人教版九年级数学下26.1.3二次函数的图象与性质3
第二十六章二次函数
第二十六章二次函数[本章知识要点]1.探索具体问题中的数量关系和变化规律.2.结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念.3.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.4.会运用配方法确定二次函数图象的顶点、开口方向和对称轴.5.会利用二次函数的图象求一元二次方程(组)的近似解.6.会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[MM及创新思维](1)正方形边长为a(cm),它的面积s(cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.[实践与探索]例1. m取哪些值时,函数是以x为自变量的二次函数?分析若函数是二次函数,须满足的条件是:.解若函数是二次函数,则.解得,且.因此,当,且时,函数是二次函数.回顾与反思形如的函数只有在的条件下才是二次函数.探索若函数是以x为自变量的一次函数,则m取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S (cm2)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;(2)由题意,得,其中y是x的二次函数;(3)由题意,得(x≥0且是正整数),其中y是x的一次函数;(4)由题意,得,其中S是x的二次函数.例3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.解(1);(2)当x=3cm时,(cm2).[当堂课内练习]1.下列函数中,哪些是二次函数?(1)(2)(3)(4)2.当k为何值时,函数为二次函数?3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组1.已知函数是二次函数,求m的值.2.已知二次函数,当x=3时,y= -5,当x= -5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x为3,求此时的y.4.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A. B. C. D.6.下列函数关系中,可以看作二次函数()模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系[本课学习体会]26.2 二次函数的图象与性质(1)[本课知识要点]会用描点法画出二次函数的图象,概括出图象的特点及函数的性质.[MM及创新思维]我们已经知道,一次函数,反比例函数的图象分别是、,那么二次函数的图象是什么呢?(1)描点法画函数的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)(2)解列表x …-3 -2 -1 0 1 2 3 ……18 8 2 0 2 8 18 ……-18 -8 -2 0 -2 -8 -18 …分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y轴为对称轴,顶点都在坐标原点.不同点:的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.例2.已知是二次函数,且当时,y随x的增大而增大.(1)求k的值;(2)求顶点坐标和对称轴.解(1)由题意,得,解得k=2.(2)二次函数为,则顶点坐标为(0,0),对称轴为y轴.例3.已知正方形周长为Ccm,面积为S cm2.(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1 cm2时,正方形的周长;(3)根据图象,求出C取何值时,S≥4 cm2.分析此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.解(1)由题意,得.列表:C 2 4 6 8 …14 …描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm时,S≥4 cm2.回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.(3)在自变量取值范围内,图象为抛物线的一部分.[当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)(2)(3)2.(1)函数的开口,对称轴是,顶点坐标是;(2)函数的开口,对称轴是,顶点坐标是.3.已知等边三角形的边长为2x,请将此三角形的面积S表示成x的函数,并画出图象的草图.[本课课外作业]A组1.在同一直角坐标系中,画出下列函数的图象.(1)(2)2.填空:(1)抛物线,当x= 时,y有最值,是.(2)当m= 时,抛物线开口向下.(3)已知函数是二次函数,它的图象开口,当x 时,y随x的增大而增大.3.已知抛物线中,当时,y随x的增大而增大.(1)求k的值;(2)作出函数的图象(草图).4.已知抛物线经过点(1,3),求当y=9时,x的值.B组5.底面是边长为x的正方形,高为0.5cm的长方体的体积为ycm3.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm3时底面边长x的值;(4)根据图象,求出x取何值时,y≥4.5 cm3.6.二次函数与直线交于点P(1,b).(1)求a、b的值;(2)写出二次函数的关系式,并指出x取何值时,该函数的y随x的增大而减小.7.一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且过M(-2,2).(1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M关于y轴对称的点N的坐标,并求出⊿MON的面积.[本课学习体会]26.2 二次函数的图象与性质(2)[本课知识要点]会画出这类函数的图象,通过比较,了解这类函数的性质.[MM及创新思维]同学们还记得一次函数与的图象的关系吗?,你能由此推测二次函数与的图象之间的关系吗?,那么与的图象之间又有何关系?.[实践与探索]例1.在同一直角坐标系中,画出函数与的图象.解列表.x …-3 -2 -1 0 1 2 3 ……18 8 2 0 2 8 18 ……20 10 4 2 4 10 20 …描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.解列表.x …-3 -2 -1 0 1 2 3 ……-8 -3 0 1 0 -3 -8 ……-10 -5 -2 -1 -2 -5 -10 …描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线是由抛物线向下平移两个单位得到的.回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.探索如果要得到抛物线,应将抛物线作怎样的平移?例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),因此所求函数关系式可看作,又抛物线经过点(1,1),所以,,解得.故所求函数关系式为.回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标[当堂课内练习]1.在同一直角坐标系中,画出下列二次函数的图象:,,.观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.3.函数,当x 时,函数值y随x的增大而减小.当x 时,函数取得最值,最值y= .[本课课外作业]A组1.已知函数,,.(1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标;(3)试说出函数的图象的开口方向、对称轴、顶点坐标.2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.3.若二次函数的图象经过点(-2,10),求a的值.这个函数有最大还是最小值?是多少?B组4.在同一直角坐标系中与的图象的大致位置是( )5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.[本课学习体会]26.2 二次函数的图象与性质(3)[本课知识要点]会画出这类函数的图象,通过比较,了解这类函数的性质.[MM及创新思维]我们已经了解到,函数的图象,可以由函数的图象上下平移所得,那么函数的图象,是否也可以由函数平移而得呢?画图试一试,你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.,,,并指出它们的开口方向、对称轴和顶点坐标.解列表.x …-3 -2 -1 0 1 2 3 …… 2 0 2 ……0 2 8 ……82 0 …描点、连线,画出这三个函数的图象,如图26.2.5所示.它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0).回顾与反思对于抛物线,当x 时,函数值y随x的增大而减小;当x 时,函数值y随x的增大而增大;当x 时,函数取得最值,最值y= .探索抛物线和抛物线分别是由抛物线向左、向右平移两个单位得到的.如果要得到抛物线,应将抛物线作怎样的平移?例2.不画出图象,你能说明抛物线与之间的关系吗?解抛物线的顶点坐标为(0,0);抛物线的顶点坐标为(-2,0).因此,抛物线与形状相同,开口方向都向下,对称轴分别是y轴和直线.抛物线是由向左平移2个单位而得的.回顾与反思(a、h是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标[当堂课内练习]1.画图填空:抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.2.在同一直角坐标系中,画出下列函数的图象.,,,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A组1.已知函数,,.(1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;(3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线得到抛物线和?3.函数,当x 时,函数值y随x的增大而减小.当x 时,函数取得最值,最值y= .4.不画出图象,请你说明抛物线与之间的关系.B组5.将抛物线向左平移后所得新抛物线的顶点横坐标为-2,且新抛物线经过点(1,3),求的值.[本课学习体会]26.2 二次函数的图象与性质(4)[本课知识要点]1.掌握把抛物线平移至 +k的规律;2.会画出 +k 这类函数的图象,通过比较,了解这类函数的性质.[MM及创新思维]由前面的知识,我们知道,函数的图象,向上平移2个单位,可以得到函数的图象;函数的图象,向右平移3个单位,可以得到函数的图象,那么函数的图象,如何平移,才能得到函数的图象呢?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.,,,并指出它们的开口方向、对称轴和顶点坐标.解列表.x …-3 -2 -1 0 1 2 3 ……22……822 … (6)-20 …描点、连线,画出这三个函数的图象,如图26.2.6所示.它们的开口方向都向,对称轴分别为、、,顶点坐标分别为、、.请同学们完成填空,并观察三个图象之间的关系.回顾与反思二次函数的图象的上下平移,只影响二次函数 +k中k的值;左右平移,只影响h的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.探索你能说出函数 +k(a、h、k是常数,a≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表. +k开口方向对称轴顶点坐标例2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b、c的值.分析抛物线的顶点为(0,0),只要求出抛物线的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b、c的值.解.向上平移2个单位,得到,再向左平移4个单位,得到,其顶点坐标是,而抛物线的顶点为(0,0),则解得探索把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,也就意味着把抛物线向下平移2个单位,再向右平移4个单位,得到抛物线.那么,本题还可以用更简洁的方法来解,请你试一试.[当堂课内练习]1.将抛物线如何平移可得到抛物线()A.向左平移4个单位,再向上平移1个单位B.向左平移4个单位,再向下平移1个单位C.向右平移4个单位,再向上平移1个单位D.向右平移4个单位,再向下平移1个单位2.把抛物线向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为.3.抛物线可由抛物线向平移个单位,再向平移个单位而得到.[本课课外作业]A组1.在同一直角坐标系中,画出下列函数的图象.,,,并指出它们的开口方向、对称轴和顶点坐标.2.将抛物线先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式.3.将抛物线如何平移,可得到抛物线?B组4.把抛物线向右平移3个单位,再向下平移2个单位,得到抛物线,则有()A.b =3,c=7 B.b= -9,c= -15 C.b=3,c=3 D.b= -9,c=215.抛物线是由抛物线向上平移3个单位,再向左平移2个单位得到的,求b、c的值.6.将抛物线向左平移个单位,再向上平移个单位,其中h>0,k<0,求所得的抛物线的函数关系式.[本课学习体会]26.2 二次函数的图象与性质(5)[本课知识要点]1.能通过配方把二次函数化成 +k的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象.[MM及创新思维]我们已经发现,二次函数的图象,可以由函数的图象先向平移个单位,再向平移个单位得到,因此,可以直接得出:函数的开口,对称轴是,顶点坐标是.那么,对于任意一个二次函数,如,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?[实践与探索]例1.通过配方,确定抛物线的开口方向、对称轴和顶点坐标,再描点画图.解因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).由对称性列表:x …-2 -1 0 1 2 3 4 ……-10 0 6 8 6 0 -10 …描点、连线,如图26.2.7所示.回顾与反思(1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,.(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索对于二次函数,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴,顶点坐标.例2.已知抛物线的顶点在坐标轴上,求的值.分析顶点在坐标轴上有两种可能:(1)顶点在x轴上,则顶点的纵坐标等于0;(2)顶点在y轴上,则顶点的横坐标等于0.解,则抛物线的顶点坐标是.当顶点在x轴上时,有,解得.当顶点在y轴上时,有,解得或.所以,当抛物线的顶点在坐标轴上时,有三个值,分别是–2,4,8.[当堂课内练习]1.(1)二次函数的对称轴是.(2)二次函数的图象的顶点是,当x 时,y随x的增大而减小.(3)抛物线的顶点横坐标是-2,则 = .2.抛物线的顶点是,则、c的值是多少?[本课课外作业]A组1.已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象.2.利用配方法,把下列函数写成 +k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.(1)(2)(3)(4)3.已知是二次函数,且当时,y随x的增大而增大.(1)求k的值;(2)求开口方向、顶点坐标和对称轴.B组4.当时,求抛物线的顶点所在的象限.5. 已知抛物线的顶点A在直线上,求抛物线的顶点坐标.[本课学习体会]26.2 二次函数的图象与性质(6)[本课知识要点]1.会通过配方求出二次函数的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值.[MM及创新思维]在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,设每件商品降价x元,该商品每天的利润为y元,则可得函数关系式为二次函数.那么,此问题可归结为:自变量x为何值时函数y取得最大值?你能解决吗?[实践与探索]例1.求下列函数的最大值或最小值.(1);(2).分析由于函数和的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.解(1)二次函数中的二次项系数2>0,因此抛物线有最低点,即函数有最小值.因为 = ,所以当时,函数有最小值是.(2)二次函数中的二次项系数-1<0,因此抛物线有最高点,即函数有最大值.因为 = ,所以当时,函数有最大值是.回顾与反思最大值或最小值的求法,第一步确定a的符号,a>0有最小值,a<0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.探索试一试,当2.5≤x≤3.5时,求二次函数的最大值或最小值.例2.某产品每件成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间关系如下表:x(元)130 150 165y(件)70 50 35若日销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量.解由表可知x+y=200,因此,所求的一次函数的关系式为.设每日销售利润为s元,则有.因为,所以.所以,当每件产品的销售价定为160元时,销售利润最大,最大销售利润为1600元.回顾与反思解决实际问题时,应先分析问题中的数量关系,列出函数关系式,再研究所得的函数,得出结果.例3.如图26.2.8,在Rt⊿ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)用含y的代数式表示AE;(2)求y与x之间的函数关系式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值.解(1)由题意可知,四边形DECF为矩形,因此.(2)由∥,得,即,所以,,x的取值范围是.(3),所以,当x=2时,S有最大值8.[当堂课内练习]1.对于二次函数,当x= 时,y有最小值.2.已知二次函数有最小值–1,则a与b之间的大小关系是()A.a<b B.a=b C.a>b D.不能确定3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?[本课课外作业]A组1.求下列函数的最大值或最小值.(1);(2).2.已知二次函数的最小值为1,求m的值.,3.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:.y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是多少?(3)第几分时,学生的接受能力最强?B组4.不论自变量x取什么数,二次函数的函数值总是正值,求m的取值范围.5.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.(1)求S与x的函数关系式;(2)如果要围成面积为45 m2的花圃,AB的长是多少米?(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.6.如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EG⊥AD,FH⊥BC,垂足分别是G、H,且EG+FH=EF.(1)求线段EF的长;(2)设EG=x,⊿AGE与⊿CFH的面积和为S,写出S关于x的函数关系式及自变量x的取值范围,并求出S的最小值.[本课学习体会]26 . 2 二次函数的图象与性质(7)[本课知识要点]会根据不同的条件,利用待定系数法求二次函数的函数关系式.[MM及创新思维]一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件:确定反比例函数的关系式时,通常只需要一个条件:如果要确定二次函数的关系式,又需要几个条件呢?[实践与探索]例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析如图,以AB的垂直平分线为y轴,以过点O的y 轴的垂线为x轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是.此时只需抛物线上的一个点就能求出抛物线的函数关系式.解由题意,得点B的坐标为(0.8,-2.4),又因为点B在抛物线上,将它的坐标代入,得所以.因此,函数关系式是.例2.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);(3)已知抛物线与x轴交于点M(-3,0)、(5,0),且与y轴交于点(0,-3);(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4.分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a 的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数。
26.1 二次函数及其图像 课件3(数学人教版九年级下册)
例3:若x∈ x 1 x 1,求函数
y =x2+ax+3的
-1
O
y的最小值为f(-1) =4-a
1 x
图像分析
题型3:轴变区间定问题
例3:若x∈ x 1 x 1,求函数 y =x2+ax+3的最小值:
y
a (2)当 1 0 2 即0≤ a<2时
-1 O
2
x
题型2:恒成立问题
例2(变):已知x2+2x+a≥4在x∈ [0,2]上恒 成立,求a的值。
体会最值与恒成立的关系
y
解:令f(x)=x2+2x+a它的 对称轴为x=-1, ∴f(x)在[0,2]上单调 递增, ∴f(x)的最小值为f(0)=a, 即 a≥ 4
-1 O
2
x
题型3:轴变区间定问题
5.当 x (1,2) 时,不等式 x mx 4 0 。 恒成立,则 m 的取值范围是
2
-1
O 1
x
a y的最小值为f( ) 2 2 a 3 4
题型3:轴变区间定问题
例3:若x∈ x 1 x 1,求函数
y =x2+ax+3的最值:
a 1 即a<-2时 (3) 当 评注:例3属于“轴动区间定”的问题,看作 y 2
对称轴沿x轴移动的过程中,函数最值的变化, 函数在 [-1,1] 上是减函数 即对称轴在定区间的左、右两侧及对称轴在定 y 的最小值为 f(1) 区间上变化情况 , 要注意开口方向及端点情况。 O -1 1 x =4+a y的最大值为f(-1)
2.2二次函数性质与应用(1)
---区间上的最值
26.1.3 二次函数y=a(x-h)2+k的图象(3)
课后作业:教科书复习巩固第5,8题.
练习
画出下列函数图象,并说出抛物线的 开口方向、对称轴、顶点,最大值或 最小值各是什么及增减性如何?
y= 2(x-3)2+3 y= −2(x+3)2-2 y= −2(x-2)2-1
y= 3(x+1)2+1
x
及时小结
转化 数学问题 建 模
实际问题
确立坐标系 确定点坐标
利用性质 求出解析式
巩固练习
1.抛物线 y x 2 3 的顶点坐标是( A ) A.(-2,3) B.(2,3) C.(-2,-3) D.(2,-3)
2
2.把抛物线 y x 向左平移1个单位,再向上平移 3个单位,平移后抛物线的解析式为( D ) A. y ( x 1)2 3 B.y ( x 1)2 3 C. y ( x 1)2 3 D.y ( x 1)2 3
引入新知
1 y ( x 1) 2 1 … 2
-5.5 -3 -1.5 -1 -1.5 -3 -5.5 …
再描点画图.
解:
先列表
x … -4 -3 -2 -1 0 1 2 …
1 y ( x 1) 2 1 … 2
-5.5 -3 -1.5 -1 -1.5 -3 -5.5 … 直线x=-1
y=ax2+k的图象是由y=ax2的图象 平移 沿 轴向 平移____ _个单位 得到的,k为正向 ,k为负向 .
y=a(xh)2的图象是由y=ax2的图 象沿___轴向 平移 个单位 得到的,h为正向_____,h为负 向_____.
课堂小结
这节课中, 你有哪些收获? 解决问题的方法是什么? 还有哪些疑惑?
九年级数学下第26章二次函数26.1二次函数及其图象2二次函数y=ax2的图象习题新人教
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月27日星期日2022/3/272022/3/272022/3/27 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/272022/3/272022/3/273/27/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/272022/3/27March 27, 2022
x> 0时 , y随 x的 增 大 而 增 大 , x< 0时 , y随 x的 增 大 而 减 小 .
2.a<0⇔开口向下⇔有最大值⇔
x> 0时 , y随 x的 增 大 而 减 小 , x< 0时 , y随 x的 增 大 而 增 大 .
知识点 2 求二次函数y=ax2的解析式
【例2】(2013·山西中考)如图是我省某地一座抛物线形拱桥,
(1)求此抛物线的解析式. (2)过点P作CB所在直线的垂线,垂足为点R, 求证:PF=PR.
【解析】(1)由题意可得:点A的坐标为(2,-1),
∵抛物线的顶点为坐标原点O,
∴可设抛物线的解析式为:y=ax2, 将点A(2,-1)代入可得:4a=-1,解得a=- 1 ,
4
∴抛物线的解析式为y=- 1 x2.
【例1】函数 ym2xm 2m 4 是关于x的二次函数,求:
(1)满足条件的m的值. (2)m为何值时,抛物线有最低点?求出这个最低点,这时当x为何 值时,y随x的增大而增大? (3)m为何值时,抛物线的开口方向向下?这时当x为何值时,y随x 的增大而减小?
【解题探究】(1)函数是二次函数的条件是自变量的最高次数
26.1.3.二次函数y=a(x-h)2+k的图象(第3课时)
(B)2个
【解析】选A.∵2>0,∴图象的开口向上,故①错误;
图象的对称轴为直线x=3,故②错误;
图象顶点坐标为(3,1),故③错误;
当x<3时,y随x的增大而减小,故④正确. 综上所述,说法正确的只有④,共1个.
3.抛物线y=-
1 (x+3)2-1有最________点,其坐标是________. 2
答案:y=-8x2+16x-3
5.已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图 象经过点(-1,5),求此二次函数图象的函数关系式. 【解析】∵二次函数图象的对称轴为x=2,y最小值=3, ∴顶点坐标(2,3), 则设所求函数关系式为y=a(x-2)2+3. 把(-1,5)代入上式,得5=a(-1-2)2+3,
【跟踪训练】
1.(2012·郴州中考)抛物线y=(x-1)2+2的顶点坐标是( (A)(-1,2) (C)(1,-2) (B)(-1,-2) (D)(1,2) )
【解析】选D.∵顶点式y=a(x-h)2+k,顶点坐标是(h,k),∴抛 物线y=(x-1)2+2的顶点坐标是(1,2).
2.(2012·扬州中考)将抛物线y=x2+1先向左平移2个单位,再
例4、要修建一个圆形喷水池,在池中心竖直安装 一根水管,在水管的顶端安一个喷水头,使喷出的 抛物线形水柱在与池中心的水平距离为1m处达到最 高,高度为3m,水柱落地处离池中心3m,水管应多 长?
1.(2012·兰州中考)已知二次函数y=a(x+1)2-b(a≠0)有最小 值1,则a,b的大小关系为( )
)
(A)y=-(x-
【解析】选C.抛物线的顶点坐标为( 1 ,3),设抛物线的解析
26.1.3 实际问题与二次函数课件3 (新人教版九年级下)
26.3 实际问题与二次函数(3)
图中是抛物线形拱桥,当水面在 l 时, 拱顶离水面2m,水面宽4m,建立适当坐 标系,求出抛物线解析式。(看谁的方法 简单) 水面下降1m时,水面宽度增加了多少? 解一
1 0.5( x 2 )2 2
例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽 AB=4m,顶部C离地面的高度为4.m,,建立适当坐标系,求 抛物线解析式。 现有载满货物的汽车欲通过大门,货物顶部距地面2.5m,装 货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过 计算加以说明;若不能,请简要说明理由.
+2.25
.B(1,2.25)
(0体体状集装箱的货车要想通过洞拱横 截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高 OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱 顶部离地面2.1m。该车能通过隧道吗?请说明理由.
2.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手 时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水 平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线 为抛物线.篮筐距地面3m. ①问此球能否投中? (选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的 最大高度为3.19m,他如何做才能盖帽成功?
你还有其他建立坐标系的方法吗?试一试,看 解二 谁的方法多。 一艘长宽为2米,3米的小船,装货物高度1.45 解三 米,小船能通过拱桥吗?
继续
解一 以抛物线的顶点为原点,以抛物线的对称轴为 y轴,建立平 面直角坐标系,如图所示. ∴可设这条抛物线所表示 的二次函数的解析式为:
26.1 二次函数及其图像 课件4(数学人教版九年级下册)
y=a(x-h)2+k(a>0)
y=a(x-h)2+k(a<0)
h,k
直线x h
向上
当x h时, 最小值为 k
h,k
直线x h
向下
当x h时,最大值为 k
练习1
说出下列抛物线的开口方向、对称轴及顶点:
( 1 )y ( 2 x 3) 5;(2)y ( 3 x 1 ) 2;
-5 -4 -3 -2 -1 o 1 2 3 4 5
x
抛物线y=x2+1:
开口向上,对称轴是y轴, 顶点为(0,1). 抛物线y=x2-1: 开口向上,对称轴是y轴, 顶点为(0, -1).
(1) 抛物线 2 2 y=x +1,y=x -1 的开口方向、对 称轴、顶点各是 什么?
10 9 8 7 6 5 4 3 2 ● 1
y
三、观察三条抛物线:
2 (2)开口大小有没有 1 变化? -3 -2 -1 0 1 2 3 x -1 -2 没有变化 -3 1 2 -4 y x -5 2 1 1 2 y ( x 1) -6 y ( x 1) 2 2 -7 2 -8
y
三、观察三条抛物线:
2 (3)对称轴是什么? 1 -3 -2 -1 0 1 2 3 x -1 -2 -3 y 轴 x=-1 x=1 1 2 -4 y x -5 2 1 1 2 y ( x 1) -6 y ( x 1) 2 2 -7 2 -8
抛物线y a ( x h) 2 k有如下特点: (1)当a 0时,开口向上 ____;当a 0,开口向下 ___; x=h ; (2)对称轴是直线____ (3)顶点坐标是 ______ 。 ( h,k)
26.1.3二次函数及其图象(3)
总结
(1) 抛物线 y a( x h) 的图象可由 y ax 的图象左右平
2
2
移得到, h 0 ,向右平移, h 0 ,向左平移,平移
h个单位.
(2)抛物线 y a( x h)的性质:
2
① a 0时,开口向上;a 0 时,开口向下; ②对称轴是直线 x
h;
③顶点坐标是 ( h,0).
练习二
1.在同一直角坐标系内画出下列二次函数的图象:
1 2 y x , 2
1 y ( x 2) 2 , 2
y
1 ( x 2) 2 . 2
观察三条抛物线的相互关系,并分别指出它们的开口方
1 2 y ( x h ) 向及对称轴、顶点的位置.你能说出抛物线 2
的开口方向及对称轴、顶点的位置吗?
一、复习 用描点法画出函数 向、对称轴与顶点坐标. 图象, 并根据图象指出抛物线
yx
yx
2
2
的开口方
对于二次函数y ax
a>0时 顶点坐标 对称轴 位置
(0,0)
y轴 在x轴的上方 (除顶点外) 向上
2
a< 0时
(0,0)
y轴 在x轴的下方 (除顶点外) 向下
开口方向 当x=0时,y最小值=0。 当x=0时,y最大值=0 最值
2.抛物线y=
B.向下平移1个单位; D.向右平移1个单位.
2x2 向上平移5个单位,会得到哪条抛物线. 向下平移3.4个单位呢? 3、把抛物线y= 2x2-4x+2化成y= a(x-h)2的形式,并指出 抛物线的开口方向,对称轴,顶点坐标;函数有最大值 还是最小值?是多少?
点,当x=
,与y轴交点坐标 直线x=3
九年级数学下册 第二十六章 反比例函数26.1 反比例函数26.1.3 二次函数y=a(x-h)2+
y 3x2
向、对称轴和顶点坐标分 别是什么?
与y=-3x²有关
y3x12 y3x122
二次函数y=-3(x-1)2+2与
y=-3(x-1)2-2的图象可
以看作是抛物线y=-3x2
先沿着x轴向右平移1个
单位,再沿直线x=1向上
(或向下)平移2个单位后
得到的.
对称轴仍是平行于
y轴的直线(x=1).
x=1
【例 2】要修建一个圆形喷水池,在池
y
中心竖直安装一根水管,在水管的顶端
安一个喷水头,使喷出的抛物线形水柱
在与池中心的水平距离为1m处达到最高,
高度为3m,水柱落地处离池中心3m,水
管应多长?
解析:如图建立直角坐标系,点(1,3)
是顶点,设抛物线的解析式为
y=a(x-1)2 +3(0≤x≤3),
∵点(3,0)在抛物线上,
系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)
的一部分,则水喷出的最大高度是( )
A.4米
B.3米
C.2米
D.1米
【解析】选A. 抛物线的
y (米)
顶点坐标为(2,4),
所以水喷出的最大高度
是4米.
x (米)
4.(温州·中考)已知二次函数的图象如图所示,关于该 函数在所给自变量取值范围内,下列说法正确的是( ) A.有最小值0,有最大值3 B.有最小值-1,有最大值0 C.有最小值-1,有最大值3 D.有最小值-1,无最大值 【解析】选C.因为图象顶点的纵 坐标为-1,最高值为3.故选C.
26.1.3 二次函数y=a(xh)2+k的图象
第2课时
1.会画y=a(x-h)2+k的图象; 2.了解y=a(x-h)2+k的图象与y=ax2的关系,能结合图 象理解y=a(x-h)2+k的性质.
26.1.3二次函数y=ax2+c(用)的图像
函数的上下移动
原则:上加下减
10 9 8 7 6 5 4 3 2 1
y=x2+1
y=x2
y=x2-1
x
-5 -4 -3 -2 -1 o 1 2 3 4 5
把抛物线y=2x2+1向上平移5个单位,会得到那 条抛物线?向下平移3.4个单位呢? (1)得到抛物线y=2x2+6
(2)得到抛物线y=2x2-2.4
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来, |a|越大, 抛物线的开口就越小. |a|越小, 抛物线的开口就越大.
练习1: 1.二次函数y=x2的图象是____,它的开口 向_____,顶点坐标是_____;对称轴是 ______,在对称轴的左侧,y随x的增大而 ______,在对称轴的右侧,y随x的增大而 ______,函数y=x2当x=______时, y有最 ______值,其最______值是______。
10 9 8 7 6 5 4 3 2 1 y
y=x2+1 y=x2-1
抛物线y=x2-1: 开口向上, 对称轴是y轴,
顶点为(0, -1).
-5 -4 -3 -2 -1 o 1 2 3 4 5
x
抛物线y=x2+1,y=x2-1与抛物线y=x2的关系:
向上平移 抛物线 y=x2+1 1个单位 抛物线y=x2 向下平移 抛物线 y=x2-1 1个单位 y
或y=-3x2+1
函数y=ax2 (a≠0)和函数y=ax2+c (a≠0) 相同 的图象形状 ,只是位置不同;当 c>0时,函数y=ax2+c的图象可由y=ax2 c 上 的图象向 平移 个单位得到,当c<0 时,函数y=ax2+c的图象可由y=ax2的图 |c| 象向 平移 个单位得到。 下 y
26.1.3二次函数 的图象(四)
26.1.3二次函数()k h x a y +-=2的图象(四)九年级下册 编号06【学习目标】 会用二次函数()k h x a y +-=2的性质解决问题;【学习过程】 一、知识链接: 1.抛物线22(+1)3y x =--开口向 ,顶点坐标是 ,对称轴是 ,当x =时,y 有最 值为 。
当x 时,y 随x 的增大而增大.2. 抛物线22(+1)3y x =--是由22y x =-如何平移得到的?答:。
二、自主学习1.抛物线的顶点坐标为(2,-3),且经过点(3,2)求该函数的解析式? 分析:如何设函数解析式?写出完整的解题过程。
2.仔细阅读课本第10页例4:分析:由题意可知:池中心是 ,水管是 ,点 是喷头,线段 的长度是1米,线段 的长度是3米。
由已知条件可设抛物线的解析式为 。
抛物线的解析式中有一个待定系数,所以只需再确定 个点的坐标即可,这个点是 。
求水管的长就是通过求点 的 坐标。
二、跟踪练习:如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. AO= 3米,现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1) 直接写出点A 及抛物线顶点P 的坐标; (2) 求出这条抛物线的函数解析式;三、能力拓展 1.知识准备 如图抛物线()214y x =--与x 轴交于A,B 两点,交y 轴于点D ,抛物线的顶点为点C(1) 求△ABD 的面积。
(2) 求△ABC 的面积。
x y -1123-1123DC BO A xy B PA MOxyDBA OC(3)点P是抛物线上一动点,当△ABP的面积为4时,求所有符合条件的点P的坐标。
(4)点P是抛物线上一动点,当△ABP的面积为8时,求所有符合条件的点P的坐标。
(5)点P是抛物线上一动点,当△ABP的面积为10时,求所有符合条件的点P的坐标。
2.如图,在平面直角坐标系中,圆M经过原点O,且与轴、轴分别相交于两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得?若存在,请求出点P的坐标;若不存在,请说明理由.。
26.1.3_二次函数y=ax2+k的图象和性质
1、把抛物线y=-2x2向上平移3个单位长度,得 y=-2x2+3 到的抛物线是
2、把抛物线y=-x2-2向下平移5个单位,得到的 y=-x2-7 抛物线是 3、一条抛物线向上平移2.5个单位后得到抛物 2,原抛物线是 y=0.5x2-2.5 线y=0.5x
4、说出下列函数图象的性质:
1 2 (1) y x 2 2
y
y
1 2 x 2
-5 -4 -3 -2 -1 o 1 2 3 4 5
x
想一想
抛物线y=ax2+k 中的a决定什么? 怎样决定的?k决定什么?它的对称 轴是什么?顶点坐标怎样表示?
总结
2+k有如 一般地抛物线y=ax
下性质:
1、当a>0时,开口向上;当a<0时,开口向下,
2、对称轴y轴(或x=0),
2.函数y=3x2+5与y=3x2的图象的不同之处是( C)
A.对称轴
B.开口方向
C.顶点
D.形状
3.已知抛物线y=2x2–1上有两点(x1,y1 ) ,(x1,y1 )
且x1<x2<0,则y1 < y2(填“<”或“>”)
4、在同一直角坐标系中,一次函数y=ax+c和 二次函数y=ax2+c的图象大致是如图中的( )
在同一直角坐标系中,画出下列二次函数的图象: y=0.5x2,y=0.5x2+2 , y=0.5x2-2
观察三条抛物线的相互关系,并分别指出它们的开 口方向、对称轴及顶点。 你能说出抛物线y=0.5x2+k的开口方向、对 称轴及顶点吗?它与抛物线y=0.5x2有什么 关系?
10 9 8 7 6 5 4 3 2 1
3、顶点坐标是(0,k), 4、|a|越大开口越小,反之开口越大。
26.1二次函数图象和性质(3)
1. 二次函数的图像都是抛物线. 2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点. (2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点; 当a<0时,抛物线的开口向下,顶点是 抛物线的最高点; |a|越大,抛物线的开口越小; o |a|越小,抛物线的开口越大; (3) a>0时, 在y轴左侧,y随x的增大而减 小,在y轴右侧,y随x增大而增大; a<0时, 在y轴左侧,y随x的增大而增 大,在y轴右侧,y随x增大而减少;
2
抛物线y=a(x-h)2可以由抛物线y=ax2向左或向 右平移|h|得到. (h>0,向右平移;二次函数 y (x 6) 请回答下列问题: 2 1 2 y 的图象作怎样的平移变换得 x 1. 把函数 2 1 2 到函数 y 的图象 . (x 6) 2
抛物线y=ax2+k可以由抛物线y=ax2向上或向下 平移|k|得到. (k>0,向上平移;k<0向下平移.)
画出二次函数 虑它们的开口方向、对称轴和顶点.: 解: 先列表 x … -3 -2 -1 0 描点
1 y ( x 1) 2 2 1 y ( x 1) 2 2
1 1 y ( x 、 1) 2 y ( x 的图像 1) 2 ,并考 2 2
1 2 y (x 6) 2.说出函数 的图象的顶点坐标和对 2
称轴.并说
如果反过 来,如何表述?
明x取何值时,函数取最大值?
1 2 向右平移 1 y x y (x 6)2 6个单位 2 2 1 2 y (x 6) 抛物线 顶点是(6,0),对称轴是直线x=6. 2
二次函数及其图像教案
课堂练习
1、教师巡视,指导学生解 图像,并分别指出他
题,
们的开口方向和开口
10 分钟 5 分钟
2、评讲练习,反馈矫正。 大小,顶点以及对称
轴:y=1/2x²,y=-2x²,
y=2x²,y=2(x+1)²,
精 讲 点 拨
(2)
y=2(x+1)²
3、二 次 函 数 y=a (x+h)²+k 及图像的(抛物
(抛物线)开口 不同而变化。
值不同而变化。
方向,顶点,对 2、通过图形的对折确定图 2、思考 a 的值决定
称轴。
像的对称轴的位置。
二次函数哪些性质。
2、二 次 函 数 3、提问 a 的值决定二次函 3、认真听老师总结函
y=ax²的性质。 数哪些性质。
数的性质
4、总结函数 y=ax²的性质。
画出下列二次函数的
质。
a,h 和 k 分别决定图像哪些 结果。
性质。
3、认真听老师总结
布 1、思考二次函数 y=ax²+bx+c(a>0)的图像是怎样的,并写出抛物线的方向,顶
置 点以及对称轴
作 2、课本 12 页,第 1,3,5,9 题。
业
可修改
精选文档
板书设计 26.1 二次函数及其图像
1、二次函数的定义:..................................
精选文档
学院
数学与信息科学学院
年 级 三年级 学 科
数学
讲课人
授课时间
四十分钟
教材
义务教育课程标准实验教科书 数学 九年级下册
课题
26.1 二次函数及其图像
1、认识理解二次函数的定义及其开口方向,顶点,对称轴。
人教版九年级数学下册《二次函数的图象与性质》PPT
长度得到.
第十三页,共二十一页。
y
1 2
x2
y
1(x 2
2)2
它的对称轴是直 (Zhi)线x=2, 顶点 坐标是(2,0)
函数y=ax2 (a≠0)和函数y=a(x-h)2 (a≠0)的 图象形状 ,只是位相置同不同;当h>0时(Shi),函
数y=a(x-h)2的图象可由y=ax2的图象向 平移
个单位得到右,当h<0时h,函数y=a(x-h)2的图象可
由y=ax2的图象向 平移 个单位得到。
左
h
第十四页,共二十一页。
(1)函数y=4(x+5)2的图象可由y=4x2的图象 向左 平(Ping)移5 个单位得到;y=4(x-11)2的图象 可由 y=4x2的图象向 平右移 个1单1 位得到。
(2)将函数y=-3(x+4)2的图象向 右平移 个4单位可得 y=-3x2的图象;将y=2(x-7)2的图象向 平左移 个7 单位得到y=2x2的图象。将y=(x-7)2的图象
…9
2
2
1 2
0
1 2
2
9 2
…
…
25 2
8
9 2
2
1 2
0
1…
2
y
1 2
x2
y
1(x 2
2)2
函数y= 1 (x-2)2的图象与
12
y=
2
x2的图象的位置有什 么关系?
第九页,共二十一页。
函数y=-(x+3)2的图象 可由y=-x2的图象沿x 轴向左平移3个单位
长度得到.
函数y=-(x-2)2的图象 可由y=-x2的图象沿x 轴向右平移2个单位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)当h>0时,向右平移 h 个单位; (2)当h<0时,向左平移 h 个单位。
o
x
1、二次函数 y ( x 2) 是由二次函 2 数 y x 向 平移 个单位得到的。
2
2、二次函数 y 2( x 3) 是由二次函 数 向左平移3个单位得到的。
2
观察三条抛物线:
y
2 (1)开口方向是什么? 1 (2)开口大小有没有 -3 -2 -1 1 2 3 x -1 -2 变化? -3 (3)对称轴是什么? -4 1 x 2 y -5 2 1 1 2 (4)顶点各是什么? ( x 1) -6 y ( x 1) 2 y 2 -7 2 -8 (5)增减性怎么样?
3、将抛物线y=ax2向右平移3个单位,且经过点 (1,4),求函数解析式。
函数
开口方向
对称 顶 点 Y的 轴 坐 标 最值
Y轴 Y轴 Y轴
增减性
在对称 轴左侧 在对称 轴右侧
a>0
向上 向下
y=ax2
a<0 a>0
向上 向下
最小值 Y随x的增 Y随x的增 (0,0) 是0 大而减小 大而增大 最大值 Y随x的增 Y随x的增 (0,0) 是0 大而增大 大而减小
二次函数y=a(x-h)2的性质
y=a(x-h)2
a>0
a<0
图象
h>0
开口
h<0
h>0
h<0
对称轴
顶点 增减性
开口向下 开口向上 a的绝对值越大,开口越小 直线x=h
(h,0)
顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减 顶点是最低点
• 说出下列二次 函数的开口方向、 对称轴、顶点坐标及增减性 (1) y=2(x+3)2 向上, x= - 3, ( - 3, 0) (2) y=-3(x -1)2 向下, x= 1, ( 1, 0) (3) y=5(x+2)2 向上, x= - 2, ( - 2, 0) (4) y= -(x-6)2 向下, x= 6, ( 6, 0) (5) y=7(x-8)2 向上, x= 8, ( 8, 0)
(0,c) 最小值
是C 是C
y=ax2+c
a<0 a>0 向上 直线
y=a(x-h) 2
Y随x的增 Y随x的增 大而减小 大而增大 Y随x的增 Y随x的增 大而增大 大而减小
Y轴 (0,c) 最大值
x=h 直线 a<0 向下 x=h
(h,0) 最小值 Y随x的增 Y随x的增 是0 大而减小 大而增大 (h,0) 最大值 Y随x的增 Y随x的增 是0 大而增大 大而减小
1 2 9 2
0 -2
1 2
1 2 1 2
·· ·
-2
0
-2
·· ·
1 1 ( x 1 22 y ( x 1)) 可以看出,抛物线 2 2
y
向下 向下 的开口方向____、对称轴是经 过点(-1,0)且与x轴垂直的直 (1,0)
线,我们把它记作xx 1 ,顶点
和顶点。比较一下它们的值之间有何内在联系。 先列表:
x
1 y ( x 1) 2 2 1 y ( x 1) 2 2
·· -4 -3 -2 -1 0 ·
·· · ·· ·
9 2
1
-2
2
9 2 1 2
3
4
9 2
·· ·
·· ·
-2
1 2 9 20Βιβλιοθήκη -21 2 1 2
做一做:
抛物线
y =2(x+3)2
开口方向 向上 向下 向下
y = -3(x-1)2
对称轴 直线x=-3 直线x=1 直线x=3
顶点坐标 ( -3 , 0 ) (1,0) ( 3, 0)
y = -4(x-3)2
填空: 1、由抛物线y=2x² 左 平移 1 个单位可得 向 到y= 2(x+1)2 2、函数y= -5(x -4)2 的图象。可以由抛物线 y=-5x2 向 右 平移 4 个单位而得到的。它 (4,0) 的顶点坐标为 ;对称轴为 直线x=4 .
1 2 1、抛物线 y x 向上平移3个单位, 3 得到抛物线 ;
2、抛物线 y 2 x 4 向 平移 2 单位,得到抛物线 y 2 x 3。
2
个
3、指出下列函数的开口方向、顶点坐 、 标、对称轴及增减性:
3 (1) y 2 x 4 1 2 (2) y 3x 2
2
二次函数y=ax2+c的性质
y=ax2+c
图象
a>0
a<0
c>0
开口 对称性 顶点 增减性
c<0
c>0
c<0
开口向下 开口向上 a的绝对值越大,开口越小 关于y轴对称
(0,c)
顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减 顶点是最低点
1 y ( x 1) 2 在同一平面直角坐标系中,画出二次函数 2 和 y 1 ( x 1) 2的图象,并考虑它们的开口方向、对称轴 2
●
1
●
● ●
o● ●
● ● ● ●
x
●
(-1,0) (1,0) 是__________。
●
●
●
1 2 1 1 2 2与抛物线 (2)抛物线 y ( x 1) , y ( x 1) y x 2 2 有什么位置关系? 2
1 1 2 y x 向左平移1个单位,就得到抛物线 y ( x 1) 2 把抛物线 2 2 1 1 2 y ( x 1) 2 把抛物线 y x 向右平移1个单位,就得到抛物线 2 y 2
1 0 -8 -6 -4 -2 -1 -2 -3 -4 -5 -6 -7 -8 2 4 6 x 8
1 2 y x (3)它们的 2 位置由什么
决定的?
1 y ( x 1) 2 2
1 y ( x 1) 2 2
用平移观点看函数: 抛物线 y a( x h) 可以看作是由 2 抛物线 y ax 平移得到。 y
0
-2
·· ·
x
1 y ( x 1) 2 2 1 y ( x 1) 2 2 1 2 y x 2
·· -4 -3 -2 -1 0 · ·· · ·· ·
9 2
1 -2 0
1 2
2
9 2 1 2
3 -2
9 2
4
9 2
·· · ·· · ·· ·
-2
9 2