第5章凸轮机构分析
陈立德版机械设计基础第4、5章课后题答案

第4章 平面连杆机构4.1 机构运动分析时的速度多边形与加速度多边形特性是什么?答:同一构件上各点的速度和加速度构成的多边形与构件原来的形状相似,且字母顺序一致。
4.2 为什么要研究机械中的摩擦?机械中的摩擦是否全是有害的?答:机械在运转时,其相邻的两构件间发生相对运动时,就必然产生摩擦力,它一方面会消耗一部分的输入功,使机械发热和降低其机械效率,另一方面又使机械磨损,影响了机械零件的强度和寿命,降低了机械工作的可靠性,因此必须要研究机械中的摩擦。
机械中的摩擦是不一定有害的,有时会利用摩擦力进行工作,如带传动和摩擦轮传动等。
4.3 何谓摩擦角?如何确定移动副中总反力的方向?答:(1)移动或具有移动趋势的物体所受的总反力与法向反力之间的夹角称为摩擦角ϕ。
(2)总反力与相对运动方向或相对运动趋势的方向成一钝角90ϕ+ ,据此来确定总反力的方向。
4.4 何谓摩擦圆?如何确定转动副中总反力的作用线?答:(1)以转轴的轴心为圆心,以0()P P rf =为半径所作的圆称为摩擦圆。
(2)总反力与摩擦圆相切,其位置取决于两构件的相对转动方向,总反力产生的摩擦力矩与相对转动的转向相反。
4.5 从机械效率的观点看,机械自锁的条件是什么?答:机械自锁的条件为0η≤。
4.6 连杆机构中的急回特性是什么含义?什么条件下机构才具有急回特性?答:(1)当曲柄等速转动时,摇杆来回摇动的速度不同,返回时速度较大。
机构的这种性质,称为机构的急回特性。
通常用行程速度变化系数K 来表示这种特性。
(2)当0θ≠时,则1K >,机构具有急回特性。
4.7 铰链四杆机构中曲柄存在的条件是什么?曲柄是否一定是最短杆?答:(1)最长杆与最短杆的长度之和小于或等于其余两杆长度之和;最短杆或相邻杆应为机架。
(2)曲柄不一定为最短杆,如双曲柄机构中,机架为最短杆。
4.8 何谓连杆机构的死点?举出避免死点和利用死点的例子。
答:(1)主动件通过连杆作用于从动件上的力恰好通过其回转中心时的位置,称为连杆机构的死点位置。
机械原理典型例题凸轮

hk
αk
α max k
90°
θ
V
(P)
h
F αF=0
(1)凸轮偏心距。利用速度瞬心 ,几何 中心O即为速度瞬心p,可得ν=eω,求 得e=25mm。
(2)凸轮转过90°时,从动件在K点 接触,其压力角为αk。
e/sinαk =R/sinθ;
当θ=90°时,αk达到最大值。
αk=arcsin(e/R)=30°
接触时的压力角αC;比较αB,αC大小,说明题意中的偏置是否合理。 (3)如果偏距e=-5mm,此时的偏置是否合理
αB αC
αD
B
C
D
hB
e
R
r0 O
A
解:
αC> αB。该偏置有利 减小压力角,改善受力,
故偏置合理。
α D> α C> αB,故偏置 不合理。
例4 凸轮为偏心轮如图,已知参数R=30mm,loA=10mm,e=15mm,rT=5mm, E,F为凸轮与滚子的两个接触点。求 (1)画出凸轮轮廓线(理论轮廓线),求基园r0;(2)E点接触时从动件的压力角 αE; (3) 从E到F接触凸轮所转过的角度φ; (4)由E点接触到F点接触从动件的位 移S;(5)找出最大αmax的位置。
αE
hE E
e
ω
Oθ
F
φ
r0
A
αmax
S=hF-hE Sin α =(e-loAcos θ)/(R+rT)
θ =180时,α为 αmax
R
hF
例5 :图示为一直动推杆盘形凸轮机构。若一直凸轮基
推程
圆半径r0,推杆的运动规律s=S(δ),为使设计出的凸轮
机构受力状态良好,试结合凸轮机构压力角的计算公式
第五章 凸轮机构

2、按从动件的形状分类 (1)、尖顶从动件
(2)、滚子从动件
(3)、平底从动件
按从动件的运动形式 从动件可相对机架作往复移动或 摆动,可分为移动从动件和摆动从 动件
移动从动件
摆动从动件
按从动件运动形式 可分为直动从动件(又分为对心直动从动件和偏置直动从动件) 和摆动从动件两种。
按锁合方式的不同 维持运动副中两个构件之间的接触方式称为锁合. 分为: 力锁合凸轮:如靠重力、弹簧力锁合的凸轮等; 形锁合凸轮:如沟槽凸轮、等径及等宽凸轮、共轭凸轮 等。
3.从动件的运动线图 将从动件在一个运动循环中的运动规律表示成凸轮转角中的 函数,与之对应的图形称为从动件的运动线图。 在从动件的运动线图中,表示从动件位移变化规律的线称 为位移线图,即s=s(φ ) 表示v=v(φ )和a=a(φ )的线图分别称为速度线图和加速 度线图 5-2 从动件常用的运动规律 根据凸轮机构的运动分析,从动件常用的运动规律有等建运 动,等加速、等减速运动,余弦加速度运动等。 1.等速运动规律 从动件的运动速度v为常数时的运动规律,称为等速运动规律
§5-2 凸轮机构的运动特性 一、凸轮传动的工作过程 ★基圆:以凸轮最小半径r0所作 的圆,r0称为凸轮的基圆半径。 ★推程、推程运动角: ★远休、远休止角:
最新机械设计基础教案——第5章 凸轮机构

第5章凸轮机构(一)教学要求1.了解凸轮机构的工作原理2.掌握常用从动件运动规律及特性3.掌握盘形凸轮轮廓的设计4.了解凸轮机构的尺寸的确定(二)教学的重点与难点1.凸轮的工作原理2.用反转法设计凸轮轮廓3.凸轮的尺寸对其机构的影响(三)教学内容5.1概述5.1.1 概念1.凸轮机构的组成:凸轮是由从动件、机架、凸轮三部分组成的高幅机构。
2.凸轮:是一种具有曲线轮廓或凹糟的构件,它通过与从动什的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。
3.特点:结构相当简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。
但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。
4.凸轮机构的应用例:内燃机配气机构(如下图所示)靠模车削机构(如下图所示)自动送料机构(如下图所示)分度转位机构(如下图所示)5.1.2 凸轮机构的分类1、按照凸轮的形状分为:(1)盘形凸轮凸轮中最基本的形式。
凸轮是绕固定铂转动且向径变化的盘形零件,凸轮与从动件互作平面运动,是平面凸轮机构。
(2)移动凸轮可看作是回转半径无限大的盘形凸轮,凸轮作往复移动,是平面凸轮机构。
(3)圆柱凸轮可看作是移动凸轮绕在圆柱体上演化而成的,从动件与凸轮之间的相对运动为空间运动,是一种空间凸轮机构。
(4)曲面凸轮当圆柱表面用圆弧面代替时,就演化成曲面凸轮,它也是一空间凸轮机构。
2、按锁合方式的不同凸轮可分为:(1)力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;(2)几何锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。
3、按从动件型式分为:(1)尖顶从动件(2)滚子从动件(3)平底从动件根据从动件运动型式不同分为直动从动件和摆动从动件。
5.1.3 凸轮和滚子的材料凸轮机构的主要失效形式:磨损和疲劳点蚀要求凸轮和滚子的工作表面硬度高、耐磨并且有足够的表面接触强度。
对于经常受到冲击的凸轮机构还要求凸轮芯部有较强的韧性。
凸轮机构

B6
4. 偏心尖顶直动从动件盘形凸轮轮廓曲线的设计
第四节凸轮机构基本尺寸的确定
凸轮工作轮廓必须满足以下要求: (1)保证从动件能实现预定的运动规律
(2)传力性能良好,不能自锁
(3)结构紧凑
(4)满足强度和安装等要求 为此,设计时应注意处理好
1.滚子半径的选择 2.凸轮机构的压力角 3.凸轮基圆半径的确定 4.凸轮机构的材料
(a)推程 (b)回程
2.等加速等减速运动规律
是指凸轮以等角速度转动时,从动件在一个行程中,前半行程作 等加速运动,后半行程作等减速运动的运动规律。 运动线图如图所示。其位移曲线为两段光滑相连开口相反的抛物 线,速度曲线为斜直线,加速度曲线为平直线。推程位移线图作图 方法演示。
由图可见,在推(回) 程的始末点和前、后半程 的交接处,加速度有限的 突变,因而惯性力也产生 有限的突变,由此将对机 构造成有限大小的冲击, 这种冲击称为“柔性冲击” 或“软冲”。因此这种运 动规律只适用于中速、中 载的场合。
3.按锁合方式分:力锁合、形锁合
锁合是指从动件与凸轮之间始终保持的高副接触的装置。
(1)力锁合凸轮机构
依靠重力、弹 力或其他外力 来锁合
(2)形锁合凸轮机构
依靠凸轮和从 动件几何形状 来保证锁合
4.按从动件运动方式分:
从动件导路是否通过凸轮回转中心
对心直动从动件凸轮机构 偏置移动从动件凸轮机构
直动从动件凸轮机构 摆动从动件凸轮机构
rT<0.8ρmin ρmin>1~5mm rT =(0.1~0.5)rb
二、凸轮机构的压力角
1.压力角:不计摩擦时,凸轮对从 动件的作用力(法向力)与从动件 上受力点速度方向所夹的锐角。 该力可分解为两个分力 :
凸轮机构原理

凸轮机构原理凸轮机构是一种常见的机械传动装置,它通过凸轮的旋转运动将其上连接的零件带动实现特定的运动规律。
在本文中,将介绍凸轮机构的原理及其应用。
一、凸轮机构的基本原理凸轮机构由凸轮、从动件和驱动件组成。
其中,凸轮是核心部件,它通常形状为圆柱体,其轴线与从动件轴线平行。
凸轮的外表面通常具有不规则的形状,以满足特定的运动要求。
从动件与凸轮接触并被驱动进行运动,驱动从动件的力来自于驱动件。
凸轮机构的工作原理是基于凸轮的旋转运动。
当凸轮旋转时,凸轮上的形状会与从动件进行接触,从而产生驱动力。
凸轮的形状决定了从动件的运动规律,可以实现直线运动、转动运动或复杂的轨迹运动等。
在凸轮机构中,凸轮的运动通常是以连续的方式完成的。
当凸轮旋转一周后,以不同速度和运动规律运动的从动件会回到初始位置,从而实现特定的往复或连续运动。
在某些凸轮机构中,凸轮的速度和角度可以通过其他传动装置进行调节,以实现调整从动件的运动规律。
二、凸轮机构的应用凸轮机构广泛应用于各种机械设备中,其中最常见的是内燃机的气门控制系统。
在内燃机中,凸轮机构负责控制气门的开关,以实现燃烧室的进气和排气。
凸轮机构通过凸轮和气门杆的连接,将凸轮的旋转运动转换为气门的上下运动,从而实现气门的开启和关闭。
不同类型内燃机根据其工作原理和要求,凸轮机构的设计和形状也会有所不同。
此外,凸轮机构还应用于机床、自动化生产线、纺织机械等领域。
在机床中,凸轮机构可以用于驱动工作台、进给机构和切削工具等,以实现工件的加工和加工过程的自动化。
在自动化生产线中,凸轮机构可以配合其他传动装置,如链条、齿轮等,实现物料的输送和组装。
而在纺织机械领域,凸轮机构则常用于纺纱机、织布机等的驱动系统,以实现纱线的拉伸和布匹的运动。
凸轮机构的应用范围非常广泛,其原理简单可靠,具有良好的可控性和稳定性。
通过根据具体的运动要求设计凸轮的形状和相关的传动装置,可以实现各种复杂的运动规律,为机械运动的控制和操作提供了有效的解决方案。
机械设计专升本章节练习题(含答案)——凸轮机构

第5章凸轮机构1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度2.动力特性:刚性冲击,柔性冲击3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件4.基本参数:基圆半径,滚子半径,平底尺寸【思考题】5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触?5-2 凸轮机构分成哪几类?凸轮机构有什么特点?5-3 为什么滚子从动件是最常用的从动件型式?5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点?5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理?5-6 什么情况下要用解析法设计凸轮的轮廓?5-7 设计凸轮应注意那些问题?5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律?A级能力训练题1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲击,运动规律产生柔性冲击,运动规律则没有冲击。
2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于中速,但不宜用于高速的情况,而可在高速下应用。
3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是或。
4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采用的措施是。
若只降低升程的压力角,可采用方法。
5.凸轮的基圆半径是从到的最短距离。
6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是__________________________________________。
7.与其他机构相比,凸轮机构的最大优点是。
(1)便于润滑(2)可实现客种预期的运动规律(3)从动件的行程可较大(4)制造方便,易获得较高的精度8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。
(1)增大(2)减小(3)不变(4)增大或减小9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。
机械设计专升本章节练习题(含答案)——凸轮机构

第5章凸轮机构1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度2.动力特性:刚性冲击,柔性冲击3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件4.基本参数:基圆半径,滚子半径,平底尺寸【思考题】5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触?5-2 凸轮机构分成哪几类?凸轮机构有什么特点?5-3 为什么滚子从动件是最常用的从动件型式?5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点?5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理?5-6 什么情况下要用解析法设计凸轮的轮廓?5-7 设计凸轮应注意那些问题?5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律?A级能力训练题1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲击,运动规律产生柔性冲击,运动规律则没有冲击。
2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于中速,但不宜用于高速的情况,而可在高速下应用。
3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是或。
4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采用的措施是。
若只降低升程的压力角,可采用方法。
5.凸轮的基圆半径是从到的最短距离。
6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是__________________________________________。
7.与其他机构相比,凸轮机构的最大优点是。
(1)便于润滑(2)可实现客种预期的运动规律(3)从动件的行程可较大(4)制造方便,易获得较高的精度8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。
(1)增大(2)减小(3)不变(4)增大或减小9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。
机械基础(第5单元)

a)机构结构图
b)机构运动简图
1—曲柄 2—连杆 3—摇杆 4—机架
第二节 平面四杆机构
• 1.铰链四杆机构的类型 • 在铰链四杆机构中,根据两连架杆的运动形式进行分类,可分为曲柄
摇杆机构、双曲柄机构和双摇杆机构三种基本形式,如下图所示。
图5-14 铰链四杆机构的三种基本形式
第二节 平面四杆机构
第一节 平面机构的组成
• 如果构件中转动副的间距较大时,通常将构件制成杆状,而且杆状构 件应尽量制成直杆;如果要求构件与机械的其他部分在运动时不发生 干涉(如碰撞),可将构件制成特殊的形状。如下图所示是具有转动 副的不同形状和横截面的杆状构件。
第一节 平面机构的组成
• 对于绕定轴转动的构件,常将构件制成盘状。有时在盘状构件上安装 轴销,以便与其他构件组成另一转动副。如果两个转动副间距很小时 ,难以设置相距很近的轴销(或轴孔),可将另一转动副尺寸扩大而 制成偏心轮,如图a所示。如果构件承受较大载荷时,采用偏心轮结 构庞大,则可以采用曲轴结构,如图b所示。偏心轮和曲轴常用于回 转运动与直线运动相互变换的机构中。
图a 电风扇摇头机构运动简图 图b 鹤式起重机机构运动简图
第二节 平面四杆机构
• 2.铰链四杆机构的类型判定
• 在铰链四杆机构中是否存在曲柄,取决于机构中各构件长度之间的关 系。
• 1)如果铰链四杆机构中最长杆与最短杆长度之和,小于或等于其余 两杆长度之和(杆长和条件),则该机构可能存在曲柄,但还要看选 取哪一个杆件作为机架,才能确定是否存在曲柄。如果以最短杆作为 连架杆,以最短杆的相邻杆为机架,则该机构一定是曲柄摇杆机构, 而且最短杆为曲柄,如图a所示;如果以最短杆作为机架,则相邻两 杆均为曲柄,该机构一定是双曲柄机构,如图b所示;如果以最短杆 作连杆,最短杆的对面杆作为机架,则该机构为双摇杆机构,如图c 所示。
机械基础凸轮机构教案

机械基础凸轮机构教案第一章:凸轮机构概述教学目标:1. 了解凸轮机构的定义、分类和应用。
2. 掌握凸轮的形状、尺寸和运动特性的基本知识。
教学内容:1. 凸轮机构的定义和分类。
2. 凸轮的形状和尺寸。
3. 凸轮的运动特性和曲线。
4. 凸轮机构在实际应用中的例子。
教学方法:1. 采用多媒体课件进行讲解。
2. 展示凸轮机构的实物模型或图片。
3. 分析凸轮的运动特性和曲线。
教学活动:1. 引入凸轮机构的定义和分类。
2. 展示凸轮的形状和尺寸的图片。
3. 分析凸轮的运动特性和曲线。
4. 举例说明凸轮机构在实际应用中的例子。
作业与练习:1. 复习凸轮机构的定义和分类。
2. 练习分析凸轮的形状和尺寸。
3. 练习分析凸轮的运动特性和曲线。
第二章:凸轮的设计与制造教学目标:1. 掌握凸轮的设计原则和方法。
2. 了解凸轮制造的工艺和设备。
教学内容:1. 凸轮的设计原则和方法。
2. 凸轮制造的工艺和设备。
教学方法:1. 采用多媒体课件进行讲解。
2. 展示凸轮设计的实例。
3. 分析凸轮制造的工艺和设备。
教学活动:1. 介绍凸轮的设计原则和方法。
2. 展示凸轮设计的实例。
3. 分析凸轮制造的工艺和设备。
作业与练习:1. 复习凸轮的设计原则和方法。
2. 练习分析凸轮制造的工艺和设备。
第三章:凸轮机构的工作原理与分析教学目标:1. 掌握凸轮机构的工作原理。
2. 学会分析凸轮机构的运动特性和性能。
教学内容:1. 凸轮机构的工作原理。
2. 凸轮机构的运动特性和性能分析。
教学方法:1. 采用多媒体课件进行讲解。
2. 演示凸轮机构的运动。
3. 分析凸轮机构的运动特性和性能。
教学活动:1. 介绍凸轮机构的工作原理。
2. 演示凸轮机构的运动。
3. 分析凸轮机构的运动特性和性能。
作业与练习:1. 复习凸轮机构的工作原理。
2. 练习分析凸轮机构的运动特性和性能。
第四章:凸轮机构的应用与实例教学目标:1. 了解凸轮机构在实际应用中的例子。
2. 学会分析凸轮机构的优缺点和适用场合。
第五章凸轮机构

第五章凸轮机构凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从动件的高副接触,在运动时能够使从动件取得持续或不持续的任意预期运动。
本章仅讨论凸轮与从动件作平面运动的凸轮机构(称为平面凸轮机构)。
一、教学要求1.了解凸轮机构的类型及各类凸轮机构的特点和适用处合,学会依照工作要求和利用处合选择凸轮机构的类型;2.熟悉凸轮机构的几种经常使用的从动件运动规律;3.熟练把握反转法原理,并能依照这一原理设计各类凸轮的轮廓曲线;4.把握凸轮机构大体尺寸的确信原那么。
二、教学重点与难点凸轮的设计是该章的重点和难点。
包括凸轮型式的选择,和依照具体的工作要求确信从动件的运动规律,凸轮的大体尺寸和轮廓曲线,对设计出来的凸轮要校核它的强度等。
概述凸轮机构是由凸轮、从动件和机架三个大体构件组成的高副机构,结构相当简单,只要设计出适当的凸轮轮廓曲线,就能够够使从动件实现任何预期的运动规律。
但由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。
5.1.1凸轮机构的应用当需要主动件作持续等速运动,而从动件能按任意要求的预期运动规律运动时,应用凸轮机构最为简便。
图自动机床进刀机构图内燃机配气机构在图所示的内燃机配气机构中,当凸轮1等速转动,。
其曲线的轮廓差遣从动件2(阀门)按预期的运动规律启闭阀门。
图所示为一自动机床的进刀机构。
当具有凹槽的2凸轮1等速转动时,通过槽中的滚子,差遣从动件2(扇形齿轮)往复摆动,从而推动装在刀架上的齿条3移动,实现自动进刀或退刀运动。
在绕线机顶用于排线的凸轮机构。
当绕线轴3快速转动时,经齿轮带动凸轮1缓慢地转动.通过凸轮轮廓与尖顶4之间的作用.差遣从动件2往复摆动,因此使线均匀地缠绕在绕线轴上。
图所示的仿形刀架也是一种凸轮机构。
图仿形刀架5.1.2凸轮机构的分类㈠按凸轮的形状分⑴盘形凸轮(图):最大体的形式。
⑵移动凸轮(图):盘形凸轮的回转中心趋于无穷远。
⑶圆柱凸轮(图):将移动凸轮卷成圆柱体。
凸轮机构的组成与传动特点

凸轮机构的组成与传动特点1. 引言1.1 概述凸轮机构是一种常见的传动机构,由凸轮、摆杆(或滑块)和连接杆组成。
它应用广泛,在各个工业领域以及汽车发动机等领域都有重要的作用。
凸轮机构通过凸轮的不规则形状和运动规律,实现输入输出之间的转动和传递。
1.2 文章结构本文将围绕凸轮机构的组成和传动特点展开讨论,并且给出了应用领域与举例分析。
文章首先介绍了凸轮、摆杆(或滑块)和连接杆三个组成部分,然后详细探讨了凸轮机构的传动特点,包括输入输出关系与速度比例、运动规律和曲线形状以及转矩特性。
接下来,文章将聚焦于凸轮机构在工业领域、汽车发动机中以及其他领域的具体应用案例进行分析。
最后,文章总结观点并强调凸轮机构在未来的发展趋势与应用前景,并提出问题或争议供读者进行探讨。
1.3 目的本文旨在全面介绍凸轮机构的组成和传动特点,使读者对凸轮机构有一个清晰完整的了解。
通过分析凸轮机构在不同领域的应用案例,希望能够展示其广泛应用的实际价值并探讨未来发展趋势。
此外,本文还意在引发读者对凸轮机构相关问题的思考与讨论。
2. 凸轮机构的组成2.1 凸轮凸轮是凸轮机构中最关键的部件之一。
它通常由金属材料制成,具有特殊的外形设计。
凸轮的外轮廓一般被设计成非圆形,以便能够在运动过程中实现不同的加速度和速度变化。
这种设计可以通过激活其他部件来实现所需的传动或操作。
2.2 摆杆或滑块摆杆或滑块是凸轮机构中另一个重要组成部分。
它们通常通过连接到凸轮上的销或指针进行固定。
摆杆在运动过程中沿着固定点旋转,而滑块则在固定路径上前后运动。
摆杆和滑块的相对位置和运动方式取决于凸轮的形状和运动规律。
2.3 连接杆连接杆是将凸轮机构的输出传递给其他设备或系统的关键组件之一。
它通常由金属制成,可弯曲或伸缩以适应不同的传动距离和角度需求。
连接杆有助于将凸轮机构产生的直线运动转换为其他类型(例如旋转或往复)的运动。
以上是凸轮机构的主要组成部分。
凸轮、摆杆或滑块以及连接杆共同工作,使得凸轮机构能够实现所需的传动和操作功能。
凸轮机构工作原理

凸轮机构工作原理
凸轮机构是一种常用于机械传动的装置,主要由凸轮轴和凸轮组成。
凸轮是一种特殊形状的轴,在其表面上具有凸起的凸轮形状。
当凸轮轴旋转时,凸轮的凸起部分会与其他部件接触,从而产生一定的动作。
凸轮机构的工作原理主要包括以下几个步骤:
1. 凸轮轴旋转:当凸轮轴被驱动时,凸轮随着轴的旋转而一起旋转。
2. 凸轮形状引导:凸轮的凸起部分会与其他部件(例如推杆、摇臂等)接触。
凸轮的形状通常根据工作需求而设计,可以是圆形、椭圆形、正弦曲线形等。
凸轮的形状决定了其他部件的运动规律。
3. 动作传递:当凸轮的凸起部分与其他部件接触时,凸轮会传递动作给这些部件。
这些部件根据凸轮的形状进行相应的运动,例如推动活塞、打开或关闭阀门等。
凸轮机构的优点是能够将旋转运动转换为线性运动或非规律的运动。
通过设计不同形状的凸轮,凸轮机构可以实现复杂的运动轨迹。
凸轮机构广泛应用于各种机械装置中,例如发动机的气门控制系统、纺织机械的工作机构等。
凸轮机构

二凸轮机构的分类 : 1.按凸轮的形状分类
(1)盘形凸轮 通过径向尺寸的变化构成曲线廓线。结构简单,易于加工,在工程中应用广泛。
(2)移动凸轮 呈板状,相对机架作往复直线移动,并通过其曲线轮廓推动从动件2 实现预期的上下往复移 动。它可视为盘形凸轮的回转轴心处于无穷远处时演化而成。
盘形凸轮和移动凸轮与从动件产生的相对运动为平面运动,故统称为平面凸轮机构。
组合型运动规律是分段函数。在各段的连接点处,需建立邻接条件,以保证各分段函数在连接点处具有相同的 位移、速度、加速度(甚至更高阶的导数)。构造组合型运动规律的难点在于:选取什么样的分段函数,才能 使设计出的运动规律具有良好的综合指标。
图a)所示修正正弦运动规律。在运动起始 的AB段和终止的CD段,采用周期相同的正弦 函数;在两段中间的BC段则采用一段周期较长 的简谐函数。该组合运动规律具有较好的综合 动力特性指标。 图b)所示修正梯形运动规律。它可视为对 等加速等减速运动规律的改进。为了避免加速 度的突变,用几段简谐函数使加速度成为连续 曲线。加速段和减速段的加速度曲线是对称的。 这两种组合运动规律均具有较好的综合特 性指标,因此广泛应用于各种中、高速分度凸 轮机构的凸轮曲线设计。
在前面介绍的各种形式的凸轮机构中,都是将凸轮作为主动件,推动从动件实现预期 的运动。在工程实际中也有将凸轮作为从动件的,这种凸轮机构称为反凸轮机构。
第二节 从动件的运动规律
一.凸轮机构的基本概念
图7-9 从动件运动示意图(a)凸轮机构 (b)从动件位移
1.从动件的运动规律 从动件的运动规律是指在凸轮廓线的推动下,从动件的位 移、速度、加速度、跃度(加速度对时间的导数)随时间变化的规律,常以图线表 示,又称为从动件运动曲线。 2.凸轮的基圆 盘形凸轮廓线的径向尺寸是在以半径r0为圆的基础上变化而形成 曲线轮廓的。显然r0为盘形凸轮的最小半径,我们将凸轮上具有最小半径r0的圆称 为凸轮的基圆,r0称为基圆半径。 3.推程与推程角B0B1当凸轮廓线上的曲线段 与从动件接触时,推动从动件沿 导路由起始位置B0运动到离凸轮轴心最远的位置B'。从动件的这一运动行程称为 推程。此过程对应凸轮所转过的角度称为推程角Φ,从动件沿导路移动的最大位移 称为升距h。 4.远休止与远休止角 当凸轮廓线上对应的圆弧段B1B2与从动件接触时,从动 件在距凸轮轴心的最远处B'静止不动。这一过程称为远休止,此过程对应凸轮所 转过的角度称为远休止角Φs。 5.回程与回程角 当凸轮廓线上的曲线段B2B3与从动件接触时,引导从动件由 最远位置返回到位移的起始位置B3(B0)。从动件的这一运动行程称回程,此过程对 应凸轮所转过的角度称为回程角Φ'。 6.近休止与近休止角 当凸轮廓线上对应的圆弧段B3B0与从动件接触时,从动 件处于位移的起始位置B0,静止不动,这一过程称为近休止。此过程对应凸轮所转 过的角度称为近休止角Φs。
凸轮机构

第五章凸轮机构及其设计基本要求了解凸轮机构的应用及其分类。
介绍推杆常用的运动规律及其选择。
学会用图解法设计盘形凸轮的轮廓曲线。
掌握凸轮机构基本尺寸的确定。
基本概念题与答案1.什么是基圆、基圆半径?答:以凸轮理论廓线的最小向径为半径所作的圆,叫基圆,其半径称为基圆半径。
2.什么是推程、升程(又称行程)推程运动角?答:从动件由距凸轮转动中心最低位置到最远位置的过程称作推程,推程过程中从动件的最大位移称升程(行程)。
推程过程中凸轮转过的角度称为推程运动角。
3.什么是远休止角、回程运动角、近休止角?答:远休止角:从动件在距凸轮回转中心最远的位置停留不动,这时对应的凸轮转角称为远休止角。
回程运动角:从动件以一定运动规律降回初始位置,这时凸轮转过的角度。
近休止角:从动件在距凸轮回转中心最近的位置停留不动,这时对应的凸轮转角称为近休止角。
4.什么是刚性冲击和柔性冲击?答:刚性冲击:由加速度产生的惯性力突变为无穷大,致使机构产生的强烈冲击。
柔性冲击:由加速度产生的惯性力为有限值的变化,使机构产生的冲击。
5.凸轮轮廓的形状起什么作用?由什么来决定?答:作用:实现从动件的运动规律,取决于从动件的运动规律。
6.图解法设计凸轮廓线的方法是什么?什么是反转法?答:方法:反转法,凸轮不动,从动件连同机架一起按凸轮的角速度的相反方向绕凸轮回转中心转动,而从动件仍按预定的运动规律相对机架运动,从动件尖顶的轨迹即为凸轮廓线,这种方法称为凸轮廓线的反转法设计。
7.直动从动件盘形凸轮廓线设计的已知条件是什么?设计中注意什么?答:(1)从动件的运动规律,即从动件的位移线图。
(2)基圆半径。
(3)从动件导路偏距e 和位置。
(4)凸轮等角速度转动及其转向。
注意:(1)取μs、μL、μδ比例尺、按已知条件作图。
(2)反转法。
(3)从动件位移在基圆外截取。
(4)所有位移点用光滑曲线连接成凸轮廓线。
8.滚子从动件盘形凸轮廓线设计,以哪一点作为尖顶来设计理论廓线?答:以滚子中心为尖顶来进行设计。
机械原理课后答案——第五章 凸轮机构及其设计

2) 标出图b 推杆从图示位置升高位移s 时,凸轮的转角和 凸轮机构的压力角。
应用反转法求出推杆从 图示位置升高位移s 时,滚子 中心在反转运动中占据的位置。
由于滚子中心所在的推 杆导路始终与偏距圆相切,过 滚子中心作偏距圆切线,该切 线即是推杆反转后的位置。
9-8
作AOA’=90º ,并 使AO=A’O,则A’为推 杆摆动中心在反转过程 中占据的位置。 作出凸轮的理论廓线和 凸轮的基圆。以A’为圆 心,A到滚子中心的距 离为半径作圆弧,交理 论廓线于C’点,以C’为 圆心,r为半径作圆弧 交凸轮实际廓线于B’点。 则B’点为所求。
9-8
作出凸轮的理论 廓线和凸轮的基圆。 以A’为圆心,A到滚子 中心的距离为半径作 圆弧,分别交基圆和 理论廓线于C、C’点, 则C’A’C为所求的位 移角。
过C’作公法线 O’C’,过C’作A’C’的 垂线,则两线的夹角 为所求的压力角。
9-9 解:采用等加速等减速运动规律,可使推题9-7 9-8 9-9
9-7 试标出 a 图在图示位置时凸轮机构的压力角,凸轮从 图示位置转过90后推杆的位移;标出图b 推杆从图示位置 升高位移s 时,凸轮的转角和凸轮机构的压力角。
a
b
1) a 图在图示位置时凸轮机构的压力角, 凸轮机构的压力角: 在 不计摩擦的情况下,从动件 所受正压力方向与力作用点 的速度方向之间所夹的锐角。
v max 2 h / 0 2 16 1 .5 /( 5 π / 6 ) 18.34mm/s
a 4 h 2 / 02 4 16 1 .5 2 /( 5 π / 6 ) 2 21.03mm/s
2
从动件所受正压力方向: 滚子中心与凸轮几何中心的 连线。
【机械原理】5凸轮廓线设计--作图法

3、摆动滚子推杆盘形凸轮机构
已知摆动推杆的轴心A与凸轮轴心O的 距离为a,摆杆长为l,摆杆摆动角位 移 = ( ),凸轮以 匀速旋转。
摆杆初始位置A0B0,摆角 0,当凸 轮转过 ,摆杆位于AB,摆杆摆角 ( ),
B点坐标B(x,y)为:
x asin - l sin( 0 ) y acos - l cos( 0 )
3 .对心直动平底推杆盘形凸轮机构
已知:基圆半径r0,凸轮逆时针转 动w,推杆的运动规律s=s(d),
以平底中心A为尖顶,按尖顶推杆设 计凸轮廓线,得到理论廓线。
以理论廓线上的各点为平底中心 ,画一系列平底,这些平底的包 络线即为实际廓线。
注意:1。长度比例尺;推杆反转; 2。平底长度l=2lmax+5~7mm; 3。基圆半径对应理论廓线; 4。凸轮转角:CD廓线对应的凸轮转角
此式为凸轮的理论廓线,凸轮的实 际廓线是理论廓线的等距线,其推 导过程略。
机械原理
第9章 凸轮机构及其设计
5.摆动尖顶推杆盘形凸轮机构 已知:基圆半径r0,凸轮逆时针 转动w,推杆的运动规律j=j(d), LOA、LAB
确定基圆、A点所在圆、AB初始位置 将A点所在圆瓜分 确定推程廓线 确定预算预算远休、回程、近休廓线
注意:1)角度比例尺 2)凸轮转角:
机械原理
第9章 凸轮机构及其设计
作图法解析法机械原理凸轮机构及其设计一凸轮廓线设计的基本原理设计凸轮廓线时假设凸轮静设计凸轮廓线时假设凸轮静止使推杆相对于凸轮作反向转动止使推杆相对于凸轮作反向转动推杆又在导轨内作预期运动推推杆又在导轨内作预期运动推杆尖顶的复合运动的轨迹即是凸轮杆尖顶的复合运动的轨迹即是凸轮轮廓曲线这种方法又叫反转法
d - dy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回程等减速段运动方程为:
s2 =2h(δh-δ1)2/δ2h v2 =-4hω1(δh-δ1)/δ2h a2 =4hω21/δ2h
湖南科技大学专用
作者: 潘存云教授
3.五次多项式运动规律
位移方程:
s2=10h(δ1/δt)3-15h (δ1/δt)4+6h (δ1/δt)5
应用:内燃机 、补鞋机、配钥匙机等。
分类:1)按凸轮形状分:盘形、 移动、 圆柱凸轮 ( 端面 ) 。
2)按推杆形状分:尖顶、 滚子、 特点: 平底从动件。 尖顶——构造简单、易磨损、用于仪表机构; 滚子——磨损小,应用广; 平底——受力好、润滑好,用于高速传动。
湖南科技大学专用
作者: 潘存云教授
3).按推杆运动分:直动(对心、偏置)、 摆动
a2 =-4hω21 /δ2t
重写加速段推程运动方程为:
s2 =2hδ2 1 /δ2t v2 =4hω1δ1 /δ2t a2 =4hω21 /δ2t
湖南科技大学专用
s2
设计:潘存云
1 23 4 5
δt
v2 2hω/δt
h/2
h/2
6 δ1
δ1
a2 4hω2/δ2t
δ1
柔性冲击
作者: 潘存云教授
同理可得回程等加速段的运动方程为:
凸轮转过推程运动角δt-从动件上升h 凸轮转过回程运动角δh-从动件下降h
湖南科技大学专用
作者: 潘存云教授
s2 = C0+ C1δ1+ C2δ21+…+Cnδn1 v2 = C1ω+ 2C2ω1δ+…+nCnω1δn-11
a2 = 2 C2ω21+ 6C3ω21δ1…+n(n-1)Cnω21δn-21
任意的运动规律,且结构简单、紧凑、设计方便。
缺点:线接触,容易磨损。
湖南科技大学专用
作者: 潘存云教授
应用实例:
3
线 2 A 设计:潘存云 1
湖南科技大学专用
绕线机构
作者: 潘存云教授
卷带轮
12 1 放 放音 音键 键
设计:潘存云
5
3
3
摩擦轮
4 4
录音机卷带机构
皮皮带带轮轮
湖南科技大学专用
作者: 潘存云教授
基圆、基圆半径、 推程、 推程运动角、远休止角、
h
A D δ’s rmin
o δt δs
δt
δh
ω1
δs 设计:潘存云 B
回程、回 程 运 动 角 、
近休止角、 行程。一个循环
C
t δh δ’s δ1
湖南科技大学专用
作者: 潘存云教授
运动规律:推杆在推程或回程时,其位移S2、速度V2、
和加速度a2 随时间t 的变化规律。
第3章 凸轮机构
§3-1 凸轮机构的应用和类型 §3-2 从动件的常用运动规律 §3-3 凸轮机构的压力角 §3-4 图解法设计凸轮的轮廓 §3-5 解析法设计凸轮的轮廓
湖南科技大学专用
作者: 潘存云教授
§3-1 凸轮机构的应用和类型
结构:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。 作用:将连续回转 从动件直线移动或摆动。 优点:可精确实现任意运动规律,简单紧凑。 实例 缺点:高副,线接触,易磨损,传力不大。
4).按保持接触方式分: 力封闭(重力、弹簧等)
几何形状封闭(凹槽、等宽、等径、主回凸轮)
刀架
o 2
1
内燃机气门机构
湖南科技大学专用
机床进给机构
作者: 潘存云教授
凹 槽 凸 轮
等
宽
凸
W
轮
等
径
r1
凸3;r2 =const
回 凸 轮
作者:潘存云教授
优点:只需要设计适当的轮廓曲线,从动件便可获得
求一阶导数得速度方程:
v2 = ds2/dt = C1ω1+ 2C2ω1δ1+…+nCnω1δn-11
求二阶导数得加速度方程:
a2 =dv2/dt =2 C2ω21+ 6C3ω21δ1…+n(n-1)Cnω21δn-21 其中:δ1-凸轮转角,dδ1/dt=ω1-凸轮角速度,
Ci-待定系数。
边界条件:
S2=S2(t)
V2=V2(t)
a2=a2(t)
形式:多项式、三角函数。
D
B’
A δ’s rmin
s2
h
o
位移曲线
t δt δs δh δ’s δ1
δ 设计:t 潘存云
δh
ω1
δs
B
湖南科技大学专用
C
作者: 潘存云教授
一、多项式运动规律
一般表达式:s2=C0+ C1δ1+ C2δ21+…+Cnδn1 (1)
2
设计:潘存云
3
湖南科技大学专用
1 送料机构
作者: 潘存云教授
§3-2 推杆的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式;
2)确定推杆运动规律; 3)合理确定结构尺寸;
4)设计轮廓曲线。
s2
而根据工作要求选定推杆运动规律,是设计凸轮轮廓曲线的前提。
B’
一、推杆的常用运动规律 名词术语:
3
2 1
h
设计:潘存云
δ1
1 2 34 5 6
1.等速运动(一次多项式)运动规律 s2
在推程起始点:δ1=0, s2=0
在推程终止点:δ1=δt ,s2=h 代推入程得运: 动方C0=程0:, C1=h/δt
δt
v2
s2 =hδ1/δt
v2 a2
= =
hω1 0
/δt
同理得回程运动方程:
a2 刚性冲击 +∞
s2=h(1-δ1/δh ) v2=-hω1 /δh a =0 2 湖南科技大学专用
h
δ1
δ1
δ1
-∞
作者: 潘存云教授
2. 等加等减速(二次多项式)运动规律 位移曲线为一抛物线。加、减速各占一半。
推程加速上升段边界条件:
起始点:δ1=0, s2=0, v2=0 中间点:δ1=δt /2,s2=h/2
求得:C0=0, C1=0,C2=2h/δ2t
加速段推程运动方程为:
s2 =2hδ21 /δ2t v2 =4hω1δ1 /δ2t a2 =4hω21 /δ2t
无冲击,适用于高速凸轮。
v2
s2
h a2
δ1 δt
湖南科技大学专用
作者: 潘存云教授
二、三角函数运动规律 1.余弦加速度(简谐)运动规律
5 4
6
s2
推程: s2=h[1-cos(πδ1/δt)]/2
v2 =πhω1sin(πδ1/δt)δ1/2δt a2 =π2hω21 cos(πδ1/δt)/2δ2t
湖南科技大学专用
作者: 潘存云教授
推程减速上升段边界条件:
中间点:δ1=δt/2,s2=h/2 终止点:δ1=δt ,s2=h,v2=0
求得:C0=-h, C1=4h/δt , C2=-2h/δ2t
减速段推程运动方程为:
s2 v2
==h-4-2hhω(1δ(tδ–t-δδ11))2//δδ22tt