2019届高考数学大一轮复习讲义:第十三章 系列4选讲 13.1 第1课时

合集下载

2019届高考大一轮复习备考资料之数学人教A版全国用课

2019届高考大一轮复习备考资料之数学人教A版全国用课
项数都增加了一项.( × )
1
2
3
4
5
6
(5)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=
1时,左边式子应为1+2+22+23.( √ )
(6)用数学归纳法证明凸n边形的内角和公式时,n0=3.( √ )
1
2
3
4
5
6
题组二 教材改编
1 2.[P99B组T1]在应用数学归纳法证明凸n边形的对角线为 n(n-3)条时, 2 第一步检验n等于
1
2
3
4
5
6
答案
题组三 易错自纠
n+2 1 - a 4.用数学归纳法证明1+a+a2+…+an+1= (a≠1 , n∈N*) , 在 1-a 验证n=1时,等式左边的项是
C.1+a+a2 √ 解析 当n=1时,n+1=2, ∴左边=1+a1+a2=1+a+a2.
A.1
B.1+a D.1+a+a2+a3
解析 运用数学归纳法证明 1+2+3+…+2n=2n-1+22n-1(n∈N*). 当n=k时,则有1+2+3+…+2k=2k-1+22k-1(k∈N*),左边表示的为 2k项的和. 当n=k+1时,则 左边=1 + 2 + 3 + … + 2k+ (2k+ 1) + … + 2k+ 1 ,表示的为 2k+ 1 项的和, 增加了2k+1-2k=2k项.
第十三章 推理与证明、算法、复数
§13.3 数学归纳法
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
Байду номын сангаас
自主学习
知识梳理 数学归纳法
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:

近年届高考数学大一轮复习第十三章推理与证明、算法、复数13.4算法与算法框图学案理北师大版(202

近年届高考数学大一轮复习第十三章推理与证明、算法、复数13.4算法与算法框图学案理北师大版(202

2019届高考数学大一轮复习第十三章推理与证明、算法、复数13.4 算法与算法框图学案理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第十三章推理与证明、算法、复数13.4 算法与算法框图学案理北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第十三章推理与证明、算法、复数13.4 算法与算法框图学案理北师大版的全部内容。

§13。

4 算法与算法框图最新考纲考情考向分析1.了解算法的含义,了解算法的思想2。

理解程序框图的三种基本逻辑结构:顺序结构、选择结构、循环结构.3.了解几种基本算法语句—-输入语句、输出语句、赋值语句、条件语句、循环语句的含义.主要程序程序框图、循环结构和算法思想,并结合函数与数列考查逻辑思维能力,题型主要以选择、填空题为主,考查求程序框图中的执行结果和确定控制条件,难度为低中档。

1.算法的含义算法是解决某类问题的一系列步骤或程序,只要按照这些步骤执行,都能使问题得到解决.2.算法框图在算法设计中,算法框图(也叫程序框图)可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:顺序结构、选择结构、循环结构.3.三种基本逻辑结构(1)顺序结构:按照步骤依次执行的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.其结构形式为(2)选择结构:需要进行判断,判断的结果决定后面的步骤,像这样的结构通常称作选择结构.其结构形式为(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.其基本模式为4.基本算法语句任何一种程序设计语言中都包含五种基本的算法语句,它们分别是:输入语句、输出语句、赋值语句、条件语句和循环语句.5.赋值语句(1)一般形式:变量=表达式.(2)作用:将表达式所代表的值赋给变量.6.条件语句(1)If—Then—Else语句的一般格式为:If条件Then语句1Else语句2(2)If—Then语句的一般格式是:7.循环语句(1)For语句的一般格式:For循环变量=初始值To终值循环体Next(2)Do Loop语句的一般格式:Do循环体Loop While条件为真题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.(×)(2)算法框图中的图形符号可以由个人来确定.( ×)(3)输入框只能紧接开始框,输出框只能紧接结束框.(×)(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.( √)(5)5=x是赋值语句.( ×)(6)输入语句可以同时给多个变量赋值.(√)题组二教材改编2.执行如图所示的算法框图,则输出S的值为( )A.-错误! B.错误! C.-错误! D.错误!答案D解析按照算法框图依次循环运算,当k=5时,停止循环,当k=5时,S=sin 错误!=错误!.3.如图为计算y=|x|函数值的算法框图,则此算法框图中的判断框内应填__________.答案x<0解析输入x应判断x是否大于等于零,由图知判断框应填x<0.题组三易错自纠4.(2016·全国Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的算法框图,执行该算法框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于()A.7 B.12C.17 D.34答案C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件,输出s=17,故选C。

2019届高考大一轮复习备考资料之数学人教A版全国用讲义:第十三章 推理与证明、算法、复数13-4 含答案 精品

2019届高考大一轮复习备考资料之数学人教A版全国用讲义:第十三章 推理与证明、算法、复数13-4 含答案 精品

§13.4算法与程序框图1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构3.算法语句(1)输入语句、输出语句、赋值语句的格式与功能(2)条件语句①程序框图中的条件结构与条件语句相对应.②条件语句的格式a.IF—THEN格式b.IF—THEN—ELSE格式(3)循环语句①程序框图中的循环结构与循环语句相对应.②循环语句的格式a .UNTIL 语句b .WHILE 语句题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)算法只能解决一个问题,不能重复使用.( × ) (2)程序框图中的图形符号可以由个人来确定.( × ) (3)输入框只能紧接开始框,输出框只能紧接结束框.( × )(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.( √ ) (5)5=x 是赋值语句.( × )(6)输入语句可以同时给多个变量赋值.( √ )题组二 教材改编2.[P30例8]执行如图所示的程序框图,则输出S 的值为( )A .-32B.32C .-12D.12答案 D解析按照程序框图依次循环运算,当k=5时,停止循环,当k=5时,S=sin 5π6=12.3.[P25例5]如图为计算y=|x|函数值的程序框图,则此程序框图中的判断框内应填__________.答案x<0?解析输入x应判断x是否大于等于零,由图知判断框应填x<0?.题组三易错自纠4.(2016·全国Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于()A.7 B.12 C.17 D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件,输出s=17,故选C.5.执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34?B .s ≤56?C .s ≤1112?D .s ≤2524?答案 C解析 由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,输出k =8,所以应填“s ≤1112?”.6.执行下边的程序框图,输出的T 的值为________.答案116解析 当n =1时,T =1+ʃ10x 1d x =1+2101|2x =1+12=32;当n =2时,T =32+ʃ10x 2d x =32+3101|3x=32+13=116;当n =3时,结束循环,输出T =116.题型一 算法的基本结构1.(2018·新余模拟)执行如图所示的程序框图,如果输入的t =0.01,则输出的n 等于( )A .5B .6C .7D .8答案 C解析 执行程序: S =12,m =14,n =1,S >t ; S =14,m =18,n =2,S >t ; S =18,m =116,n =3,S >t ; S =116,m =132,n =4,S >t ; S =132,m =164,n =5,S >t ; S =164,m =1128,n =6,S >t ; S =1128,m =1256,n =7, 此时S >t 不成立,退出循环,n =7.故选C.2.(2017·全国Ⅲ)执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2 答案 D解析 假设N =2,程序执行过程如下: t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2,2≤2,S =100-10=90,M =--1010=1,t =3,3>2,输出S =90<91.符合题意.∴N =2成立.显然2是N 的最小值.故选D.3.(2016·全国Ⅰ)执行下面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x 答案 C解析 执行题中的程序框图,知 第一次进入循环体:x =0+1-12=0,y =1×1=1,x 2+y 2<36;第二次执行循环体:n =1+1=2,x =0+2-12=12,y =2×1=2,x 2+y 2<36;第三次执行循环体:n =2+1=3,x =12+3-12=32,y =3×2=6,满足x 2+y 2≥36,故退出循环,输出x =32,y =6,满足y =4x ,故选C.思维升华 (1)高考对算法初步的考查主要是对程序框图含义的理解与运用,重点应放在读懂框图上,尤其是条件结构、循环结构.特别要注意条件结构的条件,对于循环结构要搞清进入或退出循环的条件、循环的次数,是解题的关键. (2)解决程序框图问题要注意几个常用变量:①计数变量:用来记录某个事件发生的次数,如i =i +1. ②累加变量:用来计算数据之和,如S =S +i . ③累乘变量:用来计算数据之积,如p =p ×i .题型二 程序框图的识别与完善命题点1 由程序框图求输出结果典例 (1)(2017·全国Ⅱ)执行如图所示的程序框图,如果输入的a =-1,则输出的S 等于( )A .2B .3C .4D .5答案 B解析 当K =1时,S =0+(-1)×1=-1,a =1,执行K =K +1后,K =2; 当K =2时,S =-1+1×2=1,a =-1,执行K =K +1后,K =3; 当K =3时,S =1+(-1)×3=-2,a =1,执行K =K +1后,K =4; 当K =4时,S =-2+1×4=2,a =-1,执行K =K +1后,K =5; 当K =5时,S =2+(-1)×5=-3,a =1,执行K =K +1后,K =6;当K=6时,S=-3+1×6=3,执行K=K+1后,K=7>6,输出S=3.结束循环.故选B.(2)(2017·山东)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a的值分别为()A.0,0 B.1,1C.0,1 D.1,0答案 D解析当x=7时,∵b=2,∴b2=4<7=x.又7不能被2整除,∴b=2+1=3.此时b2=9>7=x,∴退出循环,a=1,∴输出a=1.当x=9时,∵b=2,∴b2=4<9=x.又9不能被2整除,∴b=2+1=3.此时b2=9=x,又9能被3整除,∴退出循环,a=0.∴输出a=0.故选D.命题点2完善程序框图典例(2017·全国Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在◇和▭两个空白框中,可以分别填入()A .A >1 000?和n =n +1B .A >1 000?和n =n +2C .A ≤1 000?和n =n +1D .A ≤1 000?和n =n +2 答案 D解析 因为题目要求的是“满足3n -2n >1 000的最小偶数n ”,所以n 的叠加值为2,所以▭内填入“n =n +2”.由程序框图知,当◇内的条件不满足时,输出n ,所以◇内填入“A ≤1 000?”.故选D.命题点3 辨析程序框图的功能典例 (2018·大连联考)如果执行如图的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 答案 C解析 不妨令N =3,a 1<a 2<a 3, 则有k =1,x =a 1,A =a 1,B =a 1; k =2,x =a 2,A =a 2; k =3,x =a 3,A =a 3,故输出A =a 3,B =a 1,故选C.思维升华 (1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果. (2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.跟踪训练 (2018·广州模拟)如图给出的是计算12+14+16+18+…+196的值的一个程序框图,其中判断框内应填入的条件是( )A .i >48?B .i >24?C .i <48?D .i <24?答案 A解析 程序运行过程中,各变量值如下: 第1次循环:S =0+12=12,n =4,i =2,第2次循环:S =12+14,n =6,i =3,第3次循环:S =12+14+16,n =8,i =4,依次类推,第48次循环:S =12+14+16+18+…+196,n =98,i =49, 退出循环体.所以判断框内应填入的条件是i >48. 故选A.题型三 基本算法语句典例 (2018届河北邢台期末)执行如图所示的程序,若输出的结果是2,则输入的x =________.答案 0或2解析 根据条件语句可知程序的功能是求分段函数y =⎩⎪⎨⎪⎧2x +1,x <1,x 2-x ,x ≥1的值.当x <1时,令2x +1=2,解得x =0;当x ≥1时,令x 2-x =2,解得x =2或-1(舍去).思维升华 解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.跟踪训练 (2018·保定模拟)根据如图所示的语句,可知输出的结果S =________.答案 7解析 I =1,S =1;S =1+2=3,I =1+3=4<8; S =3+2=5,I =4+3=7<8; S =5+2=7,I =7+3=10>8. 退出循环,故输出S =7.程序框图中变量的取值典例 执行如图所示的程序框图所表示的程序,则输出的A 等于( )A.2 047 B.2 049C.1 023 D.1 025错解展示:将每次运算的A值用数列{a n}表示,将开始的A=1看作a0,则a1=2a0+1=1,a2=2a1+1=3,…∴a10=2a9+1=210-1=1 023.错误答案 C现场纠错解析本题计算的是递推数列a0=1,a n+1=2a n+1(n=0,1,2,…)的第11项,{a n+1}是首项为2,公比为2的等比数列,故a10+1=211,故a10=2 047.答案 A纠错心得程序框图对计数变量及求和变量取值时,要注意两个变量的先后顺序.1.(2016·全国Ⅲ)执行如图的程序框图,如果输入的a=4,b=6,那么输出的n等于()A.3 B.4 C.5 D.6答案 B解析第一次循环a=6-4=2,b=6-2=4,a=4+2=6,s=6,n=1;第二次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=10,n=2;第三次循环a=6-4=2,b=6-2=4,a=4+2=6,s=16,n=3;第四次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=20,n=4,满足题意,结束循环.2.(2016·四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v 的值为()A.9 B.18 C.20 D.35答案 B解析初始值n=3,x=2,程序运行过程如下:v=1i=2v=1×2+2=4i=1v=4×2+1=9i=0v=9×2+0=18i=-1跳出循环,输出v=18,故选B.3.(2017·天津)阅读下面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A .0B .1C .2D .3 答案 C解析 第一次循环执行条件语句,此时N =24,24能被3整除,则N =24÷3=8. ∵8≤3不成立,∴进入第二次循环执行条件语句,此时N =8,8不能被3整除,则N =8-1=7. ∵7≤3不成立,∴进入第三次循环执行条件语句,此时N =7,7不能被3整除,则N =7-1=6. ∵6≤3不成立,∴进入第四次循环执行条件语句,此时N =6,6能被3整除,则N =6÷3=2. ∵2≤3成立,∴此时输出N =2. 故选C.4.(2017·北京)执行如图所示的程序框图,输出的s 值为( )A .2 B.32 C.53 D.85答案 C解析 开始:k =0,s =1; 第一次循环:k =1,s =2;第二次循环:k =2,s =32;第三次循环:k =3,s =53,此时不满足循环条件,输出s ,故输出的s 值为53.故选C.5.(2018·长春模拟)一个算法的程序框图如图所示,若该程序输出的结果是163,则判断框内应填入的条件是()A .i <4?B .i >4?C .i <5?D .i >5?答案 B解析 i =1进入循环,i =2,T =1,P =151+2=5;再循环,i =3,T =2,P =52+3=1;再循环,i =4,T =3,P =13+4=17;再循环,i =5,T =4,P =174+5=163,此时应满足判断条件,所以判断框内应填入的条件是i >4?.6.(2018·广州质检)执行如图所示的程序框图,如果输入n =3,则输出的S 等于()A.67B.37C.89D.49 答案 B解析 第一步运算:S =11×3=13,i =2;第二步运算:S =13+13×5=25,i =3;第三步运算:S =25+15×7=37,i =4>3.故S =37,故选B.7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为________.(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)答案 24解析 n =6,S =12×6×sin 60°=332≈2.598<3.1,不满足条件,进入循环;n =12,S =12×12×sin 30°=3<3.1,不满足条件,继续循环;n =24,S =12×24×sin 15°≈12×0.258 8=3.105 6>3.1,满足条件,退出循环,输出n 的值为24.8.(2018·银川质检)某框图所给的程序运行结果为S =20,那么判断框中应填入的关于k 的条件是________.答案 k >8?解析 由题意可知输出结果为S =20,第1次循环,S =11,k =9,第2次循环,S =20,k =8,此时S 满足输出结果,退出循环,所以判断框中的条件为“k >8?”. 9.(2017·江苏)如图是一个程序框图,若输入x 的值为116,则输出y 的值是________.答案 -2解析 输入x =116,116≥1不成立,执行y =2+log 2116=2-4=-2.故输出y 的值为-2.10.(2017·江西八校联考)执行如图所示的程序框图,输出的s 是________.答案 -6解析 第一次循环:i =1,s =1;第二次循环:i =2,s =-1;第三次循环:i =3,s =2;第四次循环:i =4,s =-2,此时i =5,执行s =3×(-2)=-6.11.如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为________.答案 3解析 由x 2-4x +3≤0,解得1≤x ≤3.当x =1时,满足1≤x ≤3,所以x =1+1=2,n =0+1=1; 当x =2时,满足1≤x ≤3,所以x =2+1=3,n =1+1=2; 当x =3时,满足1≤x ≤3,所以x =3+1=4,n =2+1=3; 当x =4时,不满足1≤x ≤3,所以输出n =3.12.(2017·西安模拟)执行如图所示的程序框图,如果输出S =3,那么判断框内应填入的条件是__________.答案 k ≤7?解析 首次进入循环体,S =1×log 23,k =3;第二次进入循环体,S =lg 3lg 2×lg 4lg 3=2,k =4;依次循环,第六次进入循环体,S =3,k =8, 此时结束循环,则判断框内填k ≤7?.13.(2018·泉州模拟)下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的a 等于( )A .0B .2C .4D .14答案 B解析 由题知,若输入a =14,b =18,则 第一次执行循环结构时,由a <b 知, a =14,b =b -a =18-14=4; 第二次执行循环结构时,由a >b 知, a =a -b =14-4=10,b =4; 第三次执行循环结构时,由a >b 知, a =a -b =10-4=6,b =4; 第四次执行循环结构时,由a >b 知, a =a -b =6-4=2,b =4;第五次执行循环结构时,由a <b 知, a =2,b =b -a =4-2=2;第六次执行循环结构时,由a =b 知,输出a =2,结束. 故选B.14.(2018·马鞍山质检)根据下列算法语句,当输入x 为60时,输出y 的值为( ) INPUT xIF x<=50 THENy =0.5*x ELSEy=25+0.6*(x-50) END IF PRINT y END A .25 B .30 C .31 D .61 答案 C解析 由题意,得y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50.当x =60时,y =25+0.6×(60-50)=31. 所以输出y 的值为31.15.(2016·山东)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.答案 3解析 第1次循环:i =1,a =1,b =8,a <b ; 第2次循环:i =2,a =3,b =6,a <b ;第3次循环:i =3,a =6,b =3,a >b ,输出i 的值为3.16.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.答案 495解析 取a 1=815,则b 1=851-158=693≠815, 则a 2=693;由a 2=693知b 2=963-369=594≠693,则a 3=594; 由a 3=594知b 3=954-459=495≠594,则a 4=495; 由a 4=495知b 4=954-459=495=a 4,则输出b =495.17.(2018·太原模拟)关于函数f (x )=⎩⎪⎨⎪⎧-x ,1<x ≤4,cos x ,-1≤x ≤1 的程序框图如图所示,现输入区间[a ,b ],则输出的区间是________.答案 [0,1]解析 由程序框图的第一个判断条件为f (x )>0,当f (x )=cos x ,x ∈[-1,1]时满足.然后进入第二个判断框,需要解不等式f ′(x )=-sin x ≤0,即0≤x ≤1.故输出区间为[0,1].18.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值. 作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分(含边界),由图可知当直线S =2x+y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.19.(2018·沈阳质检)以下给出了一个程序,根据该程序回答: INPUT x IF x<3 THEN y=2*xELSEIF x>3 THEN y=x*x-1 ELSE y=2END IF END IF PRINT y END (1)若输入4,则输出的结果是________;(2)该程序的功能所表达的函数解析式为________. 答案 (1)15 (2)y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3解析 (1)x =4不满足x <3,∴y =x 2-1=42-1=15.输出15. (2)当x <3时,y =2x ,当x >3时,y =x 2-1;否则,即x =3,y =2. ∴y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3.20.(2018·长沙模拟)已知函数f(x)=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′(x ).程序框图如图所示,若输出的结果S >2 0172 018,则判断框中可以填入的关于n 的判断条件是______.(填序号)①n ≤2 017?②n ≤2 018?③n >2 017? ④n >2 018?答案 ②解析 由题意得f ′(x )=3ax 2+x ,由f ′(-1)=0, 得a =13,∴f ′(x )=x 2+x ,即g (x )=1x 2+x =1x (x +1)=1x -1x +1. 由程序框图可知S =0+g (1)+g (2)+…+g (n ) =0+1-12+12-13+…+1n -1n +1=1-1n +1,由1-1n +1>2 0172 018,得n >2 017. 故可填入②.。

2019版高考数学大一轮复习江苏专版文档:第十三章 推理与证明、算法、复数13-2 含答案 精品

2019版高考数学大一轮复习江苏专版文档:第十三章 推理与证明、算法、复数13-2 含答案 精品

§13.2直接证明与间接证明考情考向分析本节主要内容是直接证明的方法——综合法和分析法,间接证明的方法——反证法,高考中一般不单独命题,会与其他知识综合在一起考查.1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明反证法:要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).这个过程包括下面3个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.(×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(3)用反证法证明结论“a>b”时,应假设“a<b”.(×)(4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )题组二 教材改编2.[P87习题T2]若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是________.答案 P >Q解析 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .3.[P87习题T7]设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,则a x +c y=________. 答案 2解析 由题意,得x =a +b 2,y =b +c 2,b 2=ac , ∴xy =(a +b )(b +c )4, a x +c y =ay +cx xy =a ·b +c 2+c ·a +b 2xy=a (b +c )+c (a +b )2xy =ab +bc +2ac 2xy=ab +bc +ac +b 22xy =(a +b )(b +c )2xy=(a +b )(b +c )2×(a +b )(b +c )4=2. 题组三 易错自纠4.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是________.(填序号)①ac 2<bc 2;②a 2>ab >b 2;③1a <1b ;④b a >a b. 答案 ②解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .(*1)又ab -b 2=b (a -b )>0,∴ab >b 2,(*2)由(*1)(*2)得a 2>ab >b 2.5.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要作的假设是________________.答案 方程x 3+ax +b =0没有实根解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根.6.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是__________三角形.答案 钝角解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1.sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾. 所以假设不成立.假设△A 2B 2C 2是直角三角形,不妨设A 2=π2,则cos A 1=sin A 2=1,A 1=0,矛盾.所以△A 2B 2C 2是钝角三角形.题型一 综合法的应用1.已知m >1,a =m +1-m ,b =m -m -1,则a ,b 的大小关系为________. 答案 a <b解析 ∵a =m +1-m =1m +1+m , b =m -m -1=1m +m -1. 而m +1+m >m +m -1>0(m >1), ∴1m +1+m <1m +m -1, 即a <b .2.如果a a +b b >a b +b a 成立,则a ,b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .3.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数,∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a 2>abc >0成立. 上式两边同时取常用对数,得lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg abc , ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.题型二 分析法的应用典例 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22, 只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2). 由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2,即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝⎛⎭⎫x 1+x 22.证明 要证明f (x 1)+f (x 2)2≥f ⎝⎛⎭⎫x 1+x 22, 即证明12121212232)(32)32,22x x x x x x x x ++-⋅-+-≥ 因此只要证明12122121233()3(),2x x x x x x x x +-++-+≥ 即证明12122333,2x x x x ++≥因此只要证明12332x x + 由于当x 1,x 2∈R 时,1230,30x x>>,由基本不等式知12332x x +x 1=x 2时,等号成立.故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.跟踪训练 已知a >0,证明:a 2+1a 2- 2 ≥a +1a -2. 证明 要证a 2+1a 2-2≥ a +1a -2, 只需证a 2+1a2 ≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫ a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 2 2≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42, 只需证a +1a≥2. 因为a >0,a +1a ≥2显然成立(当a =1a=1时等号成立), 所以要证的不等式成立.题型三 反证法的应用命题点1 证明否定性命题典例 设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,则当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,②①-②,得(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1. (2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *,(a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.命题点2 证明存在性命题典例 已知在四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD ,AD ⊂平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题典例 已知M 是由满足下列条件的函数构成的集合:对任意f (x )∈M ,①方程f (x )-x =0有实数根;②函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x 4是不是集合M 中的元素,并说明理由; (2)集合M 中的元素f (x )具有下列性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根.(1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根0;②f ′(x )=12+cos x 4,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素. (2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β),满足f (β)-f (α)=(β-α)f ′(c ).因为f (α)=α,f (β)=β,且α≠β,所以f ′(c )=1.与已知0<f ′(x )<1矛盾.又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论;第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.跟踪训练 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ] 上的“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h (a )=b ,h (b )=a ,即⎩⎨⎧ 1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点. (1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性命题,存在性命题,唯一性命题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1),所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分](2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[8分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k, 因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[12分] 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.[14分]。

近年届高考数学大一轮复习第十三章推理与证明、算法、复数第2讲综合法、分析法、反证法练习理北师大版(

近年届高考数学大一轮复习第十三章推理与证明、算法、复数第2讲综合法、分析法、反证法练习理北师大版(

2019届高考数学大一轮复习第十三章推理与证明、算法、复数第2讲综合法、分析法、反证法练习理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第十三章推理与证明、算法、复数第2讲综合法、分析法、反证法练习理北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第十三章推理与证明、算法、复数第2讲综合法、分析法、反证法练习理北师大版的全部内容。

第2讲综合法、分析法、反证法一、选择题1.若a,b∈R,则下面四个式子中恒成立的是( )A.lg(1+a2)〉0B.a2+b2≥2(a-b-1)C。

a2+3ab>2b2D。

ab<错误!解析在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a -1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立。

答案B2。

用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( )A。

三个内角都不大于60°B.三个内角都大于60°C。

三个内角至多有一个大于60°D.三个内角至多有两个大于60°答案B3。

已知m〉1,a=错误!-错误!,b=错误!-错误!,则以下结论正确的是()A.a〉b B。

a〈bC.a=bD.a,b大小不定解析∵a=错误!-错误!=错误!,b=m-m-1=错误!.而m+1+错误!>错误!+错误!>0(m>1),∴错误!<错误!,即a<b。

答案B4。

分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c =0,求证错误!<错误!a"索的因应是()A。

2019届高考大一轮复习备考资料之数学人教A版全国用讲

2019届高考大一轮复习备考资料之数学人教A版全国用讲

§13.2直接证明与间接证明1.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.2.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )题组二 教材改编2.[P89T2]若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定答案 A解析 P 2=2a +13+2a 2+13a +42, Q 2=2a +13+2a 2+13a +40, ∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .3.[P91B 组T2]设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,则a x +cy 等于( )A .1B .2C .4D .6 答案 B解析 由题意,得x =a +b 2,y =b +c 2,b 2=ac ,∴xy =(a +b )(b +c )4,a x +c y =ay +cxxy =a ·b +c 2+c ·a +b 2xy =a (b +c )+c (a +b )2xy =ab +bc +2ac2xy=ab +bc +ac +b 22xy =(a +b )(b +c )2xy=(a +b )(b +c )2×(a +b )(b +c )4=2.题组三 易错自纠4.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >ab答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0, ∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.5.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要作的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故选A. 6.(2017·德州一模)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是__________三角形. 答案 钝角解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1.sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾.所以假设不成立.假设△A 2B 2C 2是直角三角形,不妨设A 2=π2,则cos A 1=sin A 2=1,A 1=0,矛盾.所以△A 2B 2C 2是钝角三角形.题型一 综合法的应用1.(2018·绥化模拟)设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2答案 D解析 ∵a >0,b >0,c >0, ∴⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b +⎝⎛⎭⎫c +1c ≥6, 当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 2.(2018·大庆质检)如果a a +b b >a b +b a 成立,则a ,b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .3.(2018·武汉月考)若a ,b ,c 是不全相等的正数,求证: lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞), ∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立. 上式两边同时取常用对数,得 lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理. 题型二 分析法的应用典例 (2018·长沙模拟)已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立,因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22,因此只要证明12332x x +-(x 1+x 2)≥1223x x +-(x 1+x 2),即证明12332x x +≥1223x x +,因此只要证明12332x x +由于当x 1,x 2∈R 时,13x>0,23x>0,由基本不等式知12332x x +当且仅当x 1=x 2时,等号成立.故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证. 跟踪训练 已知a >0,证明:a 2+1a 2- 2 ≥a +1a-2.证明 要证a 2+1a 2-2≥ a +1a-2,只需证a 2+1a2 ≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 2 2≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42, 只需证a +1a≥2.因为a >0,a +1a ≥2显然成立(当a =1a =1时等号成立),所以要证的不等式成立.题型三 反证法的应用命题点1 证明否定性命题典例 (2018·株州月考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n ,则 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. ∴假设不成立,故{a n +1}不是等比数列.命题点2 证明存在性命题典例 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题典例 (2018·宜昌模拟)已知M 是由满足下列条件的函数构成的集合:对任意f (x )∈M ,①方程f (x )-x =0有实数根;②函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x 4是不是集合M 中的元素,并说明理由;(2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根.(1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根0; ②f ′(x )=12+cos x4,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素.(2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β), 满足f (β)-f (α)=(β-α)f ′(c ).因为f (α)=α,f (β)=β,且α≠β,所以f ′(c )=1. 与已知0<f ′(x )<1矛盾. 又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤: 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.跟踪训练 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知, g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3.因为b >1,所以b =3.(2)假设存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ] 上的“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.反证法在证明题中的应用典例 (12分)(2018·衡阳调研)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性命题,存在性命题,唯一性命题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1),所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[10分]所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.[12分]1.(2018·岳阳调研)已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤A D .C ≤B ≤A答案 A解析 因为a +b 2≥ab ≥2aba +b ,又f (x )=⎝⎛⎭⎫12x在R 上是单调减函数, 故f⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2ab a +b .2.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.3.(2017·郑州模拟)设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则( )A .P >QB .P <QC .P ≤QD .P ≥Q答案 A解析 因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x+cos x )2=1+sin 2x ,而sin 2x ≤1,所以Q ≤2.于是P >Q .故选A.4.①已知p 3+q 3=2,证明:p +q ≤2.用反证法证明时,可假设p +q ≥2;②若a ,b ∈R ,|a |+|b |<1,求证:方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( ) A .①与②的假设都错误 B .①的假设正确;②的假设错误 C .①与②的假设都正确D .①的假设错误;②的假设正确 答案 D解析 对于①,结论的否定是p +q >2,故①中的假设错误;对于②,其假设正确,故选D. 5.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |答案 D解析 ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0, |a |+|b |=|a +b |.6.(2018·济宁模拟)设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1. 其中能推出:“a ,b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③ D .③④⑤ 答案 C解析 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出; 若a =-2,b =-3,则a 2+b 2>2,故④推不出; 若a =-2,b =-3,则ab >1,故⑤推不出; 对于③,即a +b >2,则a ,b 中至少有一个大于1, 下面用反证法证明: 假设a ≤1且b ≤1, 则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.7.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________.答案 a ,b 都不能被5整除8.(2018·邢台调研)6+7与22+5的大小关系为______________. 答案6+7>22+ 5解析 要比较6+7与22+5的大小, 只需比较(6+7)2与(22+5)2的大小, 只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5. 9.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________________________________________________________________________. 答案 c n +1<c n 解析 由条件得 c n =a n -b n =n 2+1-n =1n 2+1+n,则c n 随n 的增大而减小,∴c n +1<c n .10.(2017·武汉联考)已知直线l ⊥平面α,直线m ⊂平面β,有下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β. 其中正确命题的序号是________. 答案 ①③ 解析 ①⎭⎪⎬⎪⎫l ⊥αα∥β⇒l ⊥β, 又∵m ⊂β,∴l ⊥m ,①正确;②⎭⎪⎬⎪⎫l ⊥αα⊥β⇒l ∥β或l ⊂β, ∴l ,m 平行、相交、异面都有可能,故②错误; ③⎭⎪⎬⎪⎫l ∥m l ⊥α⇒m ⊥α, 又m ⊂β,∴β⊥α,故③正确; ④⎭⎪⎬⎪⎫l ⊥αl ⊥m ⇒m ⊂α或m ∥α. 又m ⊂β,∴α,β可能相交或平行,故④错误.11.(2017·黄冈模拟)设数列{a n }的前n 项和为S n ,且(3-m )S n +2ma n =m +3(n ∈N *).其中m 为常数,且m ≠-3且m ≠0. (1)求证:{a n }是等比数列;(2)若数列{a n }的公比q =f (m ),数列{b n }满足b 1=a 1,b n =32f (b n -1)(n ∈N *,n ≥2),求证:⎩⎨⎧⎭⎬⎫1b n 为等差数列.证明 (1)由(3-m )S n +2ma n =m +3, 得(3-m )S n +1+2ma n +1=m +3.两式相减,得(3+m )a n +1=2ma n ,m ≠-3且m ≠0, ∴a n +1a n =2mm +3,∴{a n }是等比数列. (2)∵(3-m )S n +2ma n =m +3, ∴(3-m )a 1+2ma 1=m +3,∴a 1=1. b 1=a 1=1,q =f (m )=2mm +3,∴当n ∈N *且n ≥2时, b n =32f (b n -1)=32·2b n -1b n -1+3,得b n b n -1+3b n =3b n -1,即1b n -1b n -1=13.∴⎩⎨⎧⎭⎬⎫1b n 是首项为1,公差为13的等差数列.12.(2017·北京)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数. (1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c nn >M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列. (1)解 c 1=b 1-a 1=1-1=0, c 2=max{b 1-2a 1,b 2-2a 2} =max{1-2×1,3-2×2}=-1, c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3} =max{1-3×1,3-3×2,5-3×3}=-2. 当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0, 所以b k -na k 在k ∈N *上单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n . 所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1, 所以{c n }是等差数列.(2)证明 设数列{a n }和{b n }的公差分别为d 1,d 2, 则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n =b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧b 1-a 1n +(n -1)(d 2-nd 1),d 2>nd 1,b 1-a 1n ,d 2≤nd 1.①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2,因此,c n =b 1-a 1n ,此时,c m ,c m +1,c m +2,…是等差数列. ②当d 1=0时,对任意n ≥1, c n =b 1-a 1n +(n -1)max{d 2,0} =b 1-a 1+(n -1)(max{d 2,0}-a 1). 此时,c 1,c 2,c 3,…,c n ,…是等差数列. ③当d 1<0时,当n >d 2d 1时,有nd 1<d 2,所以c n n =b 1-a 1n +(n -1)(d 2-nd 1)n=n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|. 对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c nn>M .13.(2018·长春模拟)若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________. 答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32,故满足题干要求的p 的取值范围为⎝⎛⎭⎫-3,32. 14.设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y +xy .证明 由于x ≥1,y ≥1, 所以要证明x +y +1xy ≤1x +1y +xy ,只需证xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1). 因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.15.(2018·中山模拟)已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *), 则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r ,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立,矛盾. 所以假设不成立,原命题得证.16.(2017·江苏)对于给定的正整数k,若数列{a n}满足a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.证明(1)因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.。

2019年高考一轮复习第十三章算法初步,推理证明

2019年高考一轮复习第十三章算法初步,推理证明

第十三章算法初步、推理与证明一考试说明1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.3.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.4.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.5.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.6.了解反证法的思考过程和特点.7.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.二.考情分析13.1 算法初步知识点梳理1.算法的概念及特点(1)算法的概念在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)算法的特点之一是具有确定性,即算法中的每一步都应该是确定的,并能有效地执行,且得到确定的结果,而不应是模棱两可的;其二是具有有序性,即算法步骤明确,前一步是后一步的前提,只有执行完前一步才能进行后一步,并且每一步都准确无误才能解决问题;其三是具有有穷性,即一个算法应该在有限步操作后停止,而不能是无限的;另外,算法还具有不唯一性和普遍性,即对某一个问题的解决不一定是唯一的,可以有不同的解法,一个好的算法应解决的是一类问题而不是一两个问题.2.程序框图(1)程序框图的概念程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)构成程序框图的图形符号、名称及其功能3.(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的基本结构.顺序结构可用程序框图表示为如图所示的形式.(2)条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.常见的条件结构可以用程序框图表示为如图所示的两种形式.(3)循环结构在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体循环结构有如下两种形式:①如图1,这个循环结构有如下特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.因此,这种循环结构称为直到型循环结构.②如图2表示的也是常见的循环结构,它有如下特征:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.因此,这种循环结构称为当型循环结构.4.输入(INPUT)语句输入语句的一般格式:INPUT..............“提示内容”;变量要求:(1)输入语句要求输入的值是具体的常量;(2)提示内容提示用户输入的是什么信息,必须加双引号,“提示内容”原原本本地在计算机屏幕上显示,提示内容与变量之间要用分号隔开;(3)一个输入语句可以给多个变量赋值,中间用“,”分隔.5.输出(PRINT)语句输出语句的一般格式:PRINT...............“提示内容”;表达式功能:实现算法输出信息(表达式).要求:(1)表达式是指算法和程序要求输出的信息;(2)提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开;(3)如输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.6.赋值语句赋值语句的一般格式:变量=表达式.赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样.作用:赋值语句的作用是将表达式所代表的值赋给变量.要求:(1)赋值语句左边只能是变量,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的.(2)赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”“B=A”的含义和运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B 是对的.(3)不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等).7.条件语句(1)“IF—THEN”语句格式:IF 条件THEN语句体END IF说明:当计算机执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END IF之后的语句.(2)“IF—THEN—ELSE”语句格式:说明:当计算机执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2.8.循环语句(1)直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件(2)当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND基础自测12.1算法初步1.[教材改编] 执行如图10­63­5所示的程序框图,若输入的t=0.02,则输出的n=________.图10­63­5 图10­63­62.[教材改编] 某算法的程序语段如图10­63­6所示,若输出y的值为3,则输入x的值为________.3.若[x]表示不超过x的最大整数,执行如图10­63­7所示的程序框图,则输出S的值为________.图10­63­7 图10­63­84.如图10­63­8所示是计算12+14+16+…+14030+14032的值的程序框图,其中判断框内应填入的条件是________.题组三常考题5.[2016·北京卷改编] 执行如图10­63­9所示的程序框图,若输入的a值为1,则输出的k值为________.图10­63­9 图10­63­106.[2016·山东卷] 执行图10­63­10所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.7.[2015·全国卷Ⅱ改编] 如图10­63­11所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =________.图10­63­11易错点:注意循环结构中控制循环的条件;注意区分程序框图是条件结构还是循环结构. 解析1.6 [解析] 第一次执行循环体后,s =12,m =14,n =1;第二次执行循环体后,s =14,m =18,n =2;…;第六次执行循环体后,s =164,m =1128,n =6,满足退出循环的条件,故输出的n =6.2.8 [解析] 所给算法程序语段的意义是求函数y =⎩⎪⎨⎪⎧x +2,x ≤0,log 2x ,x>0 的值.当输出y 的值为3时,若输入的x ≤0,则x +2=3,解得x =1,不合题意,舍去;若输入的x>0,则log 2x =3,解得x =8.综上所述,输入x 的值为8.3.7 [解析] 结合算法流程图可以看出,当n =8>6时,输出S =[0]+[2]+[4]+[6]+[8]=7. 4.i ≤4032?(答案不唯一) [解析] 当i =4032时,S =12+14+16+…+14030+14032,当i =4034时,结束循环,因此可填“i ≤4032?”.5.2 [解析] 输入a =1,当k =0时,b =1,a =-12,不满足a =b ;当k =1时,a =-2,不满足a =b ;当k =2时,a =1,满足a =b ,结束循环,输出的k 值是2.6.3 [解析] 当i =1时,a =1,b =8;当i =2时,a =3,b =6;当i =3时,a =6,b =3,满足条件.故输出i 的值为3.7.2 [解析] 逐一写出循环:a =14,b =18→a =14,b =4→a =10,b =4→a =6,b =4→a =2,b =4→a =2,b =2,结束循环.高考真题13.1算法1. 下列各式中的S 值不可以用算法求解的是( )A .S =1+2+3+4B .S =12+22+32+…+1002C .S =1+12+13+…+110 000D .S =1+2+3+4+…解:由算法的有限性知,D 不正确,而A ,B ,C 都可以通过有限步骤操作,输出确定结果,故选D. 2. 下面程序运行后输出结果是3,则输入的x 值一定是( )A .3B .-3C .3或-3D .0解:该程序语句是求函数y =|x |的函数值,因为y =3,所以x =±3.故选C.3. (2015·重庆)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是()A .s ≤34B .s ≤56C .s ≤1112D .s ≤2524解:第一次循环,得k =2,s =12;第二次循环,得k =4,s =12+14=34;第三次循环,得k =6,s =34+16=1112;第四次循环,得k =8,s =1112+18=2524,此时退出循环,输出k =8,所以判断框内可填入的条件是s ≤1112.故选C.4. 下列循环语句,循环终止时,n =____________.n =2WHILE n<=7n =n +1WEND解:该循环语句是当型循环语句,循环终止时,条件n ≤7开始不成立,故填8.5. (2016·山东)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为__________.解:输入a =0,b =9,第一次循环:a =0+1=1,b =9-1=8,i =1+1=2; 第二次循环:a =1+2=3,b =8-2=6, i =2+1=3;第三次循环:a =3+3=6,b =6-3=3,a >b 成立,故输出i 的值为3.故填3.6.[2016·全国卷Ⅰ] 执行下图的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x[解析] C 第一次运行程序,n =1,x =0,y =1;第二次运行程序,n =2,x =12,y =2;第三次运行程序,n =3,x =32,y =6,此时满足条件x 2+y 2≥36,输出x =32,y =6,满足y =4x.7.[2016·全国卷Ⅱ] 中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( )A.7 B.12C.17 D.34[解析] C第一次运算,a=2,s=2,k=1,不满足k>n;第二次运算,a=2,s=2×2+2=6,k=2,不满足k>n;第三次运算,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17.8.[2016·全国卷Ⅲ] 执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4C.5 D.6[解析] B当n=1时,s=6;当n=2时,s=10;当n=3时,s=16;当n=4时,s=20,故输出的n=4.9.[2015·全国卷Ⅰ] 执行如图所示的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .8[解析] C 逐次写出循环过程: S =1-12=12,m =14,n =1,S>0.01;S =12-14=14,m =18,n =2,S>0.01; S =14-18=18,m =116,n =3,S>0.01; S =18-116=116,m =132,n =4,S>0.01; S =116-132=132,m =164,n =5,S>0.01; S =132-164=164,m =1128,n =6,S>0.01; S =164-1128=1128,m =1256,n =7,S<0.01,循环结束.故输出的n 值为7. 10.[2015·全国卷Ⅱ] 如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .14[解析] B 逐一写出循环:a =14,b =18→a =14,b =4→a =10,b =4→a =6,b =4→a =2,b =4→a =2,b =2,结束循环.故选B .11.[2014·新课标全国卷Ⅰ] 执行如图所示的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A .203B .165C .72D .158[解析] D 逐次计算,依次可得:M =32,a =2,b =32,n =2;M =83,a =32,b =83,n =3;M =158,a =83,b =158,n =4.此时输出M ,故输出的是158. 12.[2016·四川卷] 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )A .9B .18C .20D .35[解析] B 初始值n =3,x =2,程序运行过程依次为 i =2,v =1×2+2=4,i =1; v =4×2+1=9,i =0; v =9×2+0=18,i =-1, 跳出循环,输出v =18.13.[2016·天津卷] 阅读如图所示的程序框图,运行相应的程序,则输出S 的值为( )A .2B .4C .6D .8[解析] B 第一次执行循环体后S =8,n =2;第二次执行循环体后S =2,n =3;第三次执行循环体后S =4,n =4,满足n>3,结束循环.故输出S =4.14.[2016·北京卷] 执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A .1B .2 C..3 D .4[解析] B 输入a =1,当k =0时,b =1,a =-12,不满足a =b ;当k =1时,a =-2,不满足a =b ;当k =2时,a =1,满足a =b ,结束循环,输出的k 值是2.15.[2016·山东卷] 执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.[答案] 3[解析] 当i=1时,a=1,b=8;当i=2时,a=3,b=6;当i=3时,a=6,b=3,满足条件.故输出i的值为3.关键知识点及典型例题讲解类型一算法的概念例1. 下列语句是算法的个数为( )①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否为大树;④已知三角形的两边及夹角,利用三角形的面积公式求出该三角形的面积.A.1 B.2 C.3 D.4解:①中勾画了从济南到巴黎的行程安排,完成了任务;②中节约时间,烧水泡茶完成了任务;③中对“树的大小”没有明确的标准,无法完成任务,不是有效的算法构造;④是纯数学问题,利用三角形的面积公式求出三角形的面积.故选C.【总结】算法过程要做到一步一步地执行,每一步执行的操作必须确切,不能含糊不清,且在有限步后必须得到问题的结果.例2. 下列叙述能称为算法的个数为( )①植树需要运苗、挖坑、栽苗、浇水这些步骤;②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从宜昌乘火车到武汉,从武汉乘飞机到北京;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….A.2 B.3 C.4 D.5解:①②③可称为算法,④⑤不是,故选B.类型二经典算法例3. “韩信点兵”问题.韩信是汉高祖刘邦手下的大将,为了保守军事机密,他在点兵时采用下述方法:先令士兵从1~3报数,结果最后一个士兵报2;再令士兵从1~5报数,结果最后一个士兵报3;又令士兵从1~7报数,结果最后一个士兵报4.这样,韩信很快就知道了自己部队士兵的总人数.请设计一个算法,求出士兵至少有多少人.解:在本题中,士兵从1~3报数,最后一个士兵报2,说明士兵的总人数是除以3余2,其他两种情况依此类推.(算法一)步骤如下:第一步:先确定最小的满足除以7余4的数是4;第二步:依次加7就得到所有满足除以7余4的数:4,11,18,25,32,39,46,53,60,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:18;第四步:依次加上35,得18,53,88,…;第五步:在第四步得到的一列数中,找到最小的满足除以3余2的正整数:53,这就是我们要求的数.(算法二)步骤如下:第一步:先确定最小的满足除以3余2的数是2;第二步:依次加3就得到所有满足除以3余2的数:2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,…;第三步:在第二步所得的一列数中确定最小的满足除以5余3的正整数:8;第四步:然后依次加15就得8,23,38,53,…,不难看出,这些数既满足除以3余2,又满足除以5余3;第五步:在第四步所得的一列数中找到满足除以7余4的最小数是53,这就是我们要求的数. 【总结】给出一个问题,设计算法时要注意:(1)认真分析问题,研究解决此问题的一般方法;(2)将解决问题的过程分解成若干步骤;(3)用简练的语言将各步骤表示出来;(4)把解题过程条理清楚地表达出来,就得到一个明确的算法.对于同一问题,可以设计不同的算法,其最终的结果是一样的,但解决问题的繁简程度不同,我们要寻找最优算法.例4 一位商人有9枚银元,其中有一枚略轻的是假银元.请设计一种算法,用天平(不用砝码)将假银元找出来. 解:算法如下:第一步:把银元分成3组,每组3枚;第二步:先将两组分别放在天平的两边,如果天平不平衡,那么假银元就在轻的那一组;如果天平左右平衡,则假银元就在未称的第3组内;第三步:取出含假银元的那一组,从中任取两枚银元放在天平的两边.如果左右不平衡,则轻的那一边就是假银元;如果天平两边平衡,则未称的那一枚就是假银元. 类型三 顺序结构例4 已知点P (x 0,y 0)和直线l :Ax + By +C =0,求点P (x 0,y 0)到直线l 的距离d ,写出其算法并画出流程图. 解:算法如下:第一步:输入x 0,y 0及直线方程的系数A ,B ,C . 第二步:计算z 1=Ax 0+By 0+C . 第三步:计算z 2=A 2+B 2. 第四步:计算d =||z 1z 2.第五步:输出d . 流程图如图所示.【总结】顺序结构是一种最简单、最基本的结构,可严格按照传统的解题思路写出算法步骤,画出程序框图.注意语句与语句之间,框与框之间是按从上到下的顺序进行的.例6阅读如图所示的程序框图,若输入的a ,b ,c 的值分别是21,32,75,则输出的a ,b ,c 分别是( )A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21解:该程序框图的执行过程是:输入21,32,75;x=21;a=75;c=32;b=21;输出75,21,32.故选A.类型四条件结构例7(2016·天津)阅读如图所示的程序框图,运行相应的程序,则输出S的值为( )A.2 B.4 C.6 D.8解:第一次循环,S=8,n=2;第二次循环,S=2,n=3;第三次循环,S=4,n=4,故输出S的值为4.故选B.【总结】条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构.例8 (2015·全国卷Ⅱ)如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0 B.2 C.4 D.14解:执行该程序,输入a,b的值依次为a=14,b=18;a=14,b=4;a=10,b=4;a=6,b=4;a=2,b=4;a=b=2,此时退出循环,输出的a=2.故选B.类型五循环结构例9 (2016·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7 B.12 C.17 D.34解:由题意,当x=2,n=2,k=0,s=0时,输入a=2,则s=0×2+2=2,k=1,循环;输入a=2,则s=2×2+2=6,k=2,循环;输入a=5,s=6×2+5=17,k=3>2,结束.故输出的s=17.故选C.【总结】解决此类型问题时要注意:①要明确是当型循环结构,还是直到型循环结构,根据各自的特点执行循环体;②要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;③要明确循环体终止的条件是什么,会判断什么时候终止循环体.例10. (2016·四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.9 B.20 C.18 D.35解:该程序框图的执行过程如下:i=2,v=1×2+2=4,i=1;v=4×2+1=9,i=0;v=9×2+0=18,i=-1,此时输出v=18.故选C.类型六输入、输出和赋值语句例10 请写出下面运算输出的结果.(1)a=5b=3c=(a+b)/2d=c*cPRINT “d=”;d(2)a=1b=2c=a+bb=a+c-bPRINT “a=,b=,c=”;a,b,c(3)a=10b=20c=30a=bb=cc=aPRINT “a=,b=,c=”;a,b,c解:(1)语句“c=(a+b)/2”是将a,b之和的一半赋值给变量c,语句“d=c*c”是将c的平方赋值给d,最后输出d的值.故输出结果为d=16.(2)语句“c=a+b”是将a,b之和赋值给c,语句“b=a+c-b”是将a+c-b的值赋值给了b.故输出结果为a=1,b=2,c=3.(3)经过语句“a=b”后a,b,c的值是20,20,30,经过语句“b=c”后a,b,c的值是20,30,30,经过语句“c=a”后a,b,c的值是20,30,20.故输出结果为a=20,b=30,c=20. 【总结】①将一个变量的值赋给另一个变量,前一个变量的值保持不变;②可先后给一个变量赋多个不同的值,但变量的取值总是最后被赋予的值.例11 阅读下列两个程序,回答问题:①x =3y =4x =y ②x =3y =4y =x①中程序输出的x 值为__________,②中程序输出的y 值为__________.解:程序①中的x =y 是将y 的值4赋给x ,赋值后x 的值变为4;②中y =x 是将x 的值3赋给y ,赋值后y 的值为3.故填4;3. 类型七 条件语句例12 已知函数y =⎩⎪⎨⎪⎧x 2-1,x ≥0,2x 2-5,x <0,画出程序框图并编写一个程序,对每输入的一个x 值,都得到相应的函数值.解:程序框图如下.程序如下.【总结】条件语句:“IF ­THEN ”及“IF ­THEN ­ELSE ”的用法在“考点梳理”栏有说明,需要注意的是,若是三段或三段以上的分段函数,通常需用条件语句的嵌套结构.例13.编写程序,使得任意输入的3个整数按从小到大的顺序输出.解:算法分析:用a ,b ,c 表示输入的3个整数,为了节约变量,把它们重新排列后,仍用a ,b ,c 表示, 并使a ≤b ≤c .具体操作步骤如下. 第一步:输入3个整数a ,b ,c .第二步:将a 与b 比较,并把大者赋给b ,小者赋给a .第三步:将a 与c 比较,并把大者赋给c ,小者赋给a (此时a 已是三者中最小的).第四步:将b 与c 比较,并把大者赋给c ,小者赋给b (此时a ,b ,c 已按从小到大的顺序排列好). 第五步:按顺序输出a ,b ,c .上述操作步骤可以用程序框图直观地表达出来.程序框图如图.根据程序框图,写出计算机程序为:类型八循环语句例14 若下面程序中输入的n值为2 017,则输出的值为____________.解:本程序是计算S =11×2+2×3+…+n (n +1).裂项得S =⎝ ⎛⎭⎪⎫1-2+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1.所以当n =2 017时,S =2 0172 018.故填2 0172 018.【总结】计算机执行此程序时,遇到WHILE 语句,先判断条件是否成立,如果成立,则执行WHILE 和WEND 之间的循环体,然后返回到WHILE 语句再判断上述条件是否成立,直至返回到WHILE 语句判断上述条件不成立为止,这时不再执行循环体,而执行WEND 后面的语句,这是当型循环.变式8 计算12+22+32+…+1002的值,分别用WHILE 型语句和UNTIL 型语句编写程序. 解: WHILE 型:WHILE 型:类型九 算法的交汇性问题1 与统计的交汇问题例15 如图10-63-16(1)是某县参加2016年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在[160,180)内的学生人数,则在程序框图中的判断框内应填写( )A .i <6?B .i <7?C .i <8?D .i <9?图10-63-16解析:从条形统计图可以看出身高的分布,因为要统计身高在[160,180)内的学生人数,所以4≤i ≤7.C [解析] 统计身高在[160,180)内的学生人数,即求A 4+A 5+A 6+A 7的值.当4≤i ≤7时,符合要求,故选C .【总结】 与统计交汇的程序框图问题,多体现在将统计的图表知识(如频率分布直方图、茎叶图等)与程序框图交汇在一起,解决此类问题时应根据题意读懂统计的图表数据后,再根据程序框图的算法进行推理演算.例16. [2016·九江三模] 设x 1=18,x 2=19,x 3=20,x 4=21,x 5=22,将这五个数据依次输入到图10-63-17所示的程序框图中进行计算,则输出的S 值及其统计意义分别是( )图10-63-17A .S =2,即5个数据的方差为2B .S =2,即5个数据的标准差为2C .S =10,即5个数据的方差为10D .S =10,即5个数据的标准差为10解析:A [解析] 由题意知S =15×[(18-20)2+(19-20)2+(20-20)2+(21-20)2+(22-20)2]=2,故选A .2 与函数的交汇问题例17 [2016·华南师大附中月考] 阅读如图10-63-18所示的程序框图,若输出的函数值在区间⎣⎡⎦⎤14,12内,则输入的实数x 的取值范围是( )图10-63-18A .(-∞,2]B .[-2,-1]C .[-1,2]D .[2,+∞)解析 考查分段函数f(x)=⎩⎪⎨⎪⎧2x ,-2≤x ≤2,2,x<-2或x>2, 由2x ∈⎣⎡⎦⎤14,12求出x 的取值范围. B [解析] 由程序框图可得分段函数f(x)=⎩⎪⎨⎪⎧2x ,-2≤x ≤2,2,x<-2或x>2.令2x ∈⎣⎡⎦⎤14,12 ,则x ∈[-2,-1],满足题意,故选B .【总结】与函数交汇的程序框图问题,常见的是条件结构的应用,考查分段函数的求值问题,读图时应正确理解题意,根据相应条件选择与之对应的运算法则求值.例18. [2016·海南中学模拟] 某程序框图如图10-63-19所示,若该程序运行后输出的值是1,则正整数n的值是( )图10-63-19A .3B .4C .5D .6C [解析] 由题意得,(lg m)2log m 4m +(lg 2)2=lg m lg 4m +(lg 2)2=(lg m)2+2lg 2lg m +(lg 2)2 =(lg m +lg 2)2=(lg 2m)2=1,所以lg 2m =-1或lg 2m =1,所以m =120或m =5,因为m 是整数,所以m =5,所以n =5.3 与数列求和的交汇问题例19 [2016· 临汾一中月考] 执行如图10-63-20所示的程序框图,若输入n =10,则输出的S 值等于( )图10-63-20A.511B.2021C.1021D.1011[思路点拨] 根据程序框图,依次列举出每次循环的结果,从而确定输出值. A [解析] 由题意得,S =122-1+142-1+162-1+182-1+1102-1=11×3+13×5+15×7+17×9+19×11=12×⎝⎛⎭⎫1-13+13-15+…+19-111=511. 【总结】 与数列求和交汇的程序框图问题,解题关键取决于两个方面:一是循环结构的识图、推理,将其输出结果呈现为一个数列求和的形式;二是结合数列求和的知识对结果进行求和运算.常见题型为等差、等比数列求和,裂项相消法求和以及周期分组求和.例20. [2016·漳州模拟] 执行如图10-63-21所示的程序框图,若输出的结果是3132,则输入的a 为( )图10-63-21A .6B .5C .4D .3B [解析] 当n =1时,S =12;当n =2时,S =12+122=34;…;当n =4时,S =12+122+123+124=1516;当n =5时,S =12+122+123+124+125=3132,此时输出S ,故4<a ≤5,所以选B .章节归纳小结1.设计算法时,要根据题目进行选择,以简单、程序短、易于在计算机上执行为原则.2.画程序框图首先要进行结构选择,套用格式.若求只含有一个关系式的函数的函数值时,只用顺序结构就能够解决;若是分段函数或执行时需要先判断才能执行后继步骤的,就必须引入条件结构;如果问题涉及的运算进行了许多重复的步骤,有规律,就可引入变量,应用循环结构.当然,应用循环结构一定要用到顺序结构与条件结构.3.循环结构的循环控制通过累加变量记录循环次数,通过判断框决定循环终止与否.用循环结构来描述算法,在画出算法程序框图之前,需要确定的三件事是:(1)确定循环变量与初始条件;(2)确定循环体;(3)确定终止条件.注意直到型循环与当型循环的区别,二者判断框内的条件表述在解决同一问题时恰好相反.解决循环结构框图问题,当循环次数比较少时,可依次列出;当循环次数较多时,可先循环几次,找出规律.要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误.4.在具体绘制程序框图时,要注意以下几点:(1)流程线上要标有执行顺序的箭头.(2)判断框后边的流程线应根据情况标注“是(Y)”或“否(N)”.(3)框图内的内容包括累加(积)变量初始值,计数变量初始值,累加值,前后两个变量的差值都要仔细斟酌,不能有丝毫差错.(4)判断框内条件常用“>”“≥”“<”“≤”“=”等符号,它们的含义是各不相同的,要根据所选循环结构的类型,正确地进行选择.5.当型循环与直到型循环的区别(1)WHILE型是先判断条件,后执行循环体,而UNTIL型则是先执行循环体,后判断条件;(2)WHILE型是当条件满足时执行循环体,不满足时结束循环,而UNTIL型则是条件不满足时执行循环体,条件满足时结束循环;(3)UNTIL型至少执行一次循环体,而WHILE型执行循环体的次数可能为0.课时作业12.1算法1.结合下面的算法:第一步:输入x.第二步:判断x是否小于0,若是,则输出x+2,否则执行第三步.第三步:输出x-1.当输入的x的值为-1,0,1时,输出的结果分别为( )A.-1,0,1 B.-1,1,0C.1,-1,0 D.0,-1,1解:根据x值与0的关系,选择执行不同的步骤,当x的值为-1,0,1时,输出的结果分别为1,-1,0,故选C.2.如图的程序框图输出的结果是( )A.4 B.3 C.2 D.0解:该算法首先将1,2,3三个数分别赋给x,y,z;然后先让x取y的值,即x变成2,再让y取x 的值,即y的值是2,接着让z取y的值,即z的值为2,从而最后输出z的值为2.故选C.3.读程序回答问题.甲乙A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同解:甲、乙两程序显然不同,但都是求1+ 2+…+1000的和,所以结果相同,故选B.4.下列程序语句是求函数y=|x-4|+1的函数值,则①处为( )。

近年届高考数学大一轮复习第十三章推理与证明、算法、复数13.1归纳与类比学案理北师大版(2021年

近年届高考数学大一轮复习第十三章推理与证明、算法、复数13.1归纳与类比学案理北师大版(2021年

2019届高考数学大一轮复习第十三章推理与证明、算法、复数13.1 归纳与类比学案理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第十三章推理与证明、算法、复数13.1 归纳与类比学案理北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第十三章推理与证明、算法、复数13.1 归纳与类比学案理北师大版的全部内容。

§13.1归纳与类比最新考纲考情考向分析1。

了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2。

了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.以理解类比推理、归纳推理和演绎推理的推理方法为主,常以演绎推理的方法根据几个人的不同说法作出推理判断进行命题.注重培养学生的推理能力;在高考中以填空题的形式进行考查,属于中、高档题.1.归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体,由个别到一般的推理.归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′。

推荐2019届高三数学(理 新课标)一轮复习课件第十三章 选考内容13.1

推荐2019届高三数学(理 新课标)一轮复习课件第十三章 选考内容13.1

-y=4 变成 x′-y′=2 的伸缩变换是( )
x′=x, A.y′=2y
B.x′=12x, y′=y
x′=x, C.y′=12y
D.x′=12x, y′=4y
解:设其伸缩变换为 φ:xy′′==λμxy
(λ>0), (μ>0),
则λx-μy=2,2λx-2μy=4,于是2-λ=2μ2=,-1,
直线 2ρcosθ =1 与圆 ρ=2cosθ 相交的弦长
为( )
A.1
B. 2
C. 3
D.2
解:直线的方程为 2x=1,即 x=12,圆的方程为(x
-1)2+y2=1,圆心为(1,0),半径 r=1,圆心到直线的
距离为 d=12.设所求的弦长为 l,则 12=122+2l 2,解得
解:①将 x=ρcosθ,y=ρsinθ代入 y2=4x,得(ρsinθ)2 =4ρcosθ.化简得 ρsin2θ=4cosθ.
②当 x≠0 时,由于 tanθ=yx,故 tanπ3 =yx= 3,化简得 y = 3x(x≠0);当 x=0 时,y=0.显然(0,0)在 y= 3x 上,故θ
=π3 (ρ∈R)的直角坐标方程为 y= 3x.
2.极坐标和直角坐标的互化 (1)把直角坐标系的原点作为极点,x 轴的正半轴作 为极轴,并在两种坐标系中取相同的长度单位.设 M 是 平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ, θ ).从图中可以得出它们之间的关系: __________________________. 由上式又得到下面的关系式: __________________________. 这就是极坐标与直角坐标的互化公式.
y′=3y
直线 2x+3y=0 变成直线 x′+y′=0.

2019版高考数学大一轮复习江苏专版文档:第十三章 推

2019版高考数学大一轮复习江苏专版文档:第十三章 推

1.(2015·江苏)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________.答案 5解析 ∵z 2=3+4i ,∴|z |2=|3+4i|=5,即|z |= 5.2.(2017·苏州模拟)已知复数z =1-i 2i,其中i 为虚数单位,则复数z 的虚部为________. 答案 -12解析 方法一 z =(1-i )i 2i·i =1+i -2=-12-12i , 所以z 的虚部为-12. 方法二 设z =a +b i(a ,b ∈R ),则2i(a +b i)=1-i ,即-2b +2a i =1-i ,所以-2b =1,得b =-12. 3.(2017·山东改编)已知a ∈R ,i 是虚数单位.若z =a +3i ,z ·z =4,则a =________. 答案 1或-1解析 ∵z ·z =4,∴|z |2=4,即|z |=2.∵z =a +3i ,∴|z |=a 2+3=2,∴a =±1.4.“复数z =3-a i i(a ∈R )在复平面内对应的点在第三象限”是“a ≥0”的________条件. 答案 充分不必要解析 z =3-a i i =(3-a i )(-i )-i·i=-a -3i. ∵z 在复平面内对应的点在第三象限,∴-a <0,解得a >0.∴“复数z =3-a i i在复平面内对应的点在第三象限”是“a ≥0”的充分不必要条件.5.若复数z =a +3i i+a 在复平面上对应的点在第二象限,则实数a 的取值范围为________. 答案 (-∞,-3)解析 因为z =a +3i i +a =(3+a )-a i 在复平面上对应的点在第二象限,所以⎩⎪⎨⎪⎧3+a <0,-a >0,解得a <-3.6.设z 1,z 2是复数,则下列命题中的真命题是________.(填序号)①若|z 1-z 2|=0,则z 1=z 2;②若z 1=z 2,则z 1=z 2;③若|z 1|=|z 2|,则z 1·z 1=z 2·z 2;④若|z 1|=|z 2|,则z 21=z 22.答案 ①②③解析 ①中,|z 1-z 2|=0,则z 1=z 2,故z 1=z 2,成立.②中,z 1=z 2,则z 1=z 2成立.③中,|z 1|=|z 2|,则|z 1|2=|z 2|2,即z 1z 1=z 2z 2,③正确.④不一定成立,如z 1=1+3i ,z 2=2,则|z 1|=2=|z 2|,但z 21=-2+23i ,z 22=4,z 21≠z 22.7.(2017·天津)已知a ∈R ,i 为虚数单位,若a -i 2+i为实数,则a 的值为________. 答案 -2解析 ∵a ∈R ,a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -1-(a +2)i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2. 8.(2017·浙江)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.答案 5 2解析 (a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i.得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2. 解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.9.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为________.答案 3或6解析 ∵M ∩N ={3},∴3∈M 且-1∉M ,∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意.10.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则b =________,c =________.答案 -2 3解析 ∵实系数一元二次方程x 2+bx +c =0的一个虚根为1+2i ,∴其共轭复数1-2i 也是方程的根.由根与系数的关系知,⎩⎨⎧(1+2i )+(1-2i )=-b ,(1+2i )(1-2i )=c ,∴b =-2,c =3.11.若3+b i 1-i=a +b i(a ,b 为实数,i 为虚数单位),则a +b =________. 答案 3解析 3+b i 1-i =(3+b i )(1+i )2=12[(3-b )+(3+b )i] =3-b 2+3+b 2i. ∴⎩⎨⎧ a =3-b 2,b =3+b 2,解得⎩⎪⎨⎪⎧a =0,b =3.∴a +b =3. 12.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i的点是________.答案 H解析 由题图知复数z =3+i ,∴z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i. ∴表示复数z 1+i的点为H .13.已知以复数-24+m i(m ∈R ,i 为虚数单位)的实部为首项,虚部为公差的等差数列{a n },当且仅当n =10时,其前n 项和最小,则实数m 的取值范围是________.答案 ⎝⎛⎭⎫125,83解析 由题意,知等差数列{a n }的首项a 1=-24,公差d =m .由当且仅当n =10时其前n 项和最小,知a 10=-24+9m <0,且a 11=-24+10m >0,解得125<m <83. 14.已知复数z =3+i (1-3i )2,z 是z 的共轭复数,则z ·z =________. 答案 14解析 由z =3+i -2(1+3i )=-34+14i ,得z =-34-14i , 所以z ·z =⎝⎛⎭⎫-34+14i ·⎝⎛⎭⎫-34-14i =316+116=14. 15.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C .若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是________.答案 1解析 由条件得OC →=(3,-4),OA →=(-1,2),OB →=(1,-1),根据OC →=λOA →+μOB →,得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),∴⎩⎪⎨⎪⎧ -λ+μ=3,2λ-μ=-4, 解得⎩⎪⎨⎪⎧λ=-1,μ=2,∴λ+μ=1. 16.已知复数z =b i(b ∈R ),z -21+i是实数,i 是虚数单位. (1)求复数z ; (2)若复数(m +z )2所表示的点在第一象限,求实数m 的取值范围.解 (1)因为z =b i(b ∈R ),所以z -21+i =b i -21+i =(b i -2)(1-i )(1+i )(1-i )=(b -2)+(b +2)i 2=b -22+b +22i. 又因为z -21+i是实数,所以b +22=0, 所以b =-2,即z =-2i.(2)因为z =-2i ,m ∈R ,所以(m +z )2=(m -2i)2=m 2-4m i +4i 2=(m 2-4)-4m i ,又因为复数(m +z )2所表示的点在第一象限,所以⎩⎪⎨⎪⎧m 2-4>0,-4m >0,解得m <-2,即m ∈(-∞,-2).17.若a 1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________. 答案 5解析 ∵a ,b ∈R ,且a 1-i =1-b i , 则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎪⎨⎪⎧ a =1-b ,0=1+b , ∴⎩⎪⎨⎪⎧a =2,b =-1, ∴|a +b i|=|2-i|=22+(-1)2= 5.18.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若复数x =1-i 1+i ,y =⎪⎪⎪⎪⎪⎪4i x i 2 x +i ,则y =________. 答案 -2解析 因为x =1-i 1+i =(1-i )22=-i , 所以y =⎪⎪⎪⎪⎪⎪4i x i 2 x +i =⎪⎪⎪⎪⎪⎪4i 12 0=-2. 19.设f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为________. 答案 3解析 f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…,∴集合{f (n )}中共有3个元素.20.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数. 这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由. 解 这样的虚数存在,z =-1-2i 或z =-2-i.设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i =a +b i +5(a -b i )a 2+b 2 =⎝⎛⎭⎫a +5a a 2+b 2+⎝⎛⎭⎫b -5b a 2+b 2i.∵z +5z 是实数,∴b -5b a 2+b 2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数, ∴a +3+b =0.②由⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1, 故存在虚数z ,z =-1-2i 或z =-2-i.。

2019届高考数学大一轮复习讲义:第十三章 系列4选讲 13.1 第2课时

2019届高考数学大一轮复习讲义:第十三章 系列4选讲 13.1 第2课时

解 由题意,以 OA 所在直线为 x 轴,过 O 点作 OA 的垂线为 y 轴,建立直角坐标系,
设 M(x,y),则 O(0,0),A(3,0).
|OM| 1
x2+y2 1
因为|MA|=2,即 x-32+y2=2,
化简得(x+1)2+y2=4,
所以点 M 的轨迹是以(-1,0)为圆心,2 为半径的圆.
直线 l 的普通方程为 2x+y-6=0. (2)曲线 C 上任意一点 P(2cos θ,3sin θ)到 l 的距离为
5 d= 5 |4cos θ+3sin θ-6|,
d 25 则|PA|=sin 30°= 5 |5sin(θ+α)-6|,
4 其中 α 为锐角,且 tan α=3.
22 5 当 sin(θ+α)=-1 时,|PA|取得最大值,最大值为 5 .
(2)依题意,圆心 C 到直线 l 的距离等于 2,
|1--2+m|

2 =2,
解得 m=-3±2 2.
2.在《圆锥曲线论》中,阿波罗尼奥斯第一次从一个对顶圆锥(直或斜)得到所有的圆锥曲
线,并命名了椭圆(ellipse)、双曲线(hyperboler)和抛物线(parabola),在这本晦涩难懂的书中 |PA|
( ) ( ) 2 3 2
2 32

- ,-
∴A 2 2 ,B 2 2 ,∴|AB|=2 5.
题型一 参数方程与普通方程的互化 1.在平面直角坐标系 xOy 中,圆 C 的参数方程为Error!(t 为参数).在极坐标系(与平面直 角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,直线 l 的
3.
5π 当 α= 6 时,|AB|取得最大值,最大值为 4.

高三数学一轮复习 131系列4选讲课件(北师大版)

高三数学一轮复习 131系列4选讲课件(北师大版)

首页
上页
下页
末页
第二章 函数与基本初等函数
4.圆的有关定理与性质 圆周角定理 一条弧所对的圆周角等于它所对的圆心 角的 一半 ;圆周角的度数等于它对弧的度数的一半 . 推论1 同弧或等弧所对的圆周角 相等 ;在同圆 或等圆中,相等的圆周角所对的弧 也相等 . 推论2 半圆(或直径)所对的圆周角是 直角 ;90°的 圆周角所对的弧是半圆 . 切线的判定定理 经过半径的外端并且垂直于这条半 径的直线是圆的 切线
首页
上页
下页
末页
第二章 函数与基本初等函数
首页
上页
下页
末页
第二章 函数与基本初等函数
[例 1] 如图,在△ABC 中,EF∥CD,∠AFE=∠B, AE=6,ED=3,AF=8.
(1)求 AC 的长; (2)求CBCD22的值.
[分析] 由EF∥CD可知,△AEF∽△ADC,或可用 平 行 线 分 线 段 成 比 例 定 理 ; 由 ∠ AFE = ∠ B 可 知 , △ACD∽△AFE∽△ABC.
首页
上页
下页
末页
第二章 函数与基本初等函数
首页
上页
下页
末页
第二章 函数与基本初等函数
通过近几年高考数据分析可以看出: 1.几何证明主要考查平行线截割定理、直角三角形 射影定理、圆周角定理、圆的切线的判定与性质、相交线 定理、圆内接四边形的性质与判定、切割线定理,以及利 用上述定理解决有关求解线段长、线段长度之比等题目, 题型以填空题和解答题为主,是选做题之一,难度为中档 题,主要考查了圆的切线问题.预测明年将仍会考查有关 圆中的计算和证明题.注意平时提高解题的综合水平,没 有必要完全受题型限制,要熟练掌握多种题型,以不变应 万变.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§13.1 坐标系与参数方程第1课时 坐标系最新考纲考情考向分析1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极坐标方程.会求伸缩变换,求点的极坐标和应用直线、圆的极坐标方程是重点,主要与参数方程相结合进行考查,以解答题的形式考查,难度中档.1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:Error!的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:Error!或Error!这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos θ(-π2≤θ<π2)圆心为,半径为r 的圆(r ,π2)ρ=2r sin θ(0≤θ<π)过极点,倾斜角为α的直线θ=α(ρ∈R ) 或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a (-π2<θ<π2)过点,与极轴平行的直线(a ,π2)ρsin θ=a (0<θ<π)题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( × )(2)若点P 的直角坐标为(1,-),则点P 的一个极坐标是.( √ )3(2,-π3)(3)在极坐标系中,曲线的极坐标方程不是唯一的.( √ )(4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( × )题组二 教材改编2.若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=,0≤θ≤1cos θ+sin θπ2B .ρ=,0≤θ≤1cos θ+sin θπ4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4答案 A解析 ∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1);∴ρ=.1sin θ+cos θ(0≤θ≤π2)3.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.B.(1,π2)(1,-π2)C .(1,0)D .(1,π)答案 B解析 方法一 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为.(1,-π2)方法二 由ρ=-2sin θ=2cos ,知圆心的极坐标为,故选B.(θ+π2)(1,-π2)题组三 易错自纠4.在极坐标系中,已知点P ,则过点P 且平行于极轴的直线方程是( )(2,π6)A .ρsin θ=1 B .ρsin θ=3C .ρcos θ=1D .ρcos θ=3答案 A解析 先将极坐标化成直角坐标表示,P 转化为直角坐标为x =ρcosθ=2cos(2,π6)=,y =ρsin θ=2sin =1,即(,1),过点(,1)且平行于x 轴的直线为y =1,再化π63π633为极坐标为ρsin θ=1.5.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为.答案 x 2+y 2-2y =0解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0.6.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.当△AOB 是等边三角形时,求a 的值.解 由ρ=4sin θ可得圆的直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=4.由ρsin θ=a 可得直线的直角坐标方程为y =a (a >0).设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示.由对称性知∠O ′OB =30°,OD =a .在Rt △DOB 中,易求DB =a ,33∴B 点的坐标为.(33a ,a)又∵B 在x 2+y 2-4y =0上,∴2+a 2-4a =0,(33a)即a 2-4a =0,解得a =0(舍去)或a =3.43题型一 极坐标与直角坐标的互化1.(2016·北京改编)在极坐标系中,已知曲线C 1:ρcos θ-ρsin θ-1=0,C 2:ρ=2cos θ.3(1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状;(2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离.解 (1)∵C 1:ρcos θ-ρsin θ-1=0,3∴x -y -1=0,表示一条直线.3由C 2:ρ=2cos θ,得ρ2=2ρcos θ,∴x 2+y 2=2x ,即(x -1)2+y 2=1.∴C 2是圆心为(1,0),半径为1的圆.(2)由(1)知,点(1,0)在直线x -y -1=0上,3∴直线C 1过圆C 2的圆心.因此两交点A ,B 的连线是圆C 2的直径.∴两交点A ,B 间的距离|AB |=2r =2.2.(1)以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,求曲线C 1和C 2交点的直角坐标.解 (1)∵Error!∴y =1-x 化成极坐标方程为ρcos θ+ρsin θ=1,即ρ=.1cos θ+sin θ∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤.π2(2)∵x =ρcos θ,y =ρsin θ,由ρsin 2θ=cos θ,得ρ2sin 2θ=ρcos θ,∴曲线C 1的直角坐标方程为y 2=x .由ρsin θ=1,得曲线C 2的直角坐标方程为y =1.由Error!得Error!故曲线C 1与曲线C 2交点的直角坐标为(1,1).思维升华(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.题型二 求曲线的极坐标方程典例将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C .(1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),由题意,得Error!由x 21+y =1,得x 2+2=1,21(y2)即曲线C 的标准方程为x 2+=1.y 24(2)由Error!解得Error!或Error!不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为,所求直线的斜率为k =,(12,1)12于是所求直线方程为y -1=,12(x -12)化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,故所求直线的极坐标方程为ρ=.34sin θ-2cos θ思维升华求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.跟踪训练已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为Error!(t 为参数),射线OM 的极坐标方程为θ=.3π4(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解 (1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,∴ρ2+2ρcos θ-2ρsin θ=0,∴圆C 的极坐标方程为ρ=2sin.2(θ-π4)又直线l 的参数方程为Error!(t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=.1ρ(2)当θ=时,|OP |=2sin =2,3π42(3π4-π4)2∴点P 的极坐标为,|OQ |==,(22,3π4)122+2222∴点Q 的极坐标为,故线段PQ 的长为.(22,3π4)322题型三 极坐标方程的应用典例 (2017·全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为,点B 在曲线C 2上,求△OAB 面积的最大值.(2,π3)解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题意知|OP |=ρ,|OM |=ρ1=.4cos θ由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0).因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0).(2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =|OA |·ρB ·sin ∠AOB12=4cos α·|s in (α-π3)|=2≤2+.|s in (2α-π3)-32|3当α=-时,S 取得最大值2+.π123所以△OAB 面积的最大值为2+.3思维升华极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正半轴重合;③取相同的长度单位.(2)若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.(3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系.跟踪训练(2017·广州调研)在极坐标系中,求直线ρsin=2被圆ρ=4截得的弦长.(θ+π4)解 由ρsin=2,得(ρsinθ+ρcosθ)=2,可化为x +y -2=0.圆ρ=4可化为(θ+π4)222x 2+y 2=16,圆心(0,0)到直线x +y -2=0的距离d ==2,2|22|2由圆中的弦长公式,得弦长l =2=2=4.r 2-d 242-223故所求弦长为4.31.(2018·武汉模拟)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin =.(θ-π4)22(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin=,(θ-π4)22即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由Error!得Error!故直线l 与圆O 公共点的一个极坐标为.(1,π2)2.在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ(cos θ+sin θ)=1与ρ(sin θ-cos θ)=1的交点的极坐标.解 曲线ρ(cos θ+sin θ)=1化为直角坐标方程为x +y =1,ρ(sin θ-cos θ)=1化为直角坐标方程为y -x =1.联立方程组Error!得Error!则交点为(0,1),对应的极坐标为.(1,π2)3.在极坐标系中,求曲线ρ=2cos θ关于直线θ=对称的曲线的极坐标方程.π4解 以极点为坐标原点,极轴为x 轴正半轴建立直角坐标系,则曲线ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1,且圆心为(1,0).直线θ=的直角坐标方程为y =x ,π4因为圆心(1,0)关于y =x 的对称点为(0,1),所以圆(x -1)2+y 2=1关于y =x 的对称曲线为x 2+(y -1)2=1.所以曲线ρ=2cos θ关于直线θ=对称的曲线的极坐标方程为ρ=2sin θ.π44.(2017·贵阳调研)在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=.21-sin θ(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.解 (1)∵ρ=,ρsin θ=y ,x 2+y 2∴ρ=化为ρ-ρsin θ=2,21-sin θ∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ),根据题意=3·,21-sin θ021-sin (θ0+π)解得θ0=或θ0=,π65π6∴直线l 的极坐标方程为θ=(ρ∈R )或θ=(ρ∈R ).π65π65.已知圆C 的极坐标方程为ρ2+2ρsin-4=0,求圆C 的半径.2(θ-π4)解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+2ρ-4=0,2(22sin θ-22cos θ)化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6,所以圆C 的半径为.66.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos上的(θ-π6)动点,求|PQ |的最大值.解 对曲线C 1的极坐标方程进行转化,∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0,即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化,∵ρ=12cos,(θ-π6)∴ρ2=12ρ,(cos θcos π6+sin θsinπ6)∴x 2+y 2-6x -6y =0,∴(x -3)2+(y -3)2=36,33∴|PQ |max =6+6+=18.(33)2+327.以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的方程为ρsin=-,⊙C 的极坐标方程为ρ=4cos θ+2sin θ.(θ-2π3)3(1)求直线l 和⊙C 的直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求弦AB 的长.解 (1)直线l :ρsin =-,(θ-2π3)3∴ρ=-,(sin θcos 2π3-cos θsin2π3)3∴y ·-x ·=-,即y =-x +2.(-12)32333⊙C :ρ=4cos θ+2sin θ,ρ2=4ρcos θ+2ρsin θ,∴x 2+y 2=4x +2y ,即x 2+y 2-4x -2y =0.(2)⊙C :x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.∴圆心C (2,1),半径R =,5∴⊙C 的圆心C 到直线l 的距离d ==,|1+23-23|(3)2+1212∴|AB |=2=2 =.R 2-d 25-(12)219∴弦AB 的长为.198.(2016·全国Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为Error!(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsinθ代入C 1的直角坐标方程中,得到C 1的极坐标方程为ρ2-2ρsinθ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组Error!若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.当a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.9.在极坐标系中,已知圆C 的圆心C ,半径r =3.(3,π3)(1)求圆C 的极坐标方程;(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且=2,求动点P 的轨迹方程.OQ → QP→ 解 (1)设M (ρ,θ)是圆C 上除极点外的任意一点.在△OCM 中,∠COM =,由余弦定理,得|θ-π3||CM |2=|OM |2+|OC |2-2|OM |·|OC |cos,(θ-π3)化简得ρ=6cos.(θ-π3)∵极点也适合上式,∴圆C 的极坐标方程为ρ=6cos .(θ-π3)(2)设点Q (ρ1,θ1),P (ρ,θ),由=2,得=,OQ → QP → OQ → 23OP → ∴ρ1=ρ,θ1=θ,23代入圆C 的方程,得ρ=6cos,即ρ=9cos .23(θ-π3)(θ-π3)10.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面π4积.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,π4得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.222故ρ1-ρ2=,即|MN |=.22由于C 2的半径为1,所以△C 2MN 为等腰直角三角形,所以△C 2MN 的面积为.1211.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=,θ∈[0,2π].34sin (π6-θ)(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值.解 (1)由ρ2-4ρcos θ+3=0,可得x 2+y 2-4x +3=0.∴(x -2)2+y 2=1.令x -2=cos α,y =sin α,∴C 1的一个参数方程为Error!(α为参数,α∈R ).(2)C 2:4ρ=3,(sin π6cos θ-cos π6sin θ)∴4=3,即2x -2y -3=0.(12x -32y)3∵直线2x -2y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点,且圆心到直线的距离3d =,14∴|AB |=2×=2×=.1-(14)215415212.已知曲线C 的参数方程为Error!(α为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)若直线l 的极坐标方程为ρ(sin θ+cos θ)=1,求直线l 被曲线C 截得的弦长.解 (1)曲线C 的参数方程为Error!(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5.将Error!代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ.(2)∵l 的直角坐标方程为x +y -1=0,∴圆心C (2,1)到直线l 的距离d ==,222∴弦长为2=2.5-2313.在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos =,C 与l 有且仅有一个公(θ-π3)32共点.(1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =,求|OA |+|OB |的最大值.π3解 (1)曲线C :ρ=2a cos θ(a >0),变形为ρ2=2aρcos θ,化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2,∴曲线C 是以(a,0)为圆心,以a 为半径的圆.由l :ρcos=,(θ-π3)32展开为ρcos θ+ρsin θ=,123232∴l 的直角坐标方程为x +y -3=0.3由题意可知直线l 与圆C 相切,即=a ,解得a =1.|a -3|2(2)由(1)知,曲线C :ρ=2cos θ.不妨设A 的极角为θ,B 的极角为θ+,π3则|OA |+|OB |=2cosθ+2cos=3cosθ-sin θ=2cos,当θ=时,(θ+π3)33(θ+π6)11π6|OA |+|OB |取得最大值2.314.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos=1,M ,N 分别为C 与x 轴,y 轴的交点.(θ-π3)(1)写出C 的直角坐标方程,并求M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.解 (1)由ρcos=1,(θ-π3)得ρ=1.(12cos θ+32sin θ)从而C 的直角坐标方程为x +y =1,1232即x +y -2=0.3当θ=0时,ρ=2,所以M (2,0).当θ=时,ρ=,π2233所以N.(233,π2)(2)M 点的直角坐标为(2,0),N 点的直角坐标为,(0,233)所以P 点的直角坐标为,(1,33)则P 点的极坐标为,(233,π6)所以直线OP 的极坐标方程为θ=(ρ∈R ).π6。

相关文档
最新文档