文升中学华东师大版九年级上二次根式测试
华师大版九年级数学上《二次根式》单元试卷含解析
《第21章二次根式》一、选择题1.下列二次根式中的取值范围是x≥3的是()A.B.C.D.2.下列二次根式中,是最简二次根式的是()A.2B.C.D.3.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥4.k、m、n为三整数,若=k, =15, =6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n5.如果最简二次根式与能够合并,那么a的值为()A.2 B.3 C.4 D.56.已知,则2xy的值为()A.﹣15 B.15 C.D.7.下列各式计算正确的是()A.B.C.D.8.等式•=成立的条件是()A.x>1 B.x<﹣1 C.x≥1 D.x≤﹣19.下列运算正确的是()A.﹣=B. =2C.﹣=D. =2﹣10.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7二、填空题11.化简:(﹣)﹣﹣|﹣3|= .12.已知:一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是.13.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.14.若实数x,y满足,则xy的值为.15.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.16.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三、解答题17.计算:(1)﹣+;(2)(﹣)×;(3)|﹣6|﹣﹣(﹣1)2;(4)﹣()2+(π+)0﹣+|﹣2|18.先化简,再求值:(a﹣1+)÷(a2+1),其中a=﹣1.19.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.20.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.21.先化简,再求值:(﹣)•,其中x=.22.该试题已被管理员删除23.已知a,b为等腰三角形的两条边长,且a,b满足b=++4,求此三角形的周长.《第21章二次根式》(四川省资阳市简阳市)参考答案与试题解析一、选择题1.下列二次根式中的取值范围是x≥3的是()A.B.C.D.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数分别计算出x的取值范围,进而得到答案.【解答】解:A、3﹣x≥0,解得x≤3,故此选项错误;B、6+2x≥0,解得x≤﹣3,故此选项错误;C、2x﹣6≥0,解得x≥3,故此选项正确;D、x﹣3>0,解得x>3,故此选项错误;故选:C.【点评】此题主要考查了二次根式有意义的条件,关键是掌握被开方数为非负数.2.下列二次根式中,是最简二次根式的是()A.2B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、2是最简二次根式,故本选项正确;B、=,故本选项错误;C、=,故本选项错误;D、=x,故本选项错误.故选A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【考点】二次根式的性质与化简.【专题】计算题.【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.4.k、m、n为三整数,若=k, =15, =6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解: =3, =15, =6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.5.如果最简二次根式与能够合并,那么a的值为()A.2 B.3 C.4 D.5【考点】同类二次根式.【专题】计算题.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选D.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.6.已知,则2xy的值为()A.﹣15 B.15 C.D.【考点】二次根式有意义的条件.【分析】首先根据二次根式有意义的条件求出x的值,然后代入式子求出y的值,最后求出2xy的值.【解答】解:要使有意义,则,解得x=,故y=﹣3,∴2xy=2××(﹣3)=﹣15.故选:A.【点评】本题主要考查二次根式有意义的条件,解答本题的关键是求出x和y的值,本题难度一般.7.下列各式计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的加减运算对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=6,所以A选项的计算错误;B、5与5不能合并,所以B选项的计算错误;C、原式=8=8,所以C选项的计算正确;D、原式=2,所以D选项的计算错误.故选C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.等式•=成立的条件是()A.x>1 B.x<﹣1 C.x≥1 D.x≤﹣1【考点】二次根式的乘除法.【分析】根据二次根式有意义的条件,即可得出x的取值范围.【解答】解:∵、有意义,∴,∴x≥1.故选C.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.9.下列运算正确的是()A.﹣=B. =2C.﹣=D. =2﹣【考点】二次根式的加减法;二次根式的性质与化简.【分析】根据二次根式的加减法对各选项进行逐一分析即可.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、=,故本选项错误;C、﹣=2﹣=,故本选项正确;D、=﹣2,故本选项错误.故选C.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【考点】二次根式的定义.【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵ ==2,∴当n=6时, =6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.二、填空题11.化简:(﹣)﹣﹣|﹣3|= ﹣6 .【考点】二次根式的混合运算.【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.12.已知:一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是 2 .【考点】平方根.【专题】计算题.【分析】根据正数有两个平方根,它们互为相反数.【解答】解:∵一个正数的两个平方根分别是2a﹣2和a﹣4,∴2a﹣2+a﹣4=0,整理得出:3a=6,解得a=2.故答案为:2.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为2cm ,面积为cm2.【考点】勾股定理.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2cm;直角三角形的面积=×=cm2.故填2cm, cm2.【点评】此题主要考查勾股定理及三角形的面积.14.若实数x,y满足,则xy的值为2.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则xy=2.故答案是:2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是20 .【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.16.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【考点】二次根式的混合运算;估算无理数的大小.【专题】计算题;压轴题.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三、解答题17.计算:(1)﹣+;(2)(﹣)×;(3)|﹣6|﹣﹣(﹣1)2;(4)﹣()2+(π+)0﹣+|﹣2|【考点】二次根式的混合运算;零指数幂.【分析】利用二次根式的运算性质即可求出答案.【解答】解:(1)原式=3﹣2+=;(2)原式=(4﹣5)×=﹣×=﹣2;(3)原式=6﹣3﹣1=2;(4)原式=﹣3+1﹣3+2﹣=﹣3.【点评】本题考查二次根式的混合运算,涉及二次根式的性质,属于基础题型.18.先化简,再求值:(a﹣1+)÷(a2+1),其中a=﹣1.【考点】分式的化简求值.【分析】这道求分式值的题目,不应考虑把a的值直接代入,通常做法是先把分式通,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=()•,=•,=,当a=﹣1时,原式==.【点评】此题主要考查了分式的计算,解答此题的关键是把分式化到最简,然后代值计算19.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【考点】二次根式的化简求值.【专题】计算题.【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【解答】解:(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.【点评】本题考查了二次根式的化简求值:先根据二次根式的性质和运算法则进行化简,然后把满足条件的字母的值代入求值.20.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【考点】二次根式的应用;三角形三边关系.【专题】压轴题.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.21.先化简,再求值:(﹣)•,其中x=.【考点】分式的化简求值;二次根式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•,当x=时,x+1>0, =x+1,故原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.该试题已被管理员删除23.已知a,b为等腰三角形的两条边长,且a,b满足b=++4,求此三角形的周长.【考点】二次根式有意义的条件;三角形三边关系;等腰三角形的性质.【分析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.【解答】解:∵、有意义,∴,∴a=3,∴b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考查了二次根式有意义的条件,属于基础题,注意掌握二次根式有意义:被开方数为非负数.。
华东师大版九年级数学上册 第21章 二次根式 单元检测试题(有答案)
第21章 二次根式 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列二次根式中,属于最简二次根式的是( )A.√12B.√0.3C.√8D.√52. 已知:a 、b 均为实数,下列式子:①√5;②√a ;③√a 2+1;④√16;⑤√a 2−b 2.其中是二次根式是个数有( )个.A.1个B.2个C.3个D.4个3. 使二次根式 √2a +1 有意义的a 的取值范围是( )A.a ≠−12B.a ≥12C.a ≥−2D.a ≥−124. a =2−√3,b =2+√3,则a +b −ab 的值是( ) A.3B.4C.5D.2√3 5. (√3)2的值是( )A.√3B.3C.±3D.96. 下列各式计算正确的是( )A.√2+√3=√5B.3√2−√2=2√2C.2+√2=2√2D.√(−2)2=±27. 算式(√6+√10×√15)×√3之值为何?( )A.2√42B.12√5C.12√13D.18√28. 下列运算正确的是( )A. B. C.D.9. 已知√a 2−16−√a 2−24=2,则√a 2−16+√a 2−24的值是( )A.10B.16C.4D.610. 若一个三角形的一条边的长为√3+1,其面积为6,则这条边上的高为( )A.3√3B.6√3−6C.3√3+3D.6√3+6 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 11. √x +y 的有理化因式为________.12. 若√(1−m)2=m −1,则m ________.13. 计算:√2+1+√32=________.14. 若√6−3x 在实数范围内有意义,则x 的取值范围是________. 15. 在√49,√52,√b a ,−√0.6,√25x 5中,是最简二次根式的是________.16. 在√12,√1,√8,√27,√54中与√3是同类二次根式的有________.617. 设√2=m,√3=n,用含m,n的式子表示√12=________.18. 若矩形的长和宽分别为2√3+√2和2√3−√2,则矩形的对角线的长为________.19. (x+√5)(x−√5)=________.20. 如果最简根式√2x−5与x√15−3x是同类二次根式,那么x=________.三、解答题(本题共计6 小题,共计60分,)21. 计算:(1)√25−√(−3)2;).(2)√2(√8−√2+√1222. 如图,已知直角△ABC的两条边AC、AB的长分别为2√2+1和2√2−1,求斜边BC的长.23. 已知式子ab √−ab+a√−1a有意义,求:(1)a,b的取值范围;(2)化简这个式子.24. 当x取何值时,式子有意义?(1)√xx;(2)x+1.25. 计算:(1)√18÷√8;(2)√123÷√56;(3)√152√5;(4)2√x2y3√xy;(5)√a2b4c2.26. 计算:(1)√8+2√3−(√27−√2);(2)√23÷√223.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:√12=√22,被开方数含分母,不是最简二次根式;√0.3=√3010,被开方数含分母,不是最简二次根式;√8=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;√5是最简二次根式,故选:D.2.【答案】C【解答】解:二次根式有①③④,共3个,故选C.3.【答案】D【解答】解:要使二次根式√2a+1有意义,则2a+1≥0,则a≥−12.故选D.4.【答案】A【解答】解;a=√3(2−√3)(2+√3)=2+√3,b=√3(2+√3)(2−√3)=2−√3,a+b−ab=2+√3+2−√3−(2+√3)(2−√3) =4−(4−3)=3,故选:A.5.【答案】B【解答】解:(√3)2=3.故选B.6.【答案】B【解答】解:A、不是同类二次根式不能相加,故A错误;B、系数相加被开方数不变,故B正确;C、不是同类二次根式不能相加,故C错误;D、√(−2)2=√22=2,故D错误;故选B.7.【答案】D【解答】解:原式=(√6+5√6)×√3=6√6×√3 =18√2,故选:D.8.【答案】B【解答】A.√5−√3≠√2,故A错误;B.√8−√2=2√2⋅√2=√2,故B正确;c.√419=√379=√373,故C错误;D.√(2−√5)2=|2−√5|=√5−2,故D错误.故选:B.9.【答案】C【解答】解:√a2−16−√a2−24=2两边平方,得a2−16−2√(a2−16)(a2−24)+a2−24=4,移项、合并同类项,得2√(a2−16)(a2−24)=2a2−44,2√(a2−16)(a2−24)=2a2−44(a2−16)(a2−24)=(a2−22)2a4−40a2+384=a4−44a2+4844a2=100a2=25;所以√a2−16+√a2−24=√[√a2−16+√a2−24]2=√a2−16+2√(a2−16)(a2−24)+a2−24=√2a2−40+2a2−44=√4a2−84=2√a2−21=2√25−21=4.故选C.10.【答案】B【解答】解:设这边上的高为ℎ,则12(√3+1)ℎ=6,ℎ=√3+1=√3−1)(√3+1)(√3−1)=6√3−6.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】√x+y【解答】二次根式的有理化的目的就是去掉根号,所以,√x+y的一个有理化因式是√x+y.12.【答案】≥1【解答】解:∵ √(1−m)2=|1−m|=m−1,∵ 1−m≤0,∵ m≥1.故答案为:m≥1.13.【答案】5√2−1【解答】+4√2原式=√2−1(√2+1)(√2−1)=√2−1+4√2=5√2−1.14.【答案】x≤2【解答】解:∵ √6−3x有意义,∵ 6−3x≥0,解得x≤2.故答案为:x≤2.15.【答案】√52【解答】解:√49=7,√ba =√aba,−√0.6=−√155,√25x2=5|x|,∵ √52是最简二次根式.故答案为:√52.16.【答案】√12,√27【解答】解:∵ √12=2 √3,√16=√66,√8=2√2,√27=3√3,√54=3√6,∵ 与√3是同类二次根式的是√12,√27.故应填:√12,√27.17.【答案】m2n【解答】解:∵ √12=2√3=(√2)2√3,√2=m,√3=n,∵ √12=m2n.18.【答案】2√7【解答】解:矩形的对角线=√(2√3+√2)2+(2√3−√2)2,=√12+4√6+2+12−4√6+2,=2√7.故答案为:2√7.19.【答案】x2−5【解答】解:原式=x2−(√5)2=x2−5.故答案为:x2−5.20.【答案】4【解答】解:∵ 最简根式√2x−5与x√15−3x是同类二次根式,∵ 2x−5=15−3x,解得,x=4.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)原式=5−3=2;(2)原式=4−2+1=3.【解答】解:(1)原式=5−3=2;(2)原式=4−2+1=3.22.【答案】解:由勾股定理得:BC2=AC2+BC2=(2√2+1)(2√2−1)=(2√2)2−12=8−1=7,∵ 斜边BC的长为√7.【解答】解:由勾股定理得:BC2=AC2+BC2=(2√2+1)(2√2−1)=(2√2)2−12=8−1=7,∵ 斜边BC的长为√7.23.【答案】解:(1)由题意得,−ab >0,−1a>0,所以,a<0,b>0;(2)ab √−ab+a√−1a=ab⋅√−abb+a⋅√−a−a=a√−abb2−√−a.【解答】解:(1)由题意得,−ab >0,−1a>0,所以,a<0,b>0;(2)ab √−ab+a√−1a=ab⋅√−abb+a⋅√−a−a=a√−abb2−√−a.24.【答案】解:(1)由x≠0,x≥0.得x>0.当x>0时,√xx在实数范围内有意义;(2)由√x+1≠0,得x≥0.当x≥0时,√x+1有意义.【解答】解:(1)由x≠0,x≥0.得x>0.当x>0时,√xx在实数范围内有意义;(2)由√x+1≠0,得x≥0.当x≥0时,x+1有意义.25.【答案】解:(1)√18÷√8=√94=32;(2)√123÷√56=√53×65=√2;(3)√152√5=√5×√32√5=2√3; (4)2√x 2y 3√xy =√xy×√x 3√xy =2√x 3; (5)√a 2b 4c 2=a √b 2c (a ,c 同号),当a ,c 异号,原式=−a √b2c .【解答】 解:(1)√18÷√8=√94=32; (2)√123÷√56=√53×65=√2; (3)√152√5=√5×√32√5=2√3; (4)2√x 2y 3√xy =√xy×√x 3√xy =2√x 3; (5)√a 2b 4c 2=a √b 2c (a ,c 同号),当a ,c 异号,原式=−a √b 2c .26. 【答案】解:(1)√8+2√3−(√27−√2) =2√2+2√3−(3√3−√2)=2√2+2√3−3√3+√2=3√2−√3; (2)√23÷√223=√2√3√2√3 =√2√3√32√2 =12.【解答】解:(1)√8+2√3−(√27−√2) =2√2+2√3−(3√3−√2)=2√2+2√3−3√3+√2 =3√2−√3;(2)√23÷√223 =√2√32√2√3 =√2√3√32√2 =12.。
华东师大版九年级数学上册《二次根式》单元测试卷
第21章二次根式单元测试卷1. 下列二次根式是最简二次根式的是()A.√15B.√3C.√9D.√122. √8+√2的计算结果是()A.5B.√10C.3√2D.4+√23. 若使二次根式√3x−6在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2C.x<2D.x≤24. 二次根式√12x−1中字母x的取值范围是()A.x≥2B.x>2C.x≥12D.x>125. 下列计算正确的是()A.√20=2√10B.√4−√2=√2C.√2×√3=√6D.(√(−3)2)=−36. 如果m<0,化简|√m2−m|的结果是()A.−2mB.2mC.0D.−m7. 下列计算正确的是()A.2√3+3√2=5√5B.√18−√82=√9−√4C.√27÷√3=3D.√(−3)2=−38. 等腰三角形的两条边长分别为2√3和5√2,那么这个三角形的周长为()A.4√3+5√2B.2√3+10√2C.4√3+5√2或2√3+10√2D.4√3+10√29. 已知x=√3+1,y=√3−1,则2x2−3xy+y2的值为()A.2√3−6B.2√3+6C.0D.2√3+210. 若√(x+1)(6−2x)=√x+1⋅√6−2x恒成立,则x的取值范围是()A.x≥−1B.x≤3C.−1≤x≤3D.−3≤x≤1二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若3<x<5,则√(x−5)2=________.12. 若最简二次根式√3a−5和√11−a是同类根式,则使√5x−a有意义的x的取值范围为________.13. 若正整数x,y满足√y=√99−√x,则x的值为________.b+1是同类二次根式,则a=________.14. 最简二次根式√4a+3b与√2a−b+615. 计算:√12−√3=________;(√5+√6)(√5−√6)=________.16. 化简=________.17. 若式子√x+1有意义,则x________.18. 一个长方形的长为5√2+2√5,宽为5√2−2√5,则这个长方形的面积为________.19. 计算(4+√7)(4−√7)的结果等于________.−√54的结果是________.20. 计算2√32三、解答题(本题共计8 小题,共计60分,),求√2−b+a−√2−b−a的值.21. 已知a,b为实数,且b=√a2−4+√4−a2a+222. 已知2<x<3,化简√(x−2)2+|x−3|.23. 化简√(1−x)2−√x2−8x+16.24. 已知实数a满足√(3−a)2+√a−4=a,求a−32的值是多少?25. 已知x、y都是实数,且y=√x−2+√2−x+8,求y x的立方根.26. 2x √x2y⋅(−√xy2)÷23√yx(x>0, y>0)27. 先化简,再求值:÷,其中a=,b=.28. 某小区物业为改善小区居民的生活环境,在小区建设中,特别注意环境的美化.小区中心广场有一长方形水池长为√160π,宽为√40π.为美化环境,给小区增加绿色,物业决定把这个长方形水池改建长一个圆形面积相等的圆形花坛,问改建的圆形花坛的半径是多少米?。
华师大版九年级上第22章二次根式(1)检测题含答案.doc
第22章 二次根式检测题,(吋间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.在下列二次根式屮,先的取值范围是x>3的是()2•下列二次根式中,是最简二次根式的是C,>£4. 下列二次根式,不能与V12合并的是(5.如果最简二次根式J3d-8与J17-2G 能够合并,那么Q 的值为()A. y/3-xB. 丁6 + 2兀C. J2x — 6A. 2^J~xyabTD.+ 兀2^23•如果J(2a_l)2 =l_2a,则D.A. 748B. V18D. -V75D . B .(A. 2B. 3C. 4D. 56. (201L>四川凉山中考)己知y = "2先一5+75 — 2戈一3 ,则2xy的值为()A. —15B. 157•下列各式计算正确的是()A. 8苗一2洛=6B. 5VJ + 5芒=10V5C. 4洛• 2近=8丫召D. 4屈一2近=2屈&等式成立的条件是(A. x> 1B. x<-l9•下列运算正确的是(C.x^lA. V5-V3=V2 D. J(2-⑹=2-7510.已知J莎是整数,则正整数〃的最小值是(A. 4B. 5C. 6 二填空题(每小题3分,共24分)11…化简:沂;JlWba > 0, y > 0)= D.2C A/8->/2=V212. 比较大小:伍 ______ 3; 2A /2 ____ E13. 已知:一个正数的两个平方根分别是267-2和。
-4,则a 的值是 __________ . 14. 计算: V12 — \'3 = _______ ; J52 +12? = __________ .15 •已知a 、b 为两个,连续的整数,JL6Z<A /28<Z?,贝ia + b= ______ .16…直角三角形的两条直角边长分别为VTcm , <10 cm,则这个直角三角形的斜边长为 . cm,面积为 ____ cm 2. 17. 若实数兀,y 满足V X -2 + (}7-A /3)2=0,则弓的值为 _________ .18. (2011.四川凉山中考)已知a 、b 为有理数,tn 、〃分别表示5—J7的整数部分和小数部分,且 amn + bn 2 = 1,贝(J2a + b =解答题(共46分)Cl )求它的周长(要求结果化简); (2)请你给出一个适当的兀的值,使它的周长为整数,并'求出此时三角形周长的值. 24. (7分)己知Q "为等腰三角形的两条边长,且满足b = VT^ + j2a-6+4,求 此三角形的周长. 25,. (7分)阅读下面问题:1 二 1x (佢一1)二込] 1 + V2 _ (V2 +1)(72-1) _ !—=1心-问_=羽_近. V3+V2 (V3+V2)(V3-V2)'23. (8分)一个三角形的三边长分别为519. (6分)20. (6分)计算:(1) V27-Vi2+^| ; . (2) (V48 °先化简,再求值:(a —1 ----------- ) -r (a'+l),其中a-y/2 — 1.a +1 (6分)先化简,再求值:(Q + A /^)(Q-J 亍)一d (d — 6),其中d = £ + 22. (6分) 己知x = 2-怎y = 2+ 氐 求下列代数式的值:三、1 1 1 1 1--------- 1 ------------ 1 ------------ ---- ------------------- 1 ---------------- 1 + V2 V2 + V3 A /3 + V4 A /98 + >/99 V99+V100= 45-2.试求:(1)]V7+V6的值;(2)(71为正整数)的值.(3)计算:V5+2 (75+2)(75-2)第22章 二次根式检测题参考答案l.C 2. A 3. B 解析:由 J(2a — 1)2 =l — 2a,知l-2a$0,所以awg. 4. B解析:因为y/12 = 2\3f \,r 48 =\,r 18 = 3y'2,1 , — v'75-5丫3所以只有、丿15与不是同类二次根式,所以也总不能与合并. 5.D 解析:由最简二次根式丁3。
华东师大版九年级数学上册 第21章 二次根式单元测试题含答案
华东师大版九年级数学上册 第21章 二次根式单元测试题一、选择题1.二次根式2x +4中x 的取值范围是( ) A .x <-2 B .x ≤-2 C .x >-2 D .x ≥-22.下列式子为最简二次根式的是( ) A. 5B.12C.a 2D.1a3.若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠124.代数式3-x +1x -1中x 的取值范围在数轴上表示为( )图15.实数a ,b 在数轴上对应点的位置如图2所示,化简|a |+(a -b )2的结果是( )图2A .-2a +bB .2a -bC .-bD .b 6.下列选项中,正确的是( ) A.x -1有意义的条件是x >1 B. 8是最简二次根式 C. ()-22=-2 D. 323-24=- 6 7.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-2 3)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为( )A .1B .2C .3D .4 8.下列计算正确的是( )A .310-2 5= 5 B.711×⎝⎛⎭⎫117÷111=11 C .(75-15)÷3=2 5 D.13 18-3 89= 2 二、填空题9.若式子2-x +x -1有意义,则x 的取值范围是________. 10.计算6 5-1015的结果是________. 11. 12与最简二次根式5a +1是同类二次根式,则a =________.12.计算:33+|3-2|-⎝⎛⎭⎫12-1=________.13.计算(4+7)(4-7)的结果等于________. 14.计算12+8×6的结果是________.15.如图3,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2 3和2,则图中阴影部分的面积是________.图316.当-1<a <0时,则⎝⎛⎭⎫a +1a 2-4-⎝⎛⎭⎫a -1a 2+4=________. 174的程序中,则输出的结果是________.图418.观察下列各式: 1+112+122=1+11×2, 1+122+132=1+12×3, 1+132+142=1+13×4, …请利用你所发现的规律,计算1+112+122+1+122+132+1+132+142+…+1+192+1102,其结果为________.三、解答题 19.计算:(1)2 (3+2)2-48+2-2;(2) 9-25÷23+|-1|×5-(π-3.14)0.20.先化简,再求值:(x +y )(x -y )+y (x +2y )-(x -y )2,其中x =2+3,y =2- 3.21.先化简,再求值:m 2-4m +4m -1÷⎝⎛⎭⎫3m -1-m -1,其中m =2-2.答案1. D 2. A 3. C 4. A 5. A 6.D 7. D 8. B 9. 1≤x ≤2 10. 4 5 11. 2 12. 0 13. 9 14. 6 3 15. 2 16. 2a 17. 7 18. 991019.解:(1)原式=3+4 3+4-4 3+14=294. (2)原式=3-32÷8+5-1 =3-4+5-1 =3.20.解:原式=x 2-y 2+xy +2y 2-x 2+2xy -y 2=3xy . 当x =2+3,y =2-3时, 原式=3×(2+3)×(2-3)=3.21.解:原式=(m -2)2m -1÷3-m 2+1m -1=(m -2)2m -1÷(2+m )(2-m )m -1=(m -2)2m -1·m -1(2+m )(2-m )=2-m2+m. 当m =2-2时,原式=2-2+22+2-2=4-22=2 2-1.。
2022-2023学年华东师大版九年级数学上册《第21章二次根式》自主达标测试题(附答案)
2022-2023学年华东师大版九年级数学上册《第21章二次根式》自主达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列式子是最简二次根式的是()A.B.C.D.2.下列二次根式中,化简后可以合并的是()A.和B.和C.和D.和3.下列各式中,正确的是()A.±=±4B.=±3C.=3D.=﹣4 4.已知﹣1<a<0,化简+的结果为()A.2a B.2a+C.D.﹣5.a=2019×2021﹣2019×2020,b=,c=,则a,b,c 的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a6.已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1C.1D.2a﹣37.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.20228.若二次根式有意义,且关于x的分式方程+2=有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣4二.填空题(共8小题,满分40分)9.当a<0时,化简=.10.设x,y是有理数,且x,y满足等式x+2y﹣y=17+4,则(+y)2021=.11.若最简二次根式3与5可以合并,则合并后的结果为.12.计算+2﹣1×﹣()0的结果是.13.已知a,b都是实数,b=+,则a b的值为.14.已知x=+1,则x2﹣2x﹣3=.15.实数a在数轴上的位置如图所示,则化简后为.16.若|2020﹣a|+=a,则a﹣20202=.三.解答题(共4小题,满分40分)17.计算:(1);(2).18.已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.19.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a=,∴.∴(a﹣2)2=3,即a2﹣4a+4=3.∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)填空:=,=;(2)计算:;(3)若a=,求2a2﹣12a﹣5的值.20.像,…这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平方式进行化简,如:====﹣1.再如:=.请用上述方法探索并解决下列问题:(1)化简:;(2)化简:;(3)若,且a,m,n为正整数,求a的值.参考答案一.选择题(共8小题,满分40分)1.解:A.=0.3,故A不符合题意;B.=2,故B不符合题意;C.=2,故C不符合题意;D.是最简二次根式,故D符合题意;故选:D.2.解:A.和不能合并,故A不符合题意;B.∵=|a|,∴与能合并,故B符合题意;C.与不能合并,故C不符合题意;D.∵=5,∴与不能合并,故D不符合题意;故选:B.3.解:A.±=±4,故A符合题意;B.=3,故B不符合题意;C.=﹣3,故C不符合题意;D.=4,故D不符合题意;故选:A.4.解:∵﹣1<a<0,∴+=+=+=a﹣﹣(a+)=﹣.故选:D.5.解:a=2019×2021﹣2019×2020=2019(2021﹣2020)=2019;∵20222﹣4×2021=(2021+1)2﹣4×2021=20212+2×2021+1﹣4×2021=20212﹣2×2021+1=(2021﹣1)2=20202,∴b=2020;∵>,∴c>b>a.故选:A.6.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:D.7.解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.8.解:去分母得,﹣m+2(x﹣1)=3,解得,x=,∵关于x的分式方程+2=有正数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣3∴m≠﹣3,∵有意义,∴2﹣m≥0,∴m≤2,因此﹣5<m≤2且m≠﹣3,∵m为整数,∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,故选:D.二.填空题(共8小题,满分40分)9.解:∵a<0,∴==﹣.故选:﹣.10.解:∵x,y是有理数,且x,y满足等式x+2y﹣y=17+4,∴,解得:,则原式=(﹣4)2021=(5﹣4)2021=12021=1.故答案为:1.11.解:根据题意得:2m+5=4m﹣3,解得:m=4,∴3+5=3+5=3+5=8,故答案为:8.12.解:原式=+×2﹣1.=+﹣1=+﹣1.=﹣+13.解:由题意可得,,解得:a=,则b=﹣2,故a b的值为()﹣2=4.故答案为:4.14.解:当x=+1时,原式=(+1)2﹣2(+1)﹣3=6+2﹣2﹣2﹣3=1,方法二:原式=x2﹣2x﹣3,=(x﹣1)2﹣4,=5﹣4,=1,故答案为:1.15.解:由数轴可得,4<a<8,∴=a﹣3+10﹣a=7,故答案为:7.16.解:根据二次根式有意义的条件得:a﹣2021≥0,∴a≥2021,∴2020﹣a<0,∴原式可化为:a﹣2020+=a,∴=2020,∴a﹣2021=20202,∴a﹣20202=2021,故答案为:2021.三.解答题(共4小题,满分40分)17.解:(1)原式=3+﹣+1=4.(2)原式=3﹣4﹣2+=﹣4+.18.解:(1)x===2+,则=2﹣,∴x+=2++2﹣=4;(2)(7﹣4)x2+(2﹣)x+=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.19.解:(1)==,=,故答案为:,;(2)原式=(﹣1++...+)=()()=2021﹣1=2020;(3)当a==时,原式=2()2﹣12()﹣5=2(10+6+9)﹣12﹣36﹣5=20+12+18﹣12﹣36﹣5=﹣3.20.解:(1);(2)=;(3)∵a+6=(m+n)2=m2+5n2+2mn,∴a=m2+5n2,6=2mn,又∵a、m、n为正整数,∴m=1,n=3,或者m=3,n=1,∴当m=1,n=3时,a=46;当m=3,n=1,a=14,综上所述,a的值为46或14.。
华师大九年级数学上《二次根式》单元检测题
华师大数学九年级上《二次根式》单元检测题一、选择题(每小题3分,共30分)1、在四个数0,-9,2,(-2)2中,有平方根的是( ).(A) 0与-9(B) 0,-9和(-2)2(C) 0与(-2)2(D) 0,2和(-2)22、16的值是( ).(A) ±4 (B) -4 (C) 4 (D) 以上答案都不对3、9的算术平方根是( ).(A) 3 (B) ±3 (C) -3 (D) 814、在式子4、5.0、321、22b a +中,是最简二次根式的有( ). (A) 1个 (B) 2个 (C) 3个 (D) 4个5、下列计算中,正确的是( )A 、562432=+B 、3327=÷C 、632333=⨯D 、3)3(2-=-6、根式2)3(-的值是 ( )A .-3B .3或-3C .3D .97、若x 2=900,且x 是负数,则x 为 ( )A 、-30B 、30C 、±30D 、-3108、要使x 24-有意义,则字母x 应满足的条件是( ).A 、x =2B 、x <2C 、x ≤2D 、x ≥29、化简ab a123得( )A .b 4B .b 2C .b 21 D . b b2 10、下列说法正确的是( ).(A) 正数的平方根是一个正数 (B) 负数的平方根是一个负数(C) 平方根是它本身的数是0 (D) 负数的算术平方根是它的相反数二、填空题(每小题3分,共24分)11、的相反数为 .12.最简二次根式2-x x 的值是____________。
13。
.14=32 。
15. 计算:12)6(32202-+++π =___________.16.若0)1(32=++-n m ,则m +n 的值为 。
17.写出一个无理数,使它是大于2-的负数: .18、观察分析下列数据,寻找规律: 0,3,6,3,23,15,32,…… 那么第10个数据应是 .三、解答题(66分)19.(4分)计算:325a =________。
最新华东师大版九年级上册《二次根式》 检测卷 含答案
华师大版九年级上册《二次根式》章末检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤2.下列式子为最简二次根式的是()A.B.C.D.3.要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥54.与是同类二次根式的是()A.B.C.D.5.下列运算中,正确的是()A.B.=1C.D.6.已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2aB.﹣1C.1D.2a﹣37.已知:a=,b=,则a与b的关系是()A.a﹣b=0B.a+b=0C.ab=1D.a2=b28.把根号外的因式移入根号内得()A.B.C.D.9.如图,从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,则余下的面积为()A.16cm2B.40 cm2C.8cm2D.(2+4)cm2 10.已知:a+b=﹣5,ab=1,则+的值为()A.5B.﹣5C.25D.5或﹣5二.填空题(共6小题,满分24分,每小题4分)11.计算的结果是.12.计算:的结果是.13.已知y=+8x,则的算术平方根为.14.若最简二次根式与是同类二次根式,则m=.15.若是整数,则正整数n的最小值为.16.已知x=+1,则代数式x2﹣2x+1的值为.三.解答题(共7小题,满分66分)17.(8分)求下列二次根式中字母a的取值范围(1)(2)(3).18.(12分)计算:(1)(2)(3)(4)19.(8分)先化简,再求值:(﹣)•,其中x=.20.(8分)A,B两船同时同地出发,A船以x(km/h)的速度朝正北方向行驶,B船以5km/h的速度朝正西方向行驶,行驶时间为2h.(1)用含x的代数式表示两船的距离d(单位:km);(2)当x=12时,两船相距多少千米?21.(9分)已知:如图,Rt△ABC中,∠C=90°,AC=,BC =,求(1)Rt△ABC的面积.(2)斜边AB的长.(3)求AB边上的高.22.(10分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.23.(11分)观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:(仿照上式写出过程)参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:是二次根式的有①③⑤;②中被开方数小于0无意义,④是三次根式.故选:B.2.解:A、是最简二次根式,故本选项符合题意;B、=3,不是最简二次根式,故本选项不符合题意;C、=2,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:A.3.解:∵二次根式有意义,∴x﹣5≥0,解得:x≥5.故选:D.4.解:的被开方数是2.A、原式=3,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.B、该二次根式的被开方数是6,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.C、原式=,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.D、原式=2,其被开方数是2,与的被开方数相同,它们是同类二次根式,故本选项符合题意.故选:D.5.解:A.不是同类二次根式不能合并,选项错误;B.不是同类二次根式不能合并,选项错误;C.,选项正确;D.,选项错误;故选:C.6.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:D.7.解:分母有理化,可得a=2+,b=2﹣,∴a﹣b=(2+)﹣(2﹣)=2,故A选项错误;a+b=(2+)+(2﹣)=4,故B选项错误;ab=(2+)×(2﹣)=4﹣3=1,故C选项正确;∵a2=(2+)2=4+4+3=7+4,b2=(2﹣)2=4﹣4+3=7﹣4,∴a2≠b2,故D选项错误;故选:C.8.解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.9.解:从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,大正方形的边长是+=4+2,留下部分(即阴影部分)的面积是(4+2)2﹣16﹣24=16+16+24﹣16﹣24=16(cm2).故选:A.10.解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,又∵a+b=﹣5,ab=1,∴原式=﹣=5;故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:原式====2.故答案是:2.12.解:原式=[(﹣2)(+2)]2020=1.13.解:由题意得,2x﹣1≥0且1﹣2x≥0,解得x≥且x≤,∴x=,∴y=+8x=0+0+8×=4,∴==4,∴的算术平方根是2.故答案为:2.14.解:∵最简二次根式与是同类二次根式,∴m2﹣3=5m+3,解得m=6或m=﹣1,当m=﹣1时,=无意义,故m=6.15.解:∵20n=22×5n.∴整数n的最小值为5.故答案是:5.16.解:∵x=+1,∴x2﹣2x+1=(x﹣1)2=(+1﹣1)2=()2=3,故答案为:3.三.解答题(共7小题,满分66分)17.解:(1)由题意得,a+1≥0,解得a≥﹣1;(2)由题意得,1﹣2a>0,解得a<;(3)∵(a﹣3)2≥0,∴字母a的取值范围是全体实数.18.解:(1)=++﹣=4+5+﹣3=6+;(2)=2××=2××=;(3)=﹣2+=﹣1+3=+2;(4)=﹣+﹣﹣(8﹣4+1)=﹣3﹣9+4=2﹣9.19.解:原式=•,当x=时,x+1>0,可知=x+1,故原式=•===;20.解:(1)A船2小时行驶的路程为2xkm,B船2小时行驶的路程为10km,根据题意得d==2(km);(2)当x=12时,d=2=2×13=26(km).21.解:(1)∵Rt△ABC中,∠C=90°,AC=,BC=,∴Rt△ABC的面积===4,即Rt△ABC的面积是4;(2)∵Rt△ABC中,∠C=90°,AC=,BC=,∴AB===2,即AB的长是2;(3)∵Rt△ABC的面积是4,AB=2,∴AB边上的高是:=,即AB边上的高是.22.解:(1)=,=;(2)原式=+…+=++…+=.23.解:(1)=1=1;故答案为:1;(2)=1+=1+;故答案为:=1+;(3).。
文升中学华东师大版九上二次根式自我检测
华东师大版九上数学《二次根式》自我检测题一、选择题:(每小题2分,共26分) 1、下列代数式中,属于二次根式的为( )A 、B 、C 、 (a ≥1)D 、—2、在二次根式, 中,x 的取值范围是( )A 、x ≥1B 、x >1C 、x ≤1D 、x <13、已知(x -1)2+ =0,则(x +y )2的算术平方根是( )A 、1B 、±1C 、-1D 、0 4、下列计算中正确的是( )A 、B 、C 、D 、5、化简 =( )A 、B 、C 、D 、 6、下列二次根式: , , , , , , 其中是最简二次根式的有( )A 、2个B 、3个C 、1个D 、4个 7、若等式 成立,则m 的取值范围是( )A 、m ≥B 、m >3C 、 ≤m <3D 、m ≥3 8、已知直角三角形有两条边的长分别是3cm ,4cm ,那么第三条边的长是( ) A 、5cm B 、 cm C 、5cm 或 cm D 、 cm 9、把二次根式 化简,得( )A 、x 2+xyB 、C 、D 、 10、下列各组二次根式中,属于同类二次根式的为( )4-3x-1-a 2-11--x 2+y 532=+y x y x -=-2)(aa 11=3243=3121+561306156306a 5.03a b a 221-a 411222yx +n m2312312--=--m m m m 2121775224y x x +y x x +xy x +1222y x x +A 、 和B 、 和C 、 和D 、 和 11、如果a ≤1,那么化简 =( )A 、B 、C 、D 、 12、下列各组二次根式中,x 的取值范围相同的是( )A 、 与B 、( )2与C 、与 D 、 与 13、化简 -( )2,得( ) A 、2 B 、4- 4x C 、4x -4 D 、-2 二、填空题:(每小题3分,共36分)14、用“>”或“<”符号连接:(1) ;(2) ; (3) 15、 的相反数是 ,绝对值是 ,( )2= 16、如果最简二次根式 与 是同类二次根式,那么a 的值是 17、计算: = ;( )2= ; = 18、当x 时,二次根式有意义;当x 时,代数式 有意义 19、若1<x <2,则化简 =20、化简下列二次根式:(1) = ;(2) =21、如果等式 成立,那么x 的取值范围是 22、若 有意义,则x 的值是23、化简: = ; = ; =24、计算: = ; =2b a 222ab 1+a 1-a 12213)1(a -1)1(--a a aa --1)1(1)1(--a a a a --1)1(x 1+x x 2x 12+x 22+x 1-x x11442+-x x 32-x 5333-62-37-53-53-53-33-a a 27-248•312)5(-13+x xx 1+22)1()2(x x ---2318y x mx 421112-+=-•x x x x x -+-33224211+yx y x --2385÷ab a 22183÷25、如果x +y=5,xy=1,那么 = 三、解答题:(26~30题各4分,31~33题各6分,共38分)26、计算:27、计算:28、计算:29、计算:30、计算:yx y x 22x y +)323125.0()48(81----aab a b a ab 3132722323+-21418122-+-)65()154(5333y x x y xy --÷•2)23()25)(25(---+31、是否存在实数m ,使最简二次根式 与 是同类二次根式?若存在,求出m 的值;若不存在,请说明理由。
华东师大版数学九年级数学上册《第21章二次根式》单元测试(有答案)
华东师大版数学九年级数学上册《第21章二次根式》单元测试(有答案)一、选择题〔本大题共10小题,共30.0分〕1.以下二次根式中的取值范围是x≥3的是()A. √3−xB. √6+2xC. √2x−6D. √1x−32.以下二次根式中,是最简二次根式的是()A. 2√xyB. √ab2C. √12D. √x4+x2y23.假设√(2a−1)2=1−2a,那么()A. a<12B. a≤12C. a>12D. a≥124.k、m、n为三整数,假定√135=k√15,√450=15√m,√180=6√n,那么以下有关于k、m、n的大小关系,何者正确?()A. k<m=nB. m=n<kC. m<n<kD. m<k<n5.假设最简二次根式√3a−8与√17−2a可以兼并,那么a的值为()A. 2B. 3C. 4D. 56.y=√2x−5+√5−2x−3,那么2xy的值为()A. −15B. 15C. −152D. 1527.以下各式计算正确的选项是()A. 8√3−2√3=6B. 5√3+5√2=10√5C. 4√3×2√2=8√6D. 4√2÷2√2=2√28.等式√x−1⋅√x+1=√x2−1成立的条件是()A. x>1B. x<−1C. x≥1D. x≤−19.以下运算正确的选项是()A. √5−√3=√2B. √419=213C. √8−√2=√2D. √(2−√5)2=2−√510.√24n是整数,那么正整数n的最小值是()A. 4B. 5C. 6D. 7二、填空题〔本大题共6小题,共18.0分〕11.化简:√3(√2−√3)−√24−|√6−3|=______.12.:一个正数的两个平方根区分是2a−2和a−4,那么a的值是______.13.直角三角形的两条直角边长区分为√2cm、√10cm,那么这个直角三角形的斜边长为______ ,面积为______ .14.假定实数x,y满足√x−2+(y−√3)2=0,那么xy的值为______ .15.实数x,y满足|x−4|+√y−8=0,那么以x,y的值为两边长的等腰三角形的周长是______.16.a、b为有理数,m、n区分表示5−√7的整数局部和小数局部,且amn+bn2=1,那么2a+b=______.三、计算题〔本大题共1小题,共8.0分〕17.x=2−√3,y=2+√3,求以下代数式的值:(1)x2+2xy+y2;(2)x2−y2.四、解答题〔本大题共5小题,共44.0分〕18.计算:(1)√27−√12+√13;(2)(√48−√75)×√113;(3)|−6|−√9−(−1)2;√3−(√3)2+(π+√3)0−√27+|√3−2|19.先化简,再求值:(a−1+2a+1)÷(a2+1),其中a=√2−1.20.一个三角形的三边长区分为5√x5、12√20x、54x√45x(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.21.先化简,再求值:(1x −1x+1)⋅x√x2+2x+1(x+1)2−(x−1)2,其中x=√2.22.a,b为等腰三角形的两条边长,且a,b满足b=√3−a+√2a−6+4,求此三角形的周长.答案1. C2. A3. B4. D5. D6. A7. C8. C 9. C 10. C11. −612. 213. 2√3cm ;√5cm 214. 2√315. 2016. 2.517. 解:(1)∵x =2−√3,y =2+√3, ∴x +y =4,∴x 2+2xy +y 2=(x +y)2=42=16;(2))∵x =2−√3,y =2+√3,∴x +y =4,x −y =−2√3,∴x 2−y 2=(x +y)(x −y)=4×(−2√3)=−8√3.18. 解:(1)原式=3√3−2√3+√33=4√33; (2)原式=(4√3−5√3)√4√3=−√3√4√3=−2; (3)原式=6−3−1=2;(4)原式=√3−3+1−3√3+2−√3=−3√3.19. 解:原式=(a2−1+2a+1)⋅1a +1, =a 2+1a+1⋅1a 2+1, =1a+1,事先a =√2−1,原式=√2=√22. 20. 解:(1)周长=5√x 5+12√20x +54x√45x=√5x +√5x +12√5x =52√5x , (2)事先x =20,周长=52√5×20=25, (或事先x =45,周长=52√5×45=5等)21. 解:原式=1x(x+1)⋅x√(x+1)24x,事先x=√2,x+1>0,√(x+1)2=x+1,故原式=14x =√28.22. 解:∵√3−a、√2a−6有意义,∴{2a−6≥03−a≥0,∴a=3,∴b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.。
华东师大版九年级数学上册 第21章 二次根式 单元测试题(有答案)
第21章二次根式单元测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 化简√(−4)2的结果是()A.−4B.4C.±4D.162. 给出下列各数:①1+√5②1−√5③−1④√5,其中是方程x2−(1+√5)x+√5= 0的解的个数有()A.1个B.2个C.3个D.0个3. 下列二次根式中,最简二次根式是()D.√0.2A.√a2+1B.√5a2C.√a54. 化简(√2−x)2+√(x−3)2的结果为()A.−1B.2x−5C.1D.5−2x5. 已知x=√3+1,y=√3−1,则代数式√x2+y2的值为()A.2√3B.2√2C.4D.±2√26. 化简二次根式的正确结果是()A. B. C. D.7. 化简+-的结果为()A.0B.2C.−2D.28. 下列计算正确的是()A.√12−√3=√3B.a6÷a3=a2C.(a+b)2=a2+b2D.2a+3b=5ab9. 已知a为实数,则代数式√27−12a+2a2的最小值为()A.0B.3C.3√3D.9二、填空题(本题共计9 小题,每题3 分,共计27分,)10. 在√16√28√23√15中,是最简二次根式的是________.11. 计算(√5−√7)(√5+√7)+2的结果等于________.12. 若等式√2m−1m−3=√2m−1√m−3成立,则m的取值范围是________.13. 在实数范围内,使二次根式√3−a有意义的a的取值范围是a________.14. 若矩形的长为(√12+√3)cm,宽为√3cm,则此矩形的面积为________cm2.15. 二次根式√2x+4中x的取值范围是________.16. 若二次根式√3x−2有意义,则x的取值范围为________.17. 计算(2√12−√13)×√6=________.18. 化简并计算:√x(√x+1)(√x+1)(√x+2)(√x+2)(√x+3)(√x+19)(√x+20)=________.(结果中分母不含根式)三、解答题(本题共计7 小题,共计66分,)19. 设长方形的面积为S,相邻两边分别为a,b(1)已知a=√8,b=√12,求S;(2)已知a=2√50,b=3√32,求S.20. 已知√25−x2−√15+x2=4,求√25−x2×√15+x2的值.21. 若最简二次根式32√4a2+1与23√6a2−1是同类二次根式,求a的值.22. 计算:(1)(√7)2(2)(−√7)2(3)√(−7)2(4)−√(±7)2(5)√(−2)2−√4(6)√(√3−√2)2 (7)√(3−π)2(8)√x2−2x+1(x≥1).23. 计算:(1)√412−402√32+42(2)100√x5y0.5√x2y(3)√245÷32√135(4)√ab (√ba÷√1b).24. 计算.(1)√20+√32−(√5+2√2).(2)√75×√63÷√2.(3)(√2+√3)2−√24.(4)√2(√2+1)(√7+√3)(√7−√3).25. 阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=−6则|a|=|−6|=−(−6),故此时a的绝对值是它的相反数.∴ 综合起来一个数的绝对值要分三种情况,即|a|={a(a>0) 0(a=0)−a(a<0),这种分析方法渗透了数学的分类讨论思想.问:((1))请仿照例中的分类讨论的方法,分析二次根式√a2的各种展开的情况;(2)猜想√a2与|a|的大小关系.参考答案与试题解析一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】B【解答】解:√(−4)2=√16=4.故选B.2.【答案】A【解答】x2−(1+√5)x+√5=0(x−1)(x−√5)=0,解得;x1=1,x2=√5,故①1+√5②1−√5③−1④√5,其中√5是方程x2−(1+√5)x+√5=0的解.3.【答案】A【解答】解:A、√a2+1是最简二次根式;B、√5a2=√5a,被开方数含能开得尽方的因数,不是最简二次根式;C、√a5=√5a5,被开方数含分母,不是最简二次根式;D、√0.2=√210=√55,被开方数含分母,不是最简二次根式.故选A.4.【答案】D【解答】解:∴ √2−x有意义,∴ 2−x≥0,∴ x≤2,∴ x−3<0,∴ (√2−x)2+√(x−3)2=2−x+3−x =5−2x.故选D.5.【答案】B【解答】解:当x=√3+1,y=√3−1时,√x2+y2=√(√3+1)2+(√3−1)2=√8=2√2.故选:B.6.【答案】C【解答】解:…二次根式√−a3有意义,则−a3≥0,即a≤0…原式=√−a3=−a√−a故选:C.7.【答案】D【解答】此题暂无解答8.【答案】A【解答】A、√12−√3=√3,故此选项正确;B、a6÷a3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、2a+3b无法计算,故此选项错误;9.【答案】B【解答】∴ 原式=√27−12a+2a2=√2(a2−6a+9)+9=√2(a−3)2+9∴ 当(a−3)2=0,即a=3时代数式√27−12a+2a2的值最小,为√9即3二、填空题(本题共计9 小题,每题 3 分,共计27分)10.【答案】√15【解答】√16=4,不是最简二次根式;√28=2√7,不是最简二次根式;√2 3=√63,不是最简二次根式;√15,是最简二次根式;11.【答案】【解答】解:(√5−√7)(√5+√7)+2=5−7+2 =0,故答案为:0.12.【答案】m>3【解答】解:∴ 等式√2m−1m−3=√2m−1√m−3成立,∴ 2m−1≥0,且m−3>0;解得m>3.故答案为:m>3.13.【答案】≤3【解答】解:根据题意得:3−a≥0,解得:a≤3.故答案是:a≤3.14.【答案】9【解答】解:此矩形的面积=(√12+√3)√3,=√36+√3×√3,=6+3,=9cm2.故答案为:9.15.【答案】x≥−2【解答】略16.【答案】x≥2 3【解答】此题暂无解答17.【答案】11√2【解答】原式=2√12×6−√13×6=12√2−√2=11√2.18.【答案】400√x−20x400x−x2【解答】解:原式=x x+1x+1x+2x+19x+20=x x+20=x(x+20)=400√x−20x400x−x2.故答案为:400√x−20x400x−x2.三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】∴ a=√8,b=√12,∴ S=ab=√8×√12=4√6.∴ a=2√50,b=3√32,∴ S=2√50×3√32=6√25×2×16×2=6×5×2×4=240.【解答】∴ a=√8,b=√12,∴ S=ab=√8×√12=4√6.∴ a=2√50,b=3√32,∴ S=2√50×3√32=6√25×2×16×2=6×5×2×4=240.20.【答案】解:∴ √25−x2−√15+x2=4,∴ (√25−x2−√15+x2)2=42,∴ 25−x2+15+x2−2√25−x2×√15+x2=16,故√25−x2×√15+x2=12.【解答】解:∴ √25−x2−√15+x2=4,∴ (√25−x2−√15+x2)2=42,∴ 25−x2+15+x2−2√25−x2×√15+x2=16,故√25−x2×√15+x2=12.21.【答案】a的值为±1.【解答】解:∴ 最简二次根式32√4a2+1与23√6a2−1是同类二次根式,∴ 4a2+1=6a2−1,解得:a=±1,22.【答案】解:(1)(√7)2=7;(2)(√7)2=7;(3)(√(−7)2)2=7;(4)−√(±7)2=−7;(5)√(−2)2−√4=2−2=0;(6)√(√3−√2)2=√3−√2;(7)√(3−π)2=π−3;(8)∴ x≥1,∴ √x2−2x+1=√(x−1)2=x−1.【解答】解:(1)(√7)2=7;(2)(√7)2=7;(3)(√(−7)2)2=7;(4)−√(±7)2=−7;(5)√(−2)2−√4=2−2=0;(6)√(√3−√2)2=√3−√2;(7)√(3−π)2=π−3;(8)∴ x≥1,∴ √x2−2x+1=√(x−1)2=x−1.23.【答案】解:(1)原式=√81×15=95;(2)原式=200√x3=200x√x;(3)原式=23√245×58=23×16=19;(4)原式=√ab ×b2a=√b.【解答】解:(1)原式=√81×15=95;(2)原式=200√x3=200x√x;(3)原式=23√245×58=23×16=19;(4)原式=√ab ×b2a=√b.24.【答案】原式=2√5+4√2−√5−2√2=2√2+√5;原式=5√3×√63÷√2=5√2÷√2=5;原式=5+2√6−2√6=5;原式=8+4√27−3=2+√2.【解答】原式=2√5+4√2−√5−2√2=2√2+√5;原式=5√3×√63÷√2=5√2÷√2=5;原式=5+2√6−2√6=5;原式=8+4√27−3=2+√2.25.【答案】由题意可得√a2={a(a>0)−a(a<0)0(a=0);由(1)可得:√a2=|a|.【解答】由题意可得√a2={a(a>0)−a(a<0)0(a=0);由(1)可得:√a2=|a|.。
华东师大版九年级数学上册《第二十一章二次根式》单元测试卷及答案
华东师大版九年级数学上册《第二十一章二次根式》单元测试卷及答案一、单选题1.下列计算正确的是()A.√2+√3=√5B.√8=4√2C.3√2−√2=3D.√2×√3=√62.下列根式中是最简二次根式的是()A.√8B.√1C.√12D.√1323.下列二次根式中,能与√2合并的是()A.√48B.√20C.√18D.√234.在√2−x中,x的取值范围是()A.x≤−2B.x≥−2C.x≥2D.x≤25.下列二次根式中,与√3是同类二次根式的是()A.√12B.√18C.√6D.√0.36.若a=√3,b=√2,则√6可以表示为()A.ab B.√ab C.ab2D.a2b7.化简(√3−2)2022•(√3+2)2023的结果为()A.﹣√3﹣2B.√3﹣2C.√3+2D.﹣18.在图示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为()2√313√626√3A.2√2B.3√2C.4√2D.4√39.实数a在数轴上的位置如图所示,则√(a-3)2-√(a-12)2化简后为()A.9B.﹣9C.2a﹣15D.无法确定10.观察下列式子√223=2√23,√338=3√38,√4415=4√415⋅⋅⋅找出其中规律,用字母n表示第n个式子正确的是()A.√n nn2−1=n√nn2−1B.√(n+1)n+1(n+1)2−1=(n+1)√n+1(n+1)2−1C.√n+nn2−1=n√nn2−1D.√(n+1)+n+1(n+1)2−1=(n+1)√n+1(n+1)2−1二、填空题11.计算√12−√34的结果是.12.计算:√8﹣2√12=,√a2×√−a2b3=.13.当a取值范围为时,√a+2a−7=√a+2√a−7.14.已知a,b是两个连续的整数,若a<√7<b,则√a−1+√b+5= .15.现有一个体积为120√3cm3的长方体,它的高为2√15cm,长为3√10cm,则这个长方体的宽为cm. 16.若a,b,c是△ABC的三边长,化简√(a+b−c)2+|a−b−c|的值为.17.已知x=√6+√3,y=√6−√3,那么x2−xy的值为.18.对于任意不相等的两个实数a,b,定义一种算法a⊗b=√a−ba+b ,例如:6⊗5=√6−56+5=111,12⊗8=三、解答题19.计算(1)√12+3√3−(√27−1)(2)√35÷√223×√85(3)(√5+√2)(√5−√2)−(√2+1)2(4)(√5−√6)2022(√5+√6)202320.先化简,再求值:4aa2−4÷(1+a−2a+2),其中a=√3+2.21.已知a=√2+1,b=√2−1,求下列式子的值:(1)a2−b2;(2)1a +1b.22.如图,张大伯家有一块长方形空地ABCD,长方形空地的长BC为√72m,宽AB为√32m,现要在空地中划出一块长方形地养鸡(即图中阴影部分),其余部分种植蔬菜,长方形养鸡场的长为(√13+1)m,宽为(√13−1)m.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)若市场上某种蔬菜10元/千克,张大伯种植该种蔬菜,每平方米可以产20千克的蔬菜,张大伯如果将所种蔬菜全部销售完,销售收入为多少元?23.观察下列一组式的变形过程,然后回答问题:例√2+1=√2−1(√2+1)(√2−1)=√2−1(√2)2−1=√2−11=√2−1例√3+√2=√3−√2,√4+√3=√4−√3(1)√6+√5=;√100+√99=(2)请你用含n(n为正整数)的关系式表示上述各式子的变形规律.(3)利用上面的结论,求下列式子的值.√2+1√3+√2√4+√3+⋯√100+√99.参考答案:1.D2.D3.C4.D5.A6.A7.C8.C9.C10.D11.32√312.√2−a2b√−b13.a>714.1+2√215.2√216.2b17.6√2+618.11019.(1)2√3+1(2)35(3)−2√2(4)√5+√620.2a−221.(1)4√2(2)2√222.(1)20√2m(2)7200元=√n+1−√n(3)9 23.(1)√6−√5,10−3√11(2)√n+1+√n。
华东师大九年级数学上册 版第21章《二次根式》章节测试题(含解析答案)
华东师大版九年级上册第22章《二次根式》章节测试题本试卷三个大题共22个小题,全卷满分120分,考试时间100分钟。
一、选择题(本大题共12个小题,每小题4分,共48分。
) 1、下列各式中,是二次根式的是( )A 、1B 、4-C 、38D 、π-3 2、若式子2-x 在实数范围内有意义,则x 的取值范围是( ) A 、2 xB 、2 xC 、2≥xD 、2≤x3、下列计算正确的是( )A 、2312=÷B 、652535=⋅C 、523=+D 、228=- 4、下列属于最简二次根式的是( ) A 、8 B 、5C 、12D 、315、下列二次根式中,与3能合并的是( )A 、6B 、24C 、32D 、43 6、实数a ,b 在数轴上的对应点如图所示,则2a b a --的结果为( ) A 、bB 、b a -2C 、b -D 、a b 2-7、已知()21233-⨯⎪⎪⎭⎫ ⎝⎛-=m ,则( ) A 、56-- m B 、65 m C 、67-- m D 、76 m 8、若xx x x -+=-+3333成立,则x 的取值范围是( ) A 、33 x ≤- B 、3 x C 、3- x D 、33≤-x 9、若最简二次根式b a +7与36+-b b a 是同类二次根式,则b a +的值为( ) A 、2 B 、2- C 、1- D 、1 10、如果0 ab ,0 b a +,那么下列各式:①ba ba=,②1=⋅a b b a ,③b ba ab -=÷,其中正确的是( )学校: 考号: 姓名: 班级:※※※※※※※※※※※密※※※※※※※※※※※※※※※※※封※※※※※※※※※※※※※※※※※※※※※※ 线※※※※※※※※※※※※※A 、①②B 、②③C 、①③D 、①②③11、如果()3322b a +=+,a ,b 为有理数,那么=-b a ( ) A 、3B 、34-C 、2D 、2-12、把()aa --212根号外的因式移入根号内,结果( ) A 、a -2 B 、a --2 C 、2-a D 、2--a二、填空题(本大题共4小题,每小题4分,共16分) 13、如果144+-+-=x x y ,则y x +2的值是_______; 14、已知32+=a ,32-=b ,则_________22=+ab b a ; 15、若12-=x ,则2019323+-+x x x 的值为 ; 16、化简:()()________252520182019=+-.三、解答题:(本大题共6个小题,共56分。
华师大版九年级数学上 第21章 二次根式测试题(含答案)
第21章二次根式测试题一、单选题1、下列各式中最简二次根式为( )A.B.C.D.2、下列计算中,正确的是A.B.C.D.3、下列各式中,正确的是()A.B.C.D.4、下列根式中,与是同类二次根式的是:A.B.C.D.5、如果1≤≤,则的值是()A.B.C.D.16、已知m=1+,n=1-,则代数式的值为()A.9B.±3C.3D.57、实数、在轴上的位置如图所示,且,则化简的结果为()A.2a+b B.-2a-b C.b D.2a-b8、计算的正确结果是()A.B.C.D.9、已知a、b、c是△ABC三边的长,则+|a+b—c|的值为( )A.2a B.2b C.2c D.2(a一c)二、填空题10、若有意义,则x的取值范围是11、计算的结果是12、已知,则m + n的值是________13、若=7-x,则x的取值范围是______________.14、已知,则的值为15、已知,则代数式的值为_________16、写出一个无理数,使它与的积为有理数____ ____.17、请写出一个式子,使它与的积不含二次根式____ ____三、计算题18、、计算:(1)(2)(3)(4)(6)19、计算:20、计算:.21、计算:(1)(2)(3)(4)22、已知:,,求的?四、解答题(每题x分,共3题)23、已知,求的?24、实数、b在数轴上的位置如图所示,化简:25、当,求代数式的?参考答案1、答案:A(或B)解析:试题分析:满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.解:A、,均符合最简二次根式的定义,正确;B、=±x,被开方数里含有能开得尽方的因式x2故错误。
C、,D、,均不是最简二次根式,故错误、考点:最简二次根式点评:本题属于基础应用题,只需学生熟练掌握最简二次根式的定义,即可完成2、答案:B解析:试题分析:根据二次根式的运算法则依次分析各选项即可作出判断、A.与不是同类二次根式,无法合并,C.,D.,故错误;B.,本选项正确、考点:二次根式的混合运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分3、答案:B解析:试题分析:A;C、;D、;选B。
华师大版九年级上册第21章二次根式单元考试题(有答案).dot
华师大版九年级上册第21章二次根式单元考试题一、选择题(4分×10=40分) 1、下列代数式中,是二次根式的是( )A、9- B、4x + C 、2m m + D 、21n + 2、下列二次根式中,是最简二次根式的是( ) A、12 B、28 C、42 D、123、下列二次根式中,和3是同类二次根式的是( ) A、18 B、45 C、113 D、324、函数23x y x +=-中,自变量的取值范围是() A、2x ≥- B 、2x ≥-,且3x ≠ C 、3x ≠ D 、3x > 5、(2014徐州)下列运算中错误的是()A、235+= B 、236⨯= C 、822÷= D 、2(3)3-= 6、20m 是整数,则满足条件的最小正整数m 是( ) A、2 B、3 C、4 D、57、(2016潍坊)实数a,b 在数轴上对点的位置如图所示,化简2()a a b +-的值是( )A、-2a+b B.2a-b C.-b D.b8、10的整数部分是m ,小数部分是n ,则下列各式正确的是( )A、m-n =310- B、m+n =310+ C、mn=10 D、m ÷n=9310+ 9、估算50232+的整数部分为( ) A、6 B、7 C、8 D、910、化简1a a-的结果是( ) A、a -- B 、a - C 、a - D 、a11、设a =2,b=3,若用含a 、b 的式子表示0.54,则下列表示正确的是( ) A、0.3ab B.3ab C.0.1ab D.0.1a 3b 12、已知228162510a a b b -+++=,则a+b 的平方根是() A、9 B、±9 C、3 D±3 二、填空题(4分×6=24分)13、已知a=322+,b =322-,则22a b ab += ; 14、当a= 时,23a --与2a +是最简同类二次根式。
华东师大版初中数学九年级上册 第21章 二次根式 二次根式测试题1
第21章 二次根式(答题时间:100分钟 满分120分)一.填空题(本大题8小题,每小题4分,共32分,把答案填上题目的横线上)1.若a 的算术平方根是12,则a 等于___________;2.在3.14,13, 3,0.12,..0.415,0.121121112…,-π,38,中,有理数有_____________________________,无理数有_____________________________.3.如果323.6=2.868,3x =28.68,则x=________.4.若2693x x x -+=-,则x 的取值范围是_____________.5. 111625-=________________. 6.当m=3, 代数式3m+212m m -+的值为_____________.7.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13cm,则正方形A ,B ,C ,D 的面积之和是_______________8.比较大小:-32_________-23. 二.选择题(本大题共10小题,每小题4分,共40分,在每个小题给出的四个选项中只有一个选项符合题目的要求)9.一个自然数的算术平方根为a,则与这个自然数相邻的下一个自然数的算术平方根为( )A. 22a +B. 21a +C. a +1D.a+110.若x -有意义,则x x -一定是( )A.正数B.非负数C. 负数D.非正数11.若a=152+,b=152-,则a+b+ab 的值为( )A.1+25B.1-25C.-5D.313A BC D12.若222a ab b b a -+=-,则b 与a 的关系是( )A. b>aB. b<aC. b ≤aD. b ≥a13. 如果12x-是二次根式,那么( )A. x ≥0B.02x ≤ D. x<2 D. x ≤2 14.若2()1x y ++是二次根式,那么( )A. x ≥0 y ≥0B. x 、y 为任意实数C. x+y ≥0D.以上结论都不对 15.若2()a a -= ,则a 满足( ) A. a>0 B. a<0 C. a=0 D.无论a 取何值时,此等式都成立 16.等式3355x x x x --=--成立的条件是( )A x ≠5 B. x ≥3 C. x ≥3且x ≠5 D. x>517.下面各式中是同类根式的是( ) A.118与2 B. 6与12 C. 45与15 D. 51与27318.下面计算正确的是( )A.257x x x +=B.23(23)x x x -=- 257x x x += D.8184952+=+=三.解答题(本大题5小题共58分,解答应写出必要的计算过程、推理步骤)19.(8分)计算:((1) 23310|(3)8|527----+-(2)(20062007310(310)+-20.(8分)若m的平方根是5a+1和a-19,求m的值21.(8分)计算 (1)+-(2) (---22.计算(10分) (1)++--23.求值(12分)已知32355,求1424x x x x =+++的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文升中学华东师大版九年级上《二次根式》测试
满分100分 时间90分钟
一、选择题:(每小题3分,共30分)
1、下列代数式中,属于二次根式的为( )
A 、
B 、
C 、 (a ≥1)
D 、— 2、在二次根式, 中,x 的取值范围是( ) A 、x ≥1 B 、x >1 C 、x ≤1 D 、x <1 3、已知 (x -1)2+ =0
,则(x +y )2的算术平方根是( ) A 、1 B 、±1 C 、-1 D 、0 4、下列二次根式: , , , , , , 其中是最简二次根式的有( )
A 、2个
B 、3个
C 、1个
D 、4个
5、下列各组二次根式中,属于同类二次根式的为( )
A 、 和
B 、 和
C 、 和
D 、 和 6、如果a ≤1,那么化简 =( ) A 、 B 、 C 、 D 、
7.化简(-3)2 的结果是 ( )
A .3
B .-3
C .±3
D .9
8.等式:①(-4)2 =4;②(-4)2=16;③(4)2=4;④(-4)2 =-4中,正确的是( ) A. ①② B .③④ C .②④ D. ①③ 4
-3x -1-a 2-1
1--x 2+y a 5.03a
b a 221-a 4
11222y x +n m 22b a 222ab 1+a 1-a 1221
3)
1(a -1)1(--a a a a --1)1(1
)1(--a a a a --1)1(
9、下列运算中,错误的是( ) A.2510⨯=, B.2733÷= C.223252+= D .2216916925+=+=
10、已知三角形三边为a 、b 、c ,其中a 、b 两边满足
0836122=-++-b a a ,那么这个三角形的最大边c 的取值范围是…………………( )
A .8>c
B .148<<c
C .86<<c
D .142<<c
二、填空题(每空格2分,共22分)
11.当x_______时,二次根式-x 有意义.
12.计算:125
=_______,0.0001=_________,(-26)2=_______。
13.化简:x 3=________
14.比较大小关系:—32______—2 3
15.计算:(3-2)2003·(3+2)2003=_______。
16.21-的相反数是_______,倒数是_______。
17.若正三角形的边长为25cm ,则这个正三角形的高是_______。
18.观察下列各式:32-1=2×4,42-1=3×5,52-1=4× 6 ……将你猜想到的规律用一个式子来表示:___________
三、解答题(48分)
19.化简:(每题4分,共12分)
(1) 48 (2)13 (3)(3-2)(2+3)
A
B C
D
20.计算:(每题4分,共16分) (1)8+32- 2
(2)32-512+618
(3)50×8-6×32
(4)
21.(6分)小芳想在墙壁上钉一个三角架(如图),其中两直角边长度之比为AC:BC=3:2,斜边长AB=520cm ,求这两直角边的长度。
(保留根号)
25.(每题4分,共8分)
(1)已知:实数a ,b 在数轴上的位置如图所示,化简:(a+1)2+2(b-1)2 -|a-b|
A C
B -3 -2 -1 0 1 2 3 4
a b x a ab a b a ab 313272232
3+-
(2)已知:321
+=a ,321-=b ,求b a b a 2222+-的值
四、能力拓展(每题3分,共6分) 有这样一类题目:将2a b ±化简,如果你能找到两个数m 、n ,
使22m n a +=且mn b =,则将2a b ±将变成
222m n mn +±, 即变成2()m n ±开方,从而使得2a b ±化简。
例如,526±=3226++=222(3)(2)223(32)++⋅=+, ∴2526(32)32±=+=+
请仿照上例解下列问题:
(1)
423+ (2)347-。