高等数学自测题
《高等数学》测试题DY(附答案)
《高等数学》测试题DY(附答案)【编号】ZSWD2023B0067一.选择题1.函数y=112x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x)=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 23.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)= 为偶数,为奇数n nn n n n1,1 D. {n n 212 }4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6. 1)1sin(lim 21x x x ( )A.1B.0C.2D.1/27.设 x x xk1(lim e 6 则k=( )A.1B.2C.6D.1/68.当x 1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ( )A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为( )A、B、eC、-eD、-e-112、下列有跳跃间断点x=0的函数为( )A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是( )A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x0必不连续在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足14、设f(x)=( )A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有( )A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的( )A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的( )A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的( )A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有( )A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为( )A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则( )A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是( )A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=( )A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a, 则f`(-x)=( )A、aB、-aC、|a|D、025、设y=㏑ ,则y’|x=0=( )A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=( )A、-1B、0C、1D、 不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=( )A、0B、1/ ㏑2C、1D、 ㏑228、已知y=sinx,则y(10)=( )A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=( )A、-1/x9B、1/ x9C、8.1/x9D、 -8.1/x930、若函数f(x)=xsin|x|,则( )A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=( )A、-1B、0C、л/2D、 232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=( )A、-1B、0C、1D、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是( )A、0B、-dxC、dxD、 不存在36、极限ln 11(lim 1xx x x 的未定式类型是( )A、0/0型B、∞/∞型C、∞ -∞D、∞型37、极限 012sin lim( x x xx 的未定式类型是( )A、00型B、0/0型C、1∞型 D、∞0型38、极限 xx x x sin 1sinlim20=( )A、0B、1C、2D、不存在39、x x0时,n阶泰勒公式的余项Rn(x)是较x x的( )A、(n+1)阶无穷小B、n阶无穷小C、同阶无穷小D、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A、唯一的零点B、至少存在有一个零点C、没有零点D、不能确定有无零点41、曲线y=x2-4x+3的顶点处的曲率为( )A、2B、1/2C、1D、042、抛物线y=4x-x2在它的顶点处的曲率半径为( )A、0B、1/2C、1D、243、若函数f(x)在(a,b)内存在原函数,则原函数有( )A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=( )A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx( )A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数0|3x+1|dx=( )47、∫-1A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于( )A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是( )A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为( )A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是( )A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为( )A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为( )A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是( )A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是( )A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面二、填空题1、求极限1lim x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim x x-2/(x+2)1/2=( )4、求极限x lim [x/(x+1)]x=( )5、求极限0lim x (1-x)1/x= ( )6、已知y=sinx-cosx,求y`|x=л/6=( )7、已知ρ=ψsinψ+cosψ/2,求dρ/dψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( ) 16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx =x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt =( )20、已知函数f(x)=0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx =( )22、∫49 x1/2(1+x1/2)dx=()23、∫031/2a dx/(a2+x2)=()24、∫01 dx/(4-x2)1/2=()25、∫л/3лsin(л/3+x)dx=()26、∫49 x1/2(1+x1/2)dx=( )27、∫49 x1/2(1+x1/2)dx=()28、∫49 x1/2(1+x1/2)dx=()29、∫49 x1/2(1+x1/2)dx=()30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点轨迹方程()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。
高数自测题三套及参考答案
自测题一一、判断题(每小题3分,共30分)1、集合{}1,2A =,集合{}1,3,4B =,则{}1,2,3,4AB =。
( )2、函数()cos f x x =是有界函数。
( )3、函数(1)(2)()(2)x x f x x -+=+,()1g x x =-表示同一函数。
( )4、)(x f 在0x x =处有定义是)(lim 0x f x x →存在的充分条件但非必要条件 。
( ) 5、1sin lim=∞→xxx 。
( )6、)(x f 在0x x =处极限不存在,则)(x f 在0x 处不连续。
( )7、()155xx x -'=⋅ 。
( )8、集合{}1,2A =,集合{}1,3,4B =,则{}2A B -=。
( ) 9、当0x →时,sin ~x x ,则330sin limlim 0sin x x x x x xx x →∞→--==。
( )10、1lim(1)xx x e →∞+=。
( )二、选择题(每小题3分,共15分)1、设集合{}36A x x =<<,集合{}5B x x =>,则A B =( )。
.A {}5x x > .B [5,)+∞ .C {}56x x << .D (3,)+∞2、已知2,1()1,1x e x f x x x ⎧<-⎪=⎨-≥-⎪⎩,则(0)f =( )。
.A -1 .B 0 .C 1 .D 23、下列数列n x 中,收敛的是( )。
A . 1n x n =B . nn x n n 1)1(--=C. 1(1)n n x +=-D.(1)nn x n =-4、332356lim 87n n n n n →∞--=-( )。
3.8A .0B 1.2C .D ∞ 5、若32()1f x x x x =-++,则(0)f ''=( )。
.0A .1B .2C .2D - 三、填空题(每小题3分,共15分)1、函数()f x =_______________。
自测题(1-7章附参考答案)-高等数学上册.
第一章函数与极限一、选择题:1.函数的定义域是()(A; (B; (C;(D.2.函数的定义域是()(A;(B;(C;(D.3、函数是()(A偶函数; (B奇函数;(C非奇非偶函数;(D奇偶函数.4、函数的最小正周期是()(A2; (B; (C 4 ; (D .5、函数在定义域为()(A有上界无下界; (B有下界无上界;(C有界,且;(D有界,且.6、与等价的函数是()(A ; (B ; (C ; (D .7、当时,下列函数哪一个是其它三个的高阶无穷小()(A);(B);(C);(D).8、设则当()时有.(A; (B;(C; (D任意取 .9、设,则((A-1 ; (B1 ; (C0 ; (D不存在 .10、()(A1; (B-1;(C0; (D不存在.二、求下列函数的定义域:2、 .三、设(1)试确定的值使;(2)求的表达式 .四、求的反函数.五、求极限:1、;2、;3、;4、;5、当时,;6、 .六、设有函数试确定的值使在连续 .七、讨论函数的连续性,并判断其间断点的类型 .八、证明奇次多项式:至少存在一个实根 .第二章导数与微分一、选择题:1、函数在点的导数定义为()(A);(B);(C);(D);2、若函数在点处的导数,则曲线在点(处的法线()(A)与轴相平行;(B)与轴垂直;(C)与轴相垂直;(D)与轴即不平行也不垂直:3、若函数在点不连续,则在 ((A)必不可导;(B)必定可导;(C)不一定可导;(D)必无定义.4、如果=(),那么.(A ;(B ;(C ;(D .5、如果处处可导,那末()(A);(B);(C);(D).6、已知函数具有任意阶导数,且,则当为大于2的正整数时,的n阶导数是()(A);(B);(C);(D).7、若函数,对可导且,又的反函数存在且可导,则=()(A);(B);(C);(D).8、若函数为可微函数,则()(A)与无关;(B)为的线性函数;(C)当时为的高阶无穷小;(D)与为等价无穷小.9、设函数在点处可导,当自变量由增加到时,记为的增量,为的微分,等于()(A)-1;(B)0;(C)1;(D).10、设函数在点处可导,且,则等于().(A)0;(B)-1;(C)1;(D) .二、求下列函数的导数:1、;2、();3、;4、;5、设为的函数是由方程确定的;6、设,,求.三、证明,满足方程.四、已知其中有二阶连续导数,且,1、确定的值,使在点连续;2、求五、设求.六、计算的近似值 .七、一人走过一桥之速率为4公里/小时,同时一船在此人底下以8公里/小时之速率划过,此桥比船高200米,问3分钟后人与船相离之速率为多少?第三章微分中值定理一、选择题:1、一元函数微分学的三个中值定理的结论都有一个共同点,即()(A)它们都给出了ξ点的求法 .(B)它们都肯定了ξ点一定存在,且给出了求ξ的方法。
高等数学测试题及答案1-9章全
高等数学测试题及答案1-9章全第1章自测题一、 选择题1. 若函数()f x 在点0x 处的极限存在,则( ) A ()f x 在点0x 处的函数值必存在,并且等于极限值; B ()f x 在点0x 处的函数值必存在,但不一定等于极限值; C ()f x 在点0x 处的函数值可以不存在; D 如果0()f x 存在的话,一定等于极限值 . 答案: C .提示:根据极限的定义.2.下列函数中,在点2x =处连续的是( ) .A ln(2)x -; B 22x -; C 242x y x -=-; D答案: B .提示:A 与C 在2x =处无意义,D 在2x =处左连续.3.函数53sin ln x y = 的复合过程是( )A x w w v v u u y sin ,,ln ,35====B x u u y sin ln ,53== ;C x u u y sin ,ln 53== ;D x v v u u y sin ,ln ,5=== . 答案:A .4.设,0(),0x e x f x a x x ⎧<⎪=⎨+⎪⎩≥ ,要使()f x 在0x =处连续,则a =( )A 2 ; B 1 ; C 0 ; D -1 .答案: B .提示:0lim ()lim e e 1x x x f x --→→===,00lim ()lim()x x f x a x a ++→→=+=. 二、填空题5. 函数()34f x x =-的反函数是 . 答案:43x y +=.提示:反表示为43y x +=.6. 函数y 的复合过程是 .答案:2ln ,,cos y u v v t t x ====.7. 若2()f x x =, ()x g x e =,则[()]f g x = ,[()]g f x = .答案: 22[()](e )e x x f g x ==,2[()]x g f x e =. 8. 函数1()ln(2)f x x =-的连续区间为 .答案:(2,3)和(3,)+∞. 提示:20x ->且ln 20x -≠.三、 解答题9.设函数ln ,01()1,122x x f x x x x ⎧<⎪=-<⎨⎪>⎩≤≤ ,(1) 求()f x 的定义域;(2) 作出函数图像;(3) 讨论()f x 在1x =及2x =处的连续性 .解 (1) 函数()f x 的定义域为(0,)+∞. (2) 函数图像为第1题图(3) 观察图像知,函数()f x 在1x =处连续,在2x =处不连续性.10.指出函数2πsin (3)4y x =-是有哪些简单函数复合而成的.解 2π,sin ,34y u u v v x ===-.11.计算下列各极限:(1) 22125lim 1x x x x →-+++ ; (2)221241lim 232x x x x →-+-; (3) 32lim(2)x x x →- ;(4)224lim 2x x x →--+;(5) 221lim()x x x→∞- ;(6)2241lim 232x x x x →∞-+-.解 (1) 22125125lim2111x x x x →-++-+==++; (2)2211122241(21)(21)214lim lim lim (21)(2)25232x x x x x x x x x x x x →→→--++===-+++-;(3) 33222lim(2)lim 2lim 484x x x x x x x →→→-=-=-=- ;(4)22224(2)(2)lim lim lim (2)422x x x x x x x x x →-→-→---+==-=-++;(5) 222121lim()lim lim 000x x x x x xx →∞→∞→∞-=-==-= ;(6)22221441limlim 2322322x x x x x x x x→∞→∞--==+-+-.12. 利用高级计算器计算下列各极限:(1)2lim sinx x x→∞ ; (2)3x → ;(3)lim x →+∞ (4)21lim()xx x x→∞+.解(1)2lim sin2x x x→∞= ; (2)314x →=; (3)x →∞=0; (4)221lim()e xx x x→∞+=.四、应用题1.若某厂每天生产某种产品60件的成本为300元,生产80件的成本为340元.求这种产品的线性成本函数,并求每天固定成本和生产一件产品的可变成本为多少?解 300602(),,()180234080180a b a C Q aQ b C Q Q a b b =+=⎧⎧=+⇒⇒∴=+⎨⎨=+=⎩⎩; 固定成本为180元,一件产品的变动成本为2元.2.甲向乙购买一套价值300万元的房子,乙提出三种付款方式:(1)全部付现款,可以优惠10万元;(2)先首付100万元,余款每隔一年付40万元,但每次付款必须加还40万元产生的利息(按年利率5%计算),5年后还清;(3)先首付200万元,一年后付余款100万元,但必须加还100万元的利息(按年利率5%计算);分别计算这三种付款方式实际付款金额. 解 (1)300—10=290(万元);(2)234510040(15%)40(15%)40(15%)40(15%)40(15%)332.076513++++++++++=万元;(3)(3)200100(15%)305++=万元.第2章 自测题一、 选择题1.过曲线2y x x =-上M 点处切线斜率为1,M 点坐标为( ). A.()1,0;B.()1,1;C.()0,0;D.()0,1.答案: A .提示:切线斜率为211,1k x x =-==,0y =.2.设在0x =处可导,则0(2)(0)lim h f h f h→-=( ).A.0;B.2(0)f '-;C.(0)f ';D.2(0)f '.答案: D .提示:00(2)(0)(02)(0)lim lim 22(0)2h h f h f f h f f h h→→-+-'=⋅=3.函数()f x 在点0x x =取得极大值,则必有( ). A.()00f x '=;B.()00f x '<;C ()00f x '=且()00f x =;D.()0f x '等于零或不存在.答案: D .提示:()0f x '等于零或不存在的点都是可能的极值点. 4.函数sin y x x =-在[]0,π上的最大值是( ).; B.0; C.π-; D.π. 答案: C. 提示:因为cos 10y x '=-≤,所以函数单调递减.最大值为()f ππ=-5.函数e arctan x y x =+在区间[]1,1-上( ). A.单调减少;B.单调增加;C.无最大值;D.无最小值.答案: B .提示:因为2101x y e x'=+>+. 6.d d yx=( ).C.D.答案: C .提示:0,y y ''==. 7. 设()211f x x =+ (0)x >,则()f x '=( ). A.21(1)x -+; B.21(1)x +;C.;. 答案: C .提示:()f x,所以y '= 8.设32,2t x te y t t -==+,则1t dydx =-=( ) A.2e -; B.2e -; C.2e; D.2e答案:C .提示:因为262ttdy t tdx e te--+=-,所以12t dy dx e =-= 9.设(),()y f u u x ϕ==,则dy =( )A.()f u dx ';B.()()f x x dx ϕ''C.()()f u x dx ϕ'';D.()()f u x du ϕ'' 答案: C .提示:根据复合函数求导法则. 二、填空题10.已知某商品的收益为375)(Q Q Q R -=,则其边际收益=')(Q R 解 2375)(Q Q R -='11.函数1x y e -=在2x =-处的切线斜率为 . 解 13222xx x k y e e -=-=-'==-=.12.曲线()21f x x =-在区间 上是单调增加函数. 解 ()2f x x '=-,所以在(,0)-∞上是单调增加函数. 13.如果2,0.01x x =∆=,则22()x d x == .解 2220.01()20.04x x x d x x x==∆==⋅∆=.14.函数x y xe -=在[]1,2-上的最大值为 .解 (1)x y e x -'=-,得驻点1x =,12(1),(1),(2)f f e f e e=-=-=,所以最大值为2(2)f e=.15.如果2sin 2y x =,则y '= . 解 2sin 2cos222sin 4y x x x '=⋅⋅=.16. 某需求曲线为1003000Q P =-+,则20P =时的需求弹性E = 解 202020()(100)21003000P P P P P E Q P Q P ==='=-=--=-+ . 17.已知ln 2y x =,则y ''= .解 211,y y x x'''==-.三、计算题18. 求下列函数的导数(1)(1y =+ (2)cos πy =+解y =解231(1)3y x -'=⋅+。
完整)高等数学练习题附答案
完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。
+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。
2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。
工科类本科《高等数学》第7-9章自测题参考答案
工科类本科《高等数学》第7,8,9章自测题参考答案一、填空题:1.极限00x y →→12- ;20tan()lim x y xy y →→= 2;0x y →→= -2 .解:利用等价无穷小量替换或根式有理化及重要极限求待定型的极限:00000111lim sin()2x x x y y y xy xy xy →→→→→→-+==-=-或 0000112lim 2x x y y xy xy →→→→-==-;222000tan()limlim lim 2x x x y y y xy xy x y y →→→→→→===;)()))00000111limlim lim 2121xyxyx x x x y y y y xyxyxye xye →→→→→→→→====-----或()000002limlim2112x x x x xy y y y y xy xyxy e →→→→→→→→====---.2.若22(,)22f x y x xy ax y =+++在点)1,1(-处取得极值,则a = -2 . 解:依题意,有(1,1)0,(1,1)0x y f f ''-=-=.而(,)42x f x y x xy a '=++, 于是,有(1,1)420x f a '-=-+=,解得 2.a =-3.函数2sin()z x xy =的全微分dz = 22222sin()cos()2cos()xy xy xy dx x y xy dy ⎡⎤++⎣⎦. 解:z zdz dx dy x y∂∂=+∂∂,而222222sin()cos()sin()cos(),z xy x xy y xy xy xy x ∂=+⋅=+∂222cos()22cos()z x xy xy x y xy y∂=⋅=∂.故22222sin()cos()2cos()dz xy xy xy dx x y xy dy ⎡⎤=++⎣⎦. 4. 设函数44224z x y x y =+-,则此函数在点(1,1)处的全微分(1,1)dz = ()4dx dy -+ .解:(1,1)(1,1)(1,1)x y dz z dx z dy ''=+,而()3211(1,1)484x x y z x xy=='=-=-,()3211(1,1)484y x y z y x y =='=-=-,故()(1,1)4dz dx dy =-+.5.设22()z f x y =+,且()f u 可导,则z x ∂=∂()222xf x y '+,22z x∂=∂()()2222224f x y x f x y '''+++.解:()()222222zf x y x xf x y x∂''=+⋅=+∂, ()()()()2222222222222224zf x y xf x y x f x y x f x y x∂''''''=+++⋅=+++∂. 6. 设方程1xy xz yz ++=确定隐函数(,)z f x y =, 则z x ∂=∂ y z x y +-+ , z y ∂=∂ x zx y+-+ . 解:令(,,)1F x y z xy xz yz =++-,则(,,)(,,),(,,)(,,)y x z z F x y z F x y z z y z z x zx F x y z x y y F x y z x y''∂+∂+=-=-=-=-''∂+∂+. 二、单项选择题:1.设有直线⎩⎨⎧=+--=+++031020133:z y x z y x L 和平面0224:=-+-∏z y x ,则L 与∏( D )A. 垂直B. 平行C.L 在 ∏ 上D. 斜交解:直线L 有方向向量()()33210133271672110i j ks i j k i j k i j k =++⨯--==-+---,平面∏有法向量()4,2,1n =-,因为0,(s n n ks k ⋅≠≠为非零常数), 所以s n 与既不垂直也不平行,故L 与∏斜交.2.已知k j i b k j i a+-=++=2,32,那么a 与b ( A )A. 垂直B. 平行C. 夹角为030D. 夹角为060 解:因为()1122310a b ⋅=⨯+⨯-+⨯=,所以a b ⊥. 3. 已知函数22f x+y,x -y =x -y (),则(,)(,)f x y f x y x y∂∂+=∂∂( C ). (A )22x y - (B) 22x y + (C) x y + (D) x y -解:因为()()22f x+y,x -y =x -y x+y x -y =(),所以(,)f x y xy =, 故(,)(,).f x y f x y y x x y∂∂+=+∂∂ 4. 设yz x =, 则dz =( A ).(注意分清对幂函数还是指数函数求导) (A)1ln y y yxdx x xdy -+ (B)11y y yx dx yx dy --+(C)1ln y y x xdx yxdy -+ (D)ln ln y y x xdx x xdy +5.曲线 t a x cos =,t a y sin =,amt z =,在 4π=t 处的切向量是 ( D ).A .)2,1,1( B.)2,1,1(- C.)2,1,1(m D.)2,1,1(m -解:曲线在4π=t 处有切向量()())44,,sin ,cos ,t t t t t s x y z a t a t am a a am ππ==⎛⎫'''==-=-=- ⎪ ⎪⎝⎭. 6. 函数(,,)f x y z xy z =+在点(1,1,1)-处沿方向(2,1,2)l =-的方向导数为( C ) A. 1; B.23; C. 13; D. 0. 解:所求的方向导数(1,1,1)(1,1,1)cos (1,1,1)cos (1,1,1)cos x y z l f f f f αβγ''''-=-+-+-. 而11(1,1,1)1,(1,1,1)1,(1,1,1) 1.x y z y x f y f x f =='''-==-==-= 又2213l =+=,从而212cos ,cos ,cos 333αβγ===-.故2121(1,1,1)1113333l f ⎛⎫'-=⨯+⨯+⨯-= ⎪⎝⎭.7.二元函数ln()z xy =的全微分为( A ).A.dx dy x y +; B. dx dy xy +; C. dx dy y x+; D. dxdyxy . 解:全微分z z dz dx dy x y ∂∂=+∂∂,而1111,z z y x x xy x y xy y ∂∂=⋅==⋅=∂∂.故dx dydz x y=+ 三、证明题:1.设()F u z xy x =+,y u x =,()F u 为可导函数. 求证:z zx y z xy x y∂∂+=+∂∂. 证 因为2()()()()z y y y F u xF u y F u F u x x x ∂⎛⎫''=++⋅-=+- ⎪∂⎝⎭;1()()z x xF u x F u y x ∂''=+⋅=+∂. 所以 ()()()()()z z y xy x y F u F u y x F u xy xF u xy z xy x y x ∂∂⎛⎫''+=+-++=++=+ ⎪∂∂⎝⎭. 2. 设22()y f x y z -=, ()f u 为可导函数. 求证:211z z zx x y y y ∂∂+=∂∂. 证 因为2222222222222222()()2()()()()x z y y xyf x y f x y xf x y x f x y f x y f x y '∂-''⎡⎤=-⋅-=-⋅-=-⎣⎦∂---, ()222222222222222()()2()2()()()f x y y f x y y z f x y y f x y y f x y f x y '--⋅-⋅-'∂-+-==∂--.故22222222222222221112()1()2()1()()()z z xyf x y f x y y f x y z x x y y x f x y y f x y yf x y y ''∂∂--+-+=-⋅+⋅==∂∂---. 四、计算题:1.设2(,)x z f x y y =,其中f 具有连续的二阶偏导数,求222,,,z z z z x y x x y∂∂∂∂∂∂∂∂∂. 解:22121211(,)(,)22,z x x f x y f x y xy f xyf x y y y y∂''''=⋅+⋅=+∂2222121222(,)(,),z x x x xf x y f x y x f x f y y y y y ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭212122211222f f z z f xyf yf xy x x x x y y xx ''⎛⎫∂∂∂∂∂∂⎛⎫'''==+=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 221112221221112222211112222442f xyf yf xy f xyf f xf x y f yf y y y y⎛⎫⎛⎫''''''''''''''''=++++=+++ ⎪ ⎪⎝⎭⎝⎭, 21212122111222f f z z f xyf f xf xy x y y x y y y y y y ''⎛⎫∂∂∂∂∂∂⎛⎫''''==+=-+++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭2211112221222221122x x f f x f xf xy f x f y y y y ⎛⎫⎛⎫''''''''''=-+-+++-+ ⎪ ⎪⎝⎭⎝⎭231211122223122x xf xf f f x yf y y y''''''''=-+--+.注:因为f 具有连续的二阶偏导数,所以1221f f ''''=.2.设22220x y z z ++-=,求22,z zx y∂∂∂∂.解:令222(,,)2F x y z x y z z =++-,则(,,)2(,,)221x z F x y z z x xx F x y z z z '∂=-=-='∂--,(,,)2(,,)221y z F x y z z y y yF x y z z z '∂=-=-='∂--, 2222223(1)(1)(1)11(1)(1)(1)z y z y z y y z z y z y z y y y y z z z z ⎛⎫∂--⋅- ⎪-+⋅∂⎛⎫∂∂∂∂-+⎛⎫⎝⎭-===== ⎪ ⎪∂∂∂∂----⎝⎭⎝⎭. 注意:z 是关于,x y 的二元函数.3.设方程组22222x y uv xy u v ⎧++=⎪⎨--=⎪⎩确定隐函数组(,),(,)u u x y v v x y ==,求 u x ∂∂,v x ∂∂.解法一:分别对两方程两边分别对x 求偏导,得20220u v x v u x x u v y u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪--=⎪∂∂⎩ 即 222uv v u x x x u v u v yxx ∂∂⎧+=-⎪⎪∂∂⎨∂∂⎪+=⎪∂∂⎩当222()022v uJ u v u v==--≠时,有222114(4)22()x u u xv yuxv yu y v x J J u v -∂+==--=∂- , 222114(4)22()v x v xu yvyv xu u y x J J u v -∂+==+=-∂- . 解法二:令2222(,,,)0(,,,)20F x y u v x y uvG x y u v xy u v ⎧=-+=⎪⎨=---=⎪⎩,则22(,)2()22(,)uv v u F G J u v u v u v ∂===---∂2(,)42(,)xv x u F G J xv yu y v x v ∂===---∂ , 2(,)42(,)ux v x F G J yv xu u yu x ∂===+-∂ 故2242()xv uv J u xv yu x J u v ∂+=-=∂- ,2242()ux uv J v xu yvx J u v ∂+=-=-∂-. 4.求函数3322(,)339f x y x y x y y =+-+-的极值.解:解方程组223603690f x x xf y y y∂⎧=-=⎪∂⎪⎨∂⎪=+-=∂⎪⎩,得四个驻点1234(0,3),(0,1),(2,3),(2,1)P P P P --. 又66,0,66xx xy yy f x f f y ''''''=-==+.记(),(),()(1,2,3,4)xx i xy i yy i A f P B f PC f P i ''''''====对21(0,3),6(12)00,P AC B --=-⨯-->且60A =-<,则1(0,3)P-是函数的极大值点,极大值(0,3)27f -=;对22(0,1),61200P AC B -=-⨯-<,则2(0,1)P 不是极值点; 对()23(2,3),61200P AC B --=⨯--<,则3(2,3)P -不是极值点;对24(2,1),61200P AC B -=⨯->,且60A =>,则4(2,1)P 是函数的极小值点,极小值(2,1)9f =-. 5.求曲面222327xy z +-=在点(3,1,1)P 处的切平面方程和法线方程.解:令 222(,,)327F x y z x y z =+--,则曲面在点(3,1,1)P 处的法向量为()(3,1,1)(3,1,1)(,,)(6,2,2)(18,2,2)29,1,1x y z n F F F x y z '''==-=-=-于是,所求的切平面方程为 9(3)(1)(1)0x y z -+---=,即 9180x y z +--=.法线方程为311911x y z ---==-. 6.求曲面z=在点(3,4,5)P 处的切平面方程和法线方程.解:曲面在点(3,4,5)P 处的法向量为()(3,4,5)(3,4,5)341(,,1)1),,13,4,5555x y n z z ⎛⎫''=-=-=-=- ⎪⎝⎭. 于是,所求的切平面方程为 3(3)4(4)5(5)0x y z -+---=,即 3450x y z +-=.法线方程为345345x y z ---==-. 7.求函数23(,,)f x y z xy yz =+在点0(1,1,2)P 处沿从0(1,1,2)P 到(3,1,3)P -方向的方向导数0P fl∂∂.解:记()02,2,1l P P ==-,(223l =+=,从而221cos ,cos ,cos 333αβγ==-=.又()23211(1,1,2)2(1,1,2)1,(1,1,2)210,(1,1,2)312.y x y z y z f yf xy z f yz ==='''===+===故所求的方向导数P f l∂∂(1,1,2)cos (1,1,2)cos (1,1,2)cos x y z f f f αβγ'''=++221110122333⎛⎫=⨯+⨯-+⨯=- ⎪⎝⎭.。
高数下-自测题(含答案)
自测题一参考答案一. 解答下列各题. 1.设2(,)(1)arcsinf x y x y =+-⋅, 求'(1,1)x f .解:2(,1) f x x =,'(,1)2x f x x∴=, '(1,1)2x f ∴=2.已知,, a b c为单位向量,且满足0a b c ++=,计算 a b b c c a ⋅+⋅+⋅.解:0a b c++=,()0a a b c∴⋅++=, 10a b a c ∴+⋅+⋅=; 同理,()0b a b c ⋅++= , 10a b b c ∴+⋅+⋅=; ()c a b c⋅++= , 10a cbc ∴+⋅+⋅=故有 ()320a b b c c a+⋅+⋅+⋅=,即32a b b c c a ⋅+⋅+⋅=-3.设,x z x f xy y ⎛⎫= ⎪⎝⎭, 其中f具有二阶连续偏导数, 求2z x y∂∂∂.解:''''12121z x f xf y f f xyf f xy y ∂⎡⎤=+⋅+⋅=++⎢⎥∂⎣⎦,2''''''''''''12111122212222222''2''''1211222322zx x x x x f x f xf xy f x f f f x f x y y y y y y x x xf f xyf f y y∂⎛⎫⎡⎛⎫⎤⎛⎫⎡⎛⎫⎤=⋅+⋅-++⋅+⋅-+-+⋅+⋅-⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂⎝⎭⎣⎝⎭⎦⎝⎭⎣⎝⎭⎦=-+-4. 设函数(,)z z x y =由方程222z x y z y f y ⎛⎫++= ⎪⎝⎭确定, 其中f具有一阶连续的导数,求z z yxx y∂∂-∂∂.解:'22z x xf z∂=∂-,''22z y f fz y yf z-+∂=∂-,''2xz xf fz z yyxxyf z-∂∂∴-=∂∂-5. 求过点(1,0,1)M -, 且与直线0:20x y Lx y z +=⎧⎨-+-=⎩垂直的平面方程.解:直线L 的方向矢量{}1101,1,2111i j k s ==---,所以平面的法矢量为s,故所求的平面方程为(1)(0)2(1)0x y z ----+=,即230x y z ---=6. 求曲面228x yzz +=在点0(2,2,1)M 处的切平面和法线方程.解:在点0(2,2,1)M 处,法矢量{}4ln 2,4ln 2,16ln 2n=-//{}1,1,4-,所以切平面方程为:(2)(2)4(1)0x y z -+---=,即 40x y z +-=,法线方程为:221114x y z ---==-二. 设''()'()()y p x y q x y f x ++=的三个特解是x , x e , 2x e , 求此微分方程满足条件(0)1y =,'(0)3y =的特解.解:由线性方程解的结构定理知,该方程的通解为()()212x x y C e x C e x x=-+-+ ()()212'1211x x y C e C e ∴=-+-+,将初始条件(0)1y =, '(0)3y =代入得121131C C C =+⎧⎨=+⎩1212C C =-⎧⇒⎨=⎩ 所以原方程的所求特解为2*2x xy e e =-三. 设()f x 是连续函数, 且满足方程20()()()xx f x e x t f t dt =--⎰, 求()f x .解:整理方程200()()()x xx f x e x f t dt tf t dt =-+⎰⎰,两边对x 求导,得 20'()2()xx f x e f t dt=-⎰,再对x 求导,得 2''()4()x f x e f x =-,求解此方程得通解为: 2124()cos sin 5xf x C x C x e =++,由初始条件 (0)1,'(0)f f ==得,1212,55C C ==,所以2124()cos sin 555xf x x x e =++四. +=.解:设0000(,,)M x y z 为曲面上任一点,过0M 切平面的法矢量 n ⎧=⎨⎩,切平面方程为)))0000x x y y z z -+-+-=,即++=该切平面在三个坐标轴的截距为所以2+==五. 在椭球面22221x y z ++=上求距离平面26x y z +-=的最近点和最近距离, 最远点和最远距离. 解:椭球面22221x y z ++=上的点(,,)x y z 到平面26x y z +-=的距离的平方为:()221266d x y z =+--设 ()()22222621F x y z x y z λ=+--+++-由()()()'''222426402262022620210x y z F x y z x F x y z y F x y z z x y z λλλ⎧=+--+=⎪=+--+=⎪⎨=-+--+=⎪⎪++-=⎩得点1111,,222M ⎛⎫- ⎪⎝⎭,2111,,222M ⎛⎫-- ⎪⎝⎭由问题可知,最大值和最小值必定存在,故所求 最近点为1111,,222M ⎛⎫-⎪⎝⎭,最近距离为()1d M =;最远点为2111,,222M ⎛⎫--⎪⎝⎭,最远距离为()2d M =自测题二参考答案六. 解答下列各题. 7. 若L 为曲线1,02yx x x =--≤≤,计算()Lx y ds+⎰.解:1211()(1(1)22Lx y ds x x dx +=-+-=+⎰⎰⎰8. 计算∑, 其中∑是22z x y =+上1z ≤的部分曲面.解:原式D=()2214Dx y dxdy⎡⎤=++⎣⎦⎰⎰()2120143d d πθρρρπ=+=⎰⎰9. 设()22222()x y t F t fx y dxdy+≤=+⎰⎰, 求'()F t .解:()()2220()2ttF t d fd f d πθρρρπρρρ==⎰⎰⎰,所以 ()2'()2F t t ft π=10. 设L 为椭圆22143x y +=,其周长记为a , 求()22234 Lxyx y ds++⎰.解:原式()212 Lxyds =+⎰212 L Lxyds ds=+⎰⎰01212a a=+=11. 把1()34f x x =+展为形如0(1)nn n a x ∞=-∑的幂级数, 并确定其收敛区间.解:1()34f x x=+174(1)x =+-11471(1)7x =⋅+-014(1)(1)77n nn x ∞=⎡⎤=⋅--⎢⎥⎣⎦∑14(1)(1)7n nn n n x ∞+==--∑由4117x -<得收敛区间为31144x -<<12. 证明()211()()y x dy f x dx e e f x dx =-⎰⎰.证明:交换积分次序,有 左22111100()()y y xxdx e f x dy f x dx e dy ==⎰⎰⎰⎰2110()yx f x e dx =⎰()210()xe ef x dx =-⎰=右,故得证七. 求由曲面22z x y =+及221222z x y =--围成的立体的体积.解:VdV Ω=⎰⎰⎰22221220d d dz πρρθρρ-=⎰⎰⎰()2302123d πρρρ=-⎰24π=八. 计算(s in )(c o s )xx LIey my dx e y m dy =-+-⎰, L 是从点(,0)A a 沿上半圆周22x y ax +=到(0,0)的弧段.解:由格林公式,有sin x Pe y my=-,cos x Q e y m=-,cos x yP e y m=-,cos x xQ e y =,()22(sin )(cos )(sin )(cos )(sin )(cos )0228xx Lx x x x L O AO AxyDDI ey m y dx e y m dy e y m y dx e y m dy e y m y dx e y m dya m a Q P dxdy m dxdym ππ+=-+-=-+---+-⎛⎫=--==⋅⋅=⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰九. 求幂级数12n nn x n ∞=⋅∑的收敛域及其和函数.解: 12nna n =⋅, 111(1)2limlim212n n nn n n a n Ra n +→∞→∞++⋅∴==⋅=⋅,所以收敛区间为(2,2)x ∈-当2x=-时,级数为1(1)n n n∞=-∑收敛,当2x=时,级数为11n n ∞=∑发散,故原级数的收敛域为[2,2)x ∈-设1()2nnn x S X n ∞==⋅∑,[2,2)x ∈-,则有111111'()222212n n x S X x x∞-=⎛⎫==⋅=⎪-⎝⎭-∑,所以 012()'()ln22xxS x S t dt dt tx===--⎰⎰,[2,2)x ∈-十. 计算曲面积分3311 y y Ix dydz f y dzdx f dxdy z z y z ∑⎡⎛⎫⎤⎛⎫=+++ ⎪ ⎪⎢⎥⎣⎝⎭⎦⎝⎭⎰⎰, 其中()f u 有连续导数,∑为曲面221z x y =++与平面2z =围成的立体表面外侧.解:利用高斯公式,3Px =,31y Q f y z z ⎛⎫=+ ⎪⎝⎭,1y Rf y z ⎛⎫=⎪⎝⎭,所以()xy z I P Q R dv Ω=++⎰⎰⎰()2233x y dv Ω=+⎰⎰⎰221230132d d dz πρπθρρ+==⎰⎰⎰。
高等数学自我测试题
高等数学自我测试题(41)一、选择题1、函数)4ln()(2x x f -=的定义域是 ( )(A ););22(,- (B )),2()2,(+∞--∞ ; (C )),2[]2,(+∞--∞ ; (D )]2,2[-.2、设x e x f =)(,则))0((f f 的值为 ( )(A )-1; (B )0; (C )1; (D )e .3、如果已知k x x e x =⎪⎭⎫ ⎝⎛+∞→211lim ,则k 的值为 ( ) (A )21; (B )1; (C )2; (D )无法确定. 4、函数)2)(2()2)(1()(-++-=x x x x x f 在下列那个点上是无穷大量 ( ) (A )2-=x ; (B )2=x ;(C )1=x ; (D )1=x 或 -2 .5、函数)4sin(x y -=的导数是 ( )(A ))4cos(x y -=; (B ))4cos(x y =;(C ))4cos(4x y -=; (D ))4cos(4x y =.6、函数102)(2-+=x x x f 在区间[-2,0]上满足罗尔定理条件的ξ是 ( )(A )-2; (B )-1; (C )0; (D )不存在.7、如果⎰+-=⋅C x e dx x f x cos )(2,那么)(x f 为 ( )(A )x ex sin 22-⋅ (B )x e x sin 2+⋅; (C )x ex sin 2-⋅; (D )x e x sin 22+⋅. 8、⎰-dx x 2)32(1为 ( )(A )C x +-⋅-)32(131; (B )C x +-⋅-)32(121; (C )C x +-⋅)32(131; (D )C x +-⋅)32(121. 9、下列式子中不正确的一个是 ( )(A )0sin 112=⋅⎰-xdx x ; (B )0sin 112=⋅⎰-xdx x (C )0cos 112=⋅⎰-xdx x ; (D )0cos 112=⋅⎰-xdx x . 10、如果已知2)12(412=-⎰k dx x ,且,则k 的值为 ( ) (A )41; (B )21; (C )41-; (D )21-.11、方程23x y =表示的曲面是 () (A )球面; (B )旋转面;(C )柱面; (D )平面.12、已知二元函数2332y x y x y +=,则=∂∂∂y x z2()(A )26xy (B )y x 26(C )y x xy 2266+ (D )2266y x xy +二、计算题13、求1)1tan(lim 21-+-→x x x .14、求函数313y x x =-在)2,2(-的单调区间和极值.15、设函数)(x f y =由方程e xy e y =+所确定,求在点(0,1)处的导数。
高等数学》专升本自测试题1(含答案)
高等数学》专升本自测试题1(含答案)1、若 $F(x)$ 在 $[a,b]$ 上有 $F'(x)=f(x)$,则 $F(x)$ 为$f(x)$ 在 $[a,b]$ 上的原函数。
2、下列函数中,是 $f(x)=e^{-x}$ 的原函数的是 $B$,即$e^{-x}+1$。
3、$\int e^{-2x}dx=-\frac{1}{2}e^{-2x}+C$。
4、设 $f(x)=\int e^xdx$,则 $f'(0)=e^0=1$。
5、设 $f(x)=\int \sin^2xdx=\frac{1}{2}\int (1-\cos2x)dx=\frac{1}{2}(x-\frac{1}{2}\sin2x)+C$,所以$f'(\frac{\pi}{2})=0$。
6、若 $\int f(x)dx=2x^2+x+C$,则 $f(x)=4x+1$。
7、若 $F(x)$ 是 $f(x)$ 的一个原函数,且 $a\neq 0$,$b$ 是常数,则 $\int f(ax+b)dx=\frac{1}{a}F(ax+b)+C$。
8、$\int \frac{2x-3}{x^2-3x-10}dx=\int \frac{2x-3}{(x-5)(x+2)}dx=\int (\frac{3}{x-5}-\frac{1}{x+2})dx=\ln|x-5|-\ln|x+2|+C$。
9、$\int \frac{\sin x}{2-\cos x}dx=-\int \frac{d(2-\cos x)}{2-\cos x}=-\ln|2-\cos x|+C$。
10、$\int \frac{x-3}{x-2}dx=\int (1-\frac{1}{x-2})dx=x-\ln|x-2|+C$。
11、若 $f(x)$ 的原函数为 $F(x)$,则 $\intf[\phi(x)]\phi'(x)dx=F[\phi(x)]+C$。
高等数学单元自测题
《高等数学》单元自测题第七章 空间解析几何自测题专业 班级 姓名 学号一、填空题:1. 已知a与b垂直,且a=5,b=12,则=+b a,b a-= 。
2.若两平面0=-++k z y kx 与02=-+z y kx 互相垂直,则k = 。
3.若直线531123-=++=-z k y k x 与22531-+=+=-k z y x 垂直,则k= 。
4.已知)1,3,2(A ,)1,4,5(-B ,)3,2,6(-C ,)1,2,5(-D ,则通过点A 且垂直于B 、C 、D 所确定的平面的直线方程是 。
5.母线平行于oz 轴且通过曲线⎪⎩⎪⎨⎧+==++22222214zy x z y x 的柱面方程是 。
二、选择题:1.下列命题,正确的是 。
(A )、k j i++是单位向量。
(B )、j -非单位向量(C )、2= (D )、b b a a⋅=⋅2)(1.设},,{},,{z y x z y x b b b b a a a a ==、。
则b a ⊥的充分必要条件是 。
(A )、z z y y x x b a b a b a ===,, (B )、0=++z z y y x x b a b a b a (C )、zz yy xx b a b a b a == (D )、z y x z y x b b b a a a ++=++2.设三向量c b a ,,的模分别为3,6,7;且满足a c c b b a c b a ⋅+⋅+⋅=++则,0= 。
(A)、45 (B)、-47 (C)、42 (D)、-433.设平面方程为Bx + Cz +D = 0,且BCD≠0,则平面 。
(A)、平行于OX轴 (B)、平行于OY轴 (C)、经过OY轴 (D)、垂直于OY轴 4.曲线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在XOY面上的投影曲线是 。
(A){222ay x z =+=(B){cos 0bz a x z ==(C){cosbz a y z ==(D){cossin b z a x bza y ==三、设单位向量,,满足0=++,试证:23-=⋅+⋅+⋅a c c b b a。
高等数学1-6章单元自测题
《高等数学》单元自测题第一章 函数与极限专业 班级 姓名 学号一、 填空题:1.设,则=_________________。
2. =+-∞→nn nn n 3232lim _________________。
3. =-∞→x x x 2)11(lim _________________。
4. ___________________。
5. 已知时与是等价无穷小,则__________。
6. 函数的连续区间是_____ _____。
二、 选择题:1.函数)12arcsin(412-+-=x x y 的定义域是( )。
(A ))2,0[; (B ))2,2(-; (C )]4,0[; (D) ]4,2(-。
2.已知极限,则常数( )。
(A) ; (B) 0 ;(C) 1; (D) 2 。
3.若,则下面选项中不正确的是( )。
(A) ,其中为无穷小; (B)在点可以无意义;(C) ; (D) 若,则在的某一去心邻域内。
()xx x f +-=11()[]x f f =++∞→xx x x 1sin 2332lim 20→x ()11312-+ax1cos -x =a ()⎪⎪⎩⎪⎪⎨⎧>=<=0,1sin ,0, 0 ,0, e 1x x x x x x f x 0)2(lim 2=++∞→kn nn n =k 1-()A x f x x =→0lim α+=A x f )(α)(x f 0x )(0x f A =0>A 0x 0)(>x f4. 当时,下列哪一个函数不是其他函数的等价无穷小( )。
(A) ; (B) ; (C) ; (D) 。
5.设函数在点处连续,则常数的值为( )。
(A) ; (B) ;(C) ; (D) 。
6. 已知函数在上单调增加,则方程必有一个根的区间是( )。
(A) )0,1(-; (B) )1,0(; (C) ; (D) 。
三、 计算下列各题:1.求函数的反函数,并求反函数的定义域。
工科类本科《高等数学》第11,12章自测题参考答案
工科类本科《高等数学》第11,12章自测题参考答案1. 若L 是抛物线 x y =2上从点A )1,1(-到点B )1,1(的一段弧,则()Lx y dx +=⎰43;(3)Lx y dy -=⎰ 2 . 解:L 的方程为2,x y y =从-1变到1,而2dx ydy =,于是()1111232211104()222043Lx y dx yy ydy y dy y dy y dy ---+=+⋅=+=+=⎰⎰⎰⎰⎰.()1111222111(3)33602Lx y dy y y dy y dy ydy y dy ----=-=-=-=⎰⎰⎰⎰⎰.注意:定积分的积分区间关于原点对称,考虑被积函数的奇偶性可以简化计算. 2.已知L 为圆周 122=+y x 沿逆时针方向,则曲线积分()(sin )xLey dx y x dy -++⎰=2π.解:计算封闭曲线积分,一般考虑用格林公式,这里(),sin ,112x Q P P e y Q y x x y ∂∂=-=+-=--=∂∂.于是()222211(sin )222xLx y x y ey dx y x dy dxdy dxdy π+≤+≤-++===⎰⎰⎰⎰⎰.注意:221x y dxdy +≤⎰⎰等于圆域221x y+≤的面积.3.若曲线积分()3222(cos )1sin 30Laxy y x dx ay x x y dy -+-+=⎰,则a =__2___.解:依题意,有Q P x y∂∂=∂∂,这里3222cos ,1sin 3,P axy y x Q ay x x y =-=-+2232cos ,cos 6.P Q axy y x ay x xy y x ∂∂=-=-+∂∂比较可得2a =. 4.若22xdy aydxx y-+在右半平面0x >内是某个函数的全微分,则a =__1__. 解:依题意,有Q P x y∂∂=∂∂,这里2222,,ay xP Q x y x y -==++ ()()()()()()2222222222222222222222,.a x y ay y x y x x P ax ay Q x y y x x y x y x y x y -++⋅+-⋅∂-+∂-+====∂∂++++ 比较可得1a =. 5.将()1x f x x +=展开为x 的幂级数1xx=+()1231, 1.n n x x x x x --+-+-+<或1xx=+()111,1n n n x x ∞-=-<∑.解:当1x <时,()()11x x f x x x =+--=为首项是x 公比为x -的等比级数,所以()()1123111, 1.1n n nn n xx x x x x x x∞--==-+-+-+=-<+∑6. 幂级数∑∞=1n 3n n x n的收敛半径R= 13,收敛域是11-33⎡⎫⎪⎢⎣⎭,.解:n n 113311,lim lim 33n n n n n n a n a R n a n +→∞→∞++===⋅=收敛半径,收敛区间是11-33⎛⎫⎪⎝⎭,,而当13x =-时,级数n 1131(1)n n n n x n n ∞∞===-∑∑是条件收敛的交错级数;当13x =时,级数n 1131n n n x n n∞∞===∑∑是发散的调和级数.故收敛域是11-33⎡⎫⎪⎢⎣⎭,.7.下列级数发散的是( A ).A.11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑; B. 211n n∞=∑; C. 115n n ∞=∑; D. 111(1)2n nn ∞-=-∑. 解:A.1ln 1n u n ⎛⎫=+ ⎪⎝⎭,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑发散.B 选项是p 级数,21p =>,故211n n∞=∑收敛.C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛.D选项是交错级数,而正项级数11111(1)22n n n n n ∞∞-==-=∑∑115q ⎛⎫=< ⎪⎝⎭是收敛的等比级数,故111(1)2n n n ∞-=-∑绝对收敛.8.下列级数收敛的是( C ). A.11sin n n ∞=∑; B. 1n ∞= C. 115n n ∞=∑;D. n ∞=解:A 选项1sin n u n =,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11sin n n ∞=∑发散.B选项15nn u -==,由0lim 510n n u →∞==≠知级数n ∞=. C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛. D选项1151n n n∞∞===∑是p 级数,115p =<,故n ∞=. 9.计算曲线积分22(3)(3),Lx y dx y x dy +++⎰其中L 是从O(0, 0)沿上半圆224(0)x y x y +=≥到A(4,0)的曲线段.解:已知22(,)3,(,)3P x y x y Q x y y x =+=+,则3,3P Qy x∂∂==∂∂.因为P Qy x∂∂=∂∂,所以曲线积分与路径无关.选取x 轴上直线段OA 路径,此时0,y x =从0 到4,0dy =,于是44222300164(3)(3)33Lx y dx y x dy x dx x +++===⎰⎰. 10.计算曲线积分3(2)(2)Ly x dy x y dx +-+⎰其中L 是从A(2, 0)沿上半圆222(0)x y x y +=≥到O(0,0)的曲线段.解: 已知3(,)(2),(,)2P x y x y Q x y y x =-+=+,则2,2,4P Q Q P y x x y∂∂∂∂=-=-=∂∂∂∂. 为了使用格林公式,添加辅助直线段OA ,记它与L 所围成的区域为D,D 是上半圆域222,0x y x y +≤≥,且边界封闭曲线方向是规定的正向. 而直线段OA 方程为:0,y x =从0到2,此时0dy =.则 3(2)(2)Ly x dy x y dx +-+⎰33(2)(2)(2)(2)L OAOAy x dy x y dx y x dy x y dx +=+-+-+-+⎰⎰()2342001444D Ddxdy x dx dxdy x =--=+⎰⎰⎰⎰⎰1442 4.2ππ=⋅+=+(注Ddxdy ⎰⎰等于上半圆域D 的面积)11.设dy y xy x dx y xy x du )32()23(2222+--+-=,求原函数),(y x u . 解法一:已知2222(,)32,(,)(23)P x y x xy y Q x y x xy y =-+=--+, 而22,22P Q x y x y y x ∂∂=-+=-+∂∂.因为P Qy x∂∂=∂∂,所以曲线积分L Pdx Qdy +⎰与路径无关.取折线路线0AB :(0,0)(,0)(,)O A x B x y →→.其中直线段OA 方程为:0,y x =从0到x ,此时0dy =;直线段AB 方程为:,x x y =从0到y ,此时0dx =.则原函数 (,)OAB OAABu x y Pdx Qdy C Pdx Qdy Pdx Qdy C =++=++++⎰⎰⎰22203(23)xy x dx x xy y dy C =+--++⎰⎰3223x x y xy y C =-+-+解法二:已知2222(32),(23)u ux xy y x xy y x y∂∂=-+=--+∂∂,两式子分别对,x y 两边积分,有 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰,22223(,)(23)()u x y x xy y dy x y xy y x ψ=--+=-+-+⎰.从而,有 322223()()x x y xy y x y xy y x ϕψ-++=-+-+, 比较上式两边,有 33(),()y y C x x C ϕψ=-+=+.故 3223(,)u x y x x y xy y C =-+-+. 解法三:依题意,知2232u x xy y x ∂=-+∂(1), 22(23)ux xy y y∂=--+∂(2).(1)式两边对x 积分,得 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰(3)(3)式两边对y 求偏导,得22()ux xy y yϕ∂'=-++∂ (4). 比较(2)、(4)式,得 2()3y y ϕ'=-,两边对y 积分,得 3()y y C ϕ=-+. 故 3223(,)u x y x x y xy y C =-+-+. 12.判别下列正项级数的敛散性:(1)12sin 3nn n π∞=∑;(2)2121n n n n ∞=+-∑;(3)13!n nn n n ∞=⋅∑;(4)121nn n n ∞=⎛⎫ ⎪+⎝⎭∑. 解:(1)()22sin2333nnn n nn u n πππ⎛⎫=⋅=→∞ ⎪⎝⎭,取23nn v ⎛⎫= ⎪⎝⎭.由23lim lim 23nn n n n nu v ππ→∞→∞⎛⎫ ⎪⎝⎭==⎛⎫ ⎪⎝⎭,又已知等比级数122133n n q ∞=⎛⎫⎛⎫=< ⎪ ⎪⎝⎭⎝⎭∑收敛. 因此根据正项级数的比较判别法知 级数2sin3n nπ∑收敛.(2)221n n u n n =+-,取1n v n =. 由22lim lim 121n n n nu n v n n →∞→∞==+-,又已知调和级数1n ∑发散.因此根据正项级数的比较判别法知 级数221nn n +-∑发散.(3)13!n nn n n∞=⋅∑ 解:3!n n n n u n ⋅=,因为 ()()11131!13lim lim 3lim 3lim 13!1111nn n n n n n n n n n nn u n n u n n e n n +++→∞→∞→∞→∞⋅+⎛⎫=⋅===> ⎪⋅+⎝⎭+⎛⎫+ ⎪⎝⎭, 所以根据正项级数的比值判别法知 级数3!n nn n ⋅∑发散.(4)21n n n ⎛⎫ ⎪+⎝⎭∑ 解:21nn n u n ⎛⎫= ⎪+⎝⎭,因为1lim 1212n n n n →∞==<+, 所以根据正项级数的根值判别法知 级数21nn n ⎛⎫⎪+⎝⎭∑收敛.13.求下列幂级数的和函数:(1)111n n x n -∞=+∑;(2)11n n nx ∞-=∑. 解:(1)此幂级数的收敛半径为1,收敛区间为(1,1)-.设幂级数的和函数为()s x ,则11()1n n x s x n -∞==+∑ (1x <), 1(0)2s =对121()1n n x x s x n +∞==+∑逐项求导,得()1211()11n n n n x x x s x x n x +∞∞=='⎛⎫'=== ⎪+-⎝⎭∑∑ ()11x -<< 对上式从0到x 积分,得 ()[]2000111()1ln(1).111xx x t t x s x dt dt dt x x t t t --⎛⎫⎛⎫==-=--=-+- ⎪ ⎪---⎝⎭⎝⎭⎰⎰⎰ 于是当0x ≠时,有 2ln(1)()x x s x x +-=-.从而 和函数2ln(1),01;()1,0.2x x x xs x x +-⎧-<<⎪⎪=⎨⎪=⎪⎩.特殊的,当1x =-时,级数()()112111n nn n n n-∞∞==--=+∑∑收敛.所以2ln(1)()x x s x x +-=-在1x =-也成立.(2)此幂级数的收敛半径为1,收敛区间为(1,1)-.设和函数为()s x ,则11()n n s x nx∞-==∑ (1x <).对上式从0到x 逐项积分,得111()1x xn n n n xs t dt nt dt x x∞∞-=====-∑∑⎰⎰ 对上式求导,得22(1)(1)1()1(1)(1)x x x s x x x x '--⋅-⎛⎫=== ⎪---⎝⎭,1x <.。
河北省石家庄市(新版)2024高考数学统编版能力评测(自测卷)完整试卷
河北省石家庄市(新版)2024高考数学统编版能力评测(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在不等式组所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均大于1的概率是()A.B.C.D.第(2)题如图是一个由正四棱锥和正四棱柱构成的组合体,正四棱锥的侧棱长为6,为正四棱锥高的4倍.当该组合体的体积最大时,点到正四棱柱外接球表面的最小距离是A.B.C.D.第(3)题已知集合,,若,则实数的取值范围是()A.B.C.D.第(4)题函数y=x2㏑x的单调递减区间为A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)第(5)题设等比数列的公比为,其前项之积为,并且满足条件:,,,给出下列结论:①;②;③是数列中的最大项;④使成立的最大自然数等于4039;其中正确结论的序号为()A.①②B.①③C.①③④D.①②③④第(6)题对于全集的子集定义函数为的特征函数,设为全集的子集,下列结论中错误的是( )A.若则B.C.D.第(7)题设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0]B.[–3,2]C.[0,2]D.[0,3]第(8)题已知向量,,,则()A.-3B.-1C.1D.3二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知正方体的棱长为2,长为2的线段MN的一个端点M在棱上运动,N在底面ABCD内(N可以在正方形ABCD边上)运动,线段MN中点的轨迹为Ω,Ω与平面ABCD、平面和平面围成的区域内有一个小球,球心为O,则()A.球O半径的最大值为B.Ω被正方体侧面截得曲线的总长为C.Ω的面积为D.Ω与正方体的表面所围成的较小的几何体的体积为第(2)题下列命题正确的是()A.数据4,6,7,7,8,9,11,14,15,19的分位数为11B.已知变量x,y的线性回归方程,且,则C.已知随机变量,最大,则的取值为3或4D.已知随机变量,,则第(3)题如图,已知长方体中,,,为线段上一点,则下列结论正确的是()A.若平面,则为的中点B.若为的中点,则异面直线与所成角的余弦值为C.三棱锥的外接球截平面所得截面面积为D.若三棱锥的体积为,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某程序框图如图所示,则该程序运行后输出的k的值是________ .第(2)题若的展开式中常数项为,则自然数__________.第(3)题2022年11月,第五届中国国际进口博览会即将在上海举行,组委员会准备安排5名工作人员去A,B,C,D这4所场馆,其中A场馆安排2人,其余场馆各1人,则不同的安排方法种数为____.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在三棱锥A-BCD中,ABD与BCD都为等边三角形,平面ABD^平面BCD,M,O分别为AB,BD的中点,AO∩DM=G,N在棱CD上且满足2CN=ND,连接MC,GN.(1)证明:GN平面ABC;(2)求直线AC和平面GND所成角的正弦值.第(2)题已知函数.(1)求不等式的解集;(2)若不等式有解,求的取值范围.第(3)题如图,在七面体中,四边形是菱形,其中,,,是等边三角形,且.(1)证明:;(2)求直线与平面所成角的正弦值.第(4)题如图所示,椭圆的左、右顶点分别为、,上、下顶点分别为、,右焦点为,,离心率为.(1)求椭圆的方程;(2)过点作不与轴重合的直线与椭圆交于点、,直线与直线交于点,试讨论点是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.第(5)题已知在平面直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)若以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,试求曲线的极坐标方程;(2)求直线被曲线截得线段的长.。
高等数学练习题附答案
第一章 自测题一、填空题(每小题3分,共18分)1. ()3limsin tan ln 12x x xx →=-+ .2. 21lim2x x x →=+- . 3.已知212lim31x x ax bx →-++=+,其中为b a ,常数,则a = ,b = . 4. 若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a = . 5. 曲线21()43x f x x x -=-+的水平渐近线是 ,铅直渐近线是 . 6. 曲线()121e x y x =-的斜渐近线方程为 .二、单项选择题(每小题3分,共18分)1. “对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的 .A. 充分条件但非必要条件B. 必要条件但非充分条件C. 充分必要条件D. 既非充分也非必要条件2. 设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦ .A. 22,02,0x x x x ⎧+<⎨-≥⎩B. 22,02,0x x x x ⎧-<⎨+≥⎩ C. 22,02,0x x x x ⎧-<⎨-≥⎩ D. 22,02,0x x x x ⎧+<⎨+≥⎩3. 下列各式中正确的是 .A .01lim 1e x x x +→⎛⎫-= ⎪⎝⎭ B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭C.1lim 1e x x x →∞⎛⎫-=- ⎪⎝⎭D. -11lim 1e xx x -→∞⎛⎫+= ⎪⎝⎭4. 设0→x 时,tan e1x-与n x 是等价无穷小,则正整数n = .A. 1B. 2C. 3D. 45. 曲线221e 1ex x y --+=- .A. 没有渐近线B. 仅有水平渐近线C. 仅有铅直渐近线D. 既有水平渐近线又有铅直渐近线 6.下列函数在给定区间上无界的是 . A.1sin ,(0,1]x x x ∈ B. 1sin ,(0,)x x x ∈+∞ C. 11sin ,(0,1]x x x ∈ D. 1sin ,(0,)x x x∈+∞三、求下列极限(每小题5分,共35分)1.22x →2.()120lim ex xx x -→+3.()1lim 123n nnn →∞++4.21sinlimx x →+∞5. 设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦ .6.142e sin lim1exxxxx→⎛⎫+⎪+⎪⎪+⎝⎭7.limx+→四、确定下列极限中含有的参数(每小题5分,共10分)1.2212lim22xax x bx x→-+=-+-2.(lim1 xx→-∞+=五、讨论函数,0()(0,0,1,1)0,0x xa bxf x a b a bxx⎧-≠⎪=>>≠≠⎨⎪=⎩在0x=处的连续性,若不连续,指出该间断点的类型.(本题6分)六、设sin sin sin ()lim sin x t xt x t f x x -→⎛⎫= ⎪⎝⎭,求()f x 的间断点并判定类型. (本题7分)七、设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎥⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题6分)第二章 自测题一、填空题(每小题3分,共18分)1.设()f x 在0x 可导,且00()0,()1f x f x '==,则01lim h hf x h →∞⎛⎫-= ⎪⎝⎭. 2.设21cos f x x ⎛⎫=⎪⎝⎭,则()f x '=. 3.d x = . 4.设sin (e )x y f =,其中()f x 可导,则d y = . 5.设y =12y ⎛⎫'=⎪⎝⎭. 6.曲线1sin xy x y =+在点1,ππ⎛⎫⎪⎝⎭的切线方程为 . 二、单项选择题(每小题3分,共15分)1.下列函数中,在0x =处可导的是 .A.||y x =B.|sin |y x =C.ln y x =D.|cos |y x =2.设()y f x =在0x 处可导,且0()2f x '=,则000(2)()limx f x x f x x x→+--= .A.6B.6-C.16D.16-3.设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时恒有2|()|f x x ≤,则0x =是()f x 的 .A.间断点B.连续而不可导的点C.可导的点,且(0)0f '=D.可导的点,且(0)0f '≠4.设2sin ,0(),x x f x x x <⎧=⎨≥⎩,则在0x =处()f x 的导数 .A.0B.1C.2D.不存在5.设函数()f u 可导,2()y f x =当自变量x 在1x =-处取得增量0.1x =- 时,相应的函数增量y 的线性主部为0.1,则(1)f '= .A.1-B.0.1C.1D.0.5三、解答题(共67分)1.求下列函数的导数(每小题4分,共16分)(1)(ln e x y =+(2))11y⎫=⎪⎭(3)aaxa x a y x a a =++(4)cos (sin )x y x =2.求下列函数的微分(每小题4分,共12分) (1)2ln sin y x x x =+ (2)21cot e xy =(3)y x =3.求下列函数的二阶导数(每小题5分,共10分) (1)2cos ln y x x = (2)11xy x-=+4.设e ,1(),1x x f x ax b x ⎧≤=⎨+>⎩在1x =可导,试求a 与b .(本题6分)5.设sin ,0()ln(1),0x x f x x x <⎧=⎨+≥⎩,求'()f x .(本题6分)6.设函数()y y x =由方程22ln 1x xy y-=所确定,求d y .(本题6分)7.设()y y x =由参数方程ln tan cos 2sin t x a t y a t⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩,求22d d ,d d y y x x .(本题6分)8.求曲线3213122t x t y t t +⎧=⎪⎪⎨⎪=+⎪⎩在1t =处的切线方程和法线方程.(本题5分)第三章 自测题一、填空题(每小题3分,共15分)1.若0,0a b >>均为常数,则30lim 2x xxx a b →⎛+⎫=⎪⎝⎭. 2.2011lim tan x x x x →⎛⎫-=⎪⎝⎭. 3.3arctan limln(12)x x xx →-=+ . 4.曲线2e x y -=的凹区间 ,凸区间为 . 5.若()e xf x x =,则()()n f x 在点x = 处取得极小值.二、单项选择题(每小题3分,共12分)1.设,a b 为方程()0f x =的两根,()f x 在[,]a b 上连续,(,)a b 内可导,则()f x '0=在(,)a b 内 .A.只有一个实根B.至少有一个实根C.没有实根D.至少有两个实根2.设()f x 在0x 处连续,在0x 的某去心邻域内可导,且0x x ≠时,0()()0x x f x '->,则0()f x 是 .A.极小值B.极大值C.0x 为()f x 的驻点D.0x 不是()f x 的极值点 3.设()f x 具有二阶连续导数,且(0)0f '=,0()lim1||x f x x →''=,则 . A.(0)f 是()f x 的极大值 B.(0)f 是()f x 的极小值C .(0,(0))f 是曲线的拐点D .(0)f 不是()f x 的极值,(0,(0))f 不是曲线的拐点 4.设()f x 连续,且(0)0f '>,则0δ∃>,使 .A.()f x 在(0,)δ内单调增加.B.()f x 在(,0)δ-内单调减少.C.(0,)x δ∀∈,有()(0)f x f >D.(,0)x δ∀∈-,有()(0)f x f >.三、解答题(共73分)1.已知函数()f x 在[0,1]上连续,(0,1)内可导,且(1)0f =,证明在(0,1)内至少存在一点ξ使得()()tan f f ξξξ'=-.(本题6分)2.证明下列不等式(每小题9分,共18分) (1)当0a b <<时,ln b a b b ab a a--<<.(2)当02x π<<时,2sin x x x π<<.3.求下列函数的极限(每小题8分,共24分)(1)0e e 2lim sin x x x xx x-→---(2)21sin 0lim(cos )xx x →(3)10(1)elimxx x x→+-4.求下列函数的极值(每小题6分,共12分) (1)1233()(1)f x x x =-(2)2,0()1,0x x x f x x x ⎧>=⎨+<⎩5.求2ln xy x=的极值点、单调区间、凹凸区间和拐点.(本题6分)6.证明方程1ln0ex x+=只有一个实根.(本题7分)第一章自测题一、填空题(每小题3分,共18分)1. 2. 3. , 4.5. 水平渐近线是,铅直渐近线是6.二、单项选择题(每小题3分,共18分)1. C2. D3. D4. A5. D 6.C三、求下列极限(每小题5分,共35分)解:1.. 2..3.,又.4.. 5.. 6.,,所以,原式.7..四、确定下列极限中含有的参数(每小题5分,共10分)解:1.据题意设,则,令得,令得,故.2.左边,右边故,则.五、解:,故在处不连续,所以为得第一类(可去)间断点.六、解:,而,故,都是的间断点,,故为的第一类(可去)间断点,均为的第二类间断点.七、证明:设,显然在上连续,而,,,故由零点定理知:一定存在一点,使,即.第二章自测题一、填空题(每小题3分,共18分)1. 2. 3. 4.5. 6.或二、单项选择题(每小题3分,共15分)1. D2. A3. C4. D5. D三、解答题(共67分)解:1.(1).(2).(3).(4) 两边取对数得,两边求导数得,.2.求下列函数的微分(每小题4分,共12分)(1) .(2).(3) .3.求下列函数的二阶导数(每小题5分,共10分)(1),.(2),.4.首先在处连续,故,故,其次,,,由于在处可导,故,故,.5.,,故,由于在,时均可导,故.6.方程可变形为,两边求微分得,故.7.,.8.,故.当时,. 故曲线在处的切线方程为,即,法线方程为,即.第三章自测题一、填空题(每小题3分,共15分)1.2.3. 4., 5.二、单项选择题(每小题3分,共12分)1.B 2.A3.B,提示:由题意得,,当时,;即当时,,当时,,从而在取得极小值4. C,提示:由定义,由极限的保号性得,当时,,即三、解答题(共73分)证明:1.令,则在上连续,内可导,且;由罗尔定理知,至少存在一点,使得,故,即.2.(1)令,则在区间上满足拉格朗日中值定理的条件.由拉格朗日中值定理得,至少存在一点,使得即,又,得到,从而.(2)令,则,从而当时单调递增,即,故;令,则,即当时单调递减,即,故;从而当时,.解:3.(1).(2).(3).4.⑴函数的定义域为;,令得驻点,不可导点;当时,;当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.⑵,令得驻点,为不可导点.当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.5.定义域为;,,令得驻点,令得;列表得:拐点6.证明:令,显然,;令得唯一驻点,且;故在上当时取得极小值;当时,,所以方程只有一个实根.。
高等数学函数与极限自测题及答案
第一章 函数与极限 自测题 A 卷一、单项选择题(3分⨯5=15分).)(x f 的定义域为)0,1(-,则下列函数中,( )的定义域为)1,0(. (A))1(x f - (B))1(-x f (C))1(+x f (D))1(2-x fx x x y sin cos +=是( )(A)偶函数 (B)奇函数 (C)非奇非偶函数 (D)奇偶函数 )]([x f ϕ的是( )(A)u u f y ln )(==, 2sin )(-==x x u ϕ(B)21)(uu u f y -==, 1cos sin )(22-+==x x x u ϕ (C)u u f y ==)(, x x u -==)(ϕ(D)u u f y arccos )(==, 25x u += 0→x 时,与x 等价的无穷小是( )(A)x x sin (B)x x sin 2+ (C)3tan x (D)x 25.=→xxx 0lim ( ) (A)1 (B)-1 (C)0 (D)不存在二、填空(3分⨯5=15分).x x f +=11)(,则=)]1([x f f .2.x xf cos 1)2(cos -=,则=)(x f . 3.212lim 221=--+→x ax x x ,则=a .1. 已知xe xf 1)(=,则=+)00(f ,=-)00(f .2. 已知)1(sin )1()(2--=x x xx x f 在0=x 处是第类间断点.三、(6分) 设132)(2--=x x x g ,(1)试确定c b a ,,的值,使c x b x a x g +-+-=-)1()1()1(2. (2)求)1(+x g 的表达式.四、(6分)设函数⎪⎩⎪⎨⎧<-=>=010001)(x x x x f ,x x g 1)(=,求)]([x g f 及)]([x f g . 五、求下列极限(5分⨯6=30分).(1)x x x x x sin sin lim 20+-→ (2)xx x x )11(lim +-∞→ (3)a x e e a x a x --→lim(4)nn n n 1)321(lim ++∞→ (5)x x e x x cos lim 0-→ (6))12arcsin()11ln(lim 3231--+→x x x六、(10分) 给定∞→n 时的无穷小如下:n 1cos 1-,11-+n a ,n n 1tan 12,)11ln(4n+,11-na(1,0≠>a a ),按高阶向低阶的次序,将它们排列起来.七、(10分) 讨论xx xee ee xf 111)(--=-的间断点类型.八、(8分)设)(x f 在]1,0[上为非负连续函数,且0)1()0(==f f .试证:对于任一个小于1的正数)10(≤≤L L ,存在)1,0(∈ξ,使得)()(L f f +=ξξ.第一章 自测题 A 卷答案一、 1 ( B ) 2 ( B ) 3 ( C ) 4 ( B ) 5 ( D )二、 1.121++x x 2.222x - 3.3 4.∞+ 三、 (1)0,1,2===c b a (2)352)1(2++=+x x x g四、 ⎩⎨⎧<->=0101)]([x x x g f ⎩⎨⎧<->=0101)]([x x x f g五、 1.21- 2.2-e 3.ae4.35.16.3221六、 )11ln(4n+,n n 1tan 12,n 1cos 1-,11-+n a ,11-na七、 0=x 为跳跃间断点,1-=x 为可去间断点.第一章 函数与极限 自测题 B 卷一、单项选择题(3分⨯5=15分) 1.xex x x f cos sin )(= )(+∞<<-∞x 是( )(A)有界函数 (B)单调函数 (C)周期函数 (D)偶函数 )(lim 0x f x x →和)(lim 0x g x x →都不存在,则( )(A))]()([lim 0x g x f x x +→和)]()([lim 0x g x f x x -→也都不存在(B))]()([lim 0x g x f x x +→和)]()([lim 0x g x f x x -→中至少有一个不存在 (C))]()([lim 0x g x f x x +→和)]()([lim 0x g x f x x -→可能都存在 (D))]()([lim 0x g x f x x +→和)]()([lim 0x g x f x x -→一定都存在0→x 时,下列函数哪一个是其它三个的高阶无穷小( )(A)2x (B)x cos 1- (C)x x tan - (D))1ln(x +4.⎪⎩⎪⎨⎧=≠=00)(1x ax e x f x ,则( ) (A)当0=a 时,)(x f 在0=x 点左连续; (B)当1=a 时,)(x f 在0=x 点左连续; (C)当0=a 时,)(x f 在0=x 点右连续; (D)当1=a 时,)(x f 在0=x 点右连续。
陕西省西安市(新版)2024高考数学部编版能力评测(自测卷)完整试卷
陕西省西安市(新版)2024高考数学部编版能力评测(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题排成一排的8个座位,甲、乙、丙3人随机就座,要求甲乙必须在相邻两座位就座,但都与丙不相邻(即之间有空座位),则不同坐法种数为()A.30B.60C.120D.336第(2)题设的共轭复数是,若,,则等于A.B.C.D.第(3)题为虚数单位,的共轭复数为A.B.C.1D.第(4)题阅读下边的程序框图,运行相应的程序,则输出i的值为( )A.2B.3C.4D.5第(5)题有6个大小相同的小球,其中1个黑色,2个蓝色,3个红色.采用放回方式从中随机取2次球,每次取1个球,甲表示事件“第一次取红球”,乙表示事件“第二次取蓝球”,丙表示事件“两次取出不同颜色的球”,丁表示事件“与两次取出相同颜色的球”,则()A.甲与乙相互独立B.甲与丙相互独立C.乙与丙相互独立D.乙与丁相互独立第(6)题在正方体中,P为的中点,则直线与所成的角为()A.B.C.D.第(7)题若向量,,则()A.B.C.D.第(8)题的内角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,,的面积为,则b=()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若函数的最小值为,则()A .当时,的图象关于点对称B.当时,C.存在实数与,使得D.当时,将曲线向左平移个单位长度,得到曲线第(2)题已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则()A.C的准线为B.直线AB与C相切C.D.第(3)题下列说法中,正确的是()A.用简单随机抽样的方法从含有50个个体的总体中抽取一个容量为5的样本,则个体被抽到的概率是0.1B.一组数据的第60百分位数为14C.若样本数据的方差为8,则数据的方差为2D.将总体划分为2层,通过分层抽样,得到两层的样本平均数和样本方差分别为,和,若,则总体方差三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若函数为偶函数,则_____.第(2)题已知抛物线:的顶点为O,焦点为F,准线为l,过点F的直线与抛物线交于点A、B,且,过抛物线上一点P(非原点)作抛物线的切线,与x轴、y轴分别交于点M、N,.垂足为H.下列命题:①抛物线的标准方程为②的面积为定值③M为PN的中点④四边形PFNH为菱形其中所有正确结论的编号为___________.第(3)题已知数列满足,且,为数列的前项和,则___________,___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(I)若为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;(Ⅱ)设直线的参数方程为(为参数,,且直线与曲线相交于,两点,求面积的最大值.第(2)题已知平面直角坐标系中,曲线经过伸缩变换得到曲线.(1)求曲线的方程;(2)若直线不过点且不平行于坐标轴,直线交曲线于,两点,且以为直径的圆经过点,求面积的取值范围.第(3)题如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?第(4)题已知函数.(1)当时,求曲线在处的切线方程;(2)当时,证明:为单调递增函数.第(5)题设等差数列的公差,数列的前项和为,满足,且,.若实数,则称具有性质.(1)请判断、是否具有性质,并说明理由;(2)设为数列的前项和,,且恒成立.求证:对任意的,实数都不具有性质;(3)设是数列的前项和,若对任意的,都具有性质,求所有满足条件的的值.。
陕西省西安市(新版)2024高考数学苏教版能力评测(自测卷)完整试卷
陕西省西安市(新版)2024高考数学苏教版能力评测(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,则的零点所在的区间是( )A .B .C .D .第(2)题已知为锐角,若,则( )A .B .C .D .第(3)题已知向量,则( )A .2B .3C .4D .5第(4)题转子发动机采用三角转子旋转运动来控制压缩和排放.如图1,三角转子的外形是有三条侧棱的曲面棱柱,且侧棱垂直于底面,底面是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆构成的曲面三角形(如图2),正三角形的顶点称为曲面三角形的顶点,侧棱长为曲面棱柱的高,记该曲面棱柱的底面积为S ,高为h .已知曲面棱柱的体积V =Sh ,如图1所示的曲面棱柱的体积为,,则( )A .2B .3C .4D .6第(5)题从放有两个红球、一个白球的袋子中一次任意取出两个球,两个红球分别标记为、,白球标记为,则它的一个样本空间可以是( )A .B .C .D .第(6)题已知函数和的定义域为,且为偶函数,,且为奇函数,对于,均有,则( )A .1B .66C .72D .2022第(7)题函数和的定义域均为R ,“,都是奇函数”是“与的积是偶函数”的( )A .必要条件但非充分条件B .充分条件但非必要条件C .充分必要条件D .非充分条件也非必要条件第(8)题设,,,则( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知点,点是双曲线左支上的动点,是圆上的动点,则( )A .的实轴长为6B .的渐近线为C.的最小值为D .的最小值为第(2)题设函数,则下列说法正确的有()A.当,时,为奇函数B.当,时,的一个对称中心为C.若关于的方程的正实根从小到大依次构成一个等差数列,则这个等差数列的公差为D.当,时,在区间上恰有个零点第(3)题已知函数分别与直线交于点A,B,则下列说法正确的( )A.的最小值为B.,使得曲线在点A处的切线与曲线在点B处的切线平行C.函数的最小值小于2D.若,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数.直线与曲线的两个交点如图所示,若,且在区间上单调递减,则_______;_______.第(2)题已知数列满足,则数列满足对任意的,都有,则数列的前项和__________.第(3)题已知函数,则不等式的解集为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)当时,判断的单调性;(2)若时,恒成立,求实数的取值范围.第(2)题肝脏疾病是各种原因引起的肝脏损伤,是一种常见的危害性极大的疾病,研究表明有八成以上的肝病,是由乙肝发展而来,身体感染乙肝病毒后,病毒会在体内持续复制,肝细胞修复过程中形成纤维化,最后发展成肝病.因感染乙肝病毒后身体初期没有任何症状,因此忽视治疗,等到病情十分严重时,患者才会出现痛感,但已经错过了最佳治疗时机,对乙肝病毒应以积极预防为主,通过接种乙肝疫苗可以预防感染乙肝病毒、体检是筛查乙肝病毒携带者最好的方法,国家在《中小学生健康体检管理办法》中规定:中小学校每年组织一次在校学生健康体检,现某学校有4000名学生,假设携带乙肝病毒的学生占m%,某体检机构通过抽血的方法筛查乙肝病毒携带者,如果对每个人的血样逐一化验,就需要化验次数4000次.为减轻化验工作量,统计专家给出了一种化验方法:随机按照k个人进行分组,将各组k个人的血样混合再化验,如果混合血样呈阴性,说明这k个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对该组每个人血样再分别化验一次.假设每人血样化验结果呈阴性还是阳性相互独立.(1)若,记每人血样化验次数为X,当k取何值时,X的数学期望最小,并求化验总次数;(2)若,设每人血样单独化验一次费用5元,k个人混合化验一次费用k+4元.求当k取何值时,每人血样化验费用的数学期望最小,并求化验总费用.参考数据及公式:.第(3)题函数的表达式为.(1)若,直线与曲线相切于点,求直线的方程;(2)函数的最小正周期是,令,将函数的零点由小到大依次记为,证明:数列是严格减数列;(3)已知定义在上的奇函数满足,对任意,当时,都有且.记,.当时,是否存在,使得成立?若存在,求出符合题意的;若不存在,请说明理由.第(4)题在正四棱柱中,,,E为中点,直线与平面交于点F.(1)证明:F为的中点;(2)求直线AC与平面所成角的余弦值.第(5)题在锐角中,角的对边分别是,且__________.在下列两个条件中选择一个补充在横线上:①;②(1)求出角的大小;(2)若角的平分线交边于点,且,求的取值范围.。