2020高考全国试题分类解析(不等式)

合集下载

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版解析版)

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版解析版)

专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.【答案】(1)35(,)22-(2)[2,1]-【分析】(1)分类讨论求解绝对值不等式,即可求得结果;(2)求得()f x 的值域以及224y m m =-+的值域,根据二次函数的值域是()f x 值域的子集,求参数的范围即可.【解析】(1)当1a =时,()4|1||2|4f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩ 解得312x -<<-或12x -≤≤或522x <<, 3522x ∴-<<.即不等式()4f x <的解集为35(,)22-.(2)根据题意,得224m m -+的取值范围是()f x 值域的子集.2224(1)33m m m -+=-+≥又由于()1221f x x x a a =++-≥+,()f x ∴的值域为[|21|,)a ++∞故|21|3a +≤,21a ∴-≤≤. 即实数a 的取值范围为[2,1]-.【点睛】本题考查分类讨论求解绝对值不等式,以及由绝对值三角不等式求解绝对值函数的最小值,属综合性基础题.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 【答案】(1)[]0,1(2【分析】(1)作出函数图象,数形结合即可得到答案;(2)32a b +=⇒9122a b +++=,()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭,在乘开,利用基本不等式即可. 【解析】(1)因为()3,1,12112,1,213,.2x x f x x x x x x x ⎧⎪-<-⎪⎪=-++=-+-≤≤⎨⎪⎪>⎪⎩从图可知满足不等式()2f x x ≤+的解集为[]0,1.(2)由图可知函数()y f x =的最小值为32,即32m =. 所以32a b +=,从而9122a b +++=,从而()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭()2122263391299a b a b ⎡⎡⎤+⎛⎫++=++≥+=⎢⎢⎥ ⎪++⎢⎢⎥⎝⎭⎣⎦⎣当且仅当()21212a b a b ++=++,即1114,22a b -==时,等号成立,∴1212a b +++ 【点睛】本题考查解绝对值不等式以基本不等式求最值的问题,是一道中档题.3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.【答案】(1)3;(2)证明见解析【分析】(1)根据绝对值的三角不等式求解即可. (2)根据三元的柯西不等式证明即可.【解析】(1)根据绝对值的三角不等式有()()12123x x x x ++-≥+--=. 当且仅当12x -≤≤ 时取等号.故3a =.(2)证明:由(1)有3p q r ++=.利用三元的柯西不等式有()()()22222222221119p q r p q r p q r ++=++++≥++=.故2223p q r ++≥【点睛】本题主要考查了绝对值的三角不等式与三元的柯西不等式运用,属于基础题. 4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 【答案】(1)()1,3-.(2)【分析】(1)首先将()f x 写成分段函数的形式,然后解出即可; (2)首先求出()min 1322f x f ⎛⎫==⎪⎝⎭,然后利用柯西不等式求解即可. 【解析】(1)()133,212211,2233,2x x f x x x x x x x ⎧-+≤⎪⎪⎪=-+-=+<<⎨⎪-≥⎪⎪⎩,()6f x <等价于12336x x ⎧≤⎪⎨⎪-+<⎩或12216x x ⎧<<⎪⎨⎪+<⎩或2336x x ≥⎧⎨-<⎩, 解得112x -<≤或122x <<或23x ≤<. 故不等式()6f x <的解集为()1,3-. (2)由(1)知()f x 在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 1322f x f ⎛⎫==⎪⎝⎭, 则223a b +=,故34a b +≤=(当且仅当a =b =), 即34a b +的最大值为【点睛】本题考查的是含绝对值不等式的解法和利用柯西不等式求最值,考查了分类讨论的思想,属于基础题.5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值. 【答案】(1)100,3⎡⎤⎢⎥⎣⎦;(2)15. 【分析】(1)利用零点分段法,分1x <,12x ≤≤,2x >三种情况去绝对值,解不等式;(2)利用含绝对值三角不等式求得1m =,即21a b +=,方法一,利用柯西不等式2222(2)(12)()a b a b +≤++,求得22a b +的最小值,方法二,根据12a b =-,代入22a b + ,转化为关于b 的二次函数求最值.【解析】(1)53,1()3,1235,2x x f x x x x x -<⎧⎪=-≤≤⎨⎪->⎩,原不等式可等价于5351x x -≤⎧⎨<⎩,或3512x x -≤⎧⎨≤≤⎩,或3552x x -≤⎧⎨>⎩ 解得:1003x ≤≤, 所以原不等式的解集为100,3⎡⎤⎢⎥⎣⎦(2)由(1)可知()122122f x x x x x x =-+-=-+-+-,()()122121x x x x ≥---+-=+-≥当且仅当2x =时等号成立,所以1m = 即21a b +=方法一 由柯西不等式得2222(2)(12)()a b a b +≤++2215a b ∴+≥, 当且仅当225a b ==时取等号方法二 由题意得12a b =-222222211(12)5415()555a b b b b b b +=-+=-+=-+≥当且仅当12,55a b ==时等号成立.【点睛】本题考查含绝对值不等式的解法,以及含绝对值三角不等式的应用,柯西不等式求最值,意在考查转化与化归的思想,计算能力属于基础题型. 6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.【答案】(1)图象见解析,13x x ⎧≤-⎨⎩或}1x ≥;(2)证明见解析.【分析】(1)去掉绝对值号,根据一次函数的图象与性质,即可得到函数()f x 的图象,结合图象,即可求解不等式的解集;(2)不等式()15f x x k +-≥-对任意的x ∈R 恒成立,只需()min 51k f x x -≤⎡+-⎤⎣⎦,求得3k ≥,然后利用作差法,即可证得65k k+≥. 【解析】(1)由题意,函数()31,1121,0131,0x x f x x x x x x x -≥⎧⎪=-+=+<<⎨⎪-+≤⎩,在直角坐标系中作出函数()f x 的图象,如图所示:当13x =-时,可得()2f x =,当1x =时,可得()2f x =,所以根据图象可得解不等式()2f x ≥的解集为13x x ⎧≤-⎨⎩或}1x ≥.(2)由()12222222f x x x x x x +-=-+≥--=,当且仅当()()2220x x -≤,即01x ≤≤时取等号,所以()1f x x +-的最小值为2, 由不等式()15f x x k +-≥-对任意的x ∈R 恒成立, 所以只需()min 512k f x x -≤⎡+-⎤=⎣⎦,可得3k ≥,又由()()22365650k k k k k k k k---++-==≥,所以65k k +≥.【点睛】本题主要考查了绝对值不等式的解法和绝对值不等式恒成立问题,着重考查转化思想和数形结合思想的应用,属于中档试题.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.【答案】(1)35,22⎛⎫-⎪⎝⎭(2)[]2,1- 【分析】(1)根据绝对值定义将不等式化为三个不等式组,最后求并集得结果;(2)先根据绝对值三角不等式得()f x 值域,再根据二次函数性质得值域,最后根据两个值域关系列不等式,解得结果.【解析】(1)当1a =时,()4124f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩, 解得312x -<<-或12x -≤≤或522x <<, ∴3522x -<<.即不等式()4f x <的解集为35,22⎛⎫- ⎪⎝⎭. (2)根据题意,得224m m -+的取值范围是()f x 值域的子集.()2224133m m m -+=-+≥,又由于()1221f x x x a a =++-≥+,∴()f x 的值域为)21,a ⎡++∞⎣ 故213a +≤,∴21a -≤≤.即实数a 的取值范围为[]2,1-【点睛】本题考查分类讨论求解含绝对值不等式、绝对值三角不等式、方程恒有解问题,考查综合分析求解能力,属中档题.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++(1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.【答案】(1)8,23⎛⎫- ⎪⎝⎭;(2)(]0,8. 【分析】由题意可得()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,然后分段解不等式可得答案,(2) x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥,分段求出函数()f x 的最小值,然后解出答案.【解析】由函数()321121141131x x f x x x x x x x +≥⎧⎪=-+++=+-<<⎨⎪-≤-⎩(1)当1x ≥时,()8f x <,即328x +<,得2x <,所以12x ≤<.当11x -<<时,()8f x <,即48x +<,得4x <,所以11x -<<.当1x ≤-时,()8f x <,即38x -<,得83x >-,所以813x -<≤-所以不等式()8f x <的解集为8,23⎛⎫- ⎪⎝⎭.(2) 若x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥ 由()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,当1x ≥时,()325f x x =+≥,当11x -<<时,()43f x x =+>,当1x ≤-时,()33f x x =-≥所以()min 3f x =,则()2min 3log f x a =≥,可得08a <≤所以x R ∀∈,函数()2log f x a ≥恒成立,则实数a 的取值范围为(]0,8【点睛】本题考查解含绝对值的不等式,不等式恒成立求参数的范围,含绝对值的不等式关键是利用定义打开绝对值,属于中档题.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.【答案】(1){|x x <x >(2)证明见解析;【分析】(1)对x 分三类讨论去掉绝对值,解得结果再相并可得结果;(2)两边平方再作差比较可证不等式成立.【解析】(1)当x <((20x x -++++<,解得x <当3x <-((20x x ++++<, 解得x <当3x -时,原不等式化为((20x x +-++<,解得x >所以{|M x x =<x >.(2)欲证|3||mn m n +>+成立,只需证22(3)||)mn m n +>+成立.因为222222(3)|)339mn m n m n m n +-+=--+.()()2233m n =--.又由m ,n M ∈,得23m >,23n >.所以22(3)|)0mn m n +-+>,即22(3)||)mn m n +>+成立.所以|3|||mn m n +>+成立.【点睛】本题考查了分类讨论法解绝对值不等式,考查了比较法证明不等式,平方后再作差是解题关键,属于中档题.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同. (1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值.【答案】(1)1;(2)1.【分析】(1)解不等式|23|x x -<得出20(,)x mx n m n R -+<∈的解集,从而求得m ,n ;(2)根据题意,利用基本不等式求得222a b c ++的最小值.【解析】(1)当0x ≤时,不等式解集为空集;当0x >时,2323x x x x x -<⇔-<-<,即13x <<,所以1,3是方程20x mx n -+=的两根,所以10,930.m n m n -+=⎧⎨-+=⎩解得4,3.m n =⎧⎨=⎩所以1m n -=.(2)由(1)可知1ab bc ac ++=, 因为222a b ab +≥,222b c bc +≥,222a c ac +≥, 所以222222222222a b b c a c a b c +++++=++ 1ab bc ac ≥++=(当且仅当a b c === 所以222a b c ++的最小值为1.【点睛】本题考查了绝对值不等式的解法,基本不等式的应用,属于中档题.11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M .(1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 【答案】(1)M =3(2)证明见解析;【分析】(1)由f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|,结合绝对值不等式的性质和绝对值的几何意义,可得所求最大值;(2)由(1)可得3311a b +=3ab ,a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3),再由基本不等式即可得证.【解析】(1)函数f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|≤|2x ﹣1﹣2x ﹣2|﹣|﹣1+1|=3,当x =﹣1时,f (x )取得最大值3,即M =3;(2)证明:正数a ,b 满足3311a b+=3ab , 故a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3)13=(1+13333a b b a++)13≥()43=,当且仅当a =b = 故a 4b +ab 443≥.【点睛】此题考查了绝对值不等式,利用基本不等式证明不等式,属于中档题.12.(2020·福建省高三)已知函数()1f x x a x =-+-.(1)当0a =时,求不等式()1f x ≤的解集A .(2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 【答案】(1){|01}A x x =≤≤(2)12 【分析】(1)将0a =代入,则|||1|1x x +-,再利用绝对值不等式的性质即可得解;(2)问题等价于1122x a --在[0x ∈,1]上恒成立,由此建立关于a 的不等式组,解出即可. 【解析】(1)当0a =时,()|||1|f x x x =+-,即解不等式|||1|1x x +-,由绝对值不等式知,|||1||(1)|1x x x x +---=,当且仅当(1)0x x -时取等号,因此()1f x 的解集{|01}A x x =;(2)由A B ⊆,即[0x ∈,1],不等式3()||2f x x -恒成立, 即3||12x a xx -+--,整理得1||2x a -, 故1122x a --在[0x ∈,1]上恒成立, 则1212a x a x ⎧-⎪⎪⎨⎪+⎪⎩在[0x ∈,1]上恒成立,得1212a a ⎧⎪⎪⎨⎪⎪⎩, 故12a =. 【点睛】本题考查含绝对值、参数的不等式有解问题与基本不等式的应用,考查运算求解能力、推理论证能力,考查化归与转化思想等,属于中档题.13.(2020·福建省高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ; (2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.【答案】(1){}03I x x =<<;(2)见解析.【分析】(1)采用分类讨论的方法,求出各段的范围,然后取并集,可得结果.(2)根据不等式2++≥≤a b a b ,化简式子,可证明该结果. 【解析】(1)当1x ≤时,原不等式化简为323-<x ,即01x <≤;当12x <≤时,原不等式化简为13<,恒成立,即12x <≤;当2x >时,原不等式化简为233x -<,即23x <<. 综上,原不等式的解集{}03I x x =<<.(2)当a ,b ,c I ∈时,a ,b ,c ,3a -,3b -,3c -均为正数, 令111111111333=+++++---T a b b c c a则≤T ()()()33394444+-+-+-≤++=a b b c c a T . 当且仅当32===a b c 时,取等号 【点睛】本题考查绝对值不等式的解法以及基本不等式的应用,熟练使用分类讨论的方法(或零点分段法),同时善于观察,识记基本不等式的使用条件:一正,二定,三相等,属中档题.14.(2020·山西省高三)已知函数()2f x x =. (1)求不等式()1f x >的解集;(2)若正数,,a b c 满足24923a b c f ⎛⎫++=+ ⎪⎝⎭,求149a b c ++的最小值. 【答案】(1)22,3⎛⎫- ⎪⎝⎭;(2)1963. 【分析】(1)化简后根据绝对值中的零点将()f x 转换为分段函数,再求解即可.(2)代入可得()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,再根据柯西不等式求最小值即可. 【解析】(1)化简得321x x -->①当0x ≤时,()()323f x x x x =---=+,由()1f x >即31x +>,解得2x >-,又0x ≤,所以20x -<≤;②当03x <<时,()33f x x =-,由()1f x >,即231x ->,解得23x <,又02x <<,所以203x <<; ③当3x ≥时,()3f x x =--,不满足()1f x >,此时不等式无解;综上,不等式()1f x >的解集为22,3⎛⎫- ⎪⎝⎭. (2)249233a b c f ⎛⎫++=+= ⎪⎝⎭, 所以()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭∵,,0a b c >,∴由柯西不等式:上式((22222213⎡⎤⎛⎛⎡⎤⎢⎥=++⋅++ ⎢⎥⎣⎦⎢⎥⎝⎝⎣⎦((213⎡≥⨯⨯⎢⎣()2119614933=++=. 当且仅当314a b c ===时,等号成立. 所以149a b c ++的最小值为1963. 【点睛】本题主要考查了绝对值不等式的求解、柯西不等式求最小值的问题,属于中档题.15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>.(1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+. 【答案】(1){}02x x <<;(2)详见解析.【分析】(1)在1x <-,11x -≤<,1x ≥三种情况下,分别解不等式,最后取并集即可;(2)()f x x a x b a b =-++≥+,结合()f x 的值域为[)3,+∞,可知3a b +=.因此有()()1221a b a b ++≥=⇒++≥⎪⎩()()2218411a b a b ⎧++≥⎪⎨≥⎪+⎩,从而证明出题设不等式. 【解析】(1)当1a b ==时,不等式为112x x x -++<+,当1x <-时,不等式化为2223x x x -<+⇒>-,此时不等式无解; 当11x -≤<时,不等式化为220x x <+⇒>,故01x <<;当1x ≥时,不等式化为222x x x <+⇒<,故12x ≤<.综上可知,不等式的解集为{}02x x <<. (2)()f x x a x b a b =-++≥+,当且仅当x a -与x b +异号时,()f x 取得最小值a b +,∵()f x 的值域为[)3,+∞,且0a >,0b >,故3a b +=.()122a b ++≥=(当且仅当12a b =+=时取等号), ∴()2218a b ++≥.又∵()1a b ++≥12a b =+=时取等号),∴()41a b +≤,∴()411a b +≥, ∴()224(1)91a b a b +++≥+, ∴()224281a b b a b +++≥+. 【点睛】本题主要考查了绝对值不等式的解法,考查了基本不等式的应用,属于中档题. 16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>.(1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->【答案】(1){0x x ≤或4}3a x ≥;(2)见解析 【分析】(1)首先根据题意得到()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,再对a 分类讨论解不等式即可.(2)首先根据函数()f x 的单调性得到22a b +=,再利用柯西不等式证明即可.【解析】(1)()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,①当x a <-时,由33x a a -+≥,解得x a <-;②当a x a -≤≤时,由33x a a -+≥得0a x -≤≤;③当x a >时,由33x a a -≥得43a x ≥. 综上可得不等式()3f x a ≥的解集为{0x x ≤或4}3a x ≥. (2)由()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,可知:当x a ≤时,()f x 为减函数,当x a >时,()f x 为增函数.所以当x a =时,()f x 取到最小值2a ,所以22a b =-,即22a b +=.== 当12a =,1b=时取等号.≤【点睛】本题第一问考查绝对值不等式的解法,第二问考查不等式的证明,熟练掌握柯西不等式为解题的关键,属于中档题.17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证【答案】(1)证明见解析(2)证明见解析【分析】(1)先根据绝对值不等式求得|1||2|x x ---的最大值,从而得到1a b c ++≥,再利用基本不等式进行证明;(2)利用基本不等式222a b ab +≥变形得222()2a b a b ++≥,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【解析】(1)∵|1||2||12|1x x x x ---≤--+=,∴1a b c ++≥.∵222a b ab +≥,222b c bc +≥,222c a ac +≥,∴222222222a b c ab bc ac ≥++++,∴2222222333222()1a b c a b c ab bc ac a b c ++≥+++++=++≥, ∴22213a b c ++≥. (2)∵222a b ab +≥,()2222222()a ba ab b a b +≥++=+,即222()2a b a b ++≥||()22a b a b ≥+=+.)2b c ≥+)c a ≥+.)a b c ≥++≥【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 【答案】详见解析【分析】由x ,y ,z 均为正数,运用柯西不等式和不等式的性质,即可得证;【解析】因为x ,y ,z 均为正数,所以1x +,1y +,1z +均为正数,由柯西不等式得()()()214191111(123)36111x y z x y z ⎛⎫++≥++=⎪+++++++⎡⎭⎤⎣⎦+⎝, 当且仅当222(1)4(1)9(1)x y z +=+=+时,等式成立.因为11131112x y z ++≤+++, 所以2(1)4(1)9(1)36243x y z +++++≥⨯=, 所以4910x y z ++≥.【点睛】本题考查不等式的证明,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 【答案】(1)1,13⎡⎤⎢⎥⎣⎦;(2)5【分析】(1)分段去不等式中的绝对值再求解即可. (2)根据(1)可得1m =,再根据柯西不等式求解最大值即可. 【解析】(1)不等式f (x )≤﹣1即|2x ﹣1|﹣|x +1|≤﹣1,可得11211x x x ≤-⎧⎨-++≤-⎩或1121211x x x ⎧-⎪⎨⎪---≤-⎩<<或122111x x x ⎧≥⎪⎨⎪---≤-⎩, 解得:无解或13≤x 12<或12≤x ≤1, 综上可得13≤x ≤1,即所求解集为[13,1];(2)由(1)可得a +b =1(a ,b >0),由柯西不等式可得(2≤(32+42)(a +b ),即为(2≤25,可得≤5,当且仅当a 925=,b 1625=时取得等号,则5.【点睛】本题主要考查了绝对值不等式的求解以及柯西不等式的运用,属于中等题型. 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 【答案】(1){3x x ≤-或}1x ≥-;(2)2.【分析】(1)可知所求不等式为122x x x -++≥-,然后分2x -≤、21x -<<、1x ≥三种情况解该不等式,即可得出原不等式的解集;(2)利用绝对值三角不等式可得()min 22f x a b =+=,然后将所求代数式变形为2222442222a b a b b a b a b a ⎛⎫⎛⎫+=+++- ⎪ ⎪⎝⎭⎝⎭,利用基本不等式可求得2242a b b a +的最小值. 【解析】(1)根据题意得原不等式为122x x x -++≥-.当2x -≤时,则有122x x x ---≥-,解得3x ≤-,此时3x ≤-; 当21x -<<时,则有122x x x -++≥-,解得1x ≥-,此时11x -≤<; 当1x ≥时,则有122x x x -++≥-,解得13x ≥,此时1x ≥. 综上所述,不等式()2f x x ≥-的解集为{3x x ≤-或}1x ≥-; (2)()222f x x a x b x a x b a b =-++≥---=+, 当且仅当()()20x a x b -+≤时等号成立,0a >,0b >,函数()y f x =的值域为[)2,+∞,即22a b +=.()2222224442222222a b a b a b a b b a b a b a b a ⎛⎫⎛⎫⎛⎫∴+=+++-=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22222a b ≥=+-=,当且仅当21a b ==时取等号,因此,2242a b b a+的最小值为2.【点睛】本题考查绝对值不等式的求解,同时也考查了利用基本不等式求最值,涉及绝对值三角不等式的应用,考查计算能力,属于中等题.21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 【答案】(1)12x x ⎧<⎨⎩或52x ⎫>⎬⎭;(2)见解析 【分析】(1)利用|1||2|x x -+-的几何意义,表示数轴上的x 对应点到1和2对应点的距离之和,分析即得解.(2)把||||||()a b a b a f x ++-≥,转化为()||||||a b a b f x a ++-≤,利用绝对值的性质求得||||||a b a b a ++-得最小值即得解.【解析】(1)由()2f x >,即|1||2|2x x -+->.而|1||2|x x -+-表示数轴上的x 对应点到1和2对应点的距离之和,而数轴上满足|1||2|2x x -+-=的点的坐标为12和52, 故不等式|1||2|2x x -+->的解集为15{|}22x x <>或.(2)证明:要证||||||()a b a b a f x ++-≥,只需证()||||||a b a b f x a ++-≤,∵||||||2||a b a b a b a b a ++-≥++-=,当且仅当()()0a b a b +-≥时取等号,∴||||2||a b a b a ++-≥由(1),当R x C M ∈时,()2f x ≤∴||||()||a b a b f x a ++-≤∴原命题成立..【点睛】本题考查了绝对值不等式得解集及不等式证明,考查了学生综合分析,转化与划归,逻辑推理得能力,属于中档题.22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥.【答案】()16+;()2证明见解析.【分析】()1根据a ,b ,c 是正实数,且21a b c ++=,可得()1111112a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,然后利用基本不等式求出111a b c++的最小值即可;()2由柯西不等式可得()()()22222221122a b c a b c ++++≥++,再结合21a b c ++=,即可证明22216a b c ++≥成立. 【解析】()121a b c ++=,∴()11111122b a c a b ca b c a b c a b a⎛⎫++=++++=+++ ⎪⎝⎭ 246a c bc b c+++≥+当且仅当a b ==时,等号成立.又由21a b c ++=,∴a b ==,c =时,等号成立,即111a b c++的最小值为6+. ()2由柯西不等式可得()()()222222211221a b c a b c ++++≥++=即2221 6a b c ++≥当且仅当112a b c==时,等号成立.又由21a b c ++=,∴13c =,16a b ==时,等号成立.∴22216a b c ++≥成立.【点睛】本题考查利用综合法证明不等式,基本不等式和柯西不等式的运用,考查转化思想,属于中档题. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.【答案】(Ⅰ)4,23⎡⎤-⎢⎥⎣⎦(Ⅱ)(],2-∞. 【分析】(Ⅰ)分区间讨论,去掉绝对值号即可求解;(Ⅱ)由题意可转化为11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,根据绝对值不等式可求出11112x x x x x x++-++-≥=,即可求解. 【解析】(Ⅰ)若2k =,不等式()5f x ≤可化为215x x +-≤. 当0x <时,()215x x ---≤,即43x ≥-,∴403x -≤<; 当01x ≤<时,()215x x --≤,即4x ≤,∴01x ≤<; 当1x ≥时,()215x x +-≤,即2x ≤,∴12x ≤≤.故不等式的解集为4,23⎡⎤-⎢⎥⎣⎦.(Ⅱ)关于x 的不等式()122f x x x ≤+++在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,即1221k x x x x ≤+++--在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∴11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∵11112x x x x x x++-++-≥=,等号在1x +,1x -同号时等号成立,所以,所求实数k 的范围是(],2-∞.【点睛】本题主要考查了含绝对值不等式的解法,不等式恒成立求参数取值范围,分类讨论思想,转化思想,属于中档题.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1.(Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(Ⅰ)每个式子通分后把1用a b c ++代换后分子应用基本不等式可证结论;(Ⅱ)变形111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,三个分式中分子a b c ++提取出来并变为()()()12b c a c a b ⎡⎤+++++⎣⎦,即原不等式左边()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭,再用柯西不等式可证得结论.【解析】(Ⅰ)1111111118a b c b c a c a b a b c a b c a b c ---+++⎛⎫⎛⎫⎛⎫---=⋅⋅=⋅⋅≥=⎪⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当“a=b=c ”时取等号; (Ⅱ)111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭22113333222≥+-=⨯-=, 当且仅当“a =b =c ”时取等号.【点睛】本题考查用基本不等式和柯西不等式证明不等式成立,解题关键是要凑出基本不等式和柯西不等式的形式,然后才可得出结论,掌握基本不等式和柯西不等式是解题.25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 【答案】(1)1,2⎛⎫-∞ ⎪⎝⎭;(2)[)1,+∞.【分析】(1)去绝对值,转化为分段函数,解不等式即可;(2)函数()y g x =与()y f x =的图象有公共点,则方程()()f x g x =有解,利用参变量分离法得出224m x x =-+-有解,利用绝对值三角不等式可求得m 的取值范围.【解析】(1)当()0f x >时,即21x x ->+. 当2x ≥时,则21x x ->+,此时x ∈∅; 当2x <时,则21x x ->+,解得12x <,此时12x <. 综上所述,实数x 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭; (2)因为函数()421g x x x m =---+-与函数()y f x =的图象有公共点, 则42121x x m x x ---+-=---有解.即224m x x =-+-有解,由绝对值三角不等式得()24242x x x x -+-≥---=,所以22m ≥,m 1≥. 所以当()y g x =与()y f x =的图象有公共点时,实数m 的取值范围为[)1,+∞.【点睛】本题考查解绝对值不等式,以及函数图象有交点的问题,考查绝对值三角不等式以及分类讨论思想的应用,属于中档题.26.(2020·四川省高三三模)已知函数()||f x x a =-. (1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1)(0,1)(1,)⋃+∞;(2){1}.【分析】(1)将1a =代入,通过讨论x 的范围,去掉绝对值,解各个区间上的x 的范围,取并集即可; (2)问题转化为||1x a x -≤-+,求出x 的范围,得到关于a 的不等式组,解出即可. 【解析】(1)1a =时,111|1|(1)|1|x x x x x +>⇔+>-≠-111x x x >⎧⇔⎨+>-⎩或111x x x <⎧⎨+>-⎩,解之得:1x >或01x <<∴不等式的解集为(0,1)(1,)⋃+∞ (2)不等式的解集为M ,且1,12M ⎡⎤⊆⎢⎥⎣⎦,依题意不等式21x x a x -+-≤在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴210x -≥,∴|21|()21||x f x x x x a x -+≤⇔-+-≤||111x a x x x a x ⇔-≤-+⇔-≤-≤-+112a a x ≤⎧⎪∴⎨+≤⎪⎩,当1a >时,M 为∅,显然不满足1,12M ⎡⎤⊆⎢⎥⎣⎦; 当1a ≤时,1,2a M +⎛⎤=-∞ ⎥⎝⎦1,12M ⎡⎤⊆⎢⎥⎣⎦,112a +∴≥即1a ≥,1a综上,a 的取值范围为{1}.【点睛】本题主要考查了解绝对值不等式问题,考查分类讨论思想,属于中档题. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 【答案】(1){}15x x -<<;(2)73,44⎡⎤-⎢⎥⎣⎦【分析】(1)根据分类讨论的方法,讨论2x -≤,122x -<<,12x ≥三种情况,分别求解,即可得出结果;(2)根据题意,先得到A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R ,根据绝对值三角不等式,分别求出A ,B ,再由集合间的关系,即可求出结果. 【解析】(1)因为()2f x <,2,2122,x x x ≤-⎧⇔⎨-+++<⎩或12,22122,x x x ⎧-<<⎪⎨⎪-+--<⎩或1,22122x x x ⎧≥⎪⎨⎪---<⎩2,1,x x ≤-⎧⇔⎨>⎩或12,21,x x ⎧-<<⎪⎨⎪>-⎩或1,25x x ⎧≥⎪⎨⎪<⎩ x ⇔∈∅或112x -<<或15152x x ≤<⇔-<<, 所以()2f x <的解集为{}15x x -<<.(2)因为存在1x ,2x ∈R ,使得()()12f x g x =-成立,所以A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R . 因为()1212222f x x x x x =--+=--+ 11222x x x =-+--+ ()150222x x ⎛⎫≥---+=- ⎪⎝⎭,当且仅当12x =时,“=”成立, 所以52A y y ⎧⎫=≥-⎨⎬⎩⎭.因为()()2221g x x m x -=--++()222121x m x m ≤---+=-+, 当且仅当()()22210x m x -+≤时,“=”成立, 所以{}21B y y m =≤-+ 所以5212m -+≥-,即5212m +≤,即552122m -≤+≤, 解得7344m -≤≤,所以m 的取值范围为73,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查绝对值不等式的解法,以及绝对值三角不等式求函数的最值问题,属于常考题型. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围.【答案】(1)(,3)-∞;(2)()()03-∞⋃+∞,,. 【分析】(1)函数()f x 写成分段函数的形式,分类讨论不等式的解集取并集即可;(2)方程2()f x x ax=+有两个不等实数根等价于2211x x x a x-+---=有两个不等实数根,利用基本不等式求出当x <0时23x x--+的范围,然后数形结合求出a 的取值范围. 【解析】(1)321()21|1|1x x f x x x x x -≤⎧=---=⎨>⎩,,,∵()3f x <,∴3231x x -<⎧⎨≤⎩或31x x <⎧⎨>⎩,∴1x ≤或13x <<,即3x <,∴不等式的解集为(,3)-∞;(2)方程2()f x x ax =+,即221|1|x x x ax ---=+,显然0x =不是方程的根,故2211x x x a x-+---=,令[)()()211211()23001x x x x x g x x x x x ⎧-∈+∞-+---⎪==⎨--+∈-∞⋃⎪⎩,,,,,, 当x <0时,22333x x x x ⎛⎫--+=-++≥ ⎪-⎝⎭,当且仅当x = 作出()g x 的图象,如图所示:∵方程2()f x x ax =+有两个不等实数根,∴由图象可知()()03a ∈-∞⋃+∞,,. 【点睛】本题考查绝对值不等式的解法、根据方程的根的个数求参数的取值范围、分段函数的图象与性质,属于中档题.29.(2020·贵州省高三)设函数()16f x x x a =++--.(1)当2a =时,求不等式()0f x ≤的解集;(2)若()23f x a ≥-,求a 的取值范围.【答案】(1)5722x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)4,3⎛⎤-∞- ⎥⎝⎦. 【分析】(1)分类讨论x 的值,解不等式()0f x ≤即可;(2)利用绝对值三角不等式得出()min f x ,再解不等式()min 23f x a ≥-,即可得出a 的取值范围.【解析】(1)当2a =时,()|1||2|6f x x x =++--当1x <-时,()(1)(2)625f x x x x =-+---=--当12x -≤≤时,()1(2)63f x x x =+---=-当2x >时,()12627f x x x x =++--=-则()25,13,1227,2x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩()0f x ≤等价于1250x x <-⎧⎨--≤⎩或1230x -≤≤⎧⎨-≤⎩或2270x x >⎧⎨-≤⎩ 解得5722x -≤≤,则不等式()0f x ≤的解集为5722x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)要使()23f x a ≥-,只需()min 23f x a ≥-即可.又()1616f x x x a a =++--≥+-,且当()()10x x a +-≤时等号成立.∴()min 1623f x a a =+-≥-,则123a a +≥+当230a +≤,即32a ≤-时,123a a +≥+恒成立 当230a +>,即32a >-时,()22123a a +≥+,得231080a a ++≤ 故423a -≤≤-,从而3423a -<≤- 综上,4,3a ⎛⎤∈-∞- ⎥⎝⎦. 【点睛】本题主要考查了分类讨论解绝对值不等式以及求绝对值不等式中参数的范围,属于中档题. 30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m .(1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b +++的最小值. 【答案】(1)2m =;(2)45【分析】(1)由绝对值三角不等式可得()()222f x x x x x ≥+--=+≥,即可得解;(2)由柯西不等式可得()222221112(11)12a b ab ⎛⎫++++≥+ ⎪++⎝⎭,结合222a b +=即可得解. 【解析】(1)由题意()()2222f x x x x x x x x =++-≥+--=+≥,当且仅当0x =时等号成立,故2m =;(2)由题意222a b +=, 由柯西不等式得()222221112(11124)a b a b ⎛⎫++++≥+⎪++⎭=⎝, 当且仅当232a =,212b =时,等号成立, ∴222211441235a b a b +≥=++++, 故221112a b +++的最小值为45. 【点睛】本题考查了绝对值三角不等式与柯西不等式的应用,属于中档题.31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+.(1)求不等式()1f x <的解集;。

2020年高考数学试题解析分项版 专题6 不等式 理

2020年高考数学试题解析分项版 专题6 不等式 理

2020年高考试题解析数学(理科)分项版06 不等式一、选择题:1. (2020年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[-5.7] (B )[-4,6] (C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞4.(2020年高考浙江卷理科5)设实数,x y 满足不等式组250270,0x y x y x +->⎧⎪+->⎨⎪≥≥⎩,y 0,若,x y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19【答案】 B【解析】:作出可行域,5032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得,,x y 为整数,所以4,1x y ==,min 344116z =⨯+⨯=故选B .5.(2020年高考浙江卷理科7)若,a b 为实数,则“01ab <<”是11a b b a<>或的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 【答案】 A【解析】1111ab ab a b b b a a---=-=或则21111(1)()()ab ab ab a b b a b a ab -----=⋅=因为01ab <<所以2(1)0ab ab -> 即11()()0a b b a -->于是11()()0a b b a -->所以11a b b a<>或成立,充分条件;反之11a b b a<>或成立,即111100ab ab a b b b a a---=<-=>或则11()()a b b a --2(1)0ab ab -=<故0ab <,不必要条件。

故选A6.(2020年高考安徽卷理科4)设变量,x y 满足1,x y +≤则2x y +的最大值和最小值分别为 (A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 【答案】B【命题意图】本题考查线性规划问题.属容易题. 【解析】不等式1x y +≤对应的区域如图所示,当目标函数过点(0,-1),(0,1)时,分别取最小或最大值,所以2x y +的最大值和最小值分别为2,-2.故选B.7. (2020年高考天津卷理科2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件9. (2020年高考天津卷理科8)对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x xx R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D.11. (2020年高考江西卷理科3)若()log ()f x x 121=2+1,则()f x 的定义域为A. (,)1-02B. (,]1-02C. (,)1-+∞2D.(,)0+∞ 【答案】A【解析】要使原函数有意义,只须12log (21)0x +>,即0211x <+<,解得x 1-<<02,故选A.12. (2020年高考江西卷理科4)若()ln f x x x x 2=-2-4,则'()f x >0的解集为A. (,)0+∞B. -+10⋃2∞(,)(,)C. (,)2+∞D. (,)-10311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭【答案】C【解析】因为'()x x f x x x x242-2-4=2-2-=,原函数的定义域为(0,)+∞,所以由'()f x >0可得220x x -->,解得2x >,故选C.13. (2020年高考湖南卷理科7)设,1>m 在约束条件⎪⎩⎪⎨⎧≤+≤≥1y x mx y xy 下,目标函数my x z +=的最大值小于2,则m 的取值范围为 A.()21,1+ B. ()+∞+,21 C. ()3,1 D. ()+∞,3答案:A解析:画出可行域,或分别解方程组⎩⎨⎧==mx y x y ,⎩⎨⎧=+=1y x x y ,⎩⎨⎧=+=1y x mxy 得到三个区域端点()0,0,⎪⎭⎫ ⎝⎛21,21, ⎪⎭⎫ ⎝⎛++1,11m m m ,当且仅当直线my x z +=过点⎪⎭⎫ ⎝⎛++1,11m m m 时,z 取到最大值2112<++=m m z ,解得()21,1+∈m 。

2020年高考新题型专题06 不等式(解析版)

2020年高考新题型专题06 不等式(解析版)

专题06 不等式多项选择题1.(2019秋•崂山区校级期末)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C为线段AB上的点,且AC=a,BC=b,O为AB的中点,以AB 为直径作半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD,过点C作OD的垂线,垂足为E.则该图形可以完成的所有的无字证明为()A.a+b2≥√ab(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.√ab≥21a +1b(a>0,b>0)D.a2+b22≥a+b2(a≥0,b>0)【分析】直接利用射影定理和基本不等式的应用求出结果.【解答】解:根据图形,利用射影定理得:CD2=DE•OD,由于:OD≥CD,所以:a+b2≥√ab(a>0,b>0).由于CD2=AC•CB=ab,所以DE=CD 2OD =aba+b2所以由于CD≥DE,整理得:√ab≥2aba+b =21a+1b(a>0,b>0).故选:AC.2.(2019秋•胶州市期末)已知0<α<β<π2,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,则下列结论正确的是()A.tanα+tanβ=﹣k B.tan(α+β)=﹣kC.k>2√2D.k+tanα≥4【分析】由题意利用韦达定理,基本不等式,得出结论.【解答】解:∵已知0<α<β<π2,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,∴tanα+tanβ=k>0,tanα•tanβ=2,∴k>2√tanα⋅tanβ=2√2,故选:BC.3.(2019秋•海南期末)下列说法中正确的有()A..不等式a+b≥2√ab恒成立B.存在a,使得不等式a+1a≤2成立C..若a,b∈(0,+∞),则ba +ab≥2D.若正实数x,y满足x+2y=1,则2x +1y≥8【分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断.【解答】解:不等式a+b≥2√ab恒成立的条件是a≥0,b≥0,故A不正确;当a为负数时,不等式a+1a≤2成立.故B正确;由基本不等式可知C正确;对于2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当4yx =xy,即x=12,y=14时取等号,故D正确.故选:BCD.4.(2019秋•济南期末)下列函数中,最小值为2的是()A.y=x2+2x+3B.y=e x+e﹣xC.y=sinx+1sinx ,x∈(0,π2)D.y=3x+2【分析】结合二次函数的性质可判断选项A;结合指数函数与正弦函数的性质及基本不等式的条件可判断B,C,直接利用指数函数的性质可判断D/【解答】解:y=x2+2x+3=(x+1)2+2≥2即最小值为2,符合题意;由基本不等式可得,y=e x+e﹣x≥2,即最小值为2,符合题意;由x∈(0,12π)可得sin x∈(0,1),从而可得y=sin x+1sinx>2,没有最小值,不符合题意;由指数函数的性质可知,y=3x+2>2,没有最小值,不符合题意.故选:AB.5.(2019秋•菏泽期末)在下列函数中,最小值是2的是()A.y=x+1xB.y=2x+2﹣xC.y=sinx+1sinx ,x∈(0,π2)D.y=x2﹣2x+3【分析】结合基本不等式的一正,二定三相等的条件分别检验选项ABC,结合二次函数的性质可求D.【解答】解:A:当x<0时显然不符合题意;B:由于2x>0,y=2x+2﹣x≥2,故最小值2,符合题意;C:由x∈(0,12π)可得sin x∈(0,1),y=sin x+1sinx>2,没有最小值,不符合题意;D:y=x2﹣2x+3=(x﹣1)2+2≥2即最小值2,符合题意.故选:BD.6.(2019秋•兰陵县期末)下列不等式的证明过程正确的是()A.若a<0,b<0,则ba +ab≥2√ba⋅ab=2B.若x,y∈R*,则lgx+lgy≥2√C.若x为负实数,则x+4x ≥−2√x⋅4x=−4D.若x为负实数,则2x+2−x≥2√2x⋅2−x≥2【分析】结合基本不等式的应用条件:一正,二定,三相等,对各选项进行检验判断即可.【解答】截:由a<0,b<0可得ba >0,ab>0,则由基本不等式可得,ba+ab≥2√ba⋅ab=2,故A正确;x,y∈R时,lg x,lg y有可能为0或负数,不符合基本不等式的条件,B错误;若x <0,则x +4x<0,C 错误;x <0时,2x >0,由基本不等式可得,2x +2﹣x ≥2,故D 正确. 故选:AD .7.(2019秋•淄博期末)关于x 的一元二次不等式x 2﹣6x +a ≤0(a ∈Z )的解集中有且仅有3个整数,则a 的取值可以是( ) A .6B .7C .8D .9【分析】设f (x )=x 2﹣6x +a ,画出函数图象,利用数形结合的方法得出关于a 的不等式组,从而求出a 的值.【解答】解:设f (x )=x 2﹣6x +a ,其图象是开口向上,对称轴是x =3的抛物线,如图所示;若关于x 的一元二次不等式x 2﹣6x +a ≤0的解集中有且仅有3个整数,则 {f(2)≤0f(1)>0,即{4−12+a ≤01−6+a >0,解得5<a ≤8,又a ∈Z , 所以a =6,7,8. 故选:ABC .8.(2019秋•聊城期末)已知a 、b 、c 、d 是实数,则下列一定正确的有( ) A .a 2+b 2≥(a+b)22B.a+1a≥2C.若1a >1b,则a<bD.若a<b<0,c<d<0,则ac>bd【分析】结合基本不等式及不等式的性质检验各选项即可判断.【解答】解:由于2(a2+b2)﹣(a+b)2=a2+b2﹣2ab=(a﹣b)2≥0,故a2+b2≥12(a+b)2,故A正确;B中,当a=﹣1时显然不成立,B错误;C中:a=1,b=﹣1显然有1a >1b,但a>b,C错误;D中:若a<b<0,c<d<0,则﹣a>﹣b>0,﹣c>﹣d>0,则根据不等式的性质可知ac>bd>0,故D正确.故选:AD.9.(2019秋•日照期末)若a,b为正数,则()A.2aba+b≥√abB.当1a +1b=2时,a+b≥2C.当a+b=1a +1b时,a+b≥2D.当a+b=1时,a21+a +b21+b≥13【分析】结合基本不等式及公式的变形形式对各选项进行检验即可判断.【解答】解:对A,因为a+b≥2√ab,所以2aba+b≤√ab,当a=b时取等号,A错误;对B,12(a+b)(1a+1b)=12(2+ba+ab)≥12(2+2√ba⋅ab)=2,当a=b时取等号,正确;对C,a+b=1a +1b=a+bab,则ab=1,a+b≥2√ab=2,当a=b=1时取等号,正确;对D,(a 21+a +b21+b)(1+a+1+b)=a2+b2+b2(1+a)1+b+a2(1+b)1+a≥a2+b2+2ab=(a+b)2=1,当a=b=12时取等号,正确.故选:BCD.10.(2019秋•南通期末)对于给定的实数a,关于实数x的一元二次不等式a(x﹣a)(x+1)>0的解集可能为()A.∅B.(﹣1,a)C.(a,﹣1)D.(﹣∞,﹣1)(a,+∞)【分析】根据函数y=a(x﹣a)(x+1)的图象和性质,对a进行讨论,解不等式即可.【解答】解:对于a(x﹣a)(x+1)>0,当a>0时,y=a(x﹣a)(x+1)开口向上,与x轴的交点为a,﹣1,故不等式的解集为x∈(﹣∞,﹣1,)∪(a,+∞);当a<0时,y=a(x﹣a)(x+1)开口向下,若a=﹣1,不等式解集为∅;若﹣1<a<0,不等式的解集为(﹣1,a),若a<﹣1,不等式的解集为(a,﹣1),综上,ABCD都成立,故选:ABCD.11.(2019秋•启东市校级期末)在下列函数中,最小值是2的函数有()A.f(x)=x2+1x2B.f(x)=cosx+1cosx (0<x<π2)C.f(x)=2√x2+3D.f(x)=3x+43x−2【分析】利用基本不等式即可判断出结果,但一定要注意验证等号是否能够成立.【解答】解:对于选项A:∵x2>0,∴由基本不等式可得x2+1x2≥2,当且仅当x2=1x2,即x=1或﹣1时,等号成立,故选项A正确;对于选项B:∵0<x<π2,∴0<cos x<1,由基本不等式可得cos x+1cosx≥2,当且仅当cos x=1cosx,即cos x=1时,等号成立,但是cos x取不到1,所以等号不能成立,故选项B不正确;对于选项C:由基本不等式可得f(x)=2√x2+3=(√x2+3)2√x2+3=√x2+3√x2+3≥2,当且仅当√x2+3=√x2+3,即x2=﹣2时,等号成立,显然不可能取到,故选项C不正确;对于选项D:∵3x>0,∴由基本不等式可得f(x)=3x+43x −2≥2√4−2=2,当且仅当3x=43x,即x=log32时,等号成立,故选项D正确.故选:AD .12.(2019秋•海淀区校级期末)不等式组{x +y ≥1x −2y ≤4的解集记为D ,下列四个命题中真命题是( )A .∀(x ,y )∈D ,x +2y ≥﹣2B .∃(x ,y )∈D ,x +2y ≥2C .∀(x ,y )∈D ,x +2y ≤3D .∃(x ,y )∈D ,x +2y ≤﹣1【分析】作出不等式组{x +y ≥1x −2y ≤4的表示的区域D ,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D 为直线x +y =1与x ﹣2y =4相交的上部角型区域,A :区域D 在x +2y ≥﹣2 区域的上方,故:∀(x ,y )∈D ,x +2y ≥﹣2成立;B :在直线x +2y =2的右上方和区域D 重叠的区域内,∃(x ,y )∈D ,x +2y ≥2,故p 2:∃(x ,y )∈D ,x +2y ≥2正确;C :由图知,区域D 有部分在直线x +2y =3的上方,因此p 3:∀(x ,y )∈D ,x +2y ≤3错误;D :x +2y ≤﹣1的区域(左下方的虚线区域)恒在区域D 下方,故p 4:∃(x ,y )∈D ,x +2y ≤﹣1错误; 故选:AB .13.(2019秋•葫芦岛月考)已知正数a ,b 满足a +b =4,ab 的最大值为t ,不等式x 2+3x ﹣t <0的解集为M ,则( ) A .t =2B .t =4C .M ={x |﹣4<x <l }D .M ={x |﹣l <x <4}【分析】由基本不等式ab ≤(a+b 2)2,可求ab 的最大值,然后解二次不等式求解M ,结合选项即可判断.【解答】解:∵正数a ,b 满足a +b =4, 则ab ≤(a+b 2)2=4,即ab 的最大值为t =4,而x2+3x﹣4<0的解集为M=(﹣4,1).故选:BC.14.(2019秋•昆山市期中)下列函数中,最小值是2√2的有()A.y=x+2x B.y=√x√xC.y=x2+2x2+4+4D.y=e x+2e﹣x【分析】利用基本不等式的使用法则:“一正二定三相等”即可判断出正误.【解答】解:A.x<0时,y<0,无最小值.B.y=√x√x≥2√2,当且仅当x=√2时取等号,正确.C.y=x2+2x2+4+4≥2√(x2+4)(2x2+4)=2√2,当且仅当x2+4=2x2+4时,等号成立,显然不可能取到,故选项C不正确;D.y=e x+2e﹣x≥2√e x⋅2e−x=2√2,当且仅当x=0时取等号,正确.故选:BD.15.(2019秋•薛城区校级期中)设a>1,b>1,且ab﹣(a+b)=1,那么()A.a+b有最小值2(√2+1)B.a+b有最大值(√2+1)2C.ab有最大值3+2√2.D.ab有最小值3+2√2.【分析】根据a>1,b>1,即可得出a+b≥2√ab,从而得出ab−2√ab≥1,进而得出√ab≥√2+1,从而得出ab有最小值3+2√2;同样的方法可得出ab≤(a+b2)2,从而得出(a+b)2﹣4(a+b)≥4,进而解出a+b≥2(√2+1),即得出a+b的最小值为2(√2+1).【解答】解:∵a>1,b>1,∴a+b≥2√ab,当a=b时取等号,∴1=ab−(a+b)≤ab−2√ab,解得√ab≥√2+1,∴ab≥(√2+1)2=3+2√2,∴ab有最小值3+2√2;∵ab≤(a+b2)2,当a=b时取等号,∴1=ab−(a+b)≤(a+b2)2−(a+b),∴(a+b)2﹣4(a+b)≥4,∴[(a+b)﹣2]2≥8,解得a+b−2≥2√2,即a+b≥2(√2+1),∴a +b 有最小值2(√2+1). 故选:AD .16.(2019秋•北镇市校级月考)下列各小题中,最大值是12的是( ) A .y =x 2+116x 2B .y =x√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,(x >−2)【分析】利用基本不等式的性质即可判断出结论. 【解答】解:A .y 没有最大值; B .y 2=x 2(1﹣x 2)≤(x 2+1−x 22)2=14,y ≥0,∴y ≤12,当且仅当x =√22时取等号. C .x =0时,y =0.x ≠0时,y =1x 2+1x2≤12,当且仅当x =±1时取等号.D .y =x +2+4x+2−2≥2√(x +2)⋅4x+2−2=2,x >﹣2,当且仅当x =0时取等号. 故选:BC .17.(2019秋•莱州市校级月考)若正实数a ,b 满足a +b =1,则下列选项中正确的是( ) A .ab 有最大值14 B .√a +√b 有最小值√2 C .1a+1b 有最小值4D .a 2+b 2有最小值√22【分析】由a +b =1,根据2aba+b≤√ab ≤a+b 2≤√a 2+b 22逐一判断即可.【解答】解:∵a >0,b >0,且a +b =1;∴1+a +b ≥1√ab ;∴ab ≤14; ∴ab 有最大值14,∴选项A 正确;√a +√b ≥2√ab ,2√ab ≤1,∴√a +√b 的最小值不是√2,∴B 错误; 1a+1b =a+b ab=1ab ≥4,∴1a +1b 有最小值4,∴C 正确;a 2+b 2≥2ab ,2ab ≤12,∴a 2+b 2的最小值不是√22,∴D 错误. 故选:AC .18.(2019秋•临沭县期末)给出下面四个推断,其中正确的为( ) A .若a ,b ∈(0,+∞),则ba +ab ≥2B .若x ,y ∈(0,+∞),则lg lg x y ≥2√lgx ⋅lgyC .若a ∈R ,a ≠0,则4a+a ≥4D .若x ,y ∈R ,xy <0,则x y +yx ≤−2【分析】根据基本不等式的应用条件一正,二定,三相等逐个判断即可.【解答】解:A 正确,∵a >0、b >0,故ba +ab ≥2√ba ⋅ab =2,当且仅当a =b 时上式取等号; B 不正确,∵lg x 和lg y 不一定是正实数,故不可用基本不等式; C 不正确,∵a <0时,则4a +a ≥4不成立;D 正确,若x ,y ∈R ,xy <0,则−xy>0,−yx>0,∴(−xy)+(−yx)≥2√(−xy)⋅(−yx)=2,则xy+yx≤−2,当且仅当x 与y 互为相反数时取等号. 故选:AD .19.(2019秋•肥城市校级月考)给出四个选项能推出1a <1b 的有( ) A .b >0>aB .0>a >bC .a >0>bD .a >b >0【分析】利用不等式的性质,代入验证即可. 【解答】解:1a<1b ⇔b−a ab<0⇔ab (a ﹣b )>0,A ,ab <0,a ﹣b <0,ab (a ﹣b )>0成立B ,ab >0,a ﹣b >0,ab (a ﹣b )>0成立C .ab <0,a ﹣b >0,ab (a ﹣b )<0,不成立,D .ab >0,a ﹣b >0,ab (a ﹣b )>0成立 故选:ABD .20.(2019秋•泰山区校级期中)设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>aB .a 2+9>6aC .(a +b )(1a+1b)≥4D .(a +1a)(b +1b)≥4【分析】设a >0,b >0,a 2+1﹣a =(a +12)2+34>0,A 成立,a 2+9﹣6a =(a ﹣3)2≥0,B 不成立,(a +b )(1a +1b )≥(1+1)2=4,故C 成立,a +1a ≥2,b +1b ≥2,故D 成立. 【解答】解:设a >0,b >0, a 2+1﹣a =(a +12)2+34>0,A 成立,a2+9﹣6a=(a﹣3)2≥0,B不成立(a+b)(1a +1b)≥(1+1)2=4,故C成立,a+1a ≥2,b+1b≥2,故D成立,故选:ACD.。

专题11 不等式、推理与证明、复数、算法初步-三年(2022–2024)高考数学真题分类汇编(解析)

专题11 不等式、推理与证明、复数、算法初步-三年(2022–2024)高考数学真题分类汇编(解析)

专题11不等式、推理与证明、复数、算法初步考点三年考情(2022-2024)命题趋势考点1:线性规划问题2024年高考全国甲卷数学(理)真题2022年新高考浙江数学高考真题2023年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(理)真题2022年高考全国乙卷数学(文)真题高考对本节的考查相对稳定,每年必考题型,考查内容、频率、题型、难度均变化不大.复数的运算与不等式是常考点,难度较低,预测高考在此处仍以简单题为主.考点2:不等式大小判断问题2024年北京高考数学真题考点3:利用基本不等式求最值2022年新高考全国II卷数学真题考点4:解不等式2024年上海高考数学真题考点5:程序框图2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题考点6:复数加减乘除运算2022年新高考天津数学高考真题2023年天津高考数学真题2024年天津高考数学真题2023年新课标全国Ⅰ卷数学真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2024年北京高考数学真题2024年新课标全国Ⅰ卷数学真题2023年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2022年新高考全国I卷数学真题2022年新高考全国II卷数学真题2022年高考全国甲卷数学(理)真题考点7:模运算2024年新课标全国Ⅱ卷数学真题2022年新高考北京数学高考真题2022年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(文)真题考点8:复数相等2024年上海高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考浙江数学高考真题2022年高考全国乙卷数学(文)真题2022年高考全国乙卷数学(理)真题考点9:复数的几何意义2023年北京高考数学真题2023年新课标全国Ⅱ卷数学真题考点1:线性规划问题1.(2024年高考全国甲卷数学(理)真题)若,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.12B.0C.52-D.72-【答案】D【解析】实数,x y满足4330220 2690 x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.2.(2022年新高考浙江数学高考真题)若实数x,y满足约束条件20,270,20,xx yx y-≥⎧⎪+-≤⎨⎪--≤⎩则34z x y=+的最大值是()A.20B.18C.13D.6【答案】B【解析】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =⎧⎨+-=⎩可得23x y =⎧⎨=⎩,故()2,3A ,故max 324318z =⨯+⨯=,故选:B.3.(2023年高考全国甲卷数学(理)真题)若x ,y 满足约束条件3232331x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,设32z x y =+的最大值为.【答案】15【解析】作出可行域,如图,由图可知,当目标函数322z y x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:154.(2023年高考全国乙卷数学(理)真题)若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为.【答案】8【解析】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.5.(2022年高考全国乙卷数学(文)真题)若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是()A .2-B .4C .8D .12【答案】C【解析】由题意作出可行域,如图阴影部分所示,转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.考点2:不等式大小判断问题6.(2024年北京高考数学真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A .12122log 22y y x x ++<B .12122log 22y y x x ++>C .12212log 2y y x x +<+D .12212log 2y y x x +>+【答案】B【解析】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得1212122222·222x x x x x x ++>=,即12122202x x y y ++>>,根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故A 正确,B 错误;对于选项C :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故C 错误;对于选项D :例如121,2x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故D 错误,故选:B.考点3:利用基本不等式求最值7.(多选题)(2022年新高考全国II 卷数学真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x θθ-==,所以cos ,sin 33x y θθθ=+=,因此2222511cos sin sin cos 1sin 2cos 233333x y θθθθ=θ-θ+=++++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当3333x y ==221x y +≥不成立,所以D 错误.故选:BC .考点4:解不等式8.(2024年上海高考数学真题)已知,x ∈R 则不等式2230x x --<的解集为.【答案】{}|13x x -<<【解析】方程2230x x --=的解为=1x -或3x =,故不等式2230x x --<的解集为{}|13x x -<<,故答案为:{}|13x x -<<.考点5:程序框图9.(2023年高考全国甲卷数学(理)真题)执行下面的程序框图,输出的B =()A .21B .34C .55D .89【答案】B【解析】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.10.(2022年高考全国乙卷数学(理)真题)执行下边的程序框图,输出的n =()A .3B .4C .5D .6【答案】B【解析】执行第一次循环,2123b b a =+=+=,312,12a b a n n =-=-==+=,222231220.0124b a -=-=>;执行第二次循环,2347b b a =+=+=,725,13a b a n n =-=-==+=,222271220.01525b a -=-=>;执行第三次循环,271017b b a =+=+=,17512,14a b a n n =-=-==+=,2222171220.0112144b a -=-=<,此时输出4n =.故选:B考点6:复数加减乘除运算11.(2022年新高考天津数学高考真题)已知i 是虚数单位,化简113i1+2i-的结果为.【答案】15i -/51i -+【解析】()()()()113i 12i 113i 11625i15i 1+2i 1+2i 12i 5-----==--.故答案为:15i -.12.(2023年天津高考数学真题)已知i 是虚数单位,化简514i23i++的结果为.【答案】4i +/4i +【解析】由题意可得()()()()514i 23i 514i 5213i4i 23i 23i 23i 13+-++===+++-.故答案为:4i +.13.(2024年天津高考数学真题)已知i 是虚数单位,复数)()5i 52i ⋅=.【答案】75i 【解析】))5i 52i 55i 25i 275i ⋅-=-+=.故答案为:75i .14.(2023年新课标全国Ⅰ卷数学真题)已知1i22iz -=+,则z z -=()A .i -B .i C .0D .1【答案】A 【解析】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----===-++-,所以1i 2z =,即i z z -=-.故选:A .15.(2024年高考全国甲卷数学(文)真题)设2i z =,则z z ⋅=()A .2-B 2C .2-D .2【答案】D【解析】依题意得,2i z =-,故22i 2zz =-=.故选:D16.(2024年高考全国甲卷数学(理)真题)若5i z =+,则()i z z +=()A .10iB .2iC .10D .2【答案】A【解析】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A17.(2024年北京高考数学真题)已知1i iz=--,则z =().A .1i --B .1i-+C .1i-D .1i+【答案】C【解析】由题意得()i 1i i 1z =--=-.故选:C.18.(2024年新课标全国Ⅰ卷数学真题)若1i 1zz =+-,则z =()A .1i --B .1i -+C .1i-D .1i+【答案】C 【解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.19.(2023年高考全国乙卷数学(理)真题)设252i1i i z +=++,则z =()A .12i -B .12i +C .2i -D .2i+【答案】B【解析】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.20.(2023年高考全国甲卷数学(文)真题)()()()351i 2i 2i +=+-()A .1-B .1C .1i-D .1i+【答案】C 【解析】()()351i 51i 1i (2i)(2i)5+-==-+-故选:C.21.(2022年新高考全国I 卷数学真题)若i(1)1z -=,则z z +=()A .2-B .1-C .1D .2【答案】D【解析】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D22.(2022年新高考全国II 卷数学真题)(22i)(12i)+-=()A .24i -+B .24i --C .62i+D .62i-【答案】D【解析】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.23.(2022年高考全国甲卷数学(理)真题)若13i z =-,则1zzz =-()A .13i -B .13i-C .133-+D .133--【答案】C【解析】13i,(13i)(13i)13 4.z zz =-=--=+=13i 131333z zz -==--故选:C考点7:模运算24.(2024年新课标全国Ⅱ卷数学真题)已知1i z =--,则z =()A .0B .1C 2D .2【答案】C【解析】若1i z =--,则()()22112z -+-=故选:C.25.(2022年新高考北京数学高考真题)若复数z 满足i 34i z ⋅=-,则z =()A .1B .5C .7D .25【答案】B【解析】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故()()223|54|z -+-==.故选:B .26.(2022年高考全国甲卷数学(文)真题)若1i z =+.则|i 3|z z +=()A .45B .42C .25D .22【答案】D【解析】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 34422z z +=+=故选:D.27.(2023年高考全国乙卷数学(文)真题)232i 2i ++=()A .1B .2C 5D .5【答案】C【解析】由题意可得232i 2i 212i 12i ++=--=-,则()22322i 2i 12i 125++=-+-=故选:C.考点8:复数相等28.(2024年上海高考数学真题)已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为.【答案】2【解析】设1i z b =+,b ∈R 且0b ≠.则23222231i i 1i 11b b b z b m z b b b ⎛⎫⎛⎫+-+=++=+= ⎪ ⎪+++⎝⎭⎝⎭,m ∈R ,22323101b mb b b b ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,解得2m =,故答案为:2.29.(2023年高考全国甲卷数学(理)真题)设()()R,i 1i 2,a a a ∈+-=,则=a ()A .-1B .0·C .1D .2【答案】C【解析】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =.故选:C.30.(2022年新高考浙江数学高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则()A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【答案】B【解析】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.31.(2022年高考全国乙卷数学(文)真题)设(12i)2i a b ++=,其中,a b 为实数,则()A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-【答案】A【解析】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-.故选:A.32.(2022年高考全国乙卷数学(理)真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-【答案】A【解析】12z i=-12i (12i)(1)(22)iz az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩故选:A考点9:复数的几何意义33.(2023年北京高考数学真题)在复平面内,复数z 对应的点的坐标是(3)-,则z 的共轭复数z =()A .13i +B .13i-C .13i -D .13i-【答案】D【解析】z 在复平面对应的点是(3)-,根据复数的几何意义,13i z =-,由共轭复数的定义可知,13i z =-.故选:D34.(2023年新课标全国Ⅱ卷数学真题)在复平面内,()()13i 3i +-对应的点位于().A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.。

2020年高考数学试题分项版—不等式(解析版)

2020年高考数学试题分项版—不等式(解析版)

2020年高考数学试题分项版——不等式(解析版)一、选择题1.(2020·新高考全国Ⅰ,11)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确.2.(2020·新高考全国Ⅱ,12)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2 答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确.3.(2020·浙江,3)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≥0,则z =x +2y 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)答案 B解析 如图,l 1:x -3y +1=0,l 2:x +y -3=0.不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≥0表示的平面区域为图中阴影部分(含边界).设初始直线为l :y =-12x ,直线l 通过向上平移经过可行域内的第一个点为l 1与l 2的交点P (2,1), 因此z 的最小值z min =2+2×1=4, 所以z ≥4. 二、填空题1.(2020·全国Ⅰ理,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________. 答案 1解析 画出可行域如图阴影部分所示.由z =x +7y ,得y =-17x +17z .平移直线l 0:y =-17x ,可知当直线y =-17x +17z 过点A 时z 最大.由⎩⎪⎨⎪⎧ 2x +y -2=0,x -y -1=0,得⎩⎪⎨⎪⎧x =1,y =0,即A (1,0), ∴z max =1+7×0=1.2.(2020·全国Ⅲ理,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为________.答案 7解析 作出不等式组所表示的可行域,如图中阴影部分(含边界)所示.z =3x +2y 可化为y =-32x +12z ,作直线y =-32x ,并平移该直线,易知当直线经过点A (1,2)时,z 最大,z max =7.3.(2020·天津,14)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.答案 4解析 因为a >0,b >0,ab =1, 所以原式=ab 2a +ab 2b +8a +b=a +b 2+8a +b≥2a +b 2·8a +b=4, 当且仅当a +b 2=8a +b ,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4. 4.(2020·江苏,12)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 方法一 由题意知y ≠0.由5x 2y 2+y 4=1, 可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.方法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1, 所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0. 由Δ=25t 2-16≥0, 解得t ≥45⎝⎛⎭⎫t ≤-45舍去. 故x 2+y 2的最小值为45.5.(2020·浙江,9)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则( )A .a <0B .a >0C .b <0D .b >0 答案 C解析 由题意,知a ≠0,b ≠0,则方程(x -a )(x -b )(x -2a -b )=0的根为a ,b,2a +b . ①a ,b,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0,此时(x -a )2(x +a )≥0,如图(2),符合题意.(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,如图(3),符合题意.综合①②,可知b <0符合题意.6.(2020·全国Ⅰ文,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________. 答案 1解析 画出可行域如图阴影部分所示.由z =x +7y ,得y =-17x +17z .平移直线l 0:y =-17x ,可知当直线y =-17x +17z 过点A 时z 最大.由⎩⎪⎨⎪⎧ 2x +y -2=0,x -y -1=0,得⎩⎪⎨⎪⎧x =1,y =0,即A (1,0), ∴z max =1+7×0=1.7.(2020·全国Ⅱ文,15)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,x -y ≥-1,2x -y ≤1,则z =x +2y 的最大值是________.答案 8解析 作出可行域,如图阴影部分(含边界)所示.z =x +2y 可变形为y =-12x +12z ,作直线l 0:y =-12x ,并平移,可知当直线过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =-1,2x -y =1,得A (2,3), 所以z max =2+2×3=8.8.(2020·全国Ⅲ文,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为________.答案 7解析 作出不等式组所表示的可行域,如图中阴影部分(含边界)所示.z =3x +2y 可化为y =-32x +12z ,作直线y =-32x ,并平移该直线,易知当直线经过点A (1,2)时,z 最大,z max =7. 三、解答题1.(2020·全国Ⅰ理,23)[选修4—5:不等式选讲] 已知函数f (x )=|3x +1|-2|x -1|. (1)画出y =f (x )的图象; (2)求不等式f (x )>f (x +1)的解集.解 (1)因为f (x )=⎩⎪⎨⎪⎧x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位长度, 可得函数f (x +1)的图象,如图所示,由-x -3=5(x +1)-1,解得x =-76.由图象可知当且仅当x <-76时,y =f (x )的图象在y =f (x +1)的图象上方.所以不等式的解集为⎝⎛⎭⎫-∞,-76. 2.(2020·全国Ⅱ理,23)[选修4—5:不等式选讲] 已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解 (1)当a =2时,f (x )=⎩⎪⎨⎪⎧7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥112. (2)因为f (x )=|x -a 2|+|x -2a +1| ≥|a 2-2a +1|=(a -1)2,故当(a -1)2≥4,即|a -1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a <3时,f (a 2)=|a 2-2a +1|=(a -1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞). 3.(2020·全国Ⅲ理,23)[选修4—5:不等式选讲] 设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 的最大值,证明:max{a ,b ,c }≥34. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +bc +ca =-12(a 2+b 2+c 2).∵abc =1,∴a ,b ,c 均不为0,∴a 2+b 2+c 2>0, ∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0, ∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bcbc=4. 当且仅当b =c 时,取等号, ∴a ≥34,即max{a ,b ,c }≥34.4.(2020·江苏,21)C .[选修4-5:不等式选讲] 设x ∈R ,解不等式2|x +1|+|x |<4.解 当x >0时,原不等式可化为2x +2+x <4, 解得0<x <23;当-1≤x ≤0时,原不等式可化为2x +2-x <4, 解得-1≤x ≤0;当x <-1时,原不等式可化为-2x -2-x <4, 解得-2<x <-1.综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <23. 5.(2020·全国Ⅰ文,23)[选修4-5:不等式选讲] 已知函数f (x )=|3x +1|-2|x -1|. (1)画出y =f (x )的图象; (2)求不等式f (x )>f (x +1)的解集.解 (1)因为f (x )=⎩⎪⎨⎪⎧x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位长度, 可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.由图象可知当且仅当x <-76时,y =f (x )的图象在y =f (x +1)的图象上方.所以不等式的解集为⎝⎛⎭⎫-∞,-76. 6.(2020·全国Ⅱ文,23)[选修4—5:不等式选讲] 已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解 (1)当a =2时,f (x )=⎩⎪⎨⎪⎧7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥112. (2)因为f (x )=|x -a 2|+|x -2a +1| ≥|a 2-2a +1|=(a -1)2,故当(a -1)2≥4,即|a -1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a <3时,f (a 2)=|a 2-2a +1|=(a -1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞). 7.(2020·全国Ⅲ文,23)[选修4-5:不等式选讲] 设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +bc +ca =-12(a 2+b 2+c 2).∵abc =1,∴a ,b ,c 均不为0, ∴a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0, ∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bcbc=4. 当且仅当b =c 时,取等号, ∴a ≥34,即max{a ,b ,c }≥34.。

2020年新高考(全国卷地区)数学考试试卷结构及题型变化

2020年新高考(全国卷地区)数学考试试卷结构及题型变化

新高考(全国卷)地区数学试卷结构及题型变化新高考数学考试试卷及试卷结构说明:新高考数学试卷结构:第一大题,单项选择题,共8小题,每小题5分,共40分;第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分.第三大题,填空题,共4小题,每小题5分,共20分。

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。

单项选择题考点分析:多项选择题考点分析:①新高考全国Ⅰ卷与新高考全国Ⅱ卷相同新高考选择题部分分析:①新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。

这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。

②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。

在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。

过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度、③新高考数学试卷的第4题,第6题和第12题都体现了创新性。

第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。

弘扬传统文化的同时也鼓励同学们走进传统文化。

近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。

第6题则体现了聚焦民生,关注社会热点。

2020届全国各地高考试题分类汇编:13 不等式选讲含答案

2020届全国各地高考试题分类汇编:13 不等式选讲含答案

f
(x)
f
(x
1)
的解集为
,
7 6

【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形
结合能力,属于基础题.
f (x) x a2 | x 2a 1|
2.(2020•全国 2 卷)已知函数
.
(1)当 a 2 时,求不等式 f (x)… 4 的解集;
(2)若 f (x)… 4 ,求 a 的取值范围.
13 不等式选讲
1.(2020•全国 1 卷)已知函数 f (x) | 3x 1| 2 | x 1| .
(1)画出 y f (x) 的图像;
(2)求不等式 f (x) f (x 1) 的解集.
【答案】(1)详解解析;(2)
,
7 6
.
【解析】(1)根据分段讨论法,即可写出函数 f x的解析式,作出图象;
x
2
1 x
4

1 2x
2
x
x
0
4

2
x
x0 2 x
4
2 x 1或 1≤≤x
0 0或
x
2 3
,所以解集为
2,
2 3
【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.
x
【答案】(1)
x
3 2

x
11
2
;(2)
,
1 3,
.
【解析】(1)分别在 x 3 、 3 x 4 和 x 4 三种情况下解不等式求得结果;
f x a 12
(2)利用绝对值三角不等式可得到
,由此构造不等式求得结果.
【详解】(1)当 a 2 时, f x x 4 x 3 .

2020年高考数学分类之不等式选讲详解

2020年高考数学分类之不等式选讲详解

(2)求不等式 f (x) f (x 1) 的解集.
【答案】(1)详解解析;(2)
,
7 6
.
【详解】
x 3, x 1
(1)因为
f
x 5x 1,
1 3
x 1 ,作出图象,如图所示:
x 3, x 1 3
(2)将函数 f x 的图象向左平移1个单位,可得函数 f x 1 的图象,如图所示:
四.基本不等式 9.(2020 海南卷 12 山东卷 11)已知 a 0 , b 0 ,且 a b 1,则( )
A. a2 b2 1 2
B. 2a b 1
2
C. log a log b 2
2
2
D. a b 2
【答案】ABD
【详解】对于
A, a2
b2
a2
1 a 2
2a2
2a1
x 1,
的最大值为_________.
【答案】7
【详解】不等式组所表示的可行域如图
因为 z 3x 2y ,所以 y 3x z ,易知截距 z 越大,则 z 越大,
22
2
平移直线 y 3x ,当 y 3x z 经过 A 点时截距最大,此时 z 最大,
2
22
y 2x x 1

x 1
,得
y
2

A(1,
2)

所以 zmax 3 1 2 2 7 .
故答案为:7.
2x y 2 0,
7.(2020·全国Ⅰ卷高考真题(文理
13))若
x,y
满足约束条件
x
y
1
0,
y 1 0,
则z x7y
的最大值为____________.

2020年新高考(全国卷)数学试卷结构与评析

2020年新高考(全国卷)数学试卷结构与评析

新高考(全国卷)地区数学试卷结构及题型变化新高考数学考试试卷及试卷结构说明:新高考数学试卷结构:第一大题,单项选择题,共8小题,每小题5分,共40分;第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分.第三大题,填空题,共4小题,每小题5分,共20分。

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。

单项选择题考点分析:多项选择题考点分析:①新高考全国Ⅰ卷与新高考全国Ⅱ卷相同新高考选择题部分分析:①新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。

这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。

②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。

在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。

过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度、③新高考数学试卷的第4题,第6题和第12题都体现了创新性。

第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。

弘扬传统文化的同时也鼓励同学们走进传统文化。

近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。

第6题则体现了聚焦民生,关注社会热点。

2020年普通高等学校招生全国统一考试数学理试题(新课标I卷,解析版1)

2020年普通高等学校招生全国统一考试数学理试题(新课标I卷,解析版1)

2020年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( ) A 、-4(B )-45(C )4(D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=4)(34)(34)i i i +-+=3455i +,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题.【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A. 7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4 C 、5 D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题. 【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为 A .168π+ B .88π+ C .1616π+ D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( ) A 、5 B 、6 C 、7 D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题. 【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。

浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)

浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)

高考专题突破一 高考中的不等式问题题型一 含参数不等式的解法例1解关于x 的不等式x 2+ax +1>0(a∈R ). 解 对于方程x 2+ax +1=0,Δ=a 2-4.(1)当Δ>0,即a >2或a <-2时,方程x 2+ax +1=0有两个不等实根x 1=-a -a 2-42,x 2=-a +a 2-42,且x 1<x 2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a -a 2-42或x >-a +a 2-42; (2)当Δ=0,即a =±2时,①若a =2,则原不等式的解集为{x |x ≠-1}; ②若a =-2,则原不等式的解集为{x |x ≠1};(3)当Δ<0,即-2<a <2时,方程x 2+ax +1=0没有实根,结合二次函数y =x 2+ax +1的图象,知此时原不等式的解集为R .思维升华解含参数的一元二次不等式的步骤(1)若二次项含有参数应讨论是否等于0,小于0,和大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)当方程有两个根时,要讨论两根的大小关系,从而确定解集形式.跟踪训练1 (1)若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是________. 答案 3解析 由题意可知-7和-1为方程ax 2+8ax +21=0的两个根. ∴-7×(-1)=21a,故a =3.(2)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是__________. 答案 (-∞,-4)∪(2,+∞)解析 依题意得,|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,即函数y =|x -1|+|x +m |的最小值是|m +1|,于是有|m +1|>3,m +1<-3或m +1>3,由此解得m <-4或m >2.因此实数m 的取值范围是(-∞,-4)∪(2,+∞).题型二 线性规划问题例2(2018·浙江五校联考)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,x -y ≥-1,2x -y ≤4,且z =ax +y 的最大值为16,则实数a =________,z 的最小值为________. 答案 2 1解析 如图,作出不等式组所表示的可行域(△ABC 及其内部区域).目标函数z =ax +y 对应直线ax +y -z =0的斜率k =-a .(1)当k ∈(-∞,1],即-a ≤1,a ≥-1时,目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧ 2x -y =4,x -y =-1,解得A (5,6),故z 的最大值为5a +6,即5a +6=16,解得a =2.(2)当k ∈(1,+∞),即-a >1,a <-1时,目标函数在点C 处取得最大值,由⎩⎪⎨⎪⎧x +2y =2,x -y =-1,解得C (0,1),故z 的最大值为0×a +1=1,不符合题意. 综上,a =2.数形结合知,当直线z =2x +y 经过点C 时,z 取得最小值,z min =2×0+1=1. 思维升华1.利用线性规划求目标函数的基本步骤为一画二移三求,其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有(1)截距型:如z =-2x +y ,z =2y4x ,z =OP →·OM →(其中M (x ,y )为区域内动点,P (-2,1)),等等.(2)距离型:如z =(x -2)2+y 2,z =|2x -y |,等等.(3)斜率型:如z =y +1x ,z =x +y +1x ,z =x y +1,z =y +1x +x y +1=x 2+(y +1)2xy +x ,等等.(4)二次曲线型:如z =xy ,z =y 2x ,z =x 22+y 2,等等.3.解题时要注意可行解是区域的所有点还是区域内的整点.跟踪训练2 (1)(2018·湖州五校模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1>0,x +y -3<0,y >0,则z =2x-y 的取值范围为( ) A .(-6,-1) B .(-8,-2) C .(-1,8) D .(-2,6)答案 D解析 方法一 作出约束条件所表示的可行域如图中阴影部分所示.作出直线y =2x ,平移直线,直线z =2x -y 在点B (-1,0)处的取最小值为-2,在点C (3,0)处的取最大值为6,所以z =2x -y 的取值范围为(-2,6).方法二 三条直线两两联立求出的交点坐标分别是(1,2),(-1,0),(3,0),分别代入z =2x -y 求值,得0,-2,6,所以z =2x -y 的取值范围为(-2,6). (2)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =(x +1)2+(y -1)2的最小值为________. 答案 30 95解析 作出⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5表示的平面区域如图中阴影部分(含边界)所示,则不等式组表示的平面区域的面积为12×5×2+12×10×5=30.z =(x +1)2+(y -1)2表示可行域内的点(x ,y )与点M (-1,1)之间的距离的平方,数形结合易知,z =(x +1)2+(y -1)2的最小值为点M (-1,1)到直线2x -y =0的距离的平方,即z min =|2×(-1)-1|2[22+(-1)2]2=95. 题型三 基本不等式的应用例3 (1)已知x 2+4xy -3=0,其中x >0,y ∈R ,则x +y 的最小值是( ) A.32B .3C .1D .2 答案 A解析 由x 2+4xy -3=0,得y =3-x24x,即有x +y =x +3-x 24x =34⎝ ⎛⎭⎪⎫x +1x .∵x >0,∴x +1x ≥2,即x +y ≥32,当且仅当x =1x ,即x =1,y =12时,x +y 取得最小值32.(2)已知a >0,b >0,c >1,且a +b =1,则⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1的最小值为______.答案 4+2 2解析 ∵a 2+1ab =a 2+(a +b )2ab =2a 2+2ab +b 2ab=2a b +ba+2≥22a b ·ba+2=22+2,当且仅当⎩⎪⎨⎪⎧2a b =b a,a +b =1,即⎩⎨⎧a =2-1,b =2-2时等号成立,∴⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1≥22c +2c -1=22(c -1)+2c -1+2 2≥222(c -1)·2c -1+22=4+22, 当且仅当22(c -1)=2c -1,即c =1+22时,等号成立. 综上,所求最小值为4+2 2. 思维升华利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值,主要思路有两种:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接应用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法.跟踪训练3 (1)已知xy =1,且0<y <22,则x 2+4y2x -2y 的最小值为( )A .4B.92C .22D .4 2答案 A解析 由xy =1且0<y <22,可知x >2, 所以x -2y >0.x 2+4y 2x -2y =(x -2y )2+4xy x -2y =x -2y +4x -2y≥4, 当且仅当x =3+1,y =3-12时等号成立. (2)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 答案233解析 由x 2+y 2+xy =1,得1=(x +y )2-xy , ∴(x +y )2=1+xy ≤1+(x +y )24,解得-233≤x +y ≤233(当且仅当x =y =33时取得最大值),∴x +y 的最大值为233.题型四 绝对值不等式的应用例4 (1)(2018·浙江五校联考)已知a ∈R ,则“a ≤9”是“2|x -2|+|5+2x |<a 无解”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 2|x -2|+|5+2x |=|2x -4|+|5+2x | ≥|2x -4-5-2x |=9,若2|x -2|+|5+2x |<a 无解,则a ≤9,同样若a ≤9,则2|x -2|+|5+2x |<a 无解, 所以“a ≤9”是“2|x -2|+|5+2x |<a 无解”的充要条件.(2)(2019·温州模拟)已知a ,b ,c ∈R ,若|a cos 2x +b sin x +c |≤1对x ∈R 恒成立,则|a sin x +b |的最大值为________. 答案 2解析 |a cos 2x +b sin x +c |≤1, 即|a sin 2x -b sin x -(a +c )|≤1,分别取sin x =1,-1,0,可知⎩⎪⎨⎪⎧|b +c |≤1,|b -c |≤1,|a +c |≤1,所以|a +b |=|(a +c )+(b -c )|≤|a +c |+|b -c |≤2, 且|a -b |=|(a +c )-(b +c )|≤|a +c |+|b +c |≤2.所以max{|a sin x +b |}=max{|a +b |,|a -b |}≤2,当a =2,b =0,c =-1时,取等号. 思维升华(1)解绝对值不等式可以利用绝对值的几何意义,零点分段法、平方法、构造函数法等.(2)利用绝对值三角不等式可以证明不等式或求最值.跟踪训练4 (1)已知函数f (x )=|x -5|+|x +3|+|x -3|+|x +5|-c ,若存在正实数m ,使f (m )=0,则不等式f (x )<f (m )的解集是________.答案 (-m ,m )解析 由|-x -5|+|-x +3|+|-x -3|+|-x +5|=|x -5|+|x +3|+|x -3|+|x +5|可知,函数f (x )为偶函数,当-3≤x ≤3时,f (x )取最小值16-c .结合题意可得c ≥16.由f (m )=0得f (x )<0,即|x -5|+|x +3|+|x -3|+|x +5|-c <0,结合图象(图略)可知,解集为(-m ,m ).(2)不等式|x -2|+|x +1|≥a 对于任意x ∈R 恒成立,则实数a 的取值范围为__________. 答案 (-∞,3]解析 当x ∈(-∞,-1]时,|x -2|+|x +1|=2-x -x -1=1-2x ≥3;当x ∈(-1,2)时,|x -2|+|x +1|=2-x +x +1=3; 当x ∈[2,+∞)时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,综上可得|x -2|+|x +1|≥3,∴a ≤3.1.(2018·宁波期末)若a ,b ∈R ,且a <b <0,则下列不等式成立的是( ) A .2a -b>1B.1a -1>1b -1C .a 3>b 3D .a +|b |>0答案 B解析 由a <b <0得a -1<b -1<0,则(a -1)(b -1)>0,所以(a -1)·1(a -1)(b -1)<(b -1)·1(a -1)(b -1),即1a -1>1b -1,故选B.2.(2018·浙江绍兴一中期末)若关于x 的不等式|x +2|+|x -a |<5有解,则实数a 的取值范围是( ) A .(-7,7) B .(-3,3) C .(-7,3) D .∅答案 C解析 不等式|x +2|+|x -a |<5有解,等价于(|x +2|+|x -a |)min <5,又因为|x +2|+|x -a |≥|(x +2)-(x -a )|=|2+a |,所以|2+a |<5,-5<2+a <5,解得-7<a <3,即实数a 的取值范围为(-7,3),故选C.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x -y -1≤0,3x -y +1≥0,3x +y -1≤0,x ,y ∈R,则M 表示的平面区域的面积是( )A.2B.32C.322D .2答案 B解析 由题意,M 表示的平面区域是以A (0,1),B (-1,-2),C ⎝ ⎛⎭⎪⎫12,-12为顶点的三角形及其内部,如图中阴影部分所示(含边界),所以其面积为12×2×⎝ ⎛⎭⎪⎫12+1=32.4.(2018·杭州质检)若正数x ,y 满足2x +y -3=0,则2x +1y的最小值为( )A .2B .3C .4D .5 答案 B解析 由2x +y -3=0,得2x +y =3, 所以2x +1y =13(2x +y )⎝ ⎛⎭⎪⎫2x +1y =13⎝ ⎛⎭⎪⎫5+2x y +2y x≥13⎝⎛⎭⎪⎫5+2 2x y·2y x =3,当且仅当2x y =2y x,即x =y =1时等号成立,故选B.5.(2018·金华十校调研)设x ,y ∈R ,下列不等式成立的是( ) A .1+|x +y |+|xy |≥|x |+|y | B .1+2|x +y |≥|x |+|y | C .1+2|xy |≥|x |+|y | D .|x +y |+2|xy |≥|x |+|y |答案 A解析 对于选项B ,令x =100,y =-100,不成立;对于选项C ,令x =100,y =1100,不成立;对于选项D ,令x =13,y =-12,不成立,故选A.6.(2018·杭州学军中学模拟)设关于x ,y 的不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +m ≤0,y -m ≥0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0>3,则实数m 的取值范围是( ) A .(-1,0) B .(0,1) C .(-1,+∞) D .(-∞,-1)答案 D解析 作出满足不等式组的平面区域,如图中阴影部分所示(包含边界),当目标函数z =x -2y 经过直线x +m =0与y -m =0的交点时取得最大值,即z max =-m -2m =-3m ,则根据题意有-3m >3,即m <-1,故选D.7.(2018·浙江舟山中学月考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax+by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( ) A .5B .4C.5D .2 答案 B解析 画出满足约束条件的可行域如图中阴影部分(包含边界)所示,可知当目标函数过直线x -y -1=0与2x -y -3=0的交点A (2,1)时取得最小值,所以有2a +b =2 5.因为a 2+b 2表示原点(0,0)到点(a ,b )的距离的平方,所以a 2+b 2的最小值为原点到直线2a +b -25=0的距离,即(a 2+b 2)min =|-25|22+12=2,所以a 2+b 2的最小值是4,故选B.8.(2018·嘉兴教学测试)若直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,则2a +3b 的取值范围是( ) A .(-7,1) B .(-3,5) C .(-7,3) D .R答案 C解析 不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域是以A (1,1),B (-1,1),C (0,-1)为顶点的三角形区域(包含边界);因为直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,所以a ,b满足⎩⎪⎨⎪⎧a +b -1>0,-a +b -1>0,-b -1>0或⎩⎪⎨⎪⎧a +b -1<0,-a +b -1<0,-b -1<0,故点(a ,b )在如图所示的三角形区域(除边界且除原点)内,所以2a+3b 的取值范围为(-7,3),故选C.9.(2019·诸暨期末)不等式-x 2+2x +3<0的解集为________;不等式|3-2x |<1的解集为________.答案 (-∞,-1)∪(3,+∞) (1,2)解析 依题意,不等式-x 2+2x +3<0,即x 2-2x -3>0,解得x <-1或x >3,因此不等式-x 2+2x +3<0的解集是(-∞,-1)∪(3,+∞);由|3-2x |<1得-1<3-2x <1,1<x <2,所以不等式|3-2x |<1的解集是(1,2).10.(2018·宁波期末)关于实数x 的不等式x 2-4x >1a+3在[0,5]上有解,则实数a 的取值范围为______________.答案 (-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞ 解析 由x 2-4x >1a +3得x 2-4x -3>1a ,则问题等价于1a小于x 2-4x -3在[0,5]上的最大值,又因为x 2-4x -3=(x -2)2-7,所以当x =5时,x 2-4x -3取得最大值2,所以1a<2,解得a <0或a >12,所以a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.11.(2018·嘉兴测试)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为______________;|f (2x )|+|g (x )|的最小值为________.答案 ⎣⎢⎡⎦⎥⎤53,3 3 解析 由题意得|f (x )|+|g (x )|=|x -2|+|2x -5|=⎩⎪⎨⎪⎧7-3x ,x <2,-x +3,2≤x ≤52,3x -7,x >52,所以|f (x )|+|g (x )|≤2等价于⎩⎪⎨⎪⎧7-3x ≤2,x <2或⎩⎪⎨⎪⎧-x +3≤2,2≤x ≤52或⎩⎪⎨⎪⎧3x -7≤2,x >52,解得53≤x ≤3,|f (2x )|+|g (x )|=|2x -2|+|2x -5|=⎩⎪⎨⎪⎧7-4x ,x <1,3,1≤x ≤52,4x -7,x >52,|f (2x )|+|g (x )|的图象如图,则由图象易得|f (2x )|+|g (x )|的最小值为3.12.(2018·浙江镇海中学模拟)已知正数x ,y 满足1x +2y =1,则1x +1+2y +1的最大值是________. 答案 34解析 设u =1x ,v =1y ,则问题转化为“已知正数u ,v 满足u +2v =1,求u u +1+2vv +1的最大值”.uu +1+2v v +1=3-⎝ ⎛⎭⎪⎫1u +1+2v +1=3-⎝⎛⎭⎪⎫1u +1+2v +1·14[(u +1)+2(v +1)]=3-14⎣⎢⎡⎦⎥⎤5+2(v +1)u +1+2(u +1)v +1≤3-14(5+4)=34. 当且仅当2(v +1)u +1=2(u +1)v +1,即u =v =13时,取等号.13.(2018·浙江金华十校联考)已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________. 答案 911-32 解析 将⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5变形为⎩⎪⎨⎪⎧xy =1-2z ,x 2+y 2=5-z 2,由|xy |≤x 2+y 22知,|1-2z |≤5-z22,即-5-z 22≤1-2z ≤5-z 22,解得2-7≤z ≤11-2.所以xyz =(1-2z )z =-2z 2+z 在[2-7,11-2]上的最小值为911-32.14.(2018·宁波模拟)若6x 2+4y 2+6xy =1,x ,y ∈R ,则x 2-y 2的最大值为________. 答案 15解析 方法一 设m =x +y ,n =x -y ,则问题转化为“已知4m 2+mn +n 2=1,求mn 的最大值”.由基本不等式,知1=mn +4m 2+n 2≥mn +4|mn |,所以-13≤mn ≤15,当且仅当n =2m ,即x =-3y 时,取得最大值15.方法二 (齐次化处理)显然要使得目标函数取到最大值,x ≠0.令z =x 2-y 2=x 2-y 26x 2+4y 2+6xy=1-⎝ ⎛⎭⎪⎫y x26+4·⎝ ⎛⎭⎪⎫y x 2+6·y x ,设t =y x ,则z =1-t 26+4t 2+6t,则(4z +1)t 2+6zt +6z -1=0对t ∈R 有解.当z=-14时,t =-53.当z ≠-14时,Δ=36z 2-4(4z +1)(6z -1)≥0,解得-13≤z ≤15.当t =-3z 4z +1=-13时取最大值.方法三 1=6x 2+4y 2+6×x3×3y ≥6x 2+4y 2-6×x 23+3y 22=5x 2-5y 2,所以x 2-y 2≤15,当且仅当x =-3y 时取等号.15.(2019·浙江嘉兴一中模拟)已知点P 是平面区域M :⎩⎨⎧x≥0,y ≥0,3x +y -3≤0内的任意一点,则P 到平面区域M 的边界的距离之和的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤32,3 解析 设平面区域M :⎩⎨⎧x ≥0,y≥0,3x +y -3≤0为△ABO 区域(包含边界),由题意,|AO |=1,|BO |=3,|AB |=2,P 到平面区域M 的边界的距离之和d 就是P 到△ABO 三边的距离之和,设P 到边界AO ,BO ,AB 的距离分别为a ,b ,c ,则P (b ,a ),由题意0≤a ≤3,0≤b ≤1,0≤c =12(3-a -3b )≤32,所以d =a +b +c =12[a +(2-3)b +3],从而d ≥32,当a =b =0时取等号.如图,P 为可行域内任意一点,过P 作PE ⊥x 轴,PF ⊥y 轴,PP ′⊥AB ,过P ′作P ′E ′⊥x 轴,P ′F ′⊥y 轴,则有PE +PF +PP ′≤P ′F ′+P ′E ′,由P (b ,a ), 可得P ′⎝⎛⎭⎪⎫3+b -3a4,3+3a -3b 4,所以d =a +b +c ≤3+b -3a 4+3+3a -3b 4=3+3+(3-1)(3a -b )4,又0≤a ≤3,0≤b ≤1,则d ≤3,当a =3,b =0时取等号,因此d 的取值范围为⎣⎢⎡⎦⎥⎤32,3. 16.(2018·浙江“七彩阳光”新高考研究联盟联考)若正数a ,b ,c 满足b +c a +a +c b =a +bc+1,则a +bc的最小值是________. 答案1+172解析 由a ,b ,c 为正数,且b +c a +a +c b =a +b c +1得b c +1a c +a c +1b c =a c +b c +1,设m =a c ,n =bc,则有m >0,n >0,上式转化为n +1m +m +1n =m +n +1,即m 2+n 2+m +nmn=m +n +1,又由基本不等式得m 2+n 2≥(m +n )22,mn ≤(m +n )24,所以m +n +1=m 2+n 2+m +n mn ≥(m +n )22+m +n (m +n )24,令t =m +n ,则t >0,上式转化为t +1≥t 22+tt 24,即t 2-t -4≥0,解得t ≥1+172,所以t =m +n =a c +bc =a +b c 的最小值为1+172.。

2020年全国新高考Ⅰ卷数学试卷(解析版)

2020年全国新高考Ⅰ卷数学试卷(解析版)

2020年全国新高考Ⅰ卷数学试卷一、选择题1. 设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2. 2−i1+2i=( )A.1B.−1C.iD.−i3. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A 且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6. 基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天7. 已知P是边长为2的正六边形ABCDEF内的一点,则AP→⋅AB→的取值范围是( )A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8. 若定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,则满足xf(x−1)≥0的x的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9. 已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD.若m=0,n>0,则C是两条直线10. 如图是函数y=sin(ωx+φ),则sin(ωx+φ)=( )A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)11. 已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤212. 信息熵是信息论中的一个重要概念,设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=p i> 0(i=1,2,⋯,n),∑p ini=1=1,定义X的信息熵H(X)=−∑p ini=1log2p i,则( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着p i的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y ) 三、填空题13. 斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14. 将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形, BC ⊥DG ,垂足为C ,tan ∠ODC=35, BH//DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1,则图中阴影部分的面积为________cm 2.16. 已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 四、解答题17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =√3sin B ,C =π6, ________?18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m](m ∈N ∗)中的项的个数,求数列{b m }的前100项和S 100 .19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),20. 如图,四棱锥P −ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.21. 已知函数f (x )=ae x−1−ln x +ln a .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足. 证明:存在定点Q,使得|DQ|为定值.参考答案与试题解析2020年全国新高考Ⅰ卷数学试卷一、选择题1.【答案】C【考点】并集及其运算【解析】根据集合并集的运算法则求解.【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.【答案】D【考点】复数代数形式的混合运算【解析】根据复数的除法运算法则求解.【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.【答案】C【考点】排列、组合及简单计数问题【解析】先让甲场馆选1人,再让乙场馆选2,剩下的去丙场馆即可得解. 【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.【答案】B【考点】直线与平面所成的角空间点、线、面的位置【解析】根据纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角. 【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴ ∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.【答案】C【考点】概率的应用【解析】利用互斥事件的概率公式代入求解.【解答】解:设''该中学学生喜欢足球''为事件A,''该中学学生喜欢游泳''为事件B,则''该中学学生喜欢足球或游泳''为事件A∪B,''该中学学生既喜欢足球又喜欢游泳''为事件A∩B. 由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.【答案】B【考点】函数模型的选择与应用指数式与对数式的互化【解析】先根据所给模型求得r,然后求得初始病例数I,最后求得感染病例数增加1倍所需的时间.【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t , e 0.38(t+x)=2⋅e 0.38t 得x =ln 20.38≈1.8. 故选B . 7.【答案】 A【考点】平面向量数量积求线性目标函数的最值 【解析】先画出图形,并用坐标表示AP →⋅AB →,然后向量问题转化为求线性目标函数的最值,最终得AP →⋅AB →的取值范围.【解答】 解:如图:设A(−1,√3),P (x,y ),B (−2,0), AP →=(x +1,y −√3),AB →=(−1,−√3), 则AP →⋅AB →=−x −√3y +2.令z =−x −√3y +2,该问题可转化为求该目标函数在可行域中的最值问题,由图可知,z =−x −√3y +2经过点C 时,z 取得最大值;经过点F 时,z 取得最小值, 故最优解为C(−1,−√3)和F(1,√3), 代入得z max =6或z min =−2, 故AP →⋅AB →的取值范围是(−2,6). 故选A . 8.【答案】 D【考点】函数单调性的性质 函数奇偶性的性质【解析】先根据函数的奇偶性确定函数的大致图像,然后判断函数的单调性,最后利用分类讨论思想讨论不等式成立时x 的取值范围. 【解答】解:根据题意,函数图象大致如图:①当x =0时,xf(x −1)=0成立; ②当x >0时,要使xf(x −1)≥0, 即f(x −1)≥0,可得0≤x −1≤2或x −1≤−2, 解得1≤x ≤3;③当x <0时,要使xf(x −1)≥0, 即f(x −1)≤0,可得x −1≥2或−2≤x −1≤0, 解得−1≤x <0.综上,x 的取值范围为[−1,0]∪[1,3]. 故选D .二、多选题 9.【答案】 A,C,D 【考点】双曲线的渐近线 椭圆的标准方程 圆的标准方程 直线的一般式方程【解析】根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可. 【解答】解:A ,mx 2+ny 2=1,即x 21m+y 21n=1.∵ m >n >0, ∴ 1m <1n ,∴ 此时C 是椭圆,且其焦点在y 轴上, A 选项正确;B ,m =n >0时,x 2+y 2=1n , ∴ r =√n n, B 选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴ y=±√1n代表两条直线,D选项正确.故选ACD.10.【答案】B,C【考点】诱导公式由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】先用图像上两零点间的距离求出函数的周期,从而求得ω,而后利用五点对应法求得φ,进而求得图像的解析式.【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴ T=π,∴ ω=2ππ=2,∴ y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3 )=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3)=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C选项正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3)=−sin(2x+2π3),故D选项错误.故选BC.11.【答案】A,B,D【考点】不等式性质的应用基本不等式在最值问题中的应用【解析】选项A左边是代数式形式,右边是数字形式,且已知a+b=1,故可考虑通过基本不等式和重要不等式建立a2+b2与a+b的关系;选项B先利用指数函数的增减性将原不等式简化为二元一次不等式,然后利用不等式的性质及已知条件判断;选项C需要利用对数的运算和对数函数的增减性将不等式转化为关于a, b的关系式,然后利用基本不等式建立与已知条件a+b的关系;选项D基本不等式的变形应用.【解答】解:A,∵ a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴ 1=a2+b2+2ab≤2(a2+b2),可得a2+b2≥12,故A正确;B,∵ a−b=a−(1−a)=2a−1>−1,∴2a−b>2−1=12,故B正确;C,∵ ab≤(a+b2)2=14,当且仅当a=b时取等号,∴log2a+log2b=log2ab≤log214=−2,故C错误;D ,∵ a +b ≥2√ab ,当且仅当a =b 时取等号, ∴ (√a +√b)2=a +b +2√ab =1+2√ab ≤2, 即√a +√b ≤√2,则√a +√b ≤2,故D 正确. 故选ABD . 12. 【答案】 A,C【考点】 概率的应用概率与函数的综合 利用导数研究函数的单调性【解析】选项A 根据题目给出信息熵的定义可直接判断;选项B 根据题意先得到p 1,p 2的关系,然后构造关于p 1的函数,最后利用导数判断新函数的增减性; 选项C 根据题目给定信息化简H(x)后可判断;选项D 分别求出H(x),H(y),利用作差法结合对数的运算即可判断. 【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确; B ,若n =2,则p 1+p 2=1,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)]. 设f (p )=−[p log 2p +(1−p )log 2(1−p )],则f ′(p )=−[log 2p +p ⋅1p ln 2−log 2(1−p )+(1−p )−1(1−p )ln 2] =−log 2p1−p =log 21−p p,当0<p <12时,f ′(p )>0; 当12<p <1时,f ′(p )<0,∴ f (p )在(0,12)上单调递增,在(12,1)上单调递减, 当p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m , 由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知: P (Y =1)=p 1+p 2m ; P (Y =2)=p 2+p 2m−1 ;P (Y =3)=p 3+p 2m−2 ; ⋯⋯P (Y =m )=p m +p m+1 ;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)], H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯ +(p m log 2p m +p m+1log 2p m+1)],∵ (p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0, ⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0, 所以H (X )>H (Y ),故D 错误. 故选AC . 三、填空题 13.【答案】163【考点】 抛物线的性质 【解析】先根据题目给定信息求出直线方程,联立直线和抛物线方程,再利用韦达定理和抛物线的性质转化求出弦长|AB|. 【解答】解:设A(x 1,y 1),B(x 2,y 2), 抛物线的焦点为(1,0),则直线方程为y =√3(x −1),代入抛物线方程得3x 2−10x +3=0, ∴ x 1+x 2=103,根据抛物线方程的定义可知|AB|=x 1+1+x 2+1=163.故答案为:163.14.【答案】 3n 2−2n 【考点】等差数列的前n 项和 等差关系的确定【解析】先判断出{2n −1}与{3n −2}公共项所组成的新数列{a n }的公差、首项,再利用等差数列的前n 项和的公式得出结论. 【解答】解:数列{2n −1}各项为:1,3,5,7,9,⋯数列{3n −2}各项为:1,4,7,10,13,⋯观察可知,{a n }是首项为1,公差为6的等差数列, 所以数列{a n }的前n 项和为3n 2−2n . 故答案为:3n 2−2n . 15. 【答案】5π2+4 【考点】同角三角函数基本关系的运用 扇形面积公式【解析】先利用解三角形和直线的位置关系求出圆的半径,然后求出阴影部分的面积,运用了数形结合的方法. 【解答】解:由已知得A 到DG 的距离与A 到FG 的距离相等,均为5. 作AM ⊥GF 延长线于M ,AN ⊥DG 于N ,则∠NGA =45∘. ∵ BH//DG , ∴ ∠BHA =45∘. ∵ ∠OAH =90∘, ∴ ∠AOH =45∘.设O 到DG 的距离为3t ,由tan ∠ODC =35,可知O 到DE 的距离为5t , ∴ {OA ⋅cos 45∘+5t =7,OA ⋅sin 45∘+3t =5,解得{t =1,OA =2√2.半圆之外阴影部分面积为:S 1=2√2×2√2×12−45×π×(2√2)2360=4−π,阴影部分面积为:S =12[π⋅(2√2)2−π⋅12]+S 1=5π2+4.故答案为:5π2+4.16. 【答案】√2π2【考点】 弧长公式空间直角坐标系 圆的标准方程 两点间的距离公式【解析】根据题意画出直观图,建立合适的坐标系,求出交线上的点的轨迹方程,进而确定点的轨迹在平面BCC 1B 1上是以√2为半径的90∘的弧,最后根据弧长公式求解. 【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线, 即D 1(1,−√3,0),设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5, 化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题 17.【答案】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3. ∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.【考点】两角和与差的正弦公式余弦定理正弦定理【解析】条件①先根据题意,结合正弦定理用一边去表示另外两条边,然后用余弦定理求出三角形的三边的长;条件②先用正弦定理结合已知求出a,b的长,然后用余弦定理求出c的长;条件③先利用正弦定理结合已知用b表示a,c,然后利用余弦定理求得∠C与给定值不同,从而判定三角形不存在.【解答】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3.∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.18.【答案】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.【考点】数列的求和等比数列的通项公式【解析】(1)先根据已知列式求出公比,求出首项,最后求得等比数列的通项公式;(2)由题意求得0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,⋯,可知b63=5,b64= b65=⋯=b100=6.则数列{b m}的前100项和S100可求.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.19.【答案】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关. 【考点】独立性检验概率的意义【解析】(1)根据题目已知信息利用频率估计概率;(2)根据题目给定信息画出2×2列联表;(3)根据列联表计算K的观测值K2,得出统计结论.【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得 K 2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关. 20.【答案】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD . 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ,则sin θ=|cos <n →,PB →>| =√3×√1+a 2=1√3×√(1+a)21+a 2=√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a+a ≥2×√1a⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 【考点】用空间向量求直线与平面的夹角 基本不等式在最值问题中的应用直线与平面垂直的判定【解析】(1)先求l 的平行线BC 与面PCD 垂直,再利用线面垂直的判定即可得证;(2)选取合适的点建立空间直角坐标系,然后运用向量法结合基本不等式即可求得线面夹角的最大值. 【解答】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD .以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ, 则sin θ=|cos <n →,PB →>| =|1+a|√3×√1+a 2=1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 21.【答案】解:(1)当a =e 时, f (x )=e x −ln x +1,f ′(x )=e x −1x,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1.(2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 【考点】利用导数研究不等式恒成立问题 利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)不等式等价于e x−1+ln a +ln a +x −1≥ln x +x =e ln x +ln x ,令g(t)=e t +t ,根据函数单调性可得ln a >ln x −x +1,再构造函数ℎ(x)=ln x −x +1,利用导数求出函数的最值,即可求出a 的范围. 【解答】解:(1)当a =e 时, f (x )=e x −ln x +1, f ′(x )=e x −1x ,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1. (2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 22. 【答案】 (1)解:由题设得4a2+1b2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ① 由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13).令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值. 【考点】圆锥曲线中的定点与定值问题 椭圆的标准方程 【解析】(1)根据椭圆方程的离心率、a ,b ,c 的关系及椭圆上一点列出关系式,解得a 2,b 2即可得椭圆方程; (2)①当直线斜率存在时,设直线方程并与椭圆方程联立,写出韦达定理,结合AM →⋅AN →=0可得 m =1−2k 或m =−2k +13,由点A 不在直线MN 上可判断m ≠1−2k ,进而根据m =−2k+13可求解直线MN 的方程,从而判断直线MN 过定点P ;②若直线MN 与x 轴垂直,结合和椭圆方程,求得点M 的横坐标x 1 ,由此可知直线MN 过点P ;由上述分类讨论可知|AP|为定值,根据直角三角形中线的性质确定定点Q ,最后分两小类讨论D 与P 重合或者不重合最终确定|DQ|为定值. 【解答】(1)解:由题设得4a 2+1b 2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。

精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(原卷版+解析版)

精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(原卷版+解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2.若α为第四象限角,则( ) A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名B. 18名C. 24名D. 32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A. 3699块B. 3474块C. 3402块D. 3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A. 55B. 255 C.355D.4556.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k=( )A. 2B. 3C. 4D. 57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A. EB. FC. GD.H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y Ca b ab-=>>的两条渐近线分别交于,D E 两点,若O D E 的面积为8,则C 的焦距的最小值为( )A. 4B. 8C. 16D. 329.设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减 C. 是偶函数,且在1(,)2-∞-单调递增 D. 是奇函数,且在1(,)2-∞-单调递减10.已知△ABC 934等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) 3 B.32C. 1 3211.若2233x y x y ---<-,则( ) A. ln (1)0y x -+>B. ln (1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<12.0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i mi a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i mi a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m+===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A.11010B.11011C.10001D.11001二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.15.设复数1z ,2z 满足12||=||=2z z ,12iz z +=,则12||z z -=__________.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.A B C 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求A B C 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800i i ixy x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))nii ii in ni ix yxx yyyx===----∑∑∑((((,≈1.414.19.已知椭圆C1:22221x ya b+=(a>b>0)右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F 且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.20.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:33()8f x≤(3)设n∈N*,证明:sin2x sin22x sin24x…sin22n x≤34n n.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程]22.已知曲线C1,C2的参数方程分别为C1:224c o s4s inxyθθ⎧=⎨=⎩,(θ为参数),C2:1,1x tty tt⎧=+⎪⎪⎨⎪=-⎪⎩(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a=-+-+.(1)当2a=时,求不等式()4f x的解集;(2)若()4f x,求a的取值范围.2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( )A. 310-B. 110-C.110D.310【答案】D【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i ii i +===+--+,所以复数113z i=-的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C.14230.2,0.3p p p p ====D.14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I Kt --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63 C. 66 D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I tK*=求得t *即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t KI tK e**--==+,则()0.235319te*-=,所以,()0.2353ln 193t *-=≈,解得353660.23t *≈+≈.故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设O 为坐标原点,直线2x =与抛物线C :22(0)y p x p =>交于D ,E 两点,若O D O E ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件O D O E ⊥,结合抛物线的对称性,可知4D O xE O x π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y p x p =>交于,E D 两点,且O D O E ⊥, 根据抛物线的对称性可以确定4D O xE O x π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则c o s,=+a a b ( )A.3135-B.1935-C.1735D. 1935【答案】D 【解析】 【分析】计算出()a a b ⋅+、ab+的值,利用平面向量数量积可计算出c o s ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a ab aa b ∴⋅+=+⋅=-=.()2222257a b a ba ab b+=+=+⋅+=-=,因此,()1919c o s ,5735a a ba ab a a b⋅+<+>===⨯⋅+.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C.12D.23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得A B ,再根据222co s 2A B B C A CB A B B C+-=⋅,即可求得答案.【详解】在A B C 中,2c o s 3C =,4A C =,3B C =根据余弦定理:2222co s A B A C B C A C B C C =+-⋅⋅2224322433A B=+-⨯⨯⨯可得29A B = ,即3A B=由22299161 c o s22339A B B C A CBA B B C+-+-===⋅⨯⨯故1 c o s9B=.故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A. 6+42B. 4+42C. 6+23D. 4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222A B C A D C C D BS S S===⨯⨯=△△△根据勾股定理可得:2A B A D D B===∴A D B△是边长为2根据三角形面积公式可得:211s in60(222A D BS A B A D=⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tanθ–tan(θ+π4)=7,则tanθ=()A. –2B. –1C. 1D. 2【答案】D【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2ta n ta n74πθθ⎛⎫-+=⎪⎝⎭,ta n12ta n71ta nθθθ+∴-=-,令ta n,1t tθ=≠,则1271ttt+-=-,整理得2440t t-+=,解得2t=,即tan2θ=.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l与曲线yx2+y2=15都相切,则l的方程为()A. y=2x+1B. y=2x+12C. y=12x+1 D. y=12x+12【答案】D【解析】【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y=(0,x,则00x>,函数y=1y'=,则直线l的斜率k=,设直线l的方程为)0y x x-=-,即x x-+=,由于直线l 与圆2215x y +=x =两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 11.设双曲线C :22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2 C. 4 D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5c a=,c ∴=,根据双曲线的定义可得122P F P F a -=,12121||42P F F P F F S P =⋅=△,即12||8P F P F ⋅=,12F P F P ⊥,()22212||2P F P F c ∴+=,()22121224P F P F P F P F c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8lo g 5b =,得85b =,结合5458<可得出45b <,由13lo g 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、()0,1c ∈,()222528lo g 3lg 3lg 81lg 3lg 8lg 3lg 8lg 241lo g 5lg 5lg 522lg 5lg 25lg 5ab ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8lo g 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13lo g 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x z y =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以m a x 31227z =⨯+⨯=.故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题. 14.262()x x +的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r rrrxC x--⋅=⋅1236(2)rrrC x-=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=. 故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C r n r rr n T a b -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】23π【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3B C A B A C ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于22312A M =-=,故12222S =⨯⨯=△A B C设内切圆半径为r ,则:A B C A O B B O C A O C S S S S =++△△△△111222A B r B C r A C r =⨯⨯+⨯⨯+⨯⨯()133222r =⨯++⨯=解得:22r ,其体积:34233V r π==.23.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1s in s in x x+有如下四个命题:①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin fx x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11s in c o s 22c o s s in 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,11s in c o s 22c o s s in 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2xπ=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n+=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n . 【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n nn S n n -=⨯+⨯+⨯++-⋅++⋅,①23412325272(21)2(21)2nn n S n n +=⨯+⨯+⨯++-⋅++⋅,② 由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n a d b cKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D D B B 上,且12D EE D =,12BF F B =.(1)证明:点1C 在平面A E F 内;(2)若2A B =,1A D =,13A A =,求二面角1A E F A --的正弦值.【答案】(1)证明见解析;(2)427.【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1A E C F 为平行四边形,进而可证得点1C 在平面A E F 内; (2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C x y z -,利用空间向量法可计算出二面角1A E F A --余弦值,进而可求得二面角1A E F A --的正弦值.【详解】(1)在棱1C C 上取点G ,使得112C G C G =,连接D G 、F G 、1C E 、1C F ,在长方体1111A B C D A B C D -中,//A D B C 且A D B C =,11//B B C C 且11B B C C =,112C G C G =,12B F F B =,112233C G C C B B B F ∴===且C G B F =,所以,四边形B C G F 为平行四边形,则//A F D G 且A F D G =, 同理可证四边形1D E C G 为平行四边形,1//C E D G ∴且1C E D G =,1//C E A F ∴且1C E A F =,则四边形1A E C F 为平行四边形,因此,点1C 在平面A E F 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C x y z -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1A E =--,()2,0,2A F =--,()10,1,2A E =-,()12,0,1A F =-,设平面A E F 的法向量为()111,,m x y z =,由00m A E m A F ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A E F 的法向量为()222,,n x y z =,由110n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,7c o s ,7321m n m n m n⋅<>===⨯⋅设二面角1A E F A --的平面角为θ,则7c o s 7θ=,242s in 1c o s 7θθ∴=-=.因此,二面角1A E F A --427【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题. 20.已知椭圆222:1(05)25xy Cm m+=<<的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q ⊥,求A P Q 的面积.【答案】(1)221612525xy +=;(2)52.【解析】 【分析】 (1)因为222:1(05)25xy Cm m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得P M B B N Q ≅△△,可求得P 点坐标,求出直线A Q直线方程,根据点到直线距离公式和两点距离公式,即可求得A P Q 的面积. 【详解】(1)222:1(05)25xy C m m+=<<∴5a =,b m =,根据离心率4c e a ====解得54m =或54m =-(舍),∴C 的方程为:22214255xy⎛⎫ ⎪⎝⎭+=,即221612525xy +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||B P B Q =,B P B Q ⊥,90P M B Q N B ∠=∠=︒,又90P B M Q B N ∠+∠=︒,90B Q N Q B N ∠+∠=︒,∴P B M B Q N∠=∠,根据三角形全等条件“A A S ”, 可得:P M B B N Q ≅△△,221612525xy +=,∴(5,0)B ,∴651P M B N ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1Py =,将其代入221612525xy +=,可得:21612525Px +=,解得:3P x =或3P x =-,∴P点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532M B =-=,P M B B N Q ≅△△, ∴||||2M B N Q ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线A Q 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线A Q 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()22652055A Q =++-=,∴A P Q面积为:15555252⨯⨯=;②当P 点为(3,1)-时, 故5+38M B ==,P M B B N Q ≅△△, ∴||||8M B N Q ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线A Q 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线A Q 的距离为:d ===,根据两点间距离公式可得:A Q ==∴A P Q面积为:15522⨯=,综上所述,A P Q 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题. 21.设函数3()f x xb x c=++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b . (2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b =-;(2)证明见解析【解析】 【分析】(1)利用导数的几何意义得到'1()02f =,解方程即可;(2)由(1)可得'2311()32()()422f x x x x =-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-;(2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<,所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-.当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<, 由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->, 由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t ty t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||A B ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3co s sin 120ρθρθ-+= 【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出A B 的值; (2)由,A B 的坐标得出直线A B 的直角坐标方程,再化为极坐标方程即可. 【详解】(1)令0x =,则220t t +-=,解得2t=-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.A B ∴==(2)由(1)可知12030(4)A B k -==--,则直线A B 的方程为3(4)y x =+,即3120x y -+=.由co s ,sin x y ρθρθ==可得,直线A B 的极坐标方程为3co s sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c a b a c b c ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设m a x {,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c b ca a ab cb c+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c a b a c b c ++=+++++=,()22212a b b c c a ab c∴++=-++1,,,a b c a b c =∴均不为0,则2220a b c ++>,()222120a b b c c a ab c∴++=-++<;(2)不妨设m a x {,,}a b c a =,由0,1a b c a b c ++==可知,0,0,0a b c ><<,1,a b c a b c=--=,()222322224b c b c b cb c b ca a ab cb cb c++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3m a x {,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。

2020年高考数学文科全国三试卷及答案解析

2020年高考数学文科全国三试卷及答案解析

2020年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.42.(5分)复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣B.﹣C.D.5.(5分)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1C.D.7.(5分)函数y=1+x+的部分图象大致为()A.B.C.D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5B.4C.3D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC 11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题17.(12分)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。

2020年高考理科数学(全国卷Ⅲ真题)——(含答案和解析)

2020年高考理科数学(全国卷Ⅲ真题)——(含答案和解析)
A. B. C. D.
8.下图为某几何体的三视图,则该几何体的表面积是()
A. 6+4 B. 4+4 C. 6+2 D. 4+2
9.已知2tanθ–tan(θ+ )=7,则tanห้องสมุดไป่ตู้=()
A. –2B. –1C. 1D. 2
10.若直线l与曲线y= 和x2+y2= 都相切,则l的方程为()
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【详解】根据三视图特征,在正方体中截取出符合题意的立体图形
根据立体图形可得:
根据勾股定理可得:
是边长为 的等边三角形
根据三角形面积公式可得:
该几何体的表面积是: .
故选:C.
【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则 中元素的个数为()
A.2B.3C.4D.6
2.复数 的虚部是()
A. B. C. D.
3.在一组样本数据中,1,2,3,4出现的频率分别为 ,且 ,则下面四种情形中,对应样本的标准差最大的一组是()

因此, .
故选:D.
【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.
7.在△ABC中,cosC= ,AC=4,BC=3,则cosB=()
A. B. C. D.

2020年新高考全国Ⅰ卷(山东卷)数学第21题解法研究——同构放缩携起手导数不等式难题不再有

2020年新高考全国Ⅰ卷(山东卷)数学第21题解法研究——同构放缩携起手导数不等式难题不再有

2020年新高考全国Ⅰ卷(山东卷)数学第21题解法研究同构放缩携起手导数不等式难题不再有高振宁(山东省新泰市第一中学㊀271200)摘㊀要:本文通过对2020年高考数学山东卷第21题解法的探研ꎬ从命题人的角度来反思问题解决的方法ꎬ发现放缩法㊁隐零点法㊁同构法放缩法㊁分而治之法之间的联系与区别ꎬ得出导数解决高考数学中函数与导数压轴题的基本途径ꎬ旨在高中导数与函数复习中提高实效.关键词:导数与单调性ꎻ同构与放缩ꎻ分而治之ꎻ隐零点中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0026-02收稿日期:2020-07-05作者简介:高振宁(1983.4-)ꎬ男ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀原题再现㊀已知函数f(x)=aex-1-lnx+lna.(1)当a=e时ꎬ求曲线y=f(x)在点(1ꎬf(1))处的切线与两坐标轴围成的三角形的面积ꎻ(2)若f(x)ȡ1ꎬ求a的取值范围.解㊀(1)略.(2)方法一(隐零点法):由f(x)=aex-1-lnx+lnaꎬ则fᶄ(x)=aex-1-1xꎬ显然a>0.设g(x)=fᶄ(x)ꎬ则gᶄ(x)=aex-1+1x2>0ꎬ所以g(x)在0ꎬ+¥()上单调递增ꎬ即fᶄ(x)在0ꎬ+¥()上单调递增.当a=1时ꎬfᶄ(1)=0ꎬ当xɪ(0ꎬ1)ꎬfᶄ(x)<0ꎬf(x)在0ꎬ1()上是减函数ꎻxɪ(1ꎬ+¥)时ꎬfᶄ(x)>0ꎬf(x)在(1ꎬ+¥)上是增函数.ʑf(x)min=f(1)=1ꎬ故fx()ȡ1恒成立.当a>1时ꎬ1a<1ꎬ所以e-1<1ꎬfᶄ(1a)fᶄ(1)=a(e-1-1)(a-1)<0ꎬ故存在唯一x0>0ꎬ使得fᶄ(x0)=aex-1-1x0=0ꎬ且当xɪ(0ꎬx0)时fᶄ(x)<0ꎬ当xɪ(x0ꎬ+¥)时ꎬfᶄ(x)>0ꎬ所以aex-1=1x0ꎬ即lna+x0-1=-lnx0.因此f(x)min=f(x0)=aex-1-lnx0+lna=1x0+lna+x0-1+lnaȡ2lna-1+21x0x0=2lna+1>1ꎬ所以f(x)ȡ1恒成立.当0<a<1时ꎬf(1)=a+lna<a<1ꎬʑf(1)<1ꎬf(x)ȡ1不恒成立.综上所述ꎬ实数a的取值范围是[1ꎬ+ɕ).方法二(放缩法):当0<a<1时ꎬf(1)=a+lna<1.当a=1时ꎬf(x)=ex-1-lnxꎬfᶄ(x)=ex-1-1xꎬ显然fᶄ(x)在(0ꎬ+¥)上是增函数.当xɪ(0ꎬ1)时ꎬfᶄ(x)<0ꎬf(x)在(0ꎬ1)上是减函数ꎻxɪ(1ꎬ+¥)时ꎬfᶄ(x)>0ꎬf(x)在(1ꎬ+¥)上是增函数.所以f(x)最小值=f(1)=1ꎬ从而f(x)ȡ1恒成立ꎬ当a>1时ꎬf(x)=aex-1-lnx+lnaȡex-1-lnxꎬ由a=1的结论可知f(x)=ex-1-lnxȡ1恒成立.综上可知:a的取值范围是1ꎬ+¥[).方法三(同构函数y=ex+x):显然a>0ꎬa=elnaꎬ则f(x)=aex-1-lnx+lna=elna+x-1-lnx+lnaȡ1ꎬ等价于elna+x-1+lna+x-1ȡlnx+x=elnx+lnx.令gx()=ex+xꎬ上述不等式等价于g(lna+x-1)ȡg(lnx).显然g(x)为R上的单调增函数ꎬ故lna+x-1ȡlnxꎬ即lnaȡlnx-x+1.令h(x)=lnx-x+1ꎬ则hᶄ(x)=1x-1=1-xxꎬ在(0ꎬ1)上hᶄ(x)>0ꎬh(x)是增函数ꎻ在(1ꎬ+¥)上hᶄ(x)<0ꎬh(x)是减函数.ʑh(x)max=h(1)=0ꎬ则lnaȡ0ꎬ即aȡ1ꎬ即a的取值范围是[1ꎬ+ɕ).方法四(同构函数y=xex):因f(1)=a+lnaȡ1ꎬ设g(a)=a+lnaꎬ显然y=g(a)在区间0ꎬ+¥()上是增函数ꎬg(a)ȡg(1)=1ꎬ故aȡ1.f(x)=aex-1-lnx+lnaȡ1ꎬ得aex-1ȡlnexa⇔exȡealnexa⇔xexȡexalnexa.显然x>0ꎬexa=eln(e/a)ꎬ则原不等62式等价于xexȡlnexaeln(e/a).设g(x)=xexꎬ显然g(x)在0ꎬ+¥()上是增函数ꎬ则上述不等式等价于g(x)ȡg(lnexa).当lnexa<0时g(x)>0ꎬg(lnexa)<0ꎬ显然g(x)ȡg(lnexa)成立ꎻ当lnexa>0时ꎬ原不等式等价于xȡlnexaꎬ由于exȡ1+xꎬ且aȡ1则可得ex-1ȡxȡxaꎬ故a的取值范围是1ꎬ+¥[).方法五(同构函数y=xlnx):同方法四可得xexȡexalnexaꎬ即exlnexȡexalnexa.设g(x)=xlnxꎬ则上述不等式等价于g(ex)ȡg(exa).gᶄ(x)=lnx+1ꎬg(x)在0ꎬ1eæèçöø÷上是减函数ꎬ在(1eꎬ+¥)上是增函数.当exa<1时ꎬg(ex)>0ꎬ而g(exa)<0ꎬ显然有g(ex)ȡg(exa)成立ꎻ当exaȡ1>1e时ꎬ不等式g(ex)ȡg(exa)⇔exȡexa⇔ex-1ȡxa.以下同方法四.方法六(分而治之法):f(x)=aex-1-lnx+lnaȡ1⇔aex-1ȡlnexa⇔aexeȡlnexa⇔aeˑexxȡlnexaexaˑea.aeˑ(exx)minȡ(lnexaexa)maxˑea.设g(x)=exxꎬx>0ꎬgᶄ(x)=(x-1)exx2ꎬ易知g(x)=exx在0ꎬ1()上是减函数ꎬ在1ꎬ+¥()上是增函数ꎬ故g(x)min=g(1)=e.设h(x)=lnxx(x>0)ꎬhᶄ(x)=1-lnxx2ꎬ易知h(x)=lnxx在(0ꎬe)上是增函数ꎬ在(eꎬ+¥)上是减函数ꎬ故h(x)max=h(e)=1eꎬ则知(lnexaexa)max=1eꎬ则aȡ1aꎬ故a的取值范围是1ꎬ+¥[).从解决问题方法的角度看ꎬ隐零点法是解决问题的一般性通法ꎬ但是此种方法需要强大的计算能力作为基础ꎬ特别是在利用aex-1=1x0进行代换得到lna+x0-1=-lnx0的这种思路ꎬ应该作为一种基本的解决导数不等式压轴题的基本思路进行培养.放缩法是山东省教育招生考试院给出的官方答案ꎬ此种办法的优点是ꎬ计算量不是大ꎬ借助分类讨论思想ꎬ利用特殊点明确参数的范围进而证明此范围符合题意ꎬ但是在实际的教学中ꎬ新教材已经把分析法和综合法等不等式证明方法删除ꎬ学生证明不等式能力较弱的情况下掌握放缩法不易ꎬ这就需要教师在教学中渗透不等式的证明方法.为了突破这个教学难点ꎬ笔者认为可以利用具体的证明方法ꎬ而不用过多的纠缠这种方法的具体含义和要求ꎬ比方说把 执果索因 给学生讲解成 把结论等价变形成能解决问题的形式 ꎬ在教学的实践中怎么充实这一点ꎬ还需要不断的在实际中摸索与探究.方法三㊁四㊁五可以归结成同构法ꎬ同构法的本质是构造目标函数ꎬ借助目标函数单调性把复杂函数简单化递减ꎬ比方说若F(x)ȡ0能等价变形为F(f(x))ȡF(g(x))ꎬ若F(x)递增ꎬ则问题转化为f(x)ȡg(x)ꎬ若F(x)递减ꎬ则问题转化为f(x)ɤg(x).此类方法的关键是构造目标函数ꎬ高考压轴题中的构造常见形式可分为两类:(1)aeaɤblnb可以同构aeaɤlnbelnbꎬ借助函数f(x)=xex解决ꎬ也可以同构ealneaɤblnbꎬ借助f(x)=xlnx解决ꎬ更可以同构为lna+aɤlnb+ln(lnb)ꎬ借助f(x)=x+lnx解决.(2)eaaɤblnb可以同构eaaɤelnblnbꎬ借助函数f(x)=exx解决ꎬ也可以同构为ealneaɤblnbꎬ借助函数f(x)=xlnx解决ꎬ更可以同构a-lnaɤlnb-ln(lnb)ꎬ借助函数f(x)=x-lnx解决.当然ꎬ用同构法解题ꎬ除了要有同构法的思想意识外ꎬ对观察能力㊁对代数式的变形能力的要求也是比较高的.但是笔者认为ꎬ利用同构法可以最接近命题者的原始创作方向ꎬ此题目设计思路的开始点应该是exȡexa.正所谓ꎬ同构新天地ꎬ放缩大舞台!方法六属于解决问题的巧妙方法ꎬ不属于通性解法ꎬ一般情况下f(x)ȡg(x)不等价于f(x)minȡg(x)maxꎬ但是对于极个别的问题ꎬ利用上分而治之的方法ꎬ会极大地降低运算程度ꎬ但是构造不等式两侧的目标函数有一定的技巧性ꎬ学生不易掌握.㊀㊀参考文献:[1]陈永清.轻松快捷巧记高中数学知识与解题方法[M].长沙:湖南师范大学出版社ꎬ2020:42-47.[责任编辑:李㊀璟]72。

2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)

2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)

2020年普通高等学校招生全国统一考试数学+答案一、选择题:(本题共10小题,每小题6分,共60分)1.若z=1+i ,则|z 2–2z |=( )A. 0B. 1C.D. 2 【答案】D【解析】【分析】由题意首先求得22z z -的值,然后计算其模即可.【详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-. 故2222z z -=-=.故选:D.【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A. –4B. –2C. 2D. 4 【答案】B【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 514-B. 512-C. 514+D. 512+【答案】C【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则22224aPO PE OE b =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b ba a -⋅-=,解得15b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A. 2B. 3C. 6D. 9【答案】C【解析】【分析】 利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p .故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A. y a bx =+B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =--B. 21y x =-+C. 23y x =-D. 21y x =+ 【答案】B【解析】【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可.【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9B. 7π6C. 4π3D. 3π2 【答案】C【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.25()()x x y xy ++的展开式中x 3y 3的系数为( ) A. 5B. 10C. 15D. 20 【答案】C【解析】【分析】求得5()x y +展开式的通项公式为515rr rr T C x y -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r r r C x y -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【详解】5()x y +展开式的通项公式为515r r r r T C x y -+=(r N ∈且5r ≤) 所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为: 56155r r r r r r r xT xC xy C x y --+==和22542155r r r r r r r T C x y x C y y y x x --++== 在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5 所以33x y 的系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A. 3B. 23C. 13D.9 【答案】A【解析】【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去), 又(0,),sin απα∈∴==故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形, 由正弦定理可得2sin 6023AB r=︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

高考数学真题分类十年(2014-2023)高考 专题27 不等式选讲(解析版)

高考数学真题分类十年(2014-2023)高考 专题27  不等式选讲(解析版)
(1)当 = 1时,求不等式() < 0的解集;
(2)当 ∈ (−∞, 1)时,() < 0,求的取值范围.
【答案】 (1) (−∞, 1); ( 2) 1, +∞)
【官方解析】
(1)当 = 1时,() = | − 1| + | − 2|( − 1).
当 < 1时,() = −2( − 1)2 < 0;当 ≥ 1时,() ≥ 0.
2
【答案】(Ⅰ){| 3 < < 2} (Ⅱ)(2,+∞)
分析:(Ⅰ)利用零点分析法将不等式 f(x)>1 化为一元一次不等式组来解;(Ⅱ)将()化
为分段函数,求出()与轴围成三角形的顶点坐标,即可求出三角形的面积,根据题
意列出关于的不等式,即可解出的取值范围.
解析:(Ⅰ)当 a=1 时,不等式 f(x)>1 化为|x+1|-2|x-1|>1,
( − 1)2 (当且仅当2 − 1 ≤ ≤ 2 时取等号),
∴ ( − 1)2 ≥ 4,解得: ≤ −1或 ≥ 3,
a 的取值范围为−∞, −1 ∪ 3, +∞).
【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于
常考题型.
3.(2020 江苏高考·第 23 题)设 ∈ ,解不等式2| + 1| + || ≤ 4.
1
【答案】{ | ≤ −5 或 ≥ − 3}
分可
3
解析:原不等式可化为{
1
解得 ≤ −5或 ≥ − 3.
3
< −2
≥ −2
或{

− − 3 ≥ 2 3 + 3 ≥ 2
1

高考数学理科高考试题分类汇编《不等式》

高考数学理科高考试题分类汇编《不等式》

高考数学理科高考试题分类汇编:不等式E1 不等式的概念与性质 5.,,[山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.4.[四川卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.D [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-b c >0,所以a d <bc.故选D.E2 绝对值不等式的解法 9.、[安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.E3 一元二次不等式的解法 2.、[全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.12.、[新课标全国卷Ⅱ] 设函数f (x )=3sin πx m,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)12.C [解析] 函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝⎛⎭⎫k 0+122+3<m 2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).E4 简单的一元高次不等式的解法 E5 简单的线性规划问题5.[安徽卷] x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( )A.12或-1 B .2或12 C .2或1 D .2或-1 5.D [解析]方法一:画出可行域,如图中阴影部分所示,可知点A (0,2),B (2,0),C (-2,-2), 则z A =2,z B =-2a ,z c =2a -2.要使对应最大值的最优解有无数组,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A , 解得a =-1或a =2.方法二:画出可行域,如图中阴影部分所示,z =y -ax 可变为y =ax +z ,令l 0:y =ax ,则由题意知l 0∥AB 或l 0∥AC ,故a =-1或a =2.6.[北京卷] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ) A .2 B .-2 C.12 D .-126.D [解析] 可行域如图所示,当k >0时,知z =y -x 无最小值,当k <0时,目标函数线过可行域内A 点时z 有最小值.联立⎩⎪⎨⎪⎧y =0,kx -y +2=0,解得A ⎝⎛⎭⎫-2k ,0,故z min =0+2k =-4,即k =-12.11.[福建卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.11.1 [解析] 作出不等式组表示的平面区域(如图所示),把z =3x +y 变形为y =-3x +z ,则当直线y =3x +z 经过点(0,1)时,z 最小,将点(0,1)代入z =3x +y ,得z min =1,即z =3x +y 的最小值为1.3.[广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .83.B [解析] 本题考查运用线性规划知识求目标函数的最值,注意利用数形结合思想求解.画出不等式组表示的平面区域,如图所示.当目标函数线经过点A (-1,-1)时,z 取得最小值;当目标函数线经过点B (2,-1)时,z 取得最大值.故m =3,n =-3,所以m -n =6.14.[湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k=________.14.-2 [解析] 画出可行域,如图中阴影部分所示,不难得出z =2x +y 在点A (k ,k )处取最小值,即3k =-6,解得k =-2.14.[全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5.9.、[新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.9.[新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .29.B [解析] 已知不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义可知,目标函数在点A (5,2)处取得最大值,故目标函数的最大值为2×5-2=8.9.[山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值2 5时,a 2+b 2的最小值为( )A. 5B. 4C. 5D. 29.B [解析] 画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即2 5=2a +b ,所以2 5-2a =b ,所以a 2+b 2=a 2+(2 5-2a )2=5a 2-8 5a +20,构造函数m (a )=5a 2-8 5a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4×5×20-(8 5)24×5=4,即a 2+b 2的最小值为4.故选B.18.,[陕西卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2. 方法二:∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.5.,[四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.2.[天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .52.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.13. [浙江卷] 当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a的取值范围是________.13.⎣⎡⎦⎤1,32 [解析] 实数x ,y 满足的可行域如图中阴影部分所示,图中A (1,0),B (2,1),C ⎝⎛⎭⎫1,32.当a ≤0时,0≤y ≤32,1≤x ≤2,所以1≤ax +y ≤4不可能恒成立;当a >0时,借助图像得,当直线z =ax +y 过点A 时z 取得最小值,当直线z =ax +y 过点B 或C 时z 取得最大值,故⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.故a ∈⎣⎡⎦⎤1,32.E6 2a b+≤16.、[辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2,当且仅当4a 21=3b 213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.14.,[山东卷] 若⎝⎛⎭⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________. 14.2 [解析]T r +1=C r 6(ax 2)6-r ·⎝⎛⎭⎫b x r=C r 6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.10.,[四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 14.,[四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10.∴|P A ||PB |≤|P A |2+|PB |22=5,当且仅当|P A |=|PB |时等号成立.E7 不等式的证明方法20.[北京卷] 对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)20.解:(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.19.、、[天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q -1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.E8 不等式的综合应用9.、[安徽卷] 若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为() A.5或8 B.-1或5C.-1或-4 D.-4或89.D[解析] 当a≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.13.[福建卷] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).13.160 [解析] 设底面矩形的一边长为x ,由容器的容积为4 m 3,高为1 m 得,另一边长为4xm.记容器的总造价为y 元,则 y =4×20+2⎝⎛⎭⎫x +4x ×1×10 =80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160(元),当且仅当x =4x,即x =2时,等号成立.因此,当x =2时,y 取得最小值160元, 即容器的最低总造价为160元. 21.,,,[陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k+2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =xx +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.E9 单元综合16.、[辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.12.、[辽宁卷] 已知定义在[0,1]上的函数f (x )满足: ①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12πD.18 12.B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.3.[天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .53.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内min =1×1+2×1=3. 16.[广州七校联考] 不等式|x +2|+|x -1|≤5的解集为________.16.[-3,2] [解析] 根据绝对值的几何意义,得不等式的解集为-3≤x ≤2.4.[安徽六校联考] 若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .44.A [解析] ∵x +y ≥2xy ,且x +y =2,∴2≥2xy ,当且仅当x =y =1时,等号成立,∴xy ≤1,∴1xy≥1,∴1≥M ,∴M max =1.7.[福建宁德期末] 已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( )A.63B.23 3C.43 3D.236 7.C [解析] 由题知x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +13a ≥2 43=4 33,当且仅当a =36时,等号成立.6.[长沙模拟] 若f (x )为奇函数,且在区间(0,+∞)上单调递增,f (2)=0,则f (x )-f (-x )x>0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-∞,-2)∪(2,+∞)6.D [解析] 因为f (x )为奇函数,且在区间(0,+∞)上单调递增,所以f (x )在区间(-∞,0)上单调递增.又f (-x )=-f (x ),所以f (x )-f (-x )x >0等价于2f (x )x>0.根据题设作出f (x )的大致图像如图所示.由图可知,2f (x )x>0的解集是(-∞,-2)∪(2,+∞).13.[浙江六市六校联考] 已知正数x ,y 满足x +y +1x +9y=10,则x +y 的最大值为________.13.8 [解析] ∵1x +9y =10-(x +y ),∴(x +y )1x +9y =10(x +y )-(x +y )2.又(x +y )1x +9y=10+9x y +yx≥10+6=16,∴10(x +y )-(x +y )2≥16,即(x +y )2-10(x +y )+16≤0,∴2≤x +y ≤8,∴x +y 的最大值为8.。

备战2020年浙江省高考数学优质卷分类解析:不等式(解析版)

备战2020年浙江省高考数学优质卷分类解析:不等式(解析版)

《备战2020年浙江省高考数学优质卷分类解析》第七章不等式高考试题不等式的考查有两类,一是涉及不等式的性质、不等式的解法、绝对值不等式、基本不等式及其应用等,一般不独立命题,而是以工具的形式,与充要条件、函数与导数、解析几何、三角函数、数列等综合考查,五年五考;二是涉及简单线性规划问题,五年五次独立考查.对简单线性规划的考查角度有两种:一种是求目标函数的最值或范围,但目标函数变化多样,有截距型、距离型、斜率型等;另一种是线性规划逆向思维型,提供目标函数的最值,反求参数的范围等.题型为选择题或填空题,近两年主要考查截距型目标函数的最值问题,且目标函数中自变量的系数均为正数,属于教科书中同类问题的最低要求.一.选择题1.【浙江省台州市2019届高三4月调研】已知,满足条件,则的最小值是()A.B.C.D.【答案】C【解析】不等式表示的平面区域如下图阴影所示,画出直线如图中过原点虚线,平移直线过点,则取得最小值3故选:C.2.【浙江省三校2019年5月份第二次联考】已知实数满足,则()A.有最小值,无最大值B.有最大值,无最小值C.有最小值,也有最大值D.无最小值,也无最大值【答案】A【解析】作出不等式组表示的可行域如图阴影部分所示.设,则,表示直线在轴上的截距的相反数.平移直线,可得当直线过点时取得最小值,没有最大值.故选A.3.【浙江省三校2019年5月份第二次联考】已知,则取到最小值时()A.B.C.D.【答案】D【解析】由,可得,且.所以,当且时等号成立,解得.所以取到最小值时.故选D.4.【浙江省温州市2019届高三2月高考适应性测试】以下不等式组表示的平面区域是三角形的是()A.B.C.D.【答案】D【解析】A选项:表示的区域如图:不满足题意;B选项:表示的区域如图:不满足题意;C选项:表示的区域如图:不满足题意;D选项:表示的区域如图:满足题意;故选D.5.【浙江省湖州三校2019年普通高等学校招生全国统一考试】若变量,满足约束条件,则的最大值是()A.1 B.2 C.3 D.4【答案】D【解析】作可行域,如图,则直线过点A(-1,-1)时取最小值-4,过点时取最大值2,因此的最大值是4,选D.6.【浙江省金华十校2019届高三上期末】若实数x,y满足约束条件,则的最小值是A.6 B.5 C.4 D.【答案】C【解析】解:作出实数x,y满足约束条件,表示的平面区域如图示:阴影部分由得,由得,平移,易知过点A时直线在y上截距最小,所以.故选:C.7.【浙江省金华十校2019届高三上期末】若关于x的不等式在上恒成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】关于x的不等式在上恒成立,等价于,当时,成立,当时,,即,因为恒成立,所以,故选:A.8.【浙江省台州市2019届高三4月调研】已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为,如果a≤0,则b+1一定是负数,必有成立;如果a>0,由成立,则必成立;反过来,若,则不一定有,如|-5|>3+1,但-5>3+1不成立所以是充分不必要条件故选:A9.【浙江省2019届高三高考全真模拟(二)】若x,y满足约束条件20404x yx yy-≤⎧⎪+-≥⎨⎪<⎩,则2z x y=+的取值范围是()A.16,8 3⎛⎫⎪⎝⎭B.16,163⎛⎫⎪⎝⎭C.16,163⎡⎫⎪⎢⎣⎭D.16,163⎡⎤⎢⎥⎣⎦【答案】C【解析】可行解域如下图所示:在可行解域内,平行移动直线0.52zy x=-+,可以发现当直线0.52zy x=-+经过A点时,在纵轴上的截距最小,当经过点B时,在纵轴上的截距最大,解方程组:8,4,843(,)204333xx yAx yy⎧=⎪+=⎧⎪⇒∴⎨⎨-=⎩⎪=⎪⎩,解方程组:4,8,(8,4)204y xBx y y==⎧⎧⇒∴⎨⎨-==⎩⎩,所以min84162,333z=+⨯=由于点B不在可行解域内,所以1682416,[,16)3z z<+⨯=∴∈,故本题选C.10.【浙江省金华十校2019届高考模拟】若x,y满足约束条件42y xx yy≤⎧⎪+≤⎨⎪≥-⎩,则2z x y=+的最大值是()A.8 B.4 C.2 D.6【答案】D 【解析】作出不等式组对应的平面区域如图所示:由4y xx y =⎧⎨+=⎩,解得(2,2)A ,由2z x y =+,得122z y x =-+,平移直线122zy x =-+,由图象可知当直线经过点A , 直线的截距最大,此时z 最大,此时6z =, 故选:D .11.【2018年11月浙江省学考】关于x 的不等式的解集是( ) A . B .C .∪D . [-1,2]【答案】C 【解析】 当时,,解得:当时,,不成立, 当时,,解得:,综上,不等式的解集是, 故选:C . 12.【2018年11月浙江省学考】若实数a ,b 满足ab >0,则的最小值为( )A . 8B . 6C . 4D . 2 【答案】C 【解析】实数a ,b 满足ab >0, 则, 当且仅当时等号成立. 故选:C .13.【浙江省宁波市2019届高三上期末】关于的不等式组表示的平面区域内存在点,满足,则实数的取值范围是( ) A . B .C .D .【答案】C 【解析】作出不等式组对应的平面区域如图:若平面区域内存在点,满足,则说明直线与区域有交点,即点位于直线的下方即可,则点在区域,即,得,即实数的取值范围是,故选C .14.【浙江省2019届高三高考全真模拟(二)】已知01b a <<+,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则a 的取值范围为( ) A .(1,1)- B .(0,2)C .(1,3)D .(2,5)【答案】C 【解析】由22()()x b ax ->,可得()222120a x bx b -+-<,由题意可知不等式的解应在两根之间,即有210a ->,结合01b a <<+,所以1a >,()2222244140b baa b ∆=+-=>,不等式的解集为11b bx a a -<<-+或 011b b x a a -<<<+-舍去,不等式的解集为11b b x a a -<<-+,又因为01b a <<+,所以011b a <<+,故当32,0111b ba a --<-<<-+„时,不等式的解集为2,1,0--,这样符合题意,故2(1)3(1)ab a -<-„,而1a >,01b a <<+,当满足2(1)1a a -<+时,就能符合题意,即3a <,而1a >,所以a 的取值范围为(1,3),故本题选C.15.【浙北四校2019届高三12月模拟考数学试题】若直线与不等式组表示的平面区域无公共点,则的取值范围是( ) A .B .C .D . R【答案】C 【解析】 不等式组表示的平面区域是由A (1,1),B (﹣1,1),C (0,﹣1)围成的三角形区域(包含边界). ∵直线ax+by=1与表示的平面区域无公共点,∴a ,b 满足:或.(a ,b )在如图所示的三角形区域(除边界且除原点).设z=2a+3b ,平移直线z=2a+3b ,当直线经过点A 1(0,1)时,z 最大为z=3, 当经过点B 1时,z 最小, 由解得,即B 1(﹣2,﹣1),此时z=﹣4﹣3=﹣7,故2a+3b 的取值范围是(﹣7,3).故选:C.16.【浙江省镇海中学2019届高三上学期期中考试数学试题】已知正项等比数列满足,若存在两项,使得,则的最小值为()A. B. C. D.【答案】B【解析】设正项等比数列{a n}的公比为q,且q>0,由得:q=+,化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因为a m a n=16a12,所以=16a12,则q m+n﹣2=16,解得m+n=6,所以=(m+n)()=(10+)≥=,当且仅当时取等号,此时,解得,因为m n取整数,所以均值不等式等号条件取不到,则>,验证可得,当m=2、n=4时,取最小值为,故选:B.17. 【浙江省2019届高考模拟卷(二)】若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是()A. B. C. D.【答案】D【解析】画出曲线与围成的封闭区域,如图阴影部分所示.表示封闭区域内的点和定点连线的斜率,设,结合图形可得或,由题意得点A,B的坐标分别为,∴,∴或,∴的取值范围为.故选D.二.填空题18.【浙江省宁波市2019届高三上期末】已知不等式对任意正整数均成立,则实数的取值范围_______.【答案】【解析】由,得:,记.则或;或;或;或;当时,或.所求范围为.19.【浙江省金华十校2019届高三上期末】已知,则的最小值为______.【答案】【解析】,则,若,则,;若,可得,设,可设,即为,若,可得,成立;若,则,即,解得,即有z的最小值为,此时,成立.故答案为:.20.【浙江省金丽衢十二校2019届高三第一次联考】若实数、满足,且,则的最小值是__________,的最大值为__________.【答案】2【解析】实数、满足,且,则,则,当且仅当,即时取等号,故的最小值是2,,当且仅当,即时取等号故的最大值为,故答案为:2,.21.【浙江省衢州市五校联盟2019届高三上学期联考】若,满足,的最小值为__________;的最大值为_______.【答案】4 3【解析】画出,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最小,最小值为;,表示可行域内的点与原点连线的斜率,由图可知,的最大值为,的最大值为,故答案为 .22. 若实数,满足约束条件则目标函数的最小值为___;最大值为_____.【答案】2【解析】作出可行域如下:由可得,作出直线,平移直线过B(1,0)时,z有最小值,平移直线过A(1,)时,z有最大值.23.【浙江省杭州高级中学2019届高三上学期期中】已知函数. 设关于的不等式的解集为,若,则实数的取值范围是___.【答案】【解析】由于f(x),关于x的不等式f(x+a)<f(x)的解集为M,若[,]⊆A,则在[,]上,函数y=f(x+a)的图象应在函数y=f(x)的图象的下方.当a=0时,显然不满足条件.当a>0时,函数y=f(x+a)的图象是把函数y=f(x)的图象向左平移a个单位得到的,结合图象(右上方)可得不满足函数y=f(x+a)的图象在函数y=f(x)的图象下方.当a<0时,如图所示,要使在[,]上,函数y=f(x+a)的图象在函数y=f(x)的图象的下方,只要f(a)<f()即可,即﹣a(a)2+(a)<﹣a()2,化简可得a2﹣a﹣1<0,解得a,故此时a的范围为(,0).综上可得,a的范围为(,0),故答案为:(,0).24.【浙江省镇海中学2019届高三上期中】已知,且,则的最小值_________,此时的值为___________.【答案】【解析】∵,∴,当且仅当2x=y时,等号成立,又,∴,∴,即的最小值由,解得:故答案为:,25.【浙江省温州九校2019届高三第一次联考】已知点在不等式组,表示的平面区域上运动,若区域表示一个三角形,则的取值范围是_______,若则的最大值是________.【答案】-3【解析】满足约束条件的可行域如下图所示由图可知,若不等式组表示的平面区域是一个三角形,则a的取值范围是: a<10.若则由约束条件画出可行域如下图所示,可知当目标函数经过点A(1,2)时取最大值,最大值是-3.26.【浙江省温州九校2019届高三第一次联考】已知抛物线的焦点,过点作直线交抛物线于两点,则_________.的最大值为________【答案】14【解析】由题意知,抛物线y2=4x的焦点坐标为(1,0),设设为A(x1,y1),B(x2,y2),AB:x=my+1,联立直线与抛物线方程可得,有抛物线的限制可得故(*)由(*)可得故当且仅当时取等号,故的最大值为4.即答案为1,427.【浙江省绍兴市第一中学2019届高三上期末】设变量、满足约束条件则的最大值为______.【答案】5【解析】如图,先画出可行域,由,得,当即时,,所以的最大值为28.【浙江省绍兴市第一中学2019届高三上期末】己知实数x,y,z[0,4],如果x2,y2,z2是公差为2的等差数列,则的最小值为_______.【答案】4-2【解析】由于数列是递增的等差数列,故,且,故,,而函数在上为增函数,故当时取得最大值为,所以.29.【浙江省浙南名校联盟2019届高三上学期末】已知函数在开区间上单调递减,则的取值范围是_____.【答案】【解析】由题意,在恒成立.只需要即可,整理得,作出其对应的平面区域如图所示;所以把视为平面区域内的点与原点距离的平方,由点到直线的距离公式可得,所以的最小值为,则的取值范围是.故答案为30.【浙江省温州九校2019届高三第一次联考】若对恒成立,则实数的取值范围为_______【答案】【解析】,故考虑利用数形结合解题,其几何意义为顶点为的字形在时始终夹在和之间,如图1和图2 所示,为两种临界状态.首先就是图1 的临界状态,此时字形右边边界与相切,联立直线方程和抛物线方程可得,此时而图2 的临界状态显然综上实数的取值范围为.即答案为.31.【浙江省名校新高考研究联盟(Z20)2019届高三第一次联考】设函数,当时,记的最大值为,则的最小值为______.【答案】【解析】去绝对值,利用二次函数的性质可得,在的最大值为,,,中之一,所以可得,,,,上面四个式子相加可得即有,可得的最小值为.故答案为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式 选择题:
1.(福建卷)不等式
01
31
2>+-x x 的解集是
( A )
A .}2
13
1
|{>-<x x x 或 B .}2
131|{<<-x x
C .}2
1|{>x x
D .}3
1|{->x x
2.(福建卷)下列结论正确的是
( B )
A .当2lg 1
lg ,10≥+
≠>x
x x x 时且 B .21,
0≥+
>x
x x 时当
C .x
x x 1,2+≥时当的最小值为2 D .当x
x x 1,20-≤<时无最大值
3.(湖北卷)对任意实数a ,b ,c ,给出下列命题:
①“b a =”是“bc ac =”充要条件;
②“5+a 是无理
数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是
( B )
A .1
B .2
C .3
D .4
4. (辽宁卷)6.若011log 2
2<++a
a a
,则a 的取值范围是
( C )
A .),2
1(+∞
B .),1(+∞
C .)1,2
1(
D .)2
1,0(
5. (辽宁卷)在R 上定义运算).1(:y x y x -=⊗⊗若不等式
1)()(<+⊗-a x a x 对任意实数x 成立,则
( C )
A .11<<-a
B .20<<a
C .2
32
1<<-a D .2
12
3<<-a
6. (全国卷Ⅰ) 设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的
x 的取值范围是(B )
(A ))0,(-∞ (B )),0(+∞ (C ))3log ,(a -∞(D )),3(log +∞a 7. (山东卷)01a <<,下列不等式一定成立的是( A ) (A )(1)(1)log (1)log (1)2a a a a +--++>(B )(1)(1)log (1)log (1)a a a a +--<+ (C )(1)(1)log (1)log (1)a a a a +--++<(1)(1)log (1)log (1)a a a a +--++ (D )(1)(1)log (1)log (1)a a a a +---+<(1)(1)log (1)log (1)a a a a +---+
8. (天津卷)9.设)(1x f -是函数)1( )(2
1
)(>-=-a a a x f x x 的反函数,则
使1)(1>-x f 成立的x 的取值范围为(A )
A .),21(2+∞-a a
B . )21,(2a a --∞
C . ),21
(2a a
a - D . ),[+∞a 9. (天津卷)已知
b 2
1log <a 2
1log < c 2
1log ,则
A .2b >2a >2c
B .2a >2b >2c
C .2c >2b >2a
D .2c >2a >2b
10. (重庆卷)不等式组⎩⎨⎧>-<-1
)1(log 2
|2|2
2x x 的解集为 (C )
(A) (0,3); (B) (3,2); (C) (3,4);
(D) (2,4)。

11.(江西卷)已知实数a 、b 满足等式,)3
1()21(b a =下列五个关系式: ①0<b <a ②a <b <0 ③0<a <b ④b <a <0 ⑤a =b
其中不可能成立的关系式有
( B )
A .1个
B .2个
C .3个
D .4个
填空题:
7. (全国卷Ⅰ) (13)若正整数m 满足m m 102105121<<-,则m = 155 。

)3010.02(lg ≈ 解答题:
1(湖北卷)22.(本小题满分14分)
已知不等式n n n
其中],[log 2
113
12
1
2>+++Λ为大于2的整数,
][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足
Λ
,4,3,2,),0(1
1
1=+≤
>=--n a n na a b b a n n n
(Ⅰ)证明Λ,5,4,3,]
[log 222=+<
n n b b
a n
(Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N ,使得当N n >时,对任意b >0,都有
.5
1<n a
解:(Ⅰ)证法1:∵当,1
11,0,211111n
a na a n a a n na a n n n n n n n n +=+≥∴+≤
<≥-----时

,1111n
a a n n ≥-- 于是有
.111,,3111,211112312n
a a a a a a n n ≥-≥-≥--Λ 所有不等式两边相加可得
.1
3121111n
a a n +++≥-Λ 由已知不等式知,当n ≥3时有,].[log 2
1
1121n a a n >- ∵.]
[log 22.2][log 2][log 21
11,2221n b b
a b
n b n b a b a n n +<
+=+>∴
=
证法2:设n
n f 13
12
1
)(+++=Λ,首先利用数学归纳法证不等式
.,5,4,3,)(1Λ=+≤
n b
n f b
a n
(i )当n=3时, 由 .)3(112233133331
1
2223b f b
a a a a a a +=++⋅≤+=+≤
知不等式成立.
(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1b
k f b
a k +≤
则1)(1)1(1
1)
1(1)1()1(1++⋅++≤
+++=+++≤
+b
b k f k k a k k a k a k a k k k k ,)1(1)1
1
)((1)()1()1()1(b
k f b
b k k f b
b
b k f k k b
k ++=
++
+=
+++++=
即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1Λ=+≤
n b
n f b
a n
又由已知不等式得 .,5,4,3,]
[log 22][log 2
1
122Λ=+=
+<
n n b b
b n b a n
(Ⅱ)有极限,且.0lim =∞→n n a
(Ⅲ)∵
,5
1
][log 2,][log 2][log 22222<<+n n n b b 令
则有,10242,10][log log 1022=>⇒>≥n n n 故取N=1024,可使当n>N 时,都有.5
1
<n a。

相关文档
最新文档