的平面一定与平面α,β都垂直,故D正确.答案:D3.已知三条不重合的直线m,n,l和两个不重合的平面α,β,则下列命题正确的是()A.若m∥n,nα,则m∥αB.若α⊥β,α∩β=m,n⊥m,则n⊥αC.若l⊥n,m⊥n,则l∥mD.若l⊥α,m⊥β且l⊥m,则α⊥β解析:若m∥n,nα,则m∥α或mα,故A不正确;若α⊥β,α∩β=m,n⊥m,则n与α相交或n∥α或nα,故B不正确;若l⊥n,m⊥n,则l与m相交、平行或异面,故C不正确;若l⊥α,m⊥β且l⊥m,则由直线与平面垂直的性质定理和平面与平面垂直的判定定理知α⊥β.答案:D4.(2019·长春质检)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD =45°,∠BAD=90°,将△ABD沿BD折起,使得平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体A-BCD中,下列说法正确的是()A.平面ABD⊥平面ABCB.平面ACD⊥平面BCDC.平面ABC⊥平面BCDD.平面ACD⊥平面ABD解析:由题意可知,AD⊥AB,AD=AB,所以∠ABD=45°,故∠DBC=45°,又∠BCD=45°,所以BD⊥DC.因为平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以平面ACD⊥平面ABD.答案:D5.在正方体ABCD-A1B1C1D1中E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E平面A1B1CD,所以A1E⊥BC1,故选C.答案:C6.(2019·南昌调研)如图所示,四棱锥P-ABCD中,△P AB与△PBC是正三角形,平面P AB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是()A.PB⊥AC B.PD⊥平面ABCDC.AC⊥PD D.平面PBD⊥平面ABCD解析:如图所示,对于选项A,取PB的中点O,连接AO,CO.∵在四棱锥P -ABCD中,△P AB与△PBC是正三角形,平面P AB⊥平面PBC,∴AO⊥PB,CO⊥PB,∵AO∩CO=O,∴PB⊥平面AOC,∵AC平面AOC,∴PB⊥AC,故选项A正确;对于选项B,设AC与BD交于点M,易知M为AC的中点,若PD⊥平面ABCD,则PD⊥BD,由已知条件知点D满足AC⊥BD且位于BM的延长线上,∴点D的位置不确定,∴PD与BD不一定垂直,∴PD⊥平面ABCD不一定成立,故选项B不正确;对于选项C,∵AC⊥PB,AC⊥BD,PB∩BD=B,∴AC⊥平面PBD,∵PD平面PBD,∴AC⊥PD,故选项C正确;对于选项D,∵AC⊥平面PBD,AC平面ABCD,∴平面PBD⊥平面ABCD,故选项D正确.故选B.答案:B7.如图所示,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M 是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:如图所示,连接AC,BD,则AC⊥BD,∵P A⊥底面ABCD,∴P A⊥BD.又P A∩AC=A,∴BD⊥平面P AC,∴BD⊥PC,∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.如图所示,四棱锥P ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.求证:(1)AP∥平面BEF;(2)BE⊥平面P AC.证明:(1)设AC∩BE=O,连接OF,EC,如图所示.由于E为AD的中点,AB=BC=12AD,AD∥BC,所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△P AC中,可得AP∥OF.又OF平面BEF,AP平面BEF.所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC平面P AC,所以BE⊥平面P AC.9.(2019·唐山统考)已知四棱锥P ABCD的底面ABCD是矩形,PD⊥底面ABCD,E为棱PD的中点.(1)证明:PB∥平面AEC;(2)若PD=AD=2,PB⊥AC,求点P到平面AEC的距离.解析:(1)证明:如图所示,连接BD,交AC于点F,连接EF,∵底面ABCD 为矩形,∴F 为BD 中点, 又E 为PD 中点,∴EF ∥PB , 又PB平面AEC ,EF平面AEC ,∴PB ∥平面AEC . (2)∵PD ⊥平面ABCD , AC平面ABCD ,∴PD ⊥AC ,又PB ⊥AC ,PB ∩PD =P ,∴AC ⊥平面PBD , ∵BD平面PBD ,∴AC ⊥BD ,∴四边形ABCD 为正方形.又E 为PD 的中点,∴P 到平面AEC 的距离等于D 到平面AEC 的距离,设D 到平面AEC 的距离为h ,由题意可知AE =EC =5,AC =22,S △AEC =12×22×3=6,由V D AEC=V E ADC 得13S △AEC ·h =13S △ADC ·ED ,解得h =63,∴点P 到平面AEC 的距离为63.B 组 能力提升练10.直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 相交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( )A.12 B .1 C.32D .2解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF 平面C 1DF ,所以AB 1⊥DF . 由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h , 则DE =12h .又2×2=h 22+(2)2, 所以h =233,DE =33. 在Rt △DB 1E 中,B 1E =⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫332=66.由面积相等得66× x 2+⎝ ⎛⎭⎪⎫222=22x ,得x =12.答案:A11.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,nα,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α解析:选项A.若m ∥α,n ∥α,则m 与n 可能平行、相交、异面,故A 错误;B .若m ⊥α,nα,则m ⊥n ,显然成立;C .若m ⊥α,m ⊥n ,则n ∥α或nα,故C 错误;D .若m ∥α,m ⊥n ,则n ⊥α或n ∥α或n 与α相交. 答案:B12.如图所示,三棱锥A -BCD 的底面是等腰直角三角 形,AB ⊥平面BCD ,AB =BC =BD =2,E 是棱CD 上的任意一点,F ,G 分别是AC ,BC 的中点,则在 下面命题中:①平面ABE ⊥平面BCD ; ②平面EFG ∥平面ABD ;③四面体FECG 体积的最大值是13.真命题的个数是( ) A .0 B .1 C .2D .3解析:①正确,因为AB ⊥平面BCD ,且AB平面ABE ,由面面垂直的判定定理可知平面ABE ⊥平面BCD ;②错误,若两平面平行,则必有AD ∥EF ,而点E 是棱CD 上任意一点,故该命题为假命题;③正确,由已知易得GF ⊥平面GCE ,且GF =12AB =1, 而S △GCE =12GC ·CE ·sin45°=24CE ≤1,故V F -GCE =13S △GCE ·FG ≤13. 故正确的命题为①③. 答案:C13.已知平面α,β和直线m .给出条件:①m ∥α;②m ⊥α;③mα;④α⊥β;⑤α∥β.(1)当满足条件________时,有m ∥β. (2)当满足条件________时,有m ⊥β. 解析:(1)当mα,且α∥β时,有m ∥β,故填③⑤.(2)当m ⊥α,且α∥β时,有m ⊥β,故填②⑤. 答案:(1)③⑤ (2)②⑤14.(2019·北京东城区模拟)如图所示,在四棱锥E -BCD 中,AE ⊥DE ,CD ⊥平面ADE ,AB ⊥平面ADE ,CD =3AB .(1)求证:平面ACE⊥平面CDE;(2)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出EFED的值;若不存在,说明理由.解析:(1)证明:因为CD⊥平面ADE,AE平面ADE,所以CD⊥AE.又AE⊥DE,CD∩DE=D,所以AE⊥平面CDE,因为AE平面ACE,所以平面ACE⊥平面CDE.(2)在线段DE上存在一点F,且EFED=13,使AF∥平面BCE.设F为线段DE上一点,且EF ED=13.过点F作FM∥CD交CE于点M,连接BM,AF,则FM=13CD.因为CD⊥平面ADE,AB⊥平面ADE,所以CD∥AB.又FM∥CD,所以FM∥AB.因为CD=3AB,所以FM=AB.所以四边形ABMF是平行四边形,所以AF∥BM.又AF平面BCE,BM平面BCE,所以AF∥平面BCE.提能练(四) 立体几何A 组 基础对点练1.(2016·高考全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π .9π2 C .6π .32π3解析:设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2, ∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2. 答案:B2.(2019·成都模拟)如图,一个三棱锥的三视图均为直角三角形,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A .4πB .16πC .24πD .25π 解析:由三视图知该几何体是一个三条侧棱两两垂直的三棱锥,三条侧棱长分别为2,2,4,将该三棱锥补成一个长方体,可知该三棱锥的外接球直径就是长方体的体对角线,所以外接球直径2R =22+22+42=26,则R =6,故该球的表面积为4πR 2=24π,故选C.答案:C3.(2019·洛阳模拟)已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( )A.823πB.833πC.863πD.1623π解析:将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.答案:A4.(2019·石家庄模拟)如图是某四棱锥的三视图,其中正视图是边长为2的正方形,侧视图是底边分别为2和1的直角梯形,则该几何体的体积为( )A.83B.43C.823D.423解析:记由三视图还原后的几何体为四棱锥A -BCDE ,将其放入棱长为2的正方体中,如图,其中点D ,E 分别为所在棱的中点,分析知平面ABE ⊥平面BCDE ,点A 到直线BE 的距离即四棱锥的高,设为h ,在△ABE 中,易知AE =BE =5,cos ∠ABE =55,则sin ∠ABE =255,所以h =455,故四棱锥的体积V =13×2×5×455=83,故选A.答案:A5.(2019·贵阳模拟)某几何体的三视图如图所示,正方形网格的边长为1,该几何体的顶点都在球O 的球面上,则球O 的表面积为( )A .15πB .16πC .17πD .18π解析:由题中的三视图可知,该几何体为如图所示的三棱锥D 1-BCD ,将其放在长方体ABCD -A 1B 1C 1D 1中,则该几何体的外接球即长方体的外接球,长方体的长、宽、高分别为2,2,3,长方体的体对角线长为9+4+4=17,球O 的直径为17,所以球O 的表面积S =17π,故选C.答案:C6.(2019·长春模拟)已知圆锥的侧面展开图是半径为3的扇形,则该圆锥体积的最大值为________.解析:由题意得圆锥的母线长为3,设圆锥的底面半径为r ,高为h ,则h =9-r 2,所以圆锥的体积V =13πr 2h =13πr 29-r 2=13π9r 4-r 6.设f (r )=9r 4-r 6(r >0),则f ′(r )=36r 3-6r 5,令f ′(r )=36r 3-6r 5=6r 3(6-r 2)=0,得r =6,所以当0<r <6时,f ′(r )>0,f (r )单调递增,当r >6时,f ′(r )<0,f (r )单调递减,所以f (r )max =f (6)=108,所以V max =13π×108=23π.答案:23π7.(2019·惠州模拟)某三棱锥的三视图如图所示,且图中的三个三角形均为直角三角形,则xy 的最大值为________.解析:将三视图还原为如图所示的三棱锥P -ABC ,其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC ,BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,所以xy =x 102-[x 2-(27)2]=x 128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.答案:648.如图,已知四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为菱形,AD =2,∠DAB =60°,E 为AB 的中点.(1)证明:平面PCD ⊥平面PDE ;(2)若PD =3AD ,求点E 到平面PBC 的距离.解析:(1)证明:因为PD ⊥底面ABCD ,所以PD ⊥AB ,连接DB ,在菱形ABCD 中,∠DAB =60°,所以△DAB 为等边三角形,又E 为AB 的中点,所以AB ⊥DE ,又PD ∩DE =D ,所以AB ⊥平面PDE ,因为CD ∥AB ,所以CD ⊥平面PDE ,因为CD 平面PCD ,所以平面PCD ⊥平面PDE .(2)因为AD =2,所以PD =23,在Rt △PDC 中,PC =4,同理PB =4,易知S △PBC =15,S △EBC =32,设点E 到平面PBC 的距离为h ,连接EC ,由V P -EBC =V E -PBC 得,13S △EBC ·PD =13S △PBC ·h , 所以h =155.B 组 能力提升练9.如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D -ABC 中,(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积. 解析:(1)证明:∵AC =AD 2+CD 2=22,∠BAC =∠ACD =45°,AB =4, ∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8,∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF .∵E 为AC 的中点,∴EF 为△ACD 的中位线.∵V F -BCE =V B -CEF =13×S △CEF ×BC ,∴S △CEF =14S △ACD =14×12×2×2=12,∴V F -BCE =13×12×22=23.10.(2019·南昌调研)如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =AA 1=3,AC ⊥BC ,点M 在线段AB 上.(1)若M 是AB 的中点,证明:AC 1∥平面B 1CM ;(2)是否存在点M 使得三棱锥B 1-BCM 的体积是三棱柱ABC -A 1B 1C 1的体积的19?若存在,试求BM 的长度;若不存在,请说明理由. 解析:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接ME . 因为三棱柱ABCA 1B 1C 1是直三棱柱,所以侧面BB 1C 1C 为矩形.又M 是AB 的中点,所以ME 为△ABC 1的中位线,所以ME ∥AC 1. 因为ME 平面B 1CM ,AC 1平面B 1CM ,所以AC 1∥平面B 1CM .(2)存在点M 使得三棱锥B 1BCM 的体积是三棱柱ABC A 1B 1C 1的体积的19. 理由如下:假设存在点M 使得三棱锥B 1-BCM 的体积是三棱柱ABC -A 1B 1C 1的体积的19.由题意知VB 1-BCM =13S △BCM ·BB 1,VABC -A 1B 1C 1=S △ABC ·BB 1,设BM =λBA,0<λ<1,则13λS △ABC ·BB 1=19S △ABC ·BB 1,所以λ=13,即BM =2,故当BM =2时,三棱锥B 1-BCM 的体积是三棱柱ABC -A 1B 1C 1的体积的19.。
高二数学复习1:空间中的平行与垂直关系
.高二数学作业空间中的平行与垂直关系[知识要点]要点1、空间中的平行关系: ◆平行直线:公理4:平行于同一条直线的两条直线互相平行。
◆线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
推理模式:,,////a b a b a ααα⊄⊂⇒.◆线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行推理模式://,,//a a b a b αβαβ⊂=⇒.◆两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。
定理的模式://////a b a b P a b ββαβαα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。
推论模式:,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''=⊂⊂=⊂⊂⇒◆两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面; 〔2〕如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
◆注意体会以下平行问题的转化思路、方向与转化条件、途径:要点2、空间中的垂直关系: ◆线线垂直〔1〕线线垂直的定义:所成的角是直角,两直线垂直。
〔2〕垂直于平行线中的一条,必垂直于另一条。
◆线面垂直〔1〕定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平bab aααP P ab βαc b a βα2面α垂直记作:l ⊥α。
〔2〕直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线 都垂直,那么这条直线垂直于这个平面。
空间中的垂直关系
(2)如图,假设存在点F使平面 AFD⊥平面BFC, ∵AD∥BC,∴AD∥平面BFC, ∴AD平行于平面AFD与平面 BFC的交线l. 8分 ∵EP⊥平面ABCD, ∴EF⊥AD,而AD⊥AB, ∴AD⊥平面EAB, ∴l⊥平面EAB,
∴∠AFB是平面AFD与平面BFC 所成二面角的平面角, 10分 ∵P是AB中点,且FP⊥AB, ∴当∠AFB=90°时,FP=AP, FP ∴当 FP=AP,即 =1 时,平面 AP AFD⊥平面 BFC.… 12 分
规律方法总结
1.空间的垂直关系有直线与直线 垂直、直线与平面垂直、平面与平面垂 直.它们之间存在相互转化关系:
2.当有面面垂直时,一般是在 一个面内找(作)交线的垂线,则直线 垂直于面;在证面面垂直时,一般可 先从现有的直线寻找平面的垂线;在 证面面垂直时,一般可先从现有的直 线寻找平面的垂线,若没有,可作辅 助线解决.
(1)求证:DP⊥面EPC; (2)问在EP上是否存在点F使平面
FP AFD⊥平面 BFC?若存在,求出 的值. AP
解:(1)证明:∵EP⊥面 ABCD, ∴EP⊥DP, 又ABCD为矩形, AB=2BC, P、Q分别为AB、CD的中 点, 1 ∴PQ⊥DC且PQ= 2 DC, ∴DP⊥PC, 4分 又∵EP∩PC=P,∴DP⊥ 面EPC. 6分
2.直线a与b垂直,b⊥平面α,则a与α的 位置关系是( ) A.a⊥α B.a∥α C.a⊂α D.a⊂α或a∥α 答案:D
3.如图,如果MC⊥菱形ABCD所在 平面,那么MA与BD的位置关系是( ) A.平行 B.垂直但不相交 C.异面 D.相交但不垂直 答案:B
三基能力强化
4.(教材习题改编) △ABC中,∠ABC=90°, PA⊥平面ABC,则图中直角三 角形的个数是 . 答案:4
空间中的垂直关系知识点
空间中的垂直关系练习题
知识点小结
一.线面垂直定义:如果直线AB与平面α相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说直线AB与平面α互相垂直,直线AB叫做平面α的垂线,平面α叫做直线L的垂面。
交点P叫做垂足。
垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做点到平面的距离。
由定义:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直。
二.判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。
符号语言:
推论1 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面。
推论2 如果在两条直线垂直于同一平面,那么这两条直线平行。
三.平面与平面垂直的判定
1.平面与平面垂直定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直。
2.平面与平面垂直的判定定理如果一个平面过另一个平面的一条垂线,则两个平面互相垂直。
3.平面与平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
空间中的垂直关系
直线在平面内
知识清单 垂直关系的相互转化 线线垂直 线面垂直 面面垂直
1.注意概念与定理的辨析 2.要证明想判定定理,由已知想性质定理 要证明想判定定理,由已知想性质定理 判定定理 性质
习题回顾 一.判断题: 判断题: 1.如果一条直线垂直于平面内的无数条直 那么这条直线和这个平面垂直.( 线,那么这条直线和这个平面垂直.( ) 2.过一点有且只有一条直线与已知直线 垂直. 垂直. 3.若l∥α,l⊥β ⊥ 则α ⊥β ( ( ) )
Gห้องสมุดไป่ตู้
条件的整合 隐含条件的挖掘
E C
D A
B
典型例题
2.直三棱柱ABC2.直三棱柱ABC-A1B1C中,A1A=AC=√2AB,AB=BC=a, 直三棱柱ABC D为BB1的中点(1)证明:平面ADC1⊥平面AA1C1C 的中点(1)证明:平面ADC 平面AA (1)证明 (2)求点B到平面ADC (2)求点B到平面ADC1的距离 求点
习题回顾 4.已知两个平面垂直,过一个平面内 已知两个平面垂直, 任意一点作交线的垂线,则垂线必垂直 任意一点作交线的垂线, 一点作交线的垂线 于另一个平面. 于另一个平面. ( ) 空间四点A,B,C.D.已知AB A,B,C.D.已知 5.空间四点A,B,C.D.已知AB ⊥ CD, AC ⊥ BD,AD ⊥ BC.则这四点可共面也 BC.则这四点可共面也 可不共面. 可不共面. ( ) 6.两个不重合平面α 6.两个不重合平面α,β.α内有不共 两个不重合平面 线的三点与 距离相等,那么α∥ ( 三点与β距离相等 线的三点与 距离相等,那么 ∥β( )
空间中的垂直关系
本溪市高级中学 姜志勇
知识清单
一.垂直关系的定义: 垂直关系的定义: 1.两条直线垂直-- 相交垂直与异面垂直 两条直线垂直-- 直线垂直于平面内的 任意一条直线 任意一条直线 3.平面与平面垂直-- 三条交线互相垂直 平面与平面垂直--
专题17空间垂直关系-解析版
专题17 空间垂直关系空间异面直线垂直、直线与平面垂直、平面与平面垂直等垂直关系在复杂的空间图形中隐藏得比较深,不易发现或作出,若再渗透折叠,则容易产生思维痛点.证明空间垂直关系是高考数学命题中的必选项,垂直关系中,直线与平面垂直的定义、直线与平面垂直的判定定理、平面与平面垂直的判定定理、勾股定理的逆定理等是最基本的知识,不论是空间位置关系判定还是度量关系计算,基础都是人的空间概念与空间想象能力,没有在脑海中建立正确的空间概念是导致立体几何题求解失败的根本原因,看不清位置关系,卡壳点自然产生.一、巧连线寻找线面垂直关系二、问题1:如图1,已知三棱柱ABC−A1B1C1,平面A1ACC1⟂平面ABC,∠ABC=90∘,∠BAC=30∘,A1A=A1C=AC,E,F分别是AC,A1B1的中点.证明:EF⟂BC.【解析】卡壳点:不会寻找证明垂直关系的途径.应对策略1:把证明线线垂直关系转化为证明线面垂直关系.问题解答:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⟂AC.又平面A1ACC1⟂平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC, 所以A1E⟂平面ABC,则A1E⟂BC.又因为A1F//AB,∠ABC=90∘,故BC⟂A1F.所以BC⟂平面A1EF.因此EF⟂BC.应对策略2:发现三线垂直关系,利用空间向量运算证明垂直关系.问题解答:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⟂AC.又平面A1ACC1⟂平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⟂平面ABC.如图2,以点E为原点,分别以射线EC,EA 1为y 轴、z 轴的正半轴,建立空间直角坐标系E −xyz . 不妨设AC =4,则A 1(0,0,2√3),B(√3,1,0),B 1(√3,3,2√3),F (√32,32,2√3),C (0,2,0)因此EF ⃗⃗⃗⃗⃗ =(√32,32,2√3),BC ⃗⃗⃗⃗⃗ =(−√3,1,0). 由EF⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0得EF⟂BC . 【反思】证明空间位置关系时,寻找或添加关键的辅助线是一个智慧点.二、勾股定理促线线位置关系分析问题2:已知等边ΔABC 的边长为3,点D,E 分别是边AB,AC 上的点,且满足AD DB =CE EA=12(如图3).将ΔADE 沿DE 折起到ΔA 1DE 的位置,使二面角A 1−DE −B 成直二面角,连接A 1B,A 1C (如图4).求证:A 1D⟂平面BCED .【解析】卡壳点:折叠前后对线线位朢关系的分析不到位.应对策略:结合勾股定理的逆定理,由计算结果来验证垂直关系.问题解答:因为等边ΔABC 的边长为3,且AD DB =CE EA =12,所以AD =1,AE =2. 在ΔADE 中,∠DAE =60∘,由余弦定理得DE =√12+22−2×1×2×cos60∘=√3.因为AD 2+DE 2=AE 2,所以AD⟂DE ,折叠后有A 1D⟂DE .因为二面角A 1−DE −B 是直二面角,所以平面A 1DE⟂平面BCED .又平面A 1DE ∩平面BCED =DE,A 1D ⊂平面A 1DE,A 1D⟂DE ,所以A 1D⟂平面BCED .【反思】(1)题设信息中隐藏着AD⟂DE ,需要用勾股定理的逆定理来证明,这是解决问题的一个关键点,必须识破.(2)题设给定的面面垂直与目标要证的线面垂直之间只需证明直线垂直于棱即可.三、逆向存在性问题顺向思考问题3:如图5,三棱柱ABC −A 1B 1C 1的各棱长均为2,侧面BCC 1B 1⟂底面ABC ,侧棱BB 1与底面ABC 所成的角为60∘,在线段A 1C 1上是否存在点P ,使得平面B 1CP⟂平面ACC 1A 1?若存在,求出C 1P 的长;若不存在,请说明理由.【解析】卡壳点:存在性命题的顺向思考方法韩失.应对策略:若空间位置关系复杂,可将逆向设计的存在性问题顺向思考. 问题解答:过点B 1作B 1O⟂BC 于点O ,因为侧面BCC 1B 1⟂底面ABC ,所以B 1O⟂底面ABC,∠B 1BC =60∘,所以O 为BC 的中点.以O 为原点,以AO,OC,OB 1分别为x 轴,y 轴,z 轴正方向建立如图6所示的坐标系, 则A(−√3,0,0),B (0,−1,0),C (0,1,0),B 1(0,0,√3),A 1(−√3,1,√3),C 1(0,2,√3). 假设在线段A 1C 1上存在点P ,使得平面B 1CP⟂平面ACC 1A 1.设C 1P ⃗⃗⃗⃗⃗⃗⃗ =λC 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则C 1P ⃗⃗⃗⃗⃗⃗⃗ =λ(−√3,−1,0),CP ⃗⃗⃗⃗⃗ =CC 1⃗⃗⃗⃗⃗⃗⃗ +C 1P ⃗⃗⃗⃗⃗⃗⃗ =(−√3λ,1−λ,√3),B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,−√3).设平面B 1CP 的法向量为m =(x 1,y 1,z 1),则{m ⋅B 1C ⃗⃗⃗⃗⃗⃗⃗ =y 1−√3z 1=0,m ⋅CP ⃗⃗⃗⃗⃗ =−√3λx 1+(1−λ)y 1+√3z 1=0. 取z 1=1,则y 1=√3,x 1=2−λλ.故m =(x 1,y 1,z 1)=(2−λλ,√3,1).设平面ACC 1A 1的法向量为n =(x 2,y 2,z 2),则{n⋅AC⃗⃗⃗⃗⃗ =√3x2+y2=0,n⋅C1C⃗⃗⃗⃗⃗⃗⃗ =−y2−√3z2=0.取z2=1,则y2=−√3,x2=1.n=(x2,y2,z2)=(1,−√3,1).m⋅n=(2−λλ,√3,1)⋅(1,−√3,1)=2−λλ−2=0,解得λ=23.所以|C1P⃗⃗⃗⃗⃗⃗⃗ |=43.【反思】(1)建立空间直角坐标系时,要对位置关系进行证明,这一点很重要,然后根据已证明的位置关系去建立坐标系.(2)用坐标法时,确定点的坐标非常重要,不能有一点错误,否则前功尽弃.四、学云动态研究空间垂直关系问题4:如图7,已知边长为1的菱形ABCD,设∠ABC=120∘,沿AC折叠后,取AC 的中点E,连接DE,BE,BD.(I)当平面ABC⟂平面ACD时(如图8)或(II)当平面ABC与平面ACD所成二面角的平面角为α时(如图9),分别探究以下各题.(1)AC与BD,AD与BC的位置关系.(2)AD与BC所成角大小(或余弦值).(3)BC与平面ADC所成角大小(或正弦值).(4)求二面角A−BD−C大小(或余弦值).(5)在此问题情境下,请你提出一个新的问题并探究之.【解析】卡壳点:面对开放性问题,创新思维准备不足.应对策略:面对两平面垂直关系时,较容易;面对一般情形时,要善于用抽象符号来表达.问题解答:(I)当平面ABC⟂平面ACD时.(1)由于AC⟂平面BDE,所以AC⟂BD,AD与BC为异面直线.(2)取AB的中点F,BD的中点G,连接EF,EG,FG,则∠EFG为AD与BC所成的角,EF=12,EG=√24,FG=12,cos∠EFG=14+14−182×12×12=34.(3)BE⟂平面ADC,∠BCE为BC与平面ADC所成角为π6.(4)(4)见(II)(4),令α=π2即可.(5)(5)见(II)(5),令α=π2即可.(6)(II)当平面ABC与平面ACD所成二面角的平面角为α时.(7)(1)由于AC⟂平面BDE,所以AC⟂BD,AD与BC为异面直线.(8)(2)取AB的中点F,BD的中点G,AD与BC所成的角为∠EFG,EF=FG=1 2,BD=√14+14−2×14cosα=sinα2,EG=cosα22,(9)所以cos∠EFG=14+14−14cos2α22×12×12=1−12cos2α2.(10)(3)如图10,在平面BDE中,过点B作BH⟂DE,易知BH⟂平面ACD,于是∠BCH为BC与平面ADC所成的角,BH=12sinα,sin∠BCH=BHBC=12sinα.(11)(4)如图11,过AC作BD的垂面,交BD于点G,则∠AGC为所求二面角的平面角.(12)由于ΔABD为等腰三角形,所以G为BD的中点,故AG=√1−DG2=√1−(12sinα2)2=CG,cos∠AGC=AG2+CG2−AC22AG⋅CG =2−12sin2α2−42−12sin2α2.(13)(5)提出的新问题如下.层次一求证:当α=π2时,平面BDE⟂平面ABC,或平面BDE⟂平面ADC.层次二求证:不论α为何值,平面BDE⟂平面ABC,或平面BDE⟂平面ADC,层次三在折叠过程中,是否存在α,使得平面ABD⟂平面CBD?【反思】空间位置关系与度量关系,从特殊到一般的探究,对于学生是一次重要体验.五、驾㲼经典模型中的垂直关系问题5:如图12,AC为圆O的直径,B为圆周上不与点A,C重合的点,PA垂直于圆O 所在的平面,连接PB,PC,AB,BC.(I)图12中直角三角形的个数为,异面垂直的直线有对;(II)若在图12中添加AN⟂PB,AS⟂PC,连接SN,如图13,则图13中直角三角形个数为异面垂直的直线有对;(III)图12中直线垂直平面的对数为对,图13中直线垂直平面的对数为(IV)图12中互相垂直的平面对数为对;(V)证明:平面ANS⟂平面PBC.【解析】卡壳点:空间概念弱导致数不清檚符合要求的直线与平面数.应对策略:对照空间图形,分类思考或数数.问题解答:(I)观察可知直角三角形有4个,异面垂直的直线只有1对,即PA⟂BC.(II)若在图12中添加AN⟂PB,AS⟂PC,连接SN,如图13,则图13中直角三角形个数为异面垂直的直线有对;(III)图12中直线垂直平面的对数为对,图13中直线垂直平面的对数为(IV)图12中互相垂直的平面对数为对;(V)证明:平面ANS⟂平面PBC.【解析】卡壳点:空间概念弱导致数不清檚符合要求的直线与平面数.应对策略:对照空间图形,分类思考或数数.问题解答:(I)观察可知直角三角形有4个,异面垂直的直线只有1对,即PA⟂BC.(II)在图12中添加了AN,AS,SN后,增加6个直角三角形,共有10个直角三角形;异面垂直的直线有3对,增加了AN⟂BC,AN⟂PC.(III)图12中有2对直线垂直平面:PA⟂平面ABC,BC⟂平面PAB;图13中增加2对:PC⟂平面ANS,AN⟂平面PBC.图13中共有4对直线与平面垂直.(IV)图12中有3对互相垂直的平面:平面PAB⟂平面ABC,平面PAC⟂平面ABC,平面PAB⟂平面PBC;图13中有5对互相垂直的平面,增加2对:平面ANS⟂平面PBC,平面ANS⟂平面PAC.(V)因为PA⟂平面ABC,BC⊂平面ABC,所以PA⟂BC.又AC为圆O的直径,所以AB⟂BC.因为AB∩PA=A,所以BC⟂平面PAB.又AN⊂平面PAB,所以AN⟂BC.因为AN⟂PB,PB∩BC=B,所以AN⟂平面PBC.又PC⊂平面PBC,所以AN⟂PC.因为PC⟂AS,AS∩AN=A,所以PC⟂平面ANS.又PC⊂平面PBC,所以平面ANS⟂平面PBC.【反思】(1)此空间经典模型可以将立体几何的所有问题融人其中,且对于训练学生的空间概念与空间想象能力非常有利.(2)此空间经典模型中的线线位置关系、线面位置关系、面面位置关系非常丰富,尤其是垂直关系.(3)学生在思考上述问题时,一是空间概念要清楚,二是观察要细致,三是思考要全面,四是证明的逻辑推理要有序.六、静态分析运动中的空间图形问题6:如图14,一个棱长为2的正四面体O−ABC的顶点O在平面α上,底面ABC 平行于平面α,平面OBC与平面α的交线为l.(I)当平面OBC绕l顺时针旋转时,求证:l⟂AO;(II)在上述旋转过程中,设ΔOBC在平面α上的投影为ΔOB1C1,如图15,若B1C1的中点为O1,当AO⟂平面α时,在OA上是否存在一点P,使O1P⟂平面OBC?【解析】卡壳点:面对几何体旋转的情境时不知所措.应对策略:面对运动的几何体,进行浯态分析.问题解答:(I)证明:因为平面ABC//平面α,平面ABC ∩平面COB =BC ,平面α∩平面COB =l ,所以BC//l .取BC 的中点E ,连接AE,EO ,则BC⟂AE,BC⟂EO .所以l⟂AE,l⟂EO,AE ∩EO =E,AE ⊂平面AOE,EO ⊂平面AOE ,所以l⟂平面AOE . 又AO ⊂平面AOE ,所以l⟂AO .(II)解法1当点P 与点A 重合时,O 1P⟂平面OBC ,如图16,因为BC⟂AE,BC⟂EO 1,所以BC⟂面AEO 1,BC⟂AO 1.在图中,作AS//OE,ES//OA ,由AS 2+O 1A 2=O 1S 2知∠SAO 为直角,OE⟂AO 1,AO 1⟂平面OBC .解法2易得AE =OE =√3,OA =2OE 1. 设点A 在平面OBC 上的射影为点G ,若O 1P⟂平面OBC ,则O 1P//AG,O 1E =1.所以OO 1=√2.设PO 1交OE 于点H,OH:OO 1=OO 1:OE,OH =2√33. 又OG =2√33,所以点P 与点A 重合. 解法3以O 1为原点,O 1C 1所在直线为x 轴,O 1O 所在直线为y 轴,O 1E 所在直线为z 轴建立平面直角坐标系,则O(0,√2,0),C (1,0,1),B (−1,0,1),A(0,√2,2).设P(0,√2,z),则OC ⃗⃗⃗⃗⃗ =(1,−√2,1),O 1P ⃗⃗⃗⃗⃗⃗⃗ =(0,√2,z).由于BC ⃗⃗⃗⃗⃗ ⟂O 1P ⃗⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ⟂O 1P ⃗⃗⃗⃗⃗⃗⃗ ,所以z =2,即点A 与点P 重合时,O 1P⟂平面OBC .【反思】高考数学命题中关于空间图形的问题情景主要是静态的、规则的图形中的点、线、面位置关系及度量关系,其中出现比较多的是平面图形翻折成空间图形或由规则图形截取得到不规则图形后的点、线、面位置关系及度量关系.强化练习1.已知三棱锥P−ABC的底面ABC是边长为2√3的正三角形,点A在侧面PBC内的射影H为ΔPBC的垂心,二面角P−AB−C的平面角的大小为60∘,则AP的长为A.3 B.3√2 C.√7 D.4【解析】如答图所示,连接并延长BH,交PC于点E,连接AE,设点P在底面ABC内的射影为点O,则PO⊥平面ABC,连接CO并延长,交AB于点F.因为点A在侧面PBC内的射影H为△PBC的垂心,所以AH⊥平面PBC,BE⊥PC,所以AH⊥PC.因为BE∩AH=H,BE⊂平面ABE,AH⊂平面ABE,所以PC⊥平面ABE,所以PC⊥AB.因为CB⊂平面ABC,PO⊥平面AC,所以PO⊥AB.因为PO∩PC=P,PO⊂平面PFC,PC⊂平面PFC,所以AB⊥平面PFC.因为CO⊂平面PFC,所以AB⊥CO.同理可证AC⊥BO.所以O是△ABC的垂心,所以三棱雉P−ABC为正三棱雉.因为三棱雉P−ABC的底面ABC是边长为2√3的正三角形,所以BF=√3,CF=3,则PO=1.因为二面角P−AB−C的平面角的大小为60∘,所以∠PFC为二面角P−AB−C的平面角.在Rt△POF中,∠PFC=60∘,FO=1,所以PF=2.在Rt△PFA中,PF=2,AF=√3,所以AP=√22+(√3)2=√7.故选C.第1题答图【反思】先判断三棱锥P−ABC为正三棱锥,然后根据异面直线所成的角的定义可得∠PFC为二面角P−AB−C的平面角,解直角三角形即可得解.2.如图,棱雉P−ABCD的底面是菱形,∠DAB=π,且ΔPAB是正三角形,求3证:PD⟂AB.【解析】取AB的中点O,连接OD,OP,由题意得△DAB为正三角形,所以AB⊥OD. 因为△PAB是正三角形,所以AB⊥OP.又OP∩OB=O,所以AB⊥平面POD且PD⊂平面POD,所以PD⊥AB.【反思】(1)立体几何命题的证明讲究逻辑,符合基本定理前提,此几何背景中有许多特殊的三角形,关键是找准一个点,即AB的中点.(2)为证线线垂直,转而证明线面垂直,而证线面垂直,线面垂直的判断是基础.3.如图,长方体ABCD−A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⟂EC1.求证:BE⟂平面EB1C1.【解析】由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.【反思】根据线面垂直的判定定理,在复杂空间图形中寻找需要的条件.4.图1是由矩形ADEB、RtΔABC和菱形BFGC组成的一个平面图形,其中AB= 1,BE=BF=2,∠FBC=60∘,将其沿AB,BC折起,使得BE与BF重合,连接DG,如图2,证明:图2中的A,C,G,D四点共面,且平面ABC⟂平面BCGE.5.【解析】由已知得AD//BE,CG//BE,所以AD//CG,故AD和CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.【反思】翻折前后线线、线面位置关系的变与不变是思考的基础.6.已知在边长为1的菱形ABCD中,∠ABC=60∘,沿AC折叠后,设平面ABC与平面ACD所成角为α,折叠过程中,是否存在α,使得平面ABD⟂平面CBD?7.【解析】由对称性且△ABD与△CBD为等腰三角形,取BD的中点G,则∠AGC为平面ABD与平面CBD所成二面角的平面角.在△BDE中,由余弦定理得BD2=34+34−2×34cosα=3sin2α2,或由三角函数定义可得BD=√3sinα2,于是AG2=1−34sin2α2=CG2.当AG2+CG2=AC2时,平面ABD⊥平面ADC,即当2(1−34sin2α4)=1,也即sinα2=√63时,平面ABD⊥平面ADC.由于12<69<34,所以π4<α2<π3.故存在α,使得平面ABD⊥平面CBD.【反思】(1)用最简单的平面图形创设问题情境,检测学生的空间想象能力与创新能力.面对新的数学问题,需要对问题情境有比较深入的理解,才能达到较高层次的认知,层次一属千找到一个;层次二不仅找到而且发现更一般的情形;层次三向更深的地方思考并探索,提出了存在性命题.这样一个开放性命题给不同数学认知水平的学生提供了一个平台,有利于培养学生创新意识.(2)在证明过程中,还可以逆向思考,要使∠AGC 为直角,只要AG =CG =√22,只要DG =√22,或BD =√2,只要sinα2=√638. 如图,在矩形ABCD 中,点E 在线段CD 上,AB =3,BC =CE =2,沿直线BE 将ΔBCE 翻折成ΔBC ′E ,使点C ′在平面ABED 上的射影F 落在直线BD 上.求证:直线BE⟂平面CFC ′.9.【解析】(I)如答图所示,在线段AB 上取点G ,使BG =2,连接CG ,交BE 于点H .因为在正方形BCEG 中,BE ⊥CG ,所以翻折后,BE ⊥C ′H,BE ⊥GH .又C ′H ∩GH =H ,所以BE ⊥平面C ′HG .又BE ⊂平面ABED ,所以平面ABED ⊥平面C ′HG .又平面ABED ∩平面C ′HG =GC ,所以点C ′在平面ABED 上的射影F 落在直线GC 上.又点C ′在平面ABED 上的射影F 落在直线BD 上,所以F 为直线BD 与GC 的交点,所以平面CFC ′即平面C ′HG ,所以直线BE ⊥平面CFC ′.第6题答图【反思】按照直线与平面垂直判定的逻辑推理方式进行规范的叙述.7.如图,在四棱锥P−ABCD中,PC⟂平面ABCD,AB⟂AD,AB//CD,PD=AB=2AD=2CD=2,E为PB的中点.证明:平面EAC⟂平面PBC.【解析】证明:PC⊥平面ABCD,故PC⊥AC.又AB=2,CD=1,AD⊥AB,所以AC=BC=√2.故AC2+BC2=AB2,即AC⊥BC.所以AC⊥平面PBC,所以平面ACE⊥平面PBC.【反思】面对大量线段时,巧用勾股定理的逆定理判断位置关系.8如图,在三棱锥P−ABC中,PA⟂平面ABC,2AC=PC=2,AC⟂BC,D,E,F分别为AC,AB,AP的中点,M,N分别为线段PC,PB上的动点,且有MN//BC.(I)求证:MN⟂平面PAC;(II)探究:是否存在这样的动点M,使得二面角E−MN−F为直二面角?若存在,求CM的长;若不存在,说明理由.【解析】因为PA⊥平面ABC,所以PA⊥BC.又AC⊥BC,所以BC⊥平面PAC.又因为MN//BC,所以MN⊥平面PAC.(II)由条件可得,∠FMD即为二面角E−MN−F的平面角. 若二面角E−MN−F为直二面角,则∠FMD=90∘.在Rt△PCA中,设CM=t(0⩽t⩽2),则PM=2−t.在△MDC中,由余弦定理可得,DM2=CM2+CD2−2CM⋅CDcos60∘=t2+14−12t.同理可得,FM2=PM2+PF2−2PM⋅PFcos30∘=(2−t)2+34−32(2−t)又由FD2=FM2+MD2,得2t2−3t+1=0,解得t=1,或t=12.所以存在直二面角E−MN−F,且CM的长度为1或12.【反思】求是否存在点的位置可以转化为求是否存在一定长度的线段,把对“形”的研究转化到对“数”的分析上.。
第07讲、空间中的垂直关系(讲义)
第07讲、空间中的垂直关系(讲义)在这一讲中,我们讨论空间中的垂直关系. 主线依旧是从线线关系到线面、面面关系,并且将后者转化为前者来解决.一、线线垂直我们还是从平面几何谈起. 下面列出了平面几何中与垂线概念相关的一些重要信息: ① 定义:交角为直角(即平角的一半)的两条直线互相垂直;② 存在唯一性定理:过(直线上或者直线外)一点有且仅有一条直线与已知直线垂直; 如何将两直线的垂直关系推广到空间呢?一个预备性的定理,角的平移不变性,保证了这一推广的有效性. 事实上,角的平移不变性可以使我们谈论更为一般的空间中直线位置关系,即两条异面直线的夹角问题.定义:如果两条直线相交于一点,或者经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.二、线面垂直先来看一种基于平面图形的直观构造,如下图,直线l 是线段AB 的垂直平分线,并且它们在同一平面内;如何由此产生一个与线段AB 垂直的平面呢?一种自然的想法是令直线l 绕垂足旋转一周,从而产生出一个平面. 就直觉而言,直线l 转过的每个位置都是线段AB 的垂直平分线,反过来说,如果有一条直线稍稍偏离了垂直平分线的位置,那它也就不会被包含于这个平面之中.也许你会奇怪为什么要令AB 是线段,其实这只是为了便于讨论了引入的一种简化处理,我们知道直线上任意一点都是其对称点,相应地也可以在该点两侧截取等长线段,因此前述图景中并未包含任何可能丧失一般性的限制. 相反,它提示我们可以从直线上对称地截取等长线段,从而构造出有限图形而更便于深入讨论.定义:如果一条直线(AB )与一个平面α相交于点O ,并且与这个平面内所有过交点O 的直线都垂直,则称这条直线和这个平面互相垂直,这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足. 垂线上任意一点到垂足间的线段叫做这个点到这个平面的垂线段. 垂线段的长度叫做这个点到平面的距离.从这个定义出发,我们很自然地会追问一些问题. 例如,平面α内的直线并不都是经过垂足O 的,那些不过O 点的直线也与垂线垂直吗?线面垂直性质定理:如果一条直线垂直于一个平面,那么它就和平面内任意一条直线垂直.已知:如图①,αα⊂⊥m l ,;证明:m l ⊥.证:若直线m 经过垂足,则根据线面垂直定义有m l ⊥;若m 不过垂足,则可过垂足作m 的平行线a ,线面垂直定义保证a l ⊥,而根据线线垂直定义,此时仍有m l ⊥. 综合两种情况,原命题得证.接下来我们看看判定问题,线面垂直的定义其实不具有可用性,因为“与所有过交点的直线都垂直”是难以实现的,因此,我们要找到一种通过有限次操作就能确认的方法. 很显① 画图提示:画线面垂直时,通常把直线化成和表示平面的平行四边形的一边垂直.然,只与一条过交点的直线垂直是不能保证线面垂直的(你能举出反例吗?),而两条相交直线可以唯一确定一个平面,因此我们将希望寄托于此.线面垂直的判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直.分析:我们的目标是由“与平面内的两条相交直线都垂直”推出“与平面内所有过交点的直线都垂直”,从而符合线面垂直定义. 为了进一步的讨论我们做两点处理,同时要注意不失一般性(请你自己确认一下理由). 第一个处理是将平面内直线n m ,平移到使其交点与线面交点重合,第二个处理是在直线与平面的交点两侧截取等长的线段.已知:如上中图,线段F AB =α 且FB AF =,过F 点的直线n m ,均与AB 垂直,l 是经过F 点的任一直线;证明:l 是线段AB 的垂直平分线.证:任取点l E ∈,过E 作直线分别交n m ,于点D C ,,连接BE AE BD AD BC AC ,,,,,; 为便于识别将ACD ∆和BCD ∆置于同一平面内,由SSS 全等判据得BCD ACD ∆∆≌,从而BCD ACD ∠=∠,接着BCE ACE ∆∆≌,所以BE AE =. 结合BE AE BF AF ==,可知l 是线段AB 的垂直平分线(理由是什么?).现在我们证明了“过线面交点的任一直线都与该直线垂直”,根据定义可以知道,该直线与平面垂直. 这样,我们就将判定线面垂直的问题转化为判定线线垂直问题.接着我们来看该判据的两条推论.推论1、两条平行直线中,如果有一条垂直于平面,那么另一条也垂直于这个平面.已知:α⊥l m l ,∥;求证:α⊥m证:根据线面垂直性质定理,α⊥l 意味着可以在α内找到两条相交直线,例如b a ,,使得b l a l ⊥⊥,. 空间中线线垂直的定义表明垂直关系在平移变换下保持不变,因此由m l ∥我们有b m a m ⊥⊥,,由线面垂直判定定理可知α⊥m . 推论2、如果两条直线垂直于同一平面,那么这两条直线平行.已知:αα⊥⊥m l ,;求证:m l ∥.证:反证. 设l m ,不平行,则由平行公理,过m 与α的交点存在唯一直线l m ∥',根据推论1可知α⊥'m . 接着,考由相交直线m m ',所决定的平面β,记βα =a ,α m m B '=,则a B =∈βα ,于是,在平面β内,过直线a 上一点B 存在两条垂线m 和m ',与平面内(这个限制条件很重要!)垂线的存在唯一性矛盾. 因此假设不成立,即必有m l ∥.点评:(1)上述两条推论可以看做是哪两条平面几何定理向空间的推广?请你对比一下.(2)在证明推论2时,我们实际上证明了“过平面内一点有且仅有一条垂线”,再补充上“过平面外一点有且仅有一条垂线”,就完成了将“过点作垂线的存在唯一性”的空间定理的证明. 现在我们来具体看看.如图,假设过平面外一点P 可以作两条平面的垂线,垂足分别为点B A ,;则在点B A P ,,所决定的平面内,由直线AB 外一点P 可以向它引两条垂线(线面垂直性质定理!),与平面内垂线存在唯一性矛盾.综合上述两种情况,我们有:空间中,过一点与已知平面垂直的直线有且仅有一条.例1、一根旗杆AB 高8米,它的顶端A 挂着两根长10米的绳子.拉紧绳子,并把它的下端放在地面上的C B ,两点(和旗杆脚不在同一直线上),并且这两点都与旗杆脚的距离是6米.解答:依题意6,10,8=====BD BC AD AC AB ,由勾股定理逆定理AD AB AC AB ⊥⊥,,根据线面垂直的判定定理可知BCD AB ⊥.点评:(1)这是“由线段度量确定角度关系”的一个空间版的呈现,也许你还记得,古代埃及人用长绳构造直角的方法是在绳子上标记12个等长的段,接着拉出一个边长为()5,4,3的三角形从而得到直角. 这个问题提示我们:在确定足量的线段长度之后,就可以确定角度.(2)如果你听到诸如“求三棱锥BCD A -的体积”这样的问题时,会不会觉得奇怪?事实上你应该记得,在定义直棱柱和锥、台等立体的高时,我们都明确用到了线面垂直概念.例2、已知:如图,l AP l A l ⊥=⊥,,αα求证:α⊂AP .证:反证,设α⊄AP ,则设相交直线AP l ,所决定的平面为β,由βα ∈A ,设βα =AM . 根据线面垂直性质定理,αα⊂⊥AM l ,,得到AM l ⊥,但同时有AP l ⊥,于是在平面β内,过直线l 上点A 有两条垂线AP AM ,,导致矛盾. 因此必有α⊂AP .点评:线面垂直保证了“平面内过交点的每条直线都与该直线垂直”,现在我们证明了“过交点的每条垂线都在平面内”,这是对于前述直观感觉“垂面是由过交点的全体垂线构成的”的精确化表述. 公理化论证模式并不是要推翻直观,而是不断努力将直观精确化,提出其中的谬误,使剩余部分更准确也更有力.例3、正方体中的线面垂直(1)证明:11B BDD AC ⊥;(2)证明:BD A AC 11⊥;分析:证明线面垂直的关键就是在面内找到两条相交垂线,而寻找线线垂直的方法有两种,平面内的相关证明,或者是作为线面垂直的性质.解答:仅给出思路,请自己补充细节;(1)在平面ABCD 内证明BD AC ⊥,由线面垂直关系得到1BB AC ⊥;(2)由(1)中结论同理得11A ACC BD ⊥,从而有BD AC ⊥1;同理可得B A AC 11⊥.三、面面垂直从直观上看,我们之前建立的印象“包含平面的一条垂线的面与该平面垂直”(如下左图)是简明清晰而合乎直觉的,但是如果把它作为面面垂直的定义会有什么不足呢?关键在于可推广性. 在平面几何中,我们是把“垂直”作为相交的特例来处理的,也就是说,一般地,两条直线可以有一个交角,而垂直不过是交角恰为直角的情况. 这样,在定义面面垂直时,我们其实真正希望做的是先定义“面面交角”,然后把垂直作为特例.定义:如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直②.至于我们最初的那个简明清晰的直觉,它就成为判定定理;或者更一般地说,判定定理总要具有相对简单、好用的形式.面面垂直判定定理:若一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.已知:βα⊂⊥l l ,;求证:αβ⊥.证明:如右图,记P a l a == ,βα,在平面α内过P 点作a 的垂线m ,记相交直线m l ,所决定的平面为γ;由线面垂直性质定理可知m l a l ⊥⊥,,结合a m ⊥可知γ⊥a (第三个面与两面交线垂直),注意到m l m l ⊥==,,γαγβ ,符合面面垂直定义,因此有αβ⊥.这次的性质定理指向性比较明确,它与判定定理在逻辑上很密切.② 从这个定义中,你是否看到了一般的“两平面交角”(即“二面角”)的推广定义?或者更具体地,如果我们要定义“两个相交平面的交角为α”,该如何修改上述定义?面面垂直性质定理:若两个平面互相垂直,则在一个平面内垂直于交线的直线也垂直于另一平面.已知:a l l a ⊥⊂=⊥,,,ββααβ ;求证:β⊥m .证:如右图,记P a l = ,在平面α内过P 点作a 的垂线m ,记相交直线m l ,所决定的平面为γ;由线面垂直判定定理可知γ⊥a ,且γαγβ ==m l ,,根据面面垂直的定义可知m l ⊥. 由l m a m a l P ⊥⊥=,, ,根据线面垂直判定定理得β⊥m .上述两个命题的证明过程具有高度的相关性(甚至连图都差不多!),这是因为证明的核心在于构造出定义所要求的“第三个平面与交线垂直且两条交线彼此垂直”,并且将面面关系转化为线面关系问题.例4、如图,平面βα⊥,在两面交线上取线段4=AB ,BD AC ,分别在平面α和β内,它们都垂直于交线AB ,且3=AC ,12=BD ,求CD 的长.解答:由于AB DB AB ⊥=⊥,,βαβα ,根据面面垂直性质定理可知α⊥DB ,而α⊂CB ,由线面垂直性质定理得BC DB ⊥;在ABC Rt ∆中,4,3==AB AC ,因此5=BC ;在BCD Rt ∆中,12,5==BD BC ,因此13=CD .点评:事实上,题中利用线面关系的语言描述了一个三棱锥的构造过程,例如,根据题中信息,你能画出三棱锥ABD C -的三视图吗?例5、已知ABC Rt ∆中,a AC AB ==,AD 是斜边BC 上的高,以AD 为折痕使BDC ∠成直角.(1)证明:BDC ACD BDC ABD ⊥⊥,;(2)︒=∠60BAC ;解答:(1)根据线面垂直判定定理,CD AD BD AD ⊥⊥,,因此有BCD AD ⊥;再根据面面垂直判定定理,经过垂线AD 的平面ACD ABD ,都与底面BCD 垂直;(2)对BCD Rt ∆使用勾股定理得a BC =,从而有正ABC ∆.点评:实际上,对于三棱锥BCD A -,我们该问的是“还有什么是不能知道的”. 有兴趣的同学不妨在这里尝试一下你前面推广得到的“二面角”的概念,看能否计算出平面ABD 与ABC 的夹角?作为对本讲的总结,让我们回顾一下多面体:请你试着用空间中线面关系的语言,重新定义常见的多面体.。
空间几何中的垂直关系
空间几何中的垂直关系垂直关系是空间几何中的重要概念之一,它与直线和平面的相互关系密切相关。
本文将就空间几何中的垂直关系进行详细探讨。
一、垂直关系的定义和性质在空间几何中,我们称两条直线或一个直线和一个平面相互垂直,当且仅当它们的夹角为90度(或称直角)。
垂直关系具有以下性质:1. 垂直关系是相对的:两条直线或一个直线和一个平面相互垂直,可以理解为它们相互垂直的方向互为补角,即互为垂线。
2. 垂直关系具有传递性:如果直线AB垂直于直线BC,那么直线AB也将垂直于直线AC。
这个性质可以通过夹角定义和垂线的性质进行推导。
3. 平面与直线的垂直关系:当一条直线与一个平面垂直时,它与该平面的任意直线均垂直。
这一性质为建立空间几何中的垂直关系提供了便利。
4. 垂直关系与平行关系之间的关系:如果两个平面相互垂直,那么它们的任意一条公共直线与这两个平面都垂直;反之,如果两个平面的任意一条公共直线与这两个平面都垂直,那么这两个平面互相垂直。
二、垂直关系的应用垂直关系在几何学和实际生活中都有广泛的应用。
以下列举了几个常见的应用场景:1. 建筑学中的垂直关系:在建筑设计与施工中,垂直关系是十分重要的,用来确保建筑结构的稳定和整体美观。
例如,墙面的垂直性要求、柱子与楼梯之间的垂直关系等都是基于几何理论的。
2. 地质学中的垂直关系:地层与地层之间的垂直关系是地质学家研究地壳演化和地层分析的基础。
通过研究地质层的垂直关系,可以推断出地层的变动和地质历史的变迁。
3. 数学建模中的垂直关系:在数学建模中,垂直关系被广泛应用于平面几何、三维几何以及向量分析等学科中。
它在描述和解决实际问题时,起到了重要的作用。
4. 导航和测量中的垂直关系:在导航和测量领域,垂直关系被用于确定方向、角度和高度。
例如,地球上的经线与纬线垂直相交,使得我们可以准确测量位置和方向。
三、总结空间几何中的垂直关系是一种重要的几何概念,它与直线和平面之间的关系密不可分。
空间几何中的垂线定理与推论
空间几何中的垂线定理与推论在空间几何中,垂线定理与推论是重要的基础概念。
它们帮助我们理解不同几何形体之间的关系,探索空间中的垂直性质。
本文将详细介绍垂线定理与推论的概念、证明方法以及应用场景。
1. 垂线定理的定义与证明垂线定理是指:如果两条直线垂直于同一平面上的第三条直线,并且它们互相垂直,则这两条直线平行。
该定理在解决空间中直线和平面相互垂直的问题时起到了关键作用。
假设在空间中有三条直线,分别为AB、CD和EF。
已知CD⊥EF,且AB⊥CD,我们需要证明AB∥EF。
证明过程:首先,在CD上找一点O,使得AO⊥CD。
根据垂线定义,我们知道AO与CD垂直。
然后,连接BO并假设BO与EF相交于点N。
根据角的性质,我们得到∠NOB=90°。
此外,由于AB⊥CD,所以∠BAO=90°。
根据传递性质,我们可以得出∠BAO=∠NOB。
因此,可得到AO∥BO。
接下来,我们需要证明EF⊥BO。
由于FO⊥CD,所以FO⊥BO。
此外,根据垂线定理的定义,我们知道AO∥BO,因此,可得到EF⊥BO。
根据垂线定理,我们可以得出AB∥EF。
2. 垂线推论的应用垂线定理还引申出许多有用的推论,这些推论广泛应用于几何学的各个领域。
下面列举了几个常见的垂线推论及其应用。
推论1:如果两条直线垂直于同一平面上的某条直线,它们互相垂直。
应用:在解决平面几何问题时,可以利用该推论判断两条直线是否垂直。
推论2:如果两条直线分别与同一直线垂直,并且它们不相交,则它们平行。
应用:在平面几何中,该推论帮助我们判定两条直线是否平行。
推论3:如果两个平面互相垂直,则它们的交线是一条直线。
应用:该推论在解决空间几何问题时非常有用,可以帮助我们找到两个垂直平面的交线。
推论4:如果两条直线分别与同一平面垂直,并且它们不在同一直线上,则它们平行于平面。
应用:该推论在解决空间几何问题中帮助我们判断直线与平面之间的关系。
3. 垂线定理与推论的应用举例垂线定理与推论不仅具有理论意义,还广泛应用于实际问题中。
几何中垂直的关系
(一)空间中的垂直关系1. 两条直线互相垂直线线垂直分为共面与不共面。
不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
2. 直线与平面垂直(1)定义:直线与平面垂直是指直线和平面相交且和这个平面过交点的任何直线都垂直。
这里的“任何直线”能代表平面内的所有直线.需要注意的是:无数条直线不能代表所有直线,即一条直线垂直于一个平面内的无数条直线,直线不一定与平面垂直,因为这无数条直线可以是互相平行的。
(2)直线与平面垂直的判定方法①定义:②判定定理:③推论:(3)直线与平面垂直的性质①定理:如果两条直线都垂直于同一个平面,那么这两条直线平行,即:②定义:若线面垂直,则这条直线垂直于这个平面内的任一条直线,即:③垂直于同一条直线的两个平面平行。
④过一点和已知平面垂直的直线只有一条。
⑤过一点和已知直线垂直的平面只有一个。
⑥若于A,,则。
(4)学习中应注意的问题直线与平面垂直的一般定义是根据线段的所有垂直平分线构成的集合来给出的。
需要注意,如果一条直线垂直于一个平面,那么它就和平面内任意一条直线垂直。
用直线和平面垂直的判定定理来证明时,需特别注意平面内的两条相交直线,否则会产生错误。
3. 平面与平面互相垂直(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直。
平面α、β互相垂直,记作α⊥β。
画两个互相垂直的平面,把直立平面的竖边画成和水平面的横边垂直,如图1,2所示。
(2)两个平面垂直的判定定理:若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
实质:线面垂直,则面面垂直。
表示式为:。
(3)两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
符号表示:说明:要特别注意定理中这一条件,这一条件易被我们忽略,而少了这一条件,定理的结论是不成立的。
(4)证明面面垂直的常用思路:①利用两平面垂直的定义。
空间中两直线垂直的判定
空间中两直线垂直的判定在空间几何中,判断两条直线是否垂直是一个基本而重要的问题。
本文将介绍如何判定空间中两条直线的垂直关系,并提供相关的数学原理和具体的判定方法。
一、数学原理两条直线相交可以形成四个角,其中有特殊关系的一个角为90度,即两条直线垂直。
根据数学原理,我们可以通过以下方法来判定空间中两条直线是否垂直:1.利用向量法:设有两条非平行的直线L1和L2,分别有方向向量a和b。
如果a·b=0,则说明L1与L2垂直。
2.利用斜率法:设有两条非平行的直线L1和L2,分别有斜率k1和k2。
如果k1·k2=-1,则说明L1与L2垂直。
二、判定方法方法一:向量法步骤: 1. 确定两条非平行直线L1和L2,并求出它们的方向向量a和b。
2. 计算向量a与向量b的点积(内积)a·b。
3. 如果点积为0,则说明L1与L2垂直;否则,说明L1与L2不垂直。
示例代码:import numpy as npdef is_perpendicular(a, b):dot_product = np.dot(a, b)if dot_product == 0:return Trueelse:return False# 示例:判断直线L1和L2是否垂直a = np.array([1, 2, 3]) # 直线L1的方向向量b = np.array([-2, 1, -4]) # 直线L2的方向向量result = is_perpendicular(a, b)print(result) # 输出True表示L1与L2垂直方法二:斜率法步骤: 1. 确定两条非平行直线L1和L2,并求出它们的斜率k1和k2。
2. 计算斜率k1与斜率k2的乘积k1·k2。
3. 如果乘积为-1,则说明L1与L2垂直;否则,说明L1与L2不垂直。
示例代码:def is_perpendicular(k1, k2):product = k1 * k2if product == -1:return Trueelse:return False# 示例:判断直线L1和L2是否垂直k1 = 0.5 # 直线L1的斜率k2 = -2 # 直线L2的斜率result = is_perpendicular(k1, k2)print(result) # 输出True表示L1与L2垂直三、注意事项1.在使用向量法判定两条直线是否垂直时,需确保直线L1和L2非平行,否则无法求出其方向向量。
高考数学一轮单元复习 第38讲 空间中的垂直关系课件
h
12
第38讲│要点探究
【思路】 在平面PBC内寻找两条相交直线与AE垂直.
【解答】 设⊙O所在平面为α,由已知条件知PA⊥α,而BC 在α内,所以PA⊥BC.
因为点C是圆周上不同于A,B的任意一点,AB 是⊙O的直 径,
所以∠BCA是直角,即BC⊥AC. 又因为PA与AC是△PAC所在平面内的两条相交直线, 所以BC⊥平面PAC,故BC⊥AE. 又AE⊥PC,PC∩BC=C,所以AE⊥平面PBC.
h
17
第38讲│要点探究
探究点3 面面垂直的性质的应用
例3 [2009·福建卷] 如图39-6所示,平行四边形ABCD中, ∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的 位置,使平面EDB⊥平面ABD.
(1)求证:AB⊥DE; (2)求三棱锥E-ABD的侧面积.
h
18
第38讲│要点探究
h
24
第38讲│要点探究
探究点4 线面角和二面角的求法
例4 [2009·北京卷]如图38-8所示,在三棱锥P-ABC中, PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点 D,E分别在棱PB,PC上,且DE∥BC.
(1)求证:BC⊥平面PAC; (2)当D为PB的中点时,求AD与平面PAC所 成的角的正弦值; (3)是否存在点E使得二面角A-DE-P为 直二面角?并说明理由.
h
25
第38讲│要点探究
【思路】 先利用定义构造线面角和二面角的平面角,然后解 直角三角形可得线面角,也可确定存在点E使二面角为直二面 角.
【解答】 (1)∵PA⊥底面ABC,
∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题-空间中的垂直关系认识和理解空间中线面垂直的有关性质与判定/能运用公理、定理和已获得的结论证明一些空间圆形垂直关系的简单命题1.两条直线互相垂直定义:如果两条直线相交于一点或 相交于一点,并且交角为 ,则称这两条直线互相垂直.2.直线与平面垂直(1)直线与平面垂直的定义如果一条直线和一个平面相交于点O ,并且和这个平面内过交点(O )的 直线都垂直,就说这条直线和这个平面互相垂直.(2)判定直线与平面垂直的方法.①定义法②利用直线与平面垂直的判定定理:如果一条直线和一个平面内的两条 . 直线都垂直,那么这条直线垂直于这个平面.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.(3)直线与平面垂直的性质①垂直于同一个平面的两条直线 .②直线垂直平面,则垂直平面内的任意一条直线.③垂直同一直线的两平面平行.③垂直同一直线的两平面平行.3.直线和平面所成的角(1)直线和它在平面内的射影所成的锐角,叫斜线与平面所成的角(2)范围:[0,π2] 4.二面角的概念(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角(3)范围:[0,π]5.两个平面垂直(1)平面与平面垂直的判定方法①定义法②判定定理:如果一个平面经过另一个平面的 ,那么这两个平面互相垂直.(2)性质定理:若两个平面互相垂直,那么 垂直于它们的交线的直线垂 直于另一个平面.试用向量的方法证明直线与平面垂直的判定定理.已知a ∩b =O ,a ⊂α,b ⊂α,l ⊥a ,l ⊥b求证:l ⊥α.证明:取直线a 、b 的方向向量分别为a ,b ,l 的方向向量为n ,在平面α内任取一条直线m ,其方向向量为m 由平面向量基本定理m =x a +y bn ·m =x a ·n +y b ·n =0,则l ⊥m ,由直线与平面垂直的定义可知l ⊥α.1.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )A .平行B .相交C .垂直D .互为异面直线解析:若直线l ⊥α,l ∥α,或l ⊂α,在α内必有直线m ,使m ⊥l ;若l 是平面 的斜线可找出其射影l ′,则存在直线m ⊥l ′,即m ⊥l .答案:C2.如右图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线, 垂足为A ′、B ′,若AB =12,则A ′B ′等于 ( )A .4B .6C .8D .9解析:连结A ′B 可知∠ABA ′=π6,则A ′B =AB cos π6=63,连结AB ′可知 ∠BAB ′=π4,则BB ′=AB sin π4=62,在Rt △BB ′A ′中,A ′B ′=A ′B 2-BB ′2 =6.答案:B3.如右图所示,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H ,则以下命题中,错误的命题是 ( )A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°答案:D4.已知平面α⊥β,α∩β=l ,P 是空间一点,且P 到平面α、β的距离分别是1、2,则点P 到l 的距离为________.解析:如图,∵PO ⊂平面P AB ,∴l ⊥PO .∴PO 就是P 到直线l 的距离.∵α⊥β,∴P AOB 为矩形,PO =12+22= 5.答案: 55.平行四边形的一个顶点A 在平面α内,其余顶点在α的同侧,已知其中有两个顶点到α的距离分别为1和2,那么剩下的一个顶点到平面α的距离可能是:①1;②2; ③3;④4.以上结论正确的为________.(写出所有正确结论的编号)答案:①③考向一 直线与平面垂直的判定与性质【例1】 如右图,在正方体ABCD —A 1B 1C 1D 1中,O 为底面正方形的中心,M 为棱DD 1的中点,试证:B 1O ⊥平面MAC .证明:证法一:如图(1),连结AB 1、CB 1,由AB 1=CB 1,又O 为AC 的中点,∴B 1O ⊥AC .连结OM 、MB 1、B 1D 1,可证MB 21=OM 2+OB 21, ∴B 1O ⊥OM .根据直线与平面垂直的判定定理知:B 1O ⊥平面MAC .证法二:如图(2)建立直角坐标系D —xyz ,设DD 1=1则M 、C 、B 1、O 的坐标分别为(0,0,12)、(0,1,0)、(1,1,1)、(12,12,0).∴MC →=(0,1,-12),B 1O →=(-12,-12,-1),MC →·B 10→=-12+12=0,因此MC →⊥B 1O →.同理可证:MA →⊥B 1O →,∴B 1O ⊥平面MAC .反思感悟:善于总结,养成习惯证线面垂直的方法:(1)利用线面垂直定义:证一直线垂直于平面内任意一直线,则这条直线垂直于该平面;(2)用线面垂直的判定定理:证一直线与平面内两相交直线都垂直,则这条直线与平面 垂直;(3)用线面垂直的性质:两平行线之一垂直于这个平面,则另一条也必垂直于这 个平面;(4)用面面垂直的性质定理:两平面垂直,在一个面内垂直于交线的直线必垂 直于另一平面;(5)用面面平行的性质:一直线垂直于两平行平面之一,则必垂直于另 一平面.迁移发散1.在四面体A -BCD 中,已知AB ⊥CD ,AC ⊥BD ,试证:AD ⊥BC .证明:证法一:如右图,过A 点作AO ⊥平面BCD ,垂足为O ,连结BO 、CO 、DO .则由AB ⊥CD ,AO ⊥CD ,AB ∩AO =A ,知:CD ⊥平面ABO ,∴BO ⊥CD ,同理CO ⊥BD ,则O 为△BCD 的垂心,∴DO ⊥BC .又AO ⊥BC ,AO ∩DO =O ,∴BC ⊥平面AOD ,∴AD ⊥BC .证法二:设BC →=a ,BD →=b ,BA →=c根据已知条件⎩⎪⎨⎪⎧ c ·(b -a )=0(c -a )·b =0 ①②①-②得a ·(b -c )=0,即AD ⊥BC .考向二 平面与平面垂直的判定与性质【例2】 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5(1)设M 是PC 上的一点,求证:平面MBD ⊥平面P AD ;(2)求四棱锥P -ABCD 的体积.(1)证明:在△ABD 中,∵AD =4,BD =8,AB =45,∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD .又BD ⊂面BDM ,∴面MBD ⊥面P AD .(2)解:过P 作PO ⊥AD ,∵面P AD ⊥面ABCD∴PO ⊥面ABCD ,即PO 为四棱锥P -ABCD 的高.又△P AD 是边长为4的等边三角形,∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24.∴V P -ABCD =13×24×23=16 3. 反思感悟:善于总结,养成习惯当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线.把面面垂直转化为 线面垂直,进而可以证明线线垂直,构造二面角的平面角或得到点到面的距离等. 迁移发散2.在斜三棱柱A 1B 1C 1-ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证,截面MBC 1 ⊥侧面BB 1C 1C .证明:(1)∴AB =AC ,D 是BC 的中点,∴AD ⊥BC .∵底面ABC ⊥平面BB 1C 1C ,面ABC ∩面BB 1C 1C =BC ,∴AD ⊥侧面BB 1C 1C .∵CC 1⊂面BB 1C 1C ,∴AD ⊥CC 1.(2)延长B 1A 1与BM 交于N ,连接C 1N .∵AM =MA 1,∴NA 1=A 1B 1.∵A 1B 1=A 1C 1,∴A 1C 1=A 1N =A 1B 1.∴C 1N ⊥C 1B 1.∵截面NB 1C 1⊥侧面BB 1C 1C ,面NB 1C 1∩面BB 1C 1C =C 1B 1,∴C 1N ⊥侧面BB 1C 1C .∵C 1N ⊂面C 1NB ,∴截面C 1NB ⊥侧面BB 1C 1C ,即截面MBC 1⊥侧面BB 1C 1C .考向三 线面角的求法【例3】 如图所示,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,P A ⊥底面ABCD ,且P A =AD=AB =2BC ,M 、N 分别为PC 、PB 的中点.(1)求证:PB ⊥DM ;(2)求BD 与平面ADMN 所成的角.(1)证明:∵N 是PB 的中点,P A =AB ,∴AN ⊥PB .∵∠BAD =90°,∴AD ⊥AB .∵P A ⊥平面ABCD ,∴P A ⊥AD .∵P A ∩AB =A ,∴AD ⊥平面P AB ,∴AD ⊥PB .又∵AD ∩AN =A ,∴PB ⊥平面ADMN .∵DM ⊂平面ADMN ,∴PB ⊥DM . (2)解:连接DN ,∵PB ⊥平面ADMN ,∴∠BDN 是BD 与平面ADMN 所成的角,在Rt △BDN 中,sin ∠BDN =BN BD =12·2AB 2AB =12. ∴∠BDN =30°,即BD 与平面ADMN 所成的角为30°.反思感悟:善于总结,养成习惯求直线和平面所成的角,关键是利用定义作出直线和平面所成的角,必要时,可利用平 行线与同一平面所成角相等,平移直线位置,以方便寻找直线在该平面内的射影. 迁移发散3.如图所示,四面体ABCS 中,SA 、SB 、SC 两两垂直,∠SBA =45°.∠SBC =60°,M 为AB 的中点.求:(1)BC 与平面SAB 所成的角;(2)SC 与平面ABC 所成的角的正切值. 解:(1)∵SC ⊥SB ,SC ⊥SA ,SB ∩SA =S ,∴SC ⊥平面SAB ,∴BC 在平面SAB 上的 射影为SB .∴∠SBC 为BC 与平面SAB 所成的角.又∠SBC =60°,故BC 与平面SAB 所成的角为60°.(2)连接MC ,在Rt △ASB 中,∠SBA =45°,∴△ASB 为等腰直角三角形,∴SM ⊥AB ,由(1)知AB ⊥SC ,AB ∩SM =M ,∴AB ⊥平面SMC .∵AB ⊂平面ABC .∴平面SMC ⊥平面ABC .过点S 作SO ⊥MC 于点O ,∴SO ⊥平面ABC .∴∠SCM 为SC 与平面ABC 所成的角.由(1)知SC ⊥平面SAB ,又SM ⊂平面SAB ,∴SC ⊥SM ,∴△SMC 为直角三角形.设SB =a ,则SM =22a ,SC =SB tan 60°=3a , ∴tan ∠SCM =SM SC =66.即SC 与平面ABC 所成的角的正切值为66. 考向四 二面角的求法【例4】 如右图所示,在三棱锥S -ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC 且分别交AC 、SC 于D 、E ,又SA =AB ,SB =BC .(1)求证:BD ⊥平面SAC ;(2)求二面角E -BD -C 的大小.(1)证明:∵DE ⊥SC 且E 为SC 的中点,又SB =BC ,∴BE ⊥SC ,根据直线与平面垂直的判定定理知:SC ⊥平面BDE , ∴SC ⊥BD ,又SA ⊥平面ABC ,∴SA ⊥BD ,因此BD ⊥平面SAC .(2)解:由(1)知∠EDC 为二面角E -BD -C 的平面角,又△SAC ∽△DEC ,∴∠EDC = ∠ASC ,在Rt △SAB 中,∠A =90°,设SA =AB =1,则SB = 2.由SA ⊥BC ,AB ⊥BC , ∴BC ⊥平面SAB ,∴BC ⊥SB ,在Rt △SBC 中,SB =BC =2,∠SBC =90°,则SC =2,在Rt △SAC 中, ∠A =90°,SA =1,SC =2,∴∠ASC =60°,即二面角E -BD -C 的大小为60°.反思感悟:善于总结,养成习惯解决二面角问题的主要过程是作图、论证与计算,首先要找出二面角的平面角,作二 面角的平面角方法主要是根据定义.迁移发散4.如图所示,在四面体P -ABC 中,已知P A =BC =6,PC =AB =10,AC =8,PB =234.F 是线段PB 上一点,CF =151734,点E 在线段AB 上,且EF ⊥PB . (1)证明:BP ⊥平面CEF ;(2)求二面角B -CE -F 的正切值. (1)证明:∵P A 2+AC 2=PC 2,P A 2+AB 2=PB 2,PC 2+CB 2=PB 2,AC 2+CB 2=AB 2.∴∠P AC =∠P AB =∠PCB =∠ACB =90°,又CF PC =BC PB,∴△PCB ∽△PFC .则∠PFC =90°,又EF ⊥PB ,因此PB ⊥平面CEF . (2)解:由(1)P A ⊥平面ABC ,则P A ⊥EC ,又PB ⊥平面CEF ,∴CE ⊥PB则CE ⊥平面P AB ,因此CE ⊥EF ,CE ⊥EB ,则∠FEB 为二面角B -CE -F 的平面角,在△ABP 中,tan ∠FEB =tan ∠APB =AB P A =53,即二面角B —CE —F 的正切值为53. 1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理 和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.利用向 量的内积证明线线垂直是非常有效的.2.(1)对于二面角问题多数情况下要作出二面角的平面角并加以论证和计算,同时 要注意二面角平面角所在的平面与二面角的棱及两个面都是互相垂直的.(2)二面角平面角的作法大致可根据定义作;可用垂直于二面角棱的平面去截二 面角,此平面与二面角的两个半平面的交线所成的角即为二面角的平面角;也 可首先确定二面角一个面的垂线,利用线面垂直的性质,作出二面角的平面 角,对于这种方法应引起足够的重视.(3)对于直线和平面所成的角及二面角大小的计算都与平面的垂线有关,平面的 垂线是立体几何中最重要的辅助线之一,而平面与平面垂直的性质定理也是最 重要的作图理论依据.§7.5 直线、平面垂直的判定及其性质(时间:50分钟 满分:75分)一、选择题(每小题5分,共25分)1.(·遵义模拟)如图,正四面体ABCD 的顶点A ,B ,C 分别在两两垂直的三条射线Ox ,Oy ,Oz 上,则在下列命题中,错误的是( )A .O -ABC 是正三棱锥B .直线OB ∥平面ACDC .直线AD 与OB 所成的角是45°D .二面角D -OB -A 为45°解析:在正方体中作出正四面体ABCD ,可观察出B 为错误结论.答案:B2.二面角α-l -β的大小为锐角,P ∈l ,P A ⊂α,PB ⊂β且P A ⊥l ,则 ( )A .∠APB 的最大值等于二面角的平面角B .∠APB 的最小值等于二面角的平面角C .二面角的平面角既不是∠APB 的最大值,也不是∠APB 的最小值D .∠APB 就是二面角的平面角解析:如右图,在平面β内作PC ⊥l ,则∠APC 为二面角的平面角,cos ∠APB =cos ∠BPC ·cos ∠APC ≤cos ∠APC ,即∠APB ≥∠APC ,故选B.答案: B3.二面角α-AB -β的平面角是锐角,C ∈α,CD ⊥β,垂足为D ,E ∈AB ,且∠CEB 是锐角,则∠CEB 与∠DEB 的大小关系为 ( )A .∠CEB >∠DEBB .∠CEB <∠DEBC .∠CEB ≤∠DEBD .∠CEB 与∠DEB 的大小关系不确定解析:如右图:作DF ⊥AB 垂足为F ,连结CF 则∠CFD 为二面角的平面角,可知∠CED,∠DEB均为锐角,cos ∠CEB=cos ∠DEB·cos ∠CED<cos ∠DEB,即∠CEB>∠DEB.答案:A4.如图所示,b、c在平面α内,a∩c=B,b∩c=A,且a⊥b,a⊥c,b⊥c,若C∈a,D∈b,E在线段AB上(C、D、E均异于A、B),则△ECD是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:过B点作BF垂直于DE交其延长线于F.连接CF则CF⊥DF∠DEC=∠DFC+∠ECF>90°,则△ECD是钝角三角形.答案:C5.(·成都模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:由BC 1⊥AC,又BA⊥AC,则AC⊥平面ABC1,因此平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H在直线AB上.答案:A二、填空题(每小题4分,共16分)6.α、β是两个不同的平面,m、n是平面α及β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题____________.答案:可填①③④⇒②与②③④⇒①中的一个7.一条线段的两个端点分别在一个直二面角的两个面内,则这条线段与这两个平面所成的角的和的范围是________.解析:作AC⊥l垂足为C,作BD⊥l垂足为D,连结BC、AD,则∠BAD和∠ABC分别为直线AB和平面α和β所成角.由cos ∠ABD=cos ∠ABC·cos ∠DBC≤cos ∠ABC,即∠ABD≥∠ABC,∠ABC+∠BAD≤∠ABD+∠BAD=90°.答案:(0°,90°]8.已知P是△ABC所在平面α外一点,O是点P在平面α内的射影(1)若P到△ABC的三个顶点的距离相等,则O是△ABC的__________;(2)若P A、PB、PC与平面α所成的角相等,则O是△ABC的__________;(3)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的__________;(4)若平面P AB、PBC、PCA与平面α所成的角相等,且O在△ABC的内部,则O是△ABC的__________;(5)若P A、PB、PC两两垂直,则O是△ABC的________.答案:(1)外心(2)外心(3)内心(4)内心(5)垂心9.若Rt △ABC 在给定平面α上的射影有如下的判断:①可能是一条线段;②可能是直角三角形;③可能是钝角三角形;④可能是锐角三角形;⑤可能是一条直线;⑥可能是一条 射线.其中正确判断的序号是________(把你认为正确判断的序号都填上).答案:①②③④三、解答题(共3小题,共34分)10.(本小题满分10分)如图所示,直二面角D -AB -E 中,四边形ABCD 是边长为2的正方形,AE =EB ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证AE ⊥平面BCE ;(2)求二面角B -AC -E 的正弦值;(3) 求点D 到平面ACE 的距离.(1)证明:在直二面角D -AB -E 中,由ABCD 是正方形,则CB ⊥平面AEB ,∴AE ⊥BC , 又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .(2)解:由(1)知平面AEC ⊥平面BCE ,又BF ⊥平面ACE ,则BF ⊥EC ,连结BD 与AC 交于O 点,连结OF (如图),由三垂线定理的逆定理知FO ⊥AC ,又AC ⊥BD ,则∠BOF 为二面角B -AC -E 的平面角,在Rt △AEB 中,BE =2,在Rt △EBC 中,BC =2,∴BF =BE ·BC EC =233,在Rt △BFO 中,sin ∠BOF =63,则二面角的正弦值为63. (3)解:由DO =BO 知D 点到平面ACE 的距离为BF =233. 11.(本小题满分12分)如右图,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD ,(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VBD 所成的二面角的正切值.(1)证明:∵平面VAD ⊥底面ABCD ,又AB ⊥AD ,则AB ⊥平面VAD .(2)解:取VD 中点E ,连结AE 、BE ,∵△VAD 是正三角形,则AE ⊥VD ,由三垂线定理知BE ⊥VD .∴∠AEB 为面VAD 与面VBD 所成二面角的平面角.设AB =1,在Rt △AED 中,AE =AD sin 60°=32, ∴tan ∠AEB =AB AE =233. 12.(本小题满分12分)如图所示,在三棱锥P -ABC 中,△P AB 是等边三角形,∠P AC =∠PBC =90°.(1)证明:AB ⊥PC ;(2)若PC =4,且平面P AC ⊥平面PBC ,求三棱锥P -ABC 的体积.(1)证明:由P A =PB ,∠P AC =∠PBC =90°且PC 为△P AC 与△PBC 的公共边则△P AC ≌PBC ,因此AC =BC ,取AB中点D,连接PD,CD则PD⊥AB,CD⊥AB因此AB⊥平面PDC,则AB⊥PC.(2)解:作BE⊥PC垂足为E,连接AE由△P AC≌△PBC知AE⊥PC则∠BEA为二面角的平面角,即∠BEA=90°可证△PBE≌△ABE,则∠BPC=45°△PBC为等腰直角三角形,则E为PC中点.V P-ABC=V P-ABE+V C-ABE=13S△ABE·PC=83.。