(完整版)七年级数学提取公因式法测试题

合集下载

因式分解基础测试题

因式分解基础测试题

因式分解基础测试题一、选择题1.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy 2+6x 2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )A .2xB .-2xC .2x-1D .-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy ,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.2.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.3.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.5.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【解析】【分析】【详解】解:①x2-16=(x+4)(x-4),是因式分解;②x2+3x-16=x(x+3)-16,不是因式分解;③(x+4)(x-4)=x2-16,是整式乘法;④x2+x=x(x+1)),是因式分解.故选B.6.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.7.下列因式分解结果正确的是( ).A.10a3+5a2=5a(2a2+a)B.4x2-9=(4x+3)(4x-3)C.a2-2a-1=(a-1)2D.x2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.8.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.9.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误;2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.10.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q , ()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.12.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法判断.【详解】因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.13.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】 已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.14.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.15.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b﹣c=0,a2+b2﹣c2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.16.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.17.若x2+mxy+y2是一个完全平方式,则m=()A.2 B.1 C.±1 D.±2【答案】D【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2. 对照各项系数可知,系数m的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.18.下列由左到右边的变形中,是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣1=1 () x xxC.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2﹣4=(x+2)(x﹣2)【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误;B 、x 2-1=(x+1)(x-1),故此选项错误;C 、x 2-4+3x=(x+4)(x-1),故此选项错误;D 、x 2-4=(x+2)(x-2),正确.故选D .【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.19.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。

2022年浙教版初中数学七年级下册第四章因式分解综合测试试卷(含答案解析)

2022年浙教版初中数学七年级下册第四章因式分解综合测试试卷(含答案解析)

初中数学七年级下册第四章因式分解综合测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列多项式因式分解正确的是( )A.24(4)x x x x -+=-+B.2()x xy x x x y ++=+C.2()()()x x y y y x x y -+-=-D.22()()(2)()x y x z x y z y z +--=+--2、已知3ab =-,2a b +=,则22a b ab +的值是( )A.6B.﹣6C.1D.﹣13、将边长为m 的三个正方形纸片按如图1所示摆放并构造成边长为n 的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m 和n 的长方形时,所得长方形的面积为35.则图2中长方形的周长是( )A.24B.26C.28D.304、下列因式分解正确的是( )A.3p 2-3q 2=(3p +3q )(p -q )B.m 4-1=(m 2+1)(m 2-1)C.2p +2q +1=2(p +q )+1D.m 2-4m +4=(m -2)25、下列因式分解正确的是( )A.2p +2q +1=2(p +q )+1B.m 2﹣4m +4=(m ﹣2)2C.3p 2﹣3q 2=(3p +3q )(p ﹣q )D.m 4﹣1=(m ²+1)(m ²﹣1)6、若2a b +=,则224a b b -+的值为( )A.2B.3C.4D.67、多项式x 2y (a ﹣b )﹣y (b ﹣a )提公因式后,余下的部分是( )A.x 2+1B.x +1C.x 2﹣1D.x 2y +y8、把多项式﹣x 2+mx +35进行因式分解为﹣(x ﹣5)(x +7),则m 的值是()A.2B.﹣2C.12D.﹣129、下列因式分解正确的是( )A.x 2﹣4=(x +4)(x ﹣4)B.4a 2﹣8a =a (4a ﹣8)C.a 2+2a +2=(a +1)2+1D.x 2﹣2x +1=(x ﹣1)210、下列各式由左边到右边的变形,是因式分解的是( )A.22()()x y x y x y -+=-B.241254(3)5x x x x +-=+-C.22()()x y x x y x y x -+=+-+D.2224484()x y xy x y +-=-11、下列各组式子中,没有公因式的是( )A.﹣a 2+ab 与ab 2﹣a 2bB.mx +y 与x +yC.(a +b )2与﹣a ﹣bD.5m (x ﹣y )与y ﹣x12、下列因式分解正确的是( )A.()()2999x x x -=-+B.()322a a a a a a -+=-C.()()()2212111x x x ---+=-D.()22228822x xy y x y -+=- 13、下列各式中,因式分解正确的是( )A.()22121x x x x ++=++B.()()22a b a b a b +=+-C.()222412923a ab b a b ++=+D.()231x x x x -=- 14、下列分解因式正确的是( )A.222()m n m n +=+B.22164(4)(4)m n m n m n -=-+C.3223(3)a a a a a a -+=-D.22244(2)a ab b a b -+=-15、下列各选项中因式分解正确的是( )A.x 2-1=(x -1)2B.a 3-2a 2+a =a 2(a -2) C.-2y 2+4y =-2y (y +2) D.a 2b -2ab +b =b (a -1)2 二、填空题(10小题,每小题4分,共计40分)1、若多项式x 2+ax +b 可分解为(x +1)(x +4),则a =________,b =________.2、分解因式:xy ﹣3x +y ﹣3=______.3、分解因式:228m m --=______.4、因式分解:4224100x x y -=________.5、若25,3x y xy -==,则222x y xy -=________.6、因式分解:2()x y x y --+= ___________.7、已知a =2b ﹣5,则代数式a 2﹣4ab +4b 2﹣5的值是_____.8、若20x y +-=,则代数式224x y y +-的值等于________.9、已知x +y =﹣2,xy =4,则x 2y +xy 2=______10、因式分解:3a a -=________.三、解答题(3小题,每小题5分,共计15分)1、分解因式:2225()4()a b a b +--.2、因式分解:x 2+4y 2+4xy ﹣1.3、因式分解:(1)3312x x -(2)()()223a b b a b ------------参考答案-----------一、单选题1、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. ()()()()222x y x z x y z y z +--=+-+,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2、B【分析】首先将22a b ab + 变形为()ab a b +,再代入计算即可.【详解】解:∵32ab a b =-+=,,∴22a b ab +()ab a b =+ 32=-⨯6=- ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.3、A【分析】由题意:按如图1所示摆放并构造成边长为n 的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m 和n 的长方形时,所得长方形的面积为35,列出方程组,求出3m =7,n =5,即可解决问题.【详解】依题意,由图1可得,32m n =+,由图2可得,335mn =(2)35n n ∴+=即22136n n ++=解得5n =或者7n =-(舍)5n ∴=时,37m =则图2中长方形的周长是()232(75)24m n +=⨯+=.故选A.【点睛】本题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.4、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A :3p 2−3q 2=3(p 2−q 2)=3(p +q )(p −q ),不符合题意; 选项B :m 4−1=(m 2+1)(m 2−1)=m 4−1=(m 2+1)(m +1)(m −1),不符合题意; 选项C :2p +2q +1不能进行因式分解,不符合题意;选项D :m 2−4m +4=(m −2)2,符合题意. 故选:D .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A 、2p +2q +1不能进行因式分解,不符合题意;B 、m 2-4m +4=(m -2)2,符合题意;C 、3p 2-3q 2=3(p 2-q 2)=3(p +q )(p -q ),不符合题意;D 、m 4-1=(m 2+1)(m 2-1)=m 4-1=(m 2+1)(m +1)(m -1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、C【分析】把224a b b -+变形为()()4a b a b b -++,代入a +b =2后,再变形为2(a +b )即可求得最后结果.【详解】解:∵a +b =2,∴a 2-b 2+4b =(a -b )(a +b )+4b ,=2(a -b )+4b ,=2a -2b +4b ,=2(a +b ),=2×2,=4.故选:C .【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.7、A【详解】直接提取公因式y(a﹣b)分解因式即可.【解答】解:x2y(a﹣b)﹣y(b﹣a)=x2y(a﹣b)+y(a﹣b)=y(a﹣b)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8、B【分析】根据整式乘法法则进行计算﹣(x﹣5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:∵﹣(x﹣5)(x+7)=2235--+,x x∴2m=-,故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.9、D各式分解得到结果,即可作出判断.【详解】解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 10、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.11、B公因式的定义:多项式ma mb mc ++中,各项都含有一个公共的因式m ,因式m 叫做这个多项式各项的公因式.【详解】解:A 、因为2()a ab a b a -+=-,22()ab a b ab b a -=-,所以2a ab -+与22ab a b -是公因式是()a b a -,故本选项不符合题意;B 、mx y +与x y +没有公因式.故本选项符合题意;C 、因为()a b a b --=-+,所以2()a b +与a b --的公因式是()a b +,故本选项不符合题意;D 、因为5()5()m x y m y x -=--,所以5()m x y -与y x -的公因式是()y x -,故本选项不符合题意; 故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.12、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a ,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x 2-9=(x -3)(x +3),故此选项不合题意;B.a 3-a 2+a =a (a 2-a +1),故此选项不合题意;C.(x -1)2-2(x -1)+1=(x -2)2,故此选项不合题意;D.2x 2-8xy +8y 2=2(x -2y )2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.13、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2221(1)x x x ++=+,故此选项不合题意;B .22a b +,无法分解因式,故此选项不合题意;222.4129(23)C a ab b a b ++=+,故此选项符合题意;D .32(1)(1)(1)x x x x x x x -=-=-+,故此选项不合题意;故选:C .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.14、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m 2+n 2,不能因式分解;B.16m 2−4n 2=4(4m −2n )(4m +2n ),原因式分解错误;C. a 3−3a 2+a =a (a 2−3a +1),原因式分解错误;D.4a 2−4ab +b 2=(2a −b )2,原因式分解正确. 故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.15、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A 、()()21=11x x x -+-,选项错误;B 、()()23222211a a a a a a a a -+=-+=-,选项错误; C 、2242(2)y y y y -+=-- ,选项错误;D 、2222(21)(1)a b ab b b a a b a -+=-+=-,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.二、填空题1、5 4【分析】把(x +1)(x +4)展开,合并同类项,可确定a 、b 的值.【详解】解:∵(x +1)(x +4),=244x x x +++,=254x x ++,∴54a b ==,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.2、(y ﹣3)(x +1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy ﹣3x +y ﹣3=x (y ﹣3)+(y ﹣3)=(y ﹣3)(x +1).故答案为:(y ﹣3)(x +1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.3、(2)(4)m m +-【分析】根据十字相乘法分解因式,即可得到答案.【详解】228m m --=(2)(4)m m +-故答案为:(2)(4)m m +-.【点睛】本题考查了分解因式的知识;解题的关键是熟练掌握十字相乘法分解因式的性质,从而完成求解. 4、24(5)(5)x x y x y +-【分析】先提公因式,再用平方差公式分解即可.【详解】422222241004(25)4(5)(5)x x y x x y x x y x y -=-=+-故答案为:24(5)(5)x x y x y +-【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.5、15【分析】将原式首先提取公因式xy ,进而分解因式,将已知代入求出即可.【详解】解:∵x −2y =5,xy =3,∴()22225315x y xy xy x y -=-=⨯= .故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.6、()(1)x y x y ---【分析】利用提公因式法分解即可.【详解】解:22()()()()(1)x y x y x y x y x y x y --+=---=---故答案为:()(1)x y x y ---【点睛】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.7、20【分析】将a =2b -5变为a -2b =-5,再根据完全平方公式分解a 2-4ab +4b 2-5=(a -2b )2-5,代入求解.【详解】解:∵a =2b -5,∴a -2b =-5,∴a 2-4ab +4b 2-5=(a -2b )2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.8、4【分析】直接利用已知代数式将原式得出x +y =2,再将原式变形把数据代入求出答案.【详解】解:∵x +y -2=0,∴x +y =2,则代数式x 2+4y -y 2=(x +y )(x -y )+4y=2(x -y )+4y=2(x +y )=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.9、-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:()22x y xy xy x y +=+ ∵x +y =﹣2,xy =4,∴()22428x y xy +=⨯-=-.故答案为:8- .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.10、a (a +1)(a -1)【分析】先找出公因式a ,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:3a a -()2=1a a -(1)(1)a a a =+-故答案为:(1)(1)a a a +-.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.三、解答题1、(73)(37)a b a b ++【分析】利用平方差公式因式分解即可【详解】原式()()222252a b a b =+-- ,()()2252a b a b =+--⎡⎤⎡⎤⎣⎦⎣⎦ ,()()225522a b a b =+-- , ()()()()55225522a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦ ,[][]55225522a b a b a b a b =++-+-+(73)(37)a b a b =++【点睛】本题考查了因式分解-运用公式法,熟练掌握平方差公式是解题关键.2、(x +2y +1)(x +2y -1)【分析】前三项使用完全平方公式,然后再使用平方差公式即可.【详解】解:原式=(x +2y )2-12=(x +2y +1)(x +2y -1).【点睛】本题考查了分组分解法分解因式,解题的关键是把1看作12.3、(1)()()31212x x x +-;(2)()22a b - 【分析】(1)原式提取公因式3x ,然后利用平方差公式分解即可;(2)原式利用完全平方公式和单项式乘以多项式的计算法则展开合并,然后再运用完全平方公式分解即可.【详解】(1)3312x x -解:原式()2314x x =- ()()31212x x x =+-(2)()()223a b b a b ---解:原式222223a ab b ab b =-+-+2244a ab b =-+ ()22a b =-.【点睛】本题主要考查了因式分解,整式的混合运算,解题的关键在于能够熟练掌握相关知识进行求解.。

七年级数学因式分解练习题及答案

七年级数学因式分解练习题及答案

七年级数学因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是A.a=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是A.xyB.3xyC.xyD.3xy4.多项式x+x提取公因式后剩下的因式是A. x+1B.xC. xD. x+15.下列变形错误的是A.-x-y=-B.= -C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –xyB.x+yC.-x+yD.x-y7.下列分解因式错误的是A. 1-16a=B. x-x=xC.a-bc=D.m-0.01=8.下列多项式中,能用公式法分解因式的是A.x-xy二、填空9.ab+ab-ab=ab.10.-7ab+14a-49ab=-7a.11.3+2=___________12.x-y=____________.13.-a+b=14.1-a=___________15.99-101=________22222B. x+xyC. x-y D. x+y222216.x+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。

222三、解答18.因式分解:①?4x3?16x2?24x②8a2?123③2am?1?4am?2am?1④2a2b2-4ab+2⑤2-4x2y2⑥2-419.已知a+b-c=3,求2a+2b-2c的值。

220、已知,2x-Ax+B=2,请问A、B的值是多少?221、若2x2+mx-1能分解为,求m的值。

22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。

23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。

24.请问9910-99能被99整除吗?说明理由。

浙教版七年级数学下册2提取公因式法同步练习

浙教版七年级数学下册2提取公因式法同步练习

浙教版七年级下 4.2提取公因式法同步练习一.选择题1.(2021秋•孟村县期末)将多项式a2b﹣2b利用提公因式法分解因式,则提取的公因式为()A.a2b B.ab C.a D.b2.多项式mn2﹣2m2n﹣4mn分解因式,应提取的公因式是()A.mn B.2mm C.mn D.3.(2021秋•巴彦县期末)多项式8a3b2+12ab3c的公因式是()A.abc B.4ab2C.ab2D.4ab2c4.(2021春•昌图县期末)多项式2xy﹣4x2y+4xy2﹣8x2y2中,各项的公因式是()A.2xy B.2x2y C.2xy2D.2x2y25.(2021春•滕州市期末)已知xy=3,x﹣y=﹣2,则代数式x2y﹣xy2的值是()A.6 B.﹣1 C.﹣5 D.﹣66.(2021秋•鱼台县期末)下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+17.(2021春•富川县期末)把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y)B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y)D.(2﹣a)(2x﹣y)8.(2021春•南岸区期末)用提公因式法分解因式,下列因式分解正确的是()A.2n2﹣mn+n=2n(n﹣m)B.2n2﹣mn+n=n(2﹣m+1)C.2n2﹣mn+n=n(2n﹣m)D.2n2﹣mn+n=n(2n﹣m+1)9.(2021春•埇桥区期末)(﹣2)2021+(﹣2)2022计算后的结果是()A.22021B.﹣2 C.﹣22021D.﹣110.(2021春•怀柔区期末)将3a2m﹣6amn+3a分解因式,下面是四位同学分解的结果:①3am(a﹣2n+1)②3a(am+2mn﹣1)③3a(am﹣2mn)④3a(am﹣2mn+1)其中,正确的是()A.①B.②C.③D.④二.填空题11.(2021秋•南安市期中)分解因式:3ab﹣6a2=.12.(2018春•石阡县期中)多项式36x+24x3y﹣12xy中各项的公因式是.13.(2021秋•天津期末)分解因式x2y﹣4xy=.14.(2021•太原三模)分解因式4x(x+1)﹣(x+1)2的结果是.15.(2021秋•黄浦区期中)分解因式:3a(x﹣y)+2b(y﹣x)=.16.(2021春•盐湖区校级期末)已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b的值为.三.解答题17.(2021春•广陵区校级期中)因式分解:(1)9abc﹣6a2b2+12abc2.(2)3x2(x﹣y)+6x(y﹣x).18.(2021春•历下区期中)对下列多项式进行因式分解.(1)﹣4a3b3+6a2b﹣2ab;(2)(x+1)(x﹣1)﹣(1﹣x)2.19.(2020秋•浦东新区校级期中)因式分解:(x﹣y)(3y﹣5x)﹣(y﹣x)(y﹣3x).20.分解因式(1)(x+2y)2﹣x2﹣2xy(2)(a﹣b)2(m+n)﹣(﹣m﹣n)(b﹣a)21.在讲提取公因式一课时,张老师出了这样一道题目:把多项式3(x﹣y)3﹣(y﹣x)2分解因式•并请甲、乙两名同学在黑板上演算.甲演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3+(x﹣y)2=(x﹣y)2[3(x﹣y)+1]=(x﹣y)2(3x﹣3y+1).乙演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2(3x﹣3y).他们的计算正确吗?若错误,请你写出正确答案.答案与解析一.选择题1.(2021秋•孟村县期末)将多项式a2b﹣2b利用提公因式法分解因式,则提取的公因式为()A.a2b B.ab C.a D.b【解析】解:a2b﹣2b=b(a2﹣2),将多项式a2b﹣2b利用提公因式法分解因式,则提取的公因式为:b,故选:D.2.多项式mn2﹣2m2n﹣4mn分解因式,应提取的公因式是()A.mn B.2mm C.mn D.【解析】解:mn2﹣2m2n﹣4mn=mn(n﹣4m﹣8).故应提取的公因式是mn.故选:C.3.(2021秋•巴彦县期末)多项式8a3b2+12ab3c的公因式是()A.abc B.4ab2C.ab2D.4ab2c【解析】解:多项式8a3b2+12ab3c的公因式是:4ab2.故选:B.4.(2021春•昌图县期末)多项式2xy﹣4x2y+4xy2﹣8x2y2中,各项的公因式是()A.2xy B.2x2y C.2xy2D.2x2y2【解析】解:∵多项式2xy﹣4x2y+4xy2﹣8x2y2系数的最大公约数是2,相同字母的最低指数次幂是x 和y,∴该多项式的公因式为2xy,故选:A.5.(2021春•滕州市期末)已知xy=3,x﹣y=﹣2,则代数式x2y﹣xy2的值是()A.6 B.﹣1 C.﹣5 D.﹣6【解析】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故选:D.6.(2021秋•鱼台县期末)下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+1【解析】解:A、2a+4=2(a+2),正确;B、(a﹣b)m=am﹣bm,是整式乘法,不是因式分解,故此选项错误;C、x(x﹣y)+y(x﹣y)=(x+y)(x﹣y),故此选项错误;D、a2﹣b2+1=(a+b)(a﹣b)+1,不符合因式分解的定义,故此选项错误.故选:A.7.(2021春•富川县期末)把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y)B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y)D.(2﹣a)(2x﹣y)【解析】解:2x(a﹣2)﹣y(2﹣a)=(a﹣2)(2x+y).故选:A.8.(2021春•南岸区期末)用提公因式法分解因式,下列因式分解正确的是()A.2n2﹣mn+n=2n(n﹣m)B.2n2﹣mn+n=n(2﹣m+1)C.2n2﹣mn+n=n(2n﹣m)D.2n2﹣mn+n=n(2n﹣m+1)【解析】解:2n2﹣mn+n=n(2n﹣m+1),故选:D.9.(2021春•埇桥区期末)(﹣2)2021+(﹣2)2022计算后的结果是()A.22021B.﹣2 C.﹣22021D.﹣1【解析】解:(﹣2)2021+(﹣2)2022=(﹣2)2021×(1﹣2)=22021.故选:A.10.(2021春•怀柔区期末)将3a2m﹣6amn+3a分解因式,下面是四位同学分解的结果:①3am(a﹣2n+1)②3a(am+2mn﹣1)③3a(am﹣2mn)④3a(am﹣2mn+1)其中,正确的是()A.①B.②C.③D.④【解析】解:原式=3a(am﹣2mn+1),故选:D.二.填空题11.(2021秋•南安市期中)分解因式:3ab﹣6a2=3a(b﹣2a).【解析】解:原式=3a(b﹣2a),故答案为:3a(b﹣2a).12.(2018春•石阡县期中)多项式36x+24x3y﹣12xy中各项的公因式是12x.【解析】解:多项式36x+24x3y﹣12xy中各项的公因式是12x,故答案为:12x.13.(2021秋•天津期末)分解因式x2y﹣4xy=xy(x﹣4).【解析】解:x2y﹣4xy=xy(x﹣4).故答案为:xy(x﹣4).14.(2021•太原三模)分解因式4x(x+1)﹣(x+1)2的结果是(x+1)(3x﹣1).【解析】解:4x(x+1)﹣(x+1)2=(x+1)[4x﹣(x+1)]=(x+1)(4x﹣x﹣1)=(x+1)(3x﹣1).故答案为:(x+1)(3x﹣1).15.(2021秋•黄浦区期中)分解因式:3a(x﹣y)+2b(y﹣x)=(x﹣y)(3a﹣2b).【解析】解:原式=3a(x﹣y)﹣2b(x﹣y)=(x﹣y)(3a﹣2b),故答案为:(x﹣y)(3a﹣2b).16.(2021春•盐湖区校级期末)已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b的值为﹣31.【解析】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),∴(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7+3×(﹣8)=﹣31.故答案为:﹣31.三.解答题17.(2021春•广陵区校级期中)因式分解:(1)9abc﹣6a2b2+12abc2.(2)3x2(x﹣y)+6x(y﹣x).【解析】解:(1)9abc﹣6a2b2+12abc2=3ab(3c﹣2ab+4c2);(2)3x2(x﹣y)+6x(y﹣x)=3x2(x﹣y)﹣6x(x﹣y)=3x(x﹣y)(x﹣2).18.(2021春•历下区期中)对下列多项式进行因式分解.(1)﹣4a3b3+6a2b﹣2ab;(2)(x+1)(x﹣1)﹣(1﹣x)2.【解析】解:(1)﹣4a3b3+6a2b﹣2ab=﹣(4a3b3﹣6a2b+2ab)=﹣2ab(2a2b2﹣3a+1);(2)(x+1)(x﹣1)﹣(1﹣x)2=(x+1)(x﹣1)﹣(x﹣1)2=(x﹣1)[(x+1)﹣(x﹣1)]=2(x﹣1).19.(2020秋•浦东新区校级期中)因式分解:(x﹣y)(3y﹣5x)﹣(y﹣x)(y﹣3x).【解析】解:原式=(x﹣y)(3y﹣5x)+(x﹣y)(y﹣3x)=(x﹣y)(3y﹣5x+y﹣3x)=(x﹣y)(4y﹣8x)=4(x﹣y)(y﹣2x).20.分解因式(1)(x+2y)2﹣x2﹣2xy(2)(a﹣b)2(m+n)﹣(﹣m﹣n)(b﹣a)【解析】解:(1)(x+2y)2﹣x2﹣2xy=(x+2y)2﹣x(x+2y)=2y(x+2y);(2)(a﹣b)2(m+n)﹣(﹣m﹣n)(b﹣a)=(a﹣b)2(m+n)﹣(m+n)(a﹣b)=(a﹣b)(m+n)(a﹣b﹣1)21.在讲提取公因式一课时,张老师出了这样一道题目:把多项式3(x﹣y)3﹣(y﹣x)2分解因式•并请甲、乙两名同学在黑板上演算.甲演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3+(x﹣y)2=(x﹣y)2[3(x﹣y)+1]=(x﹣y)2(3x﹣3y+1).乙演算的过程:3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2(3x﹣3y).他们的计算正确吗?若错误,请你写出正确答案.【解析】解:不正确;3(x﹣y)3﹣(y﹣x)2=3(x﹣y)3﹣(x﹣y)2=(x﹣y)2[3(x﹣y)﹣1]=(x﹣y)2(3x﹣3y﹣1).。

(完整版)提公因式法分解因式典型例题

(完整版)提公因式法分解因式典型例题

因式分解(1)一知识点讲解知识点一:因式分解概念:把一个多项式化为几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式。

1.因式分解特征:因式分解的结果是几个整式的乘积。

2.因式分解与整式乘法关系:因式分解与整式的乘法是相反方向的变形知识点二:寻找公因式1、小学阶段我们学过求一组数字的最大公因(约)数方法:(短除法)例如:求20,36,80的最大公(约)数?最大公倍数?2、寻找公因式的方法:(一)因式分解的第一种方法(提公因式法)(重点):1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。

2.符号语言:)(c b a m mc mb ma ++=++ 3.提公因式的步骤:(1)确定公因式 (2)提出公因式并确定另一个因式(依据多项式除以单项式) 公因式原多项式另一个因式=4.注意事项:因式分解一定要彻底二、例题讲解模块1:考察因式分解的概念1. (2017春峄城区期末)下列各式从左到右的变形,是因式分解的是( ) A 、x x x x x 6)3)(3(692+-+=+- B 、103)2)(5(2-+=-+x x x x C 、22)4(168-=+-x x x D 、b a ab 326⋅=2. (2017秋抚宁县期末)下列各式从左到右的变形,是因式分解的是( ) A 、2)1(3222++=++x x x B 、22))((y x y x y x -=-+ C 、222)(y x y xy x -=+- D 、)(222y x y x -=- 3. (2017秋姑苏区期末)下列从左到右的运算是因式分解的是( ) A 、1)1(21222+-=+-a a a a B 、22))((y x y x y x -=+- C 、22)13(169-=+-x x x D 、xy y x y x 2)(222+-=+4.(2017秋华德县校级期末)下列各式从左到右的变形,是因式分解的是( ) A 、15123-=-+x y x B 、2249)23)(23(b a b a b a -=-+C 、)11(22xx x x +=+ D 、)2)(2(28222y x y x y x -+=-5. (2017春新城区校级期中)下列各式从左到右的变形是因式分解的是( ) A 、ab a b a a -=-2)( B 、1)2(122+-=+-a a a a C 、)1(2-=-x x x x D 、)(222xy y x y x xy -=-6. (2016秋濮阳期末)下列式子中,从左到右的变形是因式分解的是( ) A 、23)2)(1(2+-=--x x x x B 、)2)(1(232--=+-x x x x C 、4)4(442+-=++x x x x D 、))((22y x y x y x -+=+模块2:考察公因式1. (2017春抚宁县期末)多项式3222320515n m n m n m -+的公因式是( ) A 、mn 5 B 、225n m C 、n m 25 D 、25mn 2.(2017春东平县期中)把多项式332223224168bc a c b a c b a -+-分解因式,应提的公因式是( )A 、bc a 28-B 、3222c b aC 、abc 4-D 、33324c b a 3.(2017秋凉州区末)多项式92-a 与a a 32-的公因式是( ) A 、3+a C 、3-a B 、1+a D 、1-a 4.(2017春邵阳县期中)多项式n m n my x y x 31128--的公因式是( )A 、nmy x B 、1-n myx C 、nmy x 4 D 、14-n myx5.(2016春深圳校级期中)多项式mx mx mx 1025523-+-各项的公因式是( )A 、25mxB 、35mx - C 、mx D 、mx 5- 6.下列各组代数式中没有公因式的是( ) A 、)(5b a m -与a b - B 、2)(b a +与b a -- C 、y mx +与y x + D 、ab a +-2与22ab b a -7.观察下列各组式子:①b a +2和b a +;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x -和22y x +。

(完整版)《提公因式法》习题

(完整版)《提公因式法》习题

《提公因式法》习题一、填空题1.单项式-12x 12y 3与8x 10y 6的公因式是________.2.-xy 2(x+y)3+x(x+y)2的公因式是________.3.把4ab 2-2ab+8a 分解因式得________.4.5(m -n)4-(n-m)5可以写成________与________的乘积.5.当n 为_____时,(a-b )n =(b-a )n ;当n 为______时,(a-b )n =-(b-a )n 。

(其中n 为正整数)6.多项式-ab (a-b )2+a (b-a )2-ac (a-b )2分解因式时,所提取的公因式应是_____.7.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.8.多项式18x n+1-24x n 的公因式是_______.二、选择题1.多项式8x m y n-1-12x 3m y n 的公因式是( )A .x m y nB .x m y n-1C .4x m y nD .4x m y n-12.把多项式-4a 3+4a 2-16a 分解因式( )A .-a(4a 2-4a+16)B .a(-4a 2+4a -16)C .-4(a 3-a 2+4a)D .-4a(a 2-a+4)3.如果多项式-51abc+51ab 2-a 2bc 的一个因式是-51ab,那么另一个因式是( ) A .c-b+5ac B .c+b-5ac C .c-b+51ac D .c+b-51ac 4.用提取公因式法分解因式正确的是( )A .12abc-9a 2b 2=3abc(4-3ab)B .3x 2y-3xy+6y=3y(x 2-x+2y)C .-a 2+ab-ac=-a(a-b+c)D .x 2y+5xy-y=y(x 2+5x)5.下列各式公因式是a 的是( )A. ax+ay+5 B .3ma-6ma 2 C .4a 2+10ab D .a 2-2a+ma6.-6xyz+3xy2+9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy7.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)8.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)9.下列各个分解因式中正确的是()A.10ab2c+ac2+ac=2ac(5b2+c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)10观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2.其中有公因式的是()A.①② B.②③C.③④D.①④三、解答题1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.满足下列等式的x的值.①5x2-15x=0 ②5x(x-2)-4(2-x)=03.a=-5,a+b+c=-5.2,求代数式a2(-b-c)-3.2a(c+b)的值.4.a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案一、填空题1.答案:4x10y3;解析:【解答】系数的最大公约数是4,相同字母的最低指数次幂是x10y3,∴公因式为4x10y3.【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:x(x+y)2;解析:【解答】)-xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;【分析】运用公因式的概念,找出各项的公因式即可知答案.3. 答案:2a(2b2-b+4) ;解析:【解答】4ab²- 2ab + 8a= 2a( 2b² - b + 4 ),【分析】把多项式4ab²- 2ab + 8a运用提取公因式法因式分解即可知答案.4. 答案:(m-n)4,(5+m-n)解析:【解答】5(m-n)4-(n-m)5=(m-n)4(5+m-n)【分析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可知答案.5. 答案:偶数奇数解析:【解答】当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=-(b-a)n.(其中n为正整数)故答案为:偶数,奇数.【分析】运用乘方的性质即可知答案.6. 答案:-a(a-b)2解析:【解答】-ab(a-b)2+a(a-b)2-ac(a-b)2=-a(a-b)2(b+1-c),故答案为:-a(a-b)2.【分析】运用公因式的概念,找出各项的公因式即可知答案.7. 答案:(a-b+x-y)解析:【解答】(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案(a-b+x-y ).【分析】把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解即可.8. 答案:6x n解析:【解答】系数的最大公约数是6,相同字母的最低指数次幂是x n , ∴公因式为6x n .故答案为6x n【分析】运用公因式的概念,找出各项的公因式即可知答案.二、选择题1. 答案:D解析:【解答】多项式8x m y n-1-12x 3m y n 的公因式是4x m y n-1.故选D .【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:D解析:【解答】-4a 3+4a 2-16a=-4a (a 2-a+4).故选D .【分析】把多项式-4a 3+4a 2-16a 运用提取公因式法因式分解即可.3. 答案:A解析:【解答】-51abc+51ab 2-a 2bc=-51ab (c-b+5ac ),故选A. 【分析】运用提取公因式法把多项式-51abc+51ab 2-a 2bc 因式分解即可知道答案. 4. 答案:C解析:【解答】A .12abc-9a 2b 2=3ab (4c-3ab ),故本选项错误; B .3x 2y-3xy+6y=3y (x 2-x+2),故本选项错误;C .-a 2+ab-ac=-a (a-b+c ),本选项正确; D .x 2y+5xy-y=y (x 2+5x-1),故本选项错误;故选C.【分析】根据公因式的定义,先找出系数的最大公约数,相同字母的最低指数次幂,确定公因式,再提取公因式即可.5. 答案:D ;解析:【解答】A.ax+ay+5没有公因式,所以本选项错误;B.3ma-6ma 2的公因式为:3ma ,所以本选项错误;C.4a 2+10ab 的公因式为:2a ,所以本选项错误;D.a 2-2a+ma 的公因式为:a ,所以本选项正确.故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.6. 答案:D;解析:【解答】-6xyz+3xy2-9x2y各项的公因式是-3xy.故选D.【分析】运用公因式的概念,找出即可各项的公因式可知答案.7. 答案:C;【解答】(3a-4b)(7a-8b)-(11a-12b)(7a-8b)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b) 解析:=8(7a-8b)(b-a).故选C【分析】把(3a-4b)(7a-8b)-(11a-12b)(7a-8b)运用提取公因式法因式分解即可知答案.8. 答案:C;解析:【解答】(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故答案为:C. 【分析】把(x-y)2-(y-x)运用提取公因式法因式分解即可知答案.9. 答案:D;解析:【解答】10ab2c+6ac2+2ac=2ac(5b2+3c+1),故此选项错误;(a-b)3-(b-a)2=(a-b)2(a-b-1)故此选项错误;x(b+c-a)-y(a-b-c)-a+b-c=x(b+c-a)+y(b+c-a)+(b-c-a)没有公因式,故此选项错误;(a-2b)(3a+b)-5(2b-a)2=(a-2b)(3a+b-5a+10b)=(a-2b)(11b-2a),故此选项正确;故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.10. 答案:B.解析:【解答】①2a+b和a+b没有公因式;②5m(a-b)和-a+b=-(a-b)的公因式为(a-b);③3(a+b)和-a-b=-(a+b)的公因式为(a+b);④x 2 -y 2和x 2 +y 2没有公因式.故选B.【分析】运用公因式的概念,加以判断即可知答案.三、解答题1.答案:(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n). 解析:【解答】(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab) (5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)【分析】运用提取公因式法因式分解即可.42.答案:(1)x=0或x=3;(2)x=2或x=-5解析:【解答】(1)5x2-15x=5x(x-3)=0,则5x=0或x-3=0,∴x=0或x=34(2)(x-2)(5x+4)=0,则x-2=0或5x+4=0,∴x=2或x=-5【分析】把多项式利用提取公因式法因式分解,然后再求x的值.3.答案:1.8解析:【解答】∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8【分析】把a2(-b-c)-3.2a(c+b)利用提取公因式法因式分解,再把已知的值代入即可知答案.4. 答案:-16解析:【解答】4a2b+4ab2-4a-4b=4(a+b)(ab-1),∵a+b=-4,ab=2,∴4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16.【分析】把4a2b+4ab2-4a-4b利用提取公因式法因式分解,再把已知的值代入即可知答案.。

4.2 提取公因式法

4.2 提取公因式法

(2)原式=2(a-3)2-(a-3)
=(a-3)(2a-7).
[归纳总结] 提取公因式法分解因式的关键是确定多项式中各 项的公因式,尤其需要注意的是:公因式可以是数,也可以是 单项式和多项式.
4.2
提取公因式法
探究问题二
提取公因式法的简单应用
例2
523-521能被120整除吗?
解:原式=520(53-5)=520×120,∴523-521能被120整除.
数 学
新课标(ZJ) 七年级下册
4.2
提取公因式法
基础自主学习
► 学习目标1 学会找多项式的公因式
1.多项式-6m3n-3m2n2+12m2n3的公因式为( B )
A.3mn B.-3m2n
C.3mn2 D.-3m2n2
[解析] 因为首项系数为负,各项系数的最大公约数是3,字 母 m 的最低次幂是 2 , 字母 n 的最低次幂是 1 , 所以公因式是- 3m2n.
4.2
提取公因式法
不变 [归纳] 括号前面是“+”号,括到括号里的各项都_______ 变 号. 号;括号前面是“-”号,括到括号里的各项都____
4.2
提取公因式法
重难互动探究
探究问题一 用提取公因式法处理较复杂的因式分解题
例1分解因式:(1)x2(y-2)-x(2-y);
(2)2(a-3)2-a+3.
4.2
提取公因式法
[注意] 当多项式的某项恰为公因式时,提公因式后,另一个 因式中不要漏掉“+1”或“-1”.
4.2
提取公因式法

学习目标3
掌握添括号法则
1-2a ;-a2+2ab-b2=- 3.添括号:1-2a=+(________) a2-2ab+b2 (_______________) .

初中数学-《因式分解》测试题(有答案)

初中数学-《因式分解》测试题(有答案)

初中数学-《因式分解》测试题一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)32.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+23.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)24.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.7.﹣xy2(x+y)3+x(x+y)2的公因式是;(2)4x(m﹣n)+8y(n﹣m)2的公因式是.8.分解因式:(x+3)2﹣(x+3)=.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.《第4章因式分解》参考答案与试题解析一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3【考点】完全平方公式;去括号与添括号.【分析】A、B都是利用添括号法则进行变形,C、利用完全平方公式计算即可;D、利用立方差公式计算即可.【解答】解:A、∵﹣x﹣y=﹣(x+y),故此选项错误;B、∵﹣a+b=﹣(a﹣b),故此选项错误;C、∵(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故此选项正确;D、∵(a﹣b)3=a3﹣3a2b+3ab2﹣b3,(b﹣a)3=b3﹣3ab2+3a2b﹣a3,∴(a﹣b)3≠(b﹣a)3,故此选项错误.故选C.【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.括号前是“﹣”号,括到括号里各项都变号,括号前是“+”号,括到括号里各项不变号.2.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.【点评】先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.3.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)2【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:10a2(x+y)2﹣5a(x+y)3因式分解时,公因式是5a(x+y)2故选D【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.4.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)【考点】因式分解﹣提公因式法.【分析】找出公因式直接提取a(b﹣2)进而得出即可.【解答】解:a(b﹣2)﹣a2(2﹣b)=a(b﹣2)(1+a).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)【考点】因式分解﹣提公因式法.【分析】把每一个整式都因式分解,比较结果得出答案即可.【解答】解:A、mn(m﹣n)﹣m(n﹣m)=m(m﹣n)(n+1)=﹣m(n﹣m)(n+1),故原选项正确;B、6(p+q)2﹣2(p+q)=2(p+q)(3p+3q﹣1),故原选项错误;C、3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x﹣2),故原选项错误;D、3x(x+y)﹣(x+y)2=(x+y)(2x﹣y),故原选项错误.故选:A.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是C解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.【考点】因式分解﹣提公因式法.【分析】利用提取公因式法一步步因式分解,逐一对比进行判定,得出答案即可.【解答】解:原式═(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2﹣4)…C=(x﹣2)(x﹣6)…D.通过对比可以发现因式分解开始出现错误的一步是C.故答案为:C.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.7.﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:(1)﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).故答案为:4(m﹣n)x(x+y)2.【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.8.分解因式:(x+3)2﹣(x+3)=(x+2)(x+3).【考点】因式分解﹣提公因式法.【分析】本题考查提公因式法分解因式.将原式的公因式(x﹣3)提出即可得出答案.【解答】解:(x+3)2﹣(x+3),=(x+3)(x+3﹣1),=(x+2)(x+3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=2n(m﹣n)(p﹣q).【考点】因式分解﹣提公因式法.【分析】首先得出公因式为n(m﹣n)(p﹣q),进而提取公因式得出即可.【解答】解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=n(m﹣n)(p﹣q)+n(m﹣n)(p﹣q)=2n(m﹣n)(p﹣q).故答案为:2n(m﹣n)(p﹣q).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=﹣31.【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】首先提取公因式3x﹣7,再合并同类项即可得到a、b的值,进而可算出a+3b的值.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),=(3x﹣7)(2x﹣21﹣x+13),=(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【考点】因式分解﹣提公因式法.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.【考点】因式分解的应用;解二元一次方程组.【分析】应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.【解答】解:7y(x﹣3y)2﹣2(3y﹣x)3,=7y(x﹣3y)2+2(x﹣3y)3,=(x﹣3y)2[7y+2(x﹣3y)],=(x﹣3y)2(2x+y),当时,原式=12×6=6.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.【考点】因式分解﹣分组分解法.【专题】阅读型.【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.【解答】解:(1)ab﹣ac+bc﹣b2=a(b﹣c)+b(c﹣b)=(a﹣b)(b﹣c);(2)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m﹣x);(3)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(y﹣2)(xy+2).【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【考点】因式分解﹣提公因式法;解一元一次不等式.【分析】首先把x2﹣2x+3因式分解为(x﹣1)(x﹣2),进一步利用提取公因式法以及非负数的性质,探讨得出答案即可.【解答】解:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.【点评】此题考查提取公因式法因式分解,结合非负数的性质来探讨不等式的解法.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?【考点】因式分解﹣提公因式法.【专题】阅读型.【分析】(1)根据题目提供的解答过程,数出提取的公因式的次数即可;(2)根据总结的规律写出来即可.【解答】解:(1)共提取了两次公因式;(2)将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式n次,结果是(x+1)n+1.【点评】本题考查了因式分解的应用,解题的关键是从题目提供的材料确定提取的公因式的次数.16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.【考点】因式分解﹣提公因式法.【分析】首先把等号右边的整式因式分解,得出关于x、y的整式的乘法算式,对应12的分解,得出答案即可.【解答】解:x(x﹣y)﹣y(y﹣x)=(x﹣y)(x+y);因为x,y都是自然数,又12=1×12=2×6=3×4;经验证(4﹣2)×(4+2)=2×6符合条件;所以x=4,y=2.【点评】此题考查提取公因式因式分解,进一步利用题目中的条件限制分析探讨得出答案.。

2021-2022学年浙教版初中数学七年级下册第四章因式分解同步训练练习题(精选)

2021-2022学年浙教版初中数学七年级下册第四章因式分解同步训练练习题(精选)

第四章因式分解章节同步练习2022年·浙教版初中数学七年级下册知识点习题·定向攻克·含答案及详细解析浙教版初中数学七年级下册第四章因式分解同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、对于①3(13)x xy x y -=-,②2(3)(1)23x x x x -+=--,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解21x -,则2x x -的值为( )A.0和1B.0和2C.0和-1D.0或±13、下列各式从左到右的变形,属于因式分解的是( )A.2323824a b a b =⋅B.()()311x x x x x -=+-C.2211x x x x ⎛⎫+=+ ⎪⎝⎭ D.()a x y ax ay -=-4、多项式x 2y (a ﹣b )﹣y (b ﹣a )提公因式后,余下的部分是( )A.x 2+1B.x +1C.x 2﹣1D.x 2y +y 5、下面从左到右的变形中,因式分解正确的是( )A.﹣2x 2﹣4xy =﹣2x (x +2y )B.x 2+9=(x +3)2C.x 2﹣2x ﹣1=(x ﹣1)2D.(x +2)(x ﹣2)=x 2﹣4 6、下列因式分解正确的是( )A.2224(2)x x x -+=-B.224(4)(4)x y x y x y -=+-C.221112164x x x ⎛⎫-+=- ⎪⎝⎭D.()432226969a b a b a b a b a a -+=-+7、下列因式分解正确的是( )A.()()2999x x x -=-+B.()322a a a a a a -+=-C.()()()2212111x x x ---+=-D.()22228822x xy y x y -+=- 8、下列分解因式的变形中,正确的是( )A.xy (x ﹣y )﹣x (y ﹣x )=﹣x (y ﹣x )(y +1)B.6(a +b )2﹣2(a +b )=(2a +b )(3a +b ﹣1)C.3(n ﹣m )2+2(m ﹣n )=(n ﹣m )(3n ﹣3m +2)D.3a (a +b )2﹣(a +b )=(a +b )2(2a +b )9、下列分解因式中,①x 2+2xy +x =x (x +2y );②x 2+4x +4=(x +2)2;③﹣x 2+y 2=(x +y )(x ﹣y ).正确的个数为( )A.3B.2C.1D.0 10、下列各式从左到右的变形属于因式分解的是( )A.()()2111a a a +-=-B.()2422x y x y -=-C.()2111x x x x -+=-+D.2323623x y x y =⋅11、下列各式从左到右的变形是因式分解为( )A.()()2111x x x +-=-B.()()2233x y x y x y -+=+-+C.()2242a a -=-D.()2321x y xy x y xy x x -+=-+ 12、下列关于2300+(﹣2)301的计算结果正确的是( )A.2300+(﹣2)301=2300﹣2301=2300﹣2×2300=﹣2300B.2300+(﹣2)301=2300﹣2301=2﹣1C.2300+(﹣2)301=(﹣2)300+(﹣2)301=(﹣2)601D.2300+(﹣2)301=2300+2301=260113、下列各选项中因式分解正确的是( )A.x 2-1=(x -1)2B.a 3-2a 2+a =a 2(a -2) C.-2y 2+4y =-2y (y +2) D.a 2b -2ab +b =b (a -1)2 14、对于有理数a ,b ,c ,有(a +100)b =(a +100)c ,下列说法正确的是( )A.若a ≠﹣100,则b ﹣c =0B.若a ≠﹣100,则bc =1C.若b ≠c ,则a +b ≠cD.若a =﹣100,则ab =c15、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A.6858B.6860C.9260D.9262 二、填空题(10小题,每小题4分,共计40分)1、因式分解:()()32m x y n y x ---=______.2、如果(a + )2=a 2+6ab +9b 2,那么括号内可以填入的代数式是 ___.(只需填写一个)3、分解因式:x 4﹣1=__________________.4、若多项式229x kxy y ++可以分解成()23x y -,则k 的值为______. 5、请从24a ,2()x y +,16,29b 四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_____________________.6、分解因式:269b b -+=________.7、因式分解:2a 2-4a -6=________.8、分解因式:3x 2y ﹣12xy 2=___.9、分解因式:236ab a -=___________.10、若x +y =6,xy =4,则x 2y +xy 2=________.三、解答题(3小题,每小题5分,共计15分)1、分解因式:a 3﹣a 2b ﹣4a +4b .2、因式分解:m 2(a +b )﹣16(a +b ).3、分解因式:242221348a m a m a --.---------参考答案-----------一、单选题1、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:①3(13)x xy x y -=-,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;②2(3)(1)23x x x x -+=--,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.2、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】=-,x1∴x-1=(x-1)3,∴(x-1)3-(x-1)=0,(x-1)[(x-1)2-1]=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,∴x1=0,x2=1,x3=2,∴x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.3、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4、A【详解】直接提取公因式y(a﹣b)分解因式即可.【解答】解:x2y(a﹣b)﹣y(b﹣a)=x2y(a﹣b)+y(a﹣b)=y(a﹣b)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.解:A 、把一个多项式转化成两个整式乘积的形式,故A 正确;B 、等式不成立,故B 错误;C 、等式不成立,故C 错误;D 、是整式的乘法,故D 错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.6、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A 、2244(2)x x x -+=-,故A 错误;B 、224(2)(2)x y x y x y -=+-,故B 错误;C 、221112164x x x ⎛⎫-+=- ⎪⎝⎭,故C 正确; D 、()43222226969(3)a b a b a b a b a a a b a -+=-+=-,故D 错误;故选:C .【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a 2-b 2=(a +b )(a -b );完全平方公式:a 2±2ab +b 2=(a ±b )2.7、DA.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.8、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.9、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:①x 2+2xy +x =x (x +2y +1),故①错误;②x 2+4x +4=(x +2)2,故②正确;③-x 2+y 2=(y +x )(y -x ),故③错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.10、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A 、()()2111a a a +-=-,属于整式乘法; B 、()2422x y x y -=-,属于因式分解;C 、()2111x x x x -+=-+,没把一个多项式转化成几个整式积的形式,不属于因式分解;D 、2323623x y x y =⋅,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.11、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A . ()()2111x x x +-=-,属于整式的乘法运算,故本选项错误;B . ()()2233x y x y x y -+=+-+,属于整式的乘法运算,故本选项错误;C . ()2242a a -≠-左边和右边不相等,故本选项错误;D . ()2321x y xy x y xy x x -+=-+,符合因式分解的定义,故本选项正确; 故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.12、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(﹣2)301=2300﹣2301=2300﹣2×2300=﹣2300.故选:A .【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.13、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A 、()()21=11x x x -+-,选项错误;B 、()()23222211a a a a a a a a -+=-+=-,选项错误; C 、2242(2)y y y y -+=-- ,选项错误;D 、2222(21)(1)a b ab b b a a b a -+=-+=-,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.14、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:()()100100a b a c +=+,()()1001000a b a c +-+=,()()1000a b c +-=,∴1000a +=或0b c -=,即:100a =-或b c =,A 选项中,若100a ≠-,则0b c -=正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.15、B【分析】根据“和谐数”的概念找出公式:(2k +1)3﹣(2k ﹣1)3=2(12k 2+1)(其中k 为非负整数),然后再分析计算即可.【详解】解:(2k +1)3﹣(2k ﹣1)3=[(2k +1)﹣(2k ﹣1)][(2k +1)2+(2k +1)(2k ﹣1)+(2k ﹣1)2]=2(12 k 2+1)(其中 k 为非负整数),由2(12k 2+1)≤2019得,k ≤9,∴k =0,1,2,…,8,9,即得所有不超过2019的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.二、填空题1、()()32x y m n -+【分析】先将原式变形为()()32m x y n x y -+-,再利用提公因式法分解即可.解:原式()()32m x y n x y =-+-()()32x y m n =-+,故答案为:()()32x y m n -+.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.2、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a 2+6ab +9b 2= a 2+2×a×3b +(3b )2=(a +3b )2,∴(a + 3b )2=a 2+6ab +9b 2,故答案为3b .【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.3、2(1)(1)(1)x x x ++-.【分析】首先把式子看成x 2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x 4﹣1=(x 2+1)(x 2﹣1)=(x 2+1)(x +1)(x ﹣1).故答案是:(x 2+1)(x +1)(x ﹣1).本题主要考查了平方差公式,熟练公式是解决本题的关键.4、-6【分析】直接利用完全平方公式完全平方公式:a2±2ab+b2=(a±b)2,得出k的值. 【详解】解:∵多项式x2+kxy+9y2可以分解成(x-3y)2,∴x2+kxy+9y2=(x-3y)2=x2-6xy+9y2.∴k=-6.故答案为:-6.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式分解因式是解题关键.5、4a2-16=4(a-2)(a+2)【分析】任选两式作差,例如,4a2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a2-16,=(2a)2-42,=(2a-4)(2a+4),=4(a-2)(a+2)故4a2-16=4(a-2)(a+2),故答案为:4a 2-16=4(a -2)(a +2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题. 6、()23b -##【分析】根据完全平方公式进行因式分解即可.【详解】解:原式()23b =-,故答案为:()23b -.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.7、2(a -3)(a +1)a +1)(a -3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a 2-4a -6=2(a 2-2a -3)=2(a -3)(a +1)故答案为:2(a -3)(a +1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.8、()34xy x y -根据提公因式法因式分解即可.【详解】3x 2y ﹣12xy 2()34xy x y =-故答案为:()34xy x y -【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.9、()()66a b b +-【分析】先提出公因式a ,再利用平方差公式进行因式分解即可.【详解】解:2236(36)(6)(6)-=-=+-ab a a b a b b ,故答案为:()()66a b b +-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法——提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.10、24【分析】先对后面的式子进行因式分解,然后根据已知条件代值即可.【详解】x +y =6,xy =4,()=46=24,xy x y =+⨯故答案为:24.【点睛】本题主要考查提取公因式进行因式分解,属于基础题,比较容易,熟练掌握因式分解的方法是解题的关键.三、解答题1、(a ﹣b )(a +2)(a ﹣2)【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解.【详解】解:a 3﹣a 2b ﹣4a +4b=(a 3﹣4a )﹣(a 2b ﹣4b )=a (a 2﹣4)﹣b (a 2﹣4)=(a ﹣b )(a 2﹣4)=(a ﹣b )(a +2)(a ﹣2).【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.2、 (a +b )(m +4)(m -4)【分析】原式提取(a +b ),再利用平方差公式继续分解即可.解:m 2(a +b )﹣16(a +b )=(a +b )(m 2-16)=(a +b )(m +4)(m -4) .【点睛】本题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 3、22(4)(4)(3)a m m m +-+【分析】先提取公因式2a ,然后利用十字相乘和平方差公式分解因式即可.【详解】解:原式=242(1348)a m m -- =222(16)(3)a m m -+=22(4)(4)(3)a m m m +-+.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.。

完整版)因式分解的常用方法及练习题

完整版)因式分解的常用方法及练习题

完整版)因式分解的常用方法及练习题因式分解是初等数学中常用的代数式恒等变形方法之一,它在解决数学问题时发挥着重要作用。

因式分解方法灵活多样,技巧性强,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能和思维能力也有独特的作用。

初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。

本文将在此基础上进一步介绍因式分解的方法、技巧和应用。

一、提取公因式法:将多项式中的公因式提取出来,使其成为一个因式乘以一个多项式。

例如,ma+mb+mc可以提取公因式m得到m(a+b+c)。

二、运用公式法:在整式的乘、除中,我们学过若干个乘法公式,反向使用这些公式可以得到因式分解中常用的公式,例如平方差公式、完全平方公式、立方和公式、立方差公式和完全立方公式等。

还有两个常用的公式:a2+b2+c2+2ab+2bc+2ca=(a+b+c)2和a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)。

三、分组分解法:将多项式按照一定规律分成若干组,然后分别进行因式分解。

分组后能直接提取公因式的例子有am+an+bm+bn,可以将前两项分为一组,后两项分为一组,然后分别提取公因式得到(m+n)(a+b)。

分组后能直接运用公式的例子有2ax-10ay+5by-bx,可以将第一、二项为一组,第三、四项为一组,然后运用平方差公式得到(2a-b)(x-5y)。

因式分解方法的灵活性和技巧性需要通过大量的练才能掌握,只有掌握了这些方法和技巧,才能在解决数学问题时游刃有余。

例3、分解因式:x^2-y^2+ax+ay分析:将第一、三项分为一组,第二、四项分为一组,不能直接提公因式,需要另外分组。

改写:将x^2和ax分为一组,将-y^2和ay分为一组。

不能直接提公因式,需要另外分组。

例4、分解因式:a^2-2ab+b^2-c^2解:原式可以化为(a-b)^2-c^2,再用差平方公式得到(a-b+c)(a-b-c)。

2019年春七年级数学下册第4章因式分解4-2提取公因式法练习新版浙教版

2019年春七年级数学下册第4章因式分解4-2提取公因式法练习新版浙教版

第4章因式分解4.2提取公因式法知识点1多项式的公因式一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.1.多项式-6m3n-3m2n2+12m2n3的公因式为()A.3mn B.-3m2nC.3mn2D.-3m2n2知识点2提取公因式法分解因式如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解.这种分解因式的方法,叫做提取公因式法.[注意]当多项式的某项恰为公因式时,提公因式后,另一个因式中不要漏掉“+1”或“-1”.2.把下列各式分解因式:(1)x2-5x;(2)2x2y2-4y3z;(3)-5a2+25a;(4)14x2y-21xy2+7xy.知识点3添括号法则括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都变号.3.添括号:1-2a=+(________);-a2+2ab-b2=-(____________).一用提取公因式法处理较复杂的因式分解题2变式题分解因式:(1)x2(y-2)-x(2-y);(2)2(a-3)2-a+3.[归纳总结]提取公因式法分解因式的关键是确定多项式中各项的公因式,尤其需要注意的是公因式可以是数,也可以是单项式和多项式.二提取公因式法的简单应用523-521能被120整除吗?[反思]分解因式:-6ab2+9a2b-3b.解:-6ab2+9a2b-3b=-(6ab2-9a2b+3b)①=-(3b·2a b-3b·3a2+3b)②=-3b(2ab-3a2).③(1)找错:从第________步开始出现错误;(2)纠错:一、选择题1.2015·武汉把a2-2a分解因式,正确的是()A.a(a-2) B.a(a+2)C.a(a2-2) D.a(2-a)2.在把多项式5xy 2-25x 2y 提取公因式时,被提取的公因式为() A .5 B .5x C .5xy D .25xy3.下列多项式中,能用提取公因式法进行因式分解的是() A .x 2-y B .x 2+2x C .x 2+y 2D .x 2-xy +y 24.下列各式用提公因式因式分解正确的是() A .a 2b +7ab -b =b(a 2+7a)B .3x 2y -3xy +6y =3y(x 2-x +2)C .4x 4-2x 3y =x 3(4x -2y)D .-2a 2+4ab -6ac =-2a(a -2b -3c)5.若m -n =-1,则(m -n)2-2m +2n 的值是() A .3 B .2 C .1 D .-16.()-82018+(-8)2017能被下列数整除的是()A .3B .5C .7D .9二、填空题7.2016·丽水分解因式:am -3a =____________. 8.在括号前面添上“+”或“-”号或在括号内填空. (1)-a +b =________(a -b);(2)-m 2-2m +5=-(______________);(3)(x -y)3=________(y -x)3.9.因式分解:m(x -y)+n(x -y)=________.10.已知x +y =6,xy =-3,则x 2y +xy 2=________.11.计算22016+(-2)2017的结果为________.12.已知(2x -21)(3x -7)-(3x -7)(x -13)可分解因式为(3x +a)(x +b),其中a ,b 均为整数,则a +3b =____________.三、解答题13.用提取公因式法将下列各式分解因式:(1)6xyz -3xz 2;(2)x 4y -x 3z ;(3)x(m -x)(m -y)-m(x -m)(y -m).14.边长分别为a,b的长方形,它的周长为14,面积为10,求a2b+ab2的值.15.已知2x+y=6,x-3y=1,求7y(x-3y)2-2(3y-x)3的值.16.试说明:对于任意自然数n,2n+4-2n都能被5整除.17.如图4-2-1,长方形的长为a,宽为b,试说明:长方形中带有阴影的三角形的面积之和等于该长方形面积的一半.图4-2-118.三角形ABC的三边长分别为a,b,c,且a+2ab=c+2bc,请判断三角形ABC的形状,并说明理由.阅读下列因式分解的过程,解答下列问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是________,共应用了________次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2017,则需要应用上述方法________次,结果是________.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).详解详析【预习效果检测】1.[解析] B 因为首项系数为负,各项系数的最大公约数是3,字母m的最低次幂是2,字母n的最低次幂是1,所以公因式是-3m2n.2.[解析]在用提取公因式法分解因式时,关键是确定公因式,然后用多项式除以这个公因式,所得的商即为另一个因式.解:(1)x2-5x=x(x-5).(2)2x2y2-4y3z=2y2(x2-2yz).(3)-5a2+25a=-5a(a-5).(4)14x2y-21xy2+7xy=7xy(2x-3y+1).3.1-2aa2-2ab+b2【重难互动探究】例1[解析] (1)显然只需将2-y变形后,即可提取公因式x(y-2).(2)首先把2(a-3)2-a+3变为2(a-3)2-(a-3),再将a-3看成整体提取公因式即可.解:(1)原式=x2(y-2)+x(y-2)=x(y-2)(x+1).(2)原式=2(a-3)2-(a-3)=(a-3)(2a-7).例2解:∵原式=520×(53-5)=520×120,∴523-521能被120整除.【课堂总结反思】[反思] (1)③(2)-6ab2+9a2b-3b=-(6ab2-9a2b+3b)=-(3b·2a b-3b·3a2+3b)=-3b(2ab-3a2+1).【作业高效训练】[课堂达标]1.A2.C3.B4.[解析] BA选项括号内的多项式的项数漏掉了一项.C选项括号内的多项式中仍有公因式.D选项提取负号后括号里有一项没有改变符号.5.A6.[解析] C原式=82018-82017=82017×(8-1)=82017×7.故能被7整除.7.[答案] a(m-3)8.[答案] (1)-(2)m2+2m-5(3)-9.[答案] (x-y)(m+n)10.[答案]-1811.[答案]-22016[解析] 22016+(-2)2017=22016-2×22016=22016×(1-2)=-22016.12.[答案]-3113.[解析] (1)(2)题直接提取公因式分解因式即可,(3)题要进行适当地变形后再运用提取公因式法分解因式.解:(1)6xyz -3xz 2=3xz(2y -z).(2)x 4y -x 3z =x 3(xy -z).(3)x(m -x)(m -y)-m(x -m)(y -m) =x(m -x)(m -y)-m(m -x)(m -y)=(m -x)(m -y)(x -m)=-(m -x)2(m -y).14.[解析]先可得ab 和a +b 的值,然后将a 2b +ab 2分解因式即可得到答案. 解:由题意得ab =10,a +b =7,所以a 2b +ab 2=ab(a +b)=10×7=70.15.[解析]先提取公因式分解因式,然后代入求值.解:原式=7y(x -3y)2+2(x -3y)3=(x -3y)2[7y +2(x -3y)]=(x -3y)2(2x +y) =12×6 =6.16.解:∵2n +4-2n =2n (24-1)=2n ×15=2n×3×5, ∴2n +4-2n一定能被5整除.17.解:S 阴影=12a 1b +12a 2b +12a 3b +12a 4b=12b(a 1+a 2+a 3+a 4) =12ab =12S 长方形. 即长方形中带有阴影的三角形的面积之和等于该长方形面积的一半. 18.解:三角形ABC 是等腰三角形.理由:∵a +2ab =c +2bc , ∴(a -c)+2b(a -c)=0,∴(a -c)(1+2b)=0. 故a =c 或1+2b =0,显然b ≠-12,故a =c.∴三角形ABC 为等腰三角形. [数学活动]解:(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法2017次,结果是(1+x)2018.(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3] = …=(1+x)n(1+x)=(1+x)n +1.。

最新初中数学因式分解经典测试题含答案解析

最新初中数学因式分解经典测试题含答案解析

最新初中数学因式分解经典测试题含答案解析一、选择题1.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20,2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.3.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.已知:3a b +=则2225a a b b ab -+-+-的值为( )A .1B .1-C .11D .11- 【答案】A【解析】【分析】将2225a a b b ab -+++-变形为(a+b )2-(a+b )-5,再把a+b=3代入求值即可.【详解】∵a+b=3,∴a 2-a+b 2-b+2ab-5=(a 2+2ab+b 2)-(a+b )-5=(a+b )2-(a+b )-5=32-3-5=9-3-5=1,故选:A .【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.6.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B7.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.8.下列因式分解正确的是( )A .x 2﹣y 2=(x ﹣y )2B .a 2+a+1=(a+1)2C .xy ﹣x=x (y ﹣1)D .2x+y=2(x+y )【答案】C【解析】【分析】【详解】解:A 、x 2﹣y 2=(x+y )(x ﹣y ),故此选项错误;B 、a 2+a+1无法因式分解,故此选项错误;C 、xy ﹣x=x (y ﹣1),故此选项正确;D 、2x+y 无法因式分解,故此选项错误.故选C .【点睛】本题考查因式分解.9.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解.【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.10.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.下列各式中不能用平方差公式分解的是( )A .22a b -+B .22249x y m -C .22x y --D .421625m n -【答案】C【解析】A 选项-a 2+b 2=b 2-a 2=(b+a )(b-a );B 选项49x 2y 2-m 2=(7xy+m )(7xy-m );C 选项-x 2-y 2是两数的平方和,不能进行分解因式;D 选项16m 4-25n 2=(4m)2-(5n)2=(4m+5n )(4m-5n ),故选C .【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.12.若实数x 满足2210x x --=,则322742017x x x -+-的值为( )A .2019B .2019-C .2020D .2020-【答案】D【解析】【分析】根据2210x x --=推出x 2-2x=1,然后把-7x 2分解成-4x 2-3x 2,然后把所求代数式整理成用x 2-2x 表示的形式,然后代入数据计算求解即可.【详解】解:∵x 2-2x-1=0,∴x 2-2x=1,2x 3-7x 2+4x-2017=2x 3-4x 2-3x 2+4x-2017,=2x (x 2-2x )-3x 2+4x-2017,=6x-3x 2-2017,=-3(x 2-2x )-2017=-3-2017=-2020故选D.【点睛】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.13.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).14.下列各因式分解正确的是( )A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 3﹣4x=2(x ﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A .﹣x 2+(﹣2)2=(2+x)(2﹣x),故A 错误;B .x 2+2x ﹣1无法因式分解,故B 错误;C.4x 2﹣4x+1=(2x ﹣1)2,故C 正确;D 、x 3﹣4x= x(x ﹣2)(x+2),故D 错误.故选:C .【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.15.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.16.若x 2+mxy+y 2是一个完全平方式,则m=( )A .2B .1C .±1D .±2【答案】D【解析】根据完全平方公式:(a +b )2=a 2+2ab +b 2与(a -b )2=a 2-2ab +b 2可知,要使x 2+mxy +y 2符合完全平方公式的形式,该式应为:x 2+2xy +y 2=(x +y )2或x 2-2xy +y 2=(x -y )2. 对照各项系数可知,系数m 的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a +b )2、(a -b )2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.18.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】-,即可进行因式分解.提取公因式x y【详解】()()2---32x y y x()()=--+322x y x y故答案为:B.【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.19.把x2-y2-2y-1分解因式结果正确的是().A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x2-(y2+2y+1),=x2-(y+1)2,=(x+y+1)(x-y-1).故选A.20.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.2【答案】C【解析】【分析】先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.。

2018_2019学年七年级数学下册第四章因式分解4.2提取公因式练习新版浙教版

2018_2019学年七年级数学下册第四章因式分解4.2提取公因式练习新版浙教版

4.2 提取公因式A组1.在括号前面添上“+”或“-”:(1)x-y=-(y-x).(2)2(m+n)2-m-n=2(m+n)2-(m+n).(3)(a-b)3=-(b-a)3.(4)(3-x)(5-x)=+(x-3)(x-5).(5)-x2+8x-16=-(x2-8x+16).2.分解因式:ab-b2=__b(a-b)__.3.把多项式x2-3x分解因式,结果是x(x-3).4.(1)把-x3+x2+x分解因式,结果正确的是(D)A. -x(x2+x)B. -x(x2-x)C. -x(x2+x+1)D. -x(x2-x-1)(2)多项式a2bc+4a5b2+6a3bc2的公因式是(D)A. a2bcB. 12a5b3c2C. 12a2bcD. a2b(3)把多项式m(a-2)-3(2-a)分解因式,结果正确的是(B)A. (a-2)(m-3)B. (a-2)(m+3)C. (a+2)(m-3)D. (a+2)(m+3)5.(1)已知b-a=-6,ab=7,求a2b-ab2的值.【解】∵b-a=-6,∴a-b=6.又∵ab=7,∴a2b-ab2=ab(a-b)=7×6=42.(2)若x+y=3,xy=-4,求2x2y+2xy2的值.【解】∵x+y=3,xy=-4,∴2x2y+2xy2=2xy(x+y)=-8×3=-24.6.用简便方法计算:(1)77+77+77+77+77+77+77.【解】原式=77(1+1+1+1+1+1+1)=77×7=78.(2)21×3.14+6.2×31.4+170×0.314.【解】原式=21×3.14+62×3.14+17×3.14=3.14×(21+62+17)=3.14×100=314.(3)22018-22017.【解】原式=22017×2-22017×1=22017(2-1)=22017.7.分解因式:(1)2xy2-6y.【解】原式=2y(xy-3).(2)-3a2b+6ab2-3ab.【解】 原式=-3ab (a -2b +1).(3)5x (x -y )+2y (y -x ).【解】 原式=5x (x -y )-2y (x -y )=(x -y )(5x -2y ).(4)(x -3y )2-x +3y .【解】 原式=(x -3y )2-(x -3y )=(x -3y )[(x -3y )-1]=(x -3y )(x -3y -1).(5)x (x +y )(x -y )-x (x +y )2.【解】 原式=x (x +y )[(x -y )-(x +y )]=x (x +y )·(-2y )=-2xy (x +y ).B 组8.下列选项中,能整除(-8)2018+(-8)2017的是(C )A. 3B. 5C. 7D. 9【解】 ∵(-8)2018+(-8)2017=(-8)2017×(-8)+(-8)2017×1=(-8)2017×(-8+1)=(-8)2017×(-7)=-82017×(-7)=82017×7,∴能整除(-8)2018+(-8)2017的是7.9.若ab 2+1=0,则-ab (a 2b 5-ab 3-b )的值为__1__.【解】 ∵ab 2+1=0,∴ab 2=-1.∴原式=-ab 2(a 2b 4-ab 2-1)=-(-1)[(ab 2)2+1-1]=(ab 2)2=(-1)2=1.10.已知a 2+a +1=0,则1+a +a 2+a 3+…+a 8的值为__0__.【解】 1+a +a 2+a 3+…+a 8=(1+a +a 2)+a 3(1+a +a 2)+a 6(1+a +a 2)=(1+a +a 2)(1+a 3+a 6)=0·(1+a 3+a 6)=0.11.已知(2x -y -1)2+|xy -2|=0,求4x 2y -2xy 2+x 2y 2的值.【解】 由题意,得⎩⎪⎨⎪⎧2x -y -1=0,xy -2=0,即⎩⎪⎨⎪⎧2x -y =1,xy =2, ∴4x 2y -2xy 2+x 2y 2=xy (4x -2y +xy )=2×(2×1+2)=8.12.解方程:(45x +30)(33x +15)-(45x +30)(33x +16)=0.【解】 (45x +30)[(33x +15)-(33x +16)]=0,(45x +30)(33x +15-33x -16)=0,-(45x +30)=0,解得x =-23.数学乐园13.阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是提取公因式法,共应用了__2__次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2017,则需应用上述方法__2017__次,结果是(x+1)2018.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【解】(3)原式=(1+x)[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-1]=(1+x)2[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-2]=…=(1+x)n(1+x)=(1+x)n+1.。

(完整版)七年级数学提取公因式法测试题

(完整版)七年级数学提取公因式法测试题

9.1 ~9.2 因式分解提取公因式法同步练习【基础能力训练】一、因式分解1.以下变形属于分解因式的是()A . 2x2- 4x+1=2x ( x- 2)+1B . m( a+b+c) =ma+mb+mcC.x2- y2=( x+y )( x- y)D.( m- n)( b+a) =( b+a)( m- n)2.计算( m+4 )( m- 4)的结果,正确的选项是()A . m2- 4 B. m2+16 C. m2- 16 D. m2+43.分解因式 mx+my+mz= ()D. m3abcA . m( x+y ) +mzB .m( x+y+z )C.m( x+y - z)4. 20052- 2005 必定能被()整除A.2 008 B .2 004 C.2 006 D .2 0095.以下分解因式正确的选项是()A . ax+xb+x=x ( a+b)B. a2+ab+b2=( a+b)2C.a2+5a- 24= ( a-3)( a- 8) D. a( a+ab)+b( 1+b )=a2b( 1+b )6.已知多项式 2x2+bx+c 分解因式为2( x-3)( x+1),则 b,c 的值是()A . b=3, c=1B . b=- c, c=2C.b= - c, c=-4 D. b=- 4, c=- 67.请写出一个二次多项式,再将其分解因式,其结果为______.8.计算: 21× 3.14+62× 3.14+17× 3.14=_________.二、提公因式法9.多项式 3a2b3c+4a5 b2+6a3 bc2的各项的公因式是()A . a2bB . 12a5b3c2 C. 12a2bc D. a2b210.把多项式 m2( x- y)+m ( y- x)分解因式等于()A .( x- y)( m2+n )B.( x-y)( m2- m)C.m( x- y)( m- 1)D. m( x- y)( m+1)11.(- 2)2001+(- 2)2002等于()A .- 22001B .- 22002 C.22001 D.- 212.- ab(a- b)2+a( b-a)2-ac( a- b)2的公因式是()A .- a( a- b)B.( a- b)2 C.- a(a- b)( b- 1)D.- a( a- b)2 13.察看以下各式:( 1) abx-cdy (2) 3x2y+6y 2x (3) 4a3- 3a2+2a- 1 ( 4)( x- 3)2+( 3x- 9)(5) a2( x+y )( x- y) +12 ( y- x)( 6)- m2n( x- y)n+mn2(x- y)n+1此中能够直接用提公因式法分解因式的有()A .( 1)( 3)( 5)B .( 2)( 4)( 5)C.(2)( 4)(5)( 6)D.( 2)( 3)( 4)( 5)( 6)14.多项式 12x 2n- 4n n提公因式后,括号里的代数式为()A . 4x n B. 4x n- 1 C. 3x n D . 3x n-115.分解以下因式:(1) 56x3 yz- 14x 2y2z+21xy 2z2(2)( m- n)2+2n ( m- n)(3) m( a-b+c)- n(a+c- b)+p ( c- b+a)( 4) a(a- x)( a-y) +b(x- a)( y- a)【综合创新训练】三、综合测试16.若 x2( x+1) +y ( xy+y ) =(x+1 )· B,则 B=_______ .17.已知 a-2=b+c ,则代数式a(a- b- c)- b( a- b-c)- c( a- b- c) =______ 18.利用分解因式计算: 1 297 的 5%,减去 897 的 5%,差是多少?四、创新应用19.利用因式分解计算:( 1) 2 0042- 4× 2 004;(2)39×37-13× 34(3) 121× 0.13+12.1× 0.9-12× 1.21(4) 20 062 006× 2 008-20 082 008× 2 0062n 4 2 2n20.计算:22n 3五、综合创新21.计算: 2- 22- 23-- 218-219+22022.已知 2x- y= 1, xy=2 ,求 2x4y3- x3y4的值.323.已知: x3+x2+x+1=0 ,求 1+x+x 2+x 3+x 4+x 5++x2007的值.24.设 n 为整数,求证:( 2n+1)2- 25 能被 4 整除.【研究学习】猜年纪杨老师对同学们说:“我能猜出你们每一位同学的年纪,不信的话,你们就按下边方法试一试:先把你的年纪乘以 5,再加 5,而后把结果扩大 2 倍, ?最后把算得的结果告诉老师,老师就知道你的年纪了.”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“ 130”.杨老师立刻说:“你 12 岁”.假如你是杨老师, ?当李强同学算出的结果是 140 时,你会说李强多少岁?答案:【基础能力训练】1.C 2. C 3.B 4.B 5. C 6.D7. 4a2- 4ab+b 2=( 2a- b)2 8.3149. A 10. C 11. C 12. D 13. C 14.D15.( 1) 7xyz( 8x2- 2xy+3yz )( 2)( m- n)( m+n)(3)( a- b+c)( m- n+p)( 4)( a- x)(a- y)( a+b)【综合创新训练】16. x2+y 2分析:x2(x+1)+y(xy+y)=x2(x+1)+y2(x+1)=(x+1)(x2+y2),故 B=x 2+y 2.17. 4分析:由 a- 2=b+c 得 a- b-c=2,a( a- b- c)- b(a- b- c)- c( a- b- c)=( a- b- c)( ?a-b- c) =(a- b- c)2=22=4 .18. 20分析:1 297× 5%-897× 5%=5%(1 297-897)=5%×400=20.19.( 1)原式 =2 004( 2 004-4) =2 004× 2 000=4 008 000(2)原式 =39 × 37- 39× 27=39( 37- 27) =390(3)原式 =1.21 ×13+1.21 ×9- 1.21×12=1.21×( 13+9-12) =1.21× 10=12.1(4)原式 =2 006× 10 001×2 008- 2 008× 10 001× 2 006=02n 4 2n 1 -3 1 720.原式 = =1-2 =1 -=2n 4 8 821.原式 =220- 219- 218-- 23- 22+2=2 19- 218-- 23- 22+2==22+2=6 .22. 2x4y3- x3y4=x 3y3( 2x- y) =( 2x- y)( xy)3把 2x-y= 1, xy=2 代入得8.3 323. 0分析:分红四个一组,该提公因式的提取公因式代入即可.24.( 2n+1 )2-25= ( 2n+1)2- 52=[ ( 2n+1) +5][ (2n+1 )- 5]=( 2n+6)( 2n-4)=2( n+3)× [?2 ( n- 2) ]=4( n+3)( n- 2),因此能被 4 整除.【研究学习】假定学生 x 岁,用老师的方法获得的式子是2( 5x+5 ),把它分解以后得10( x+1 ),所以老师只需把学生的得数÷10 再减去 1,即可获得学生的实质年纪,因此,李强13 岁.。

专题8.25 因式分解及提取公因式(知识讲解)-七年级数学下册基础知识专项讲练(沪科版)

专题8.25 因式分解及提取公因式(知识讲解)-七年级数学下册基础知识专项讲练(沪科版)

专题8.25因式分解及提取公因式(知识讲解)【学习目标】1、了解因式分解的意义,以及它与整式乘法的关系;2、能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.特别说明:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.特别说明:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m所得的商,这种因式分解的方法叫提公因式法.特别说明:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、多项式的因式分解➽➼因式分解的判定1.下列由左边到右边的变形,哪些是因式分解?为什么?(1)2(3)(3)9a a a +-=-;(2)24(2)(2)m m m -=+-;(3)221()()1a b a b a b -+=+-+;(4)2mR 2mr 2m(R r)+=+.【答案】(1)从左到右不是因式分解,是整式乘法;(2)是因式分解;(3)不是因式分解,因为最后结果不是几个整式的积的形式;(4)是因式分解.【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式叫做因式分解,也叫分解因式,逐一判断即可.解:(1)2(3)(3)9a a a +-=-,从左到右不是因式分解,是整式乘法;(2)24(2)(2)m m m -=+-,是因式分解;(3)221()()1a b a b a b -+=+-+,不是因式分解,因为最后结果不是几个整式的积的形式;(4)()222mR mr m R r +=+,是因式分解.【点拨】本题考查了多项式的因式分解,属于基础概念题型,熟知因式分解的定义是关键.举一反三:【变式1】检验下列因式分解是否正确.(1)9b 2-4a 2=(2a +3b )(2a -3b );(2)x 2-3x -4=(x +4)(x -1).【答案】(1)不正确.(2)不正确.【分析】计算右侧的整式乘法,看左右两边是否相等,即可判断因式分解是否正确.解:(1)∵(2a +3b)(2a -3b)=(2a)2-(3b)2=4a 2-9b 2≠9b 2-4a 2,∴因式分解9b 2-4a 2=(2a +3b)(2a -3b)不正确.(2)∵(x +4)(x -1)=x 2+3x -4≠x 2-3x -4,∴因式分解x 2-3x -4=(x +4)(x -1)不正确.【点拨】本题考查了整式的乘法与因式分解的联系,属于简单题,正确计算整式的乘法是解题关键.【变式2】辨别下面因式分解的正误并指明错误的原因.(1)()324238124423a b ab ab ab a b b -+=-;(2)()4334242x x y x x y -=-;(3)()2321a a a a-=-【答案】(1)错误,原因是另一个因式漏项了;(2)错误,原因是公因式没有提完;(3)错误,原因是与整式乘法相混淆【分析】(1)根据提取公因式的方法,第三项提取公因式的结果为1即可判断;(2)根据公因式的系数是多项式各项系数的最大公约数;字母取各项都含有的相同字母,相同字母的指数取次数最低的确定公因式为2x 3,即可判断;(3)根据因式分解的定义确定原式的变形是整式乘法运算,不是因式分解.解:(1)∵()324238124423+1a b ab ab ab a b b -+=-∴原式错误,原因是另一个因式漏项了;(2)∵()4334222x x y x x y -=-∴原式错误,原因是公因式没有提完;(3)∵因式分解是把一个多项式分解为几个因式乘积的形式∴()2321a a a a -=-是整式乘法运算,不是因式,∴原式错误,原因是与整式乘法相混淆【点拨】本题考查因式分解的定义及因式分解的方法,不要把整式乘法和因式分解两种运算相混淆和正确用提取公因式法因式分解是解答此题的关键.类型二、多项式的因式分解➽➼已知因式分解结果求参数2.在分解因式2x ax b ++时,小明看错了b ,分解结果为()()24x x ++;小张看错了a ,分解结果为()()19x x --,求a ,b 的值.【答案】6a =,9b =【分析】根据题意甲看错了b ,分解结果为()()24x x ++,可得a 系数是正确的,乙看错了a ,分解结果为()()19x x --,b 系数是正确的,在利用因式分解是等式变形,可计算的参数a 、b 的值.解:∵()()22468x x x x ++=++,小明看错了b ,∴6a =,∵()()219109x x x x --=-+,小张看错了a ,∴9b =,∴6a =,9b =.【点拨】本题主要考查因式分解的系数计算,解题的关键在于弄清哪个系数是正确的.举一反三:【变式1】若3a -是25a a m ++的一个因式,求m 的值.【答案】=24m -【分析】设另一个因式为+a n ,则有()()253-++=+a a a m a n ,进行整理使得左右式子对应系数相等求出m 、n 值即可求解.解:设另一个因式为+a n ,则有()()253-++=+a a a m a n ,即()22533++=+--a a m a n a n ,∴35-=n ,3m n =-,∴=8n ,24=-m .【点拨】本题考查因式分解、整式的混合运算,熟知因式分解是把多项式转化为几个整式积的形式是解答的关键.【变式2】已知3216x x x a --+有因式4x -,求a 的值,并将其因式分解.【答案】16a =,原式()()()441x x x =+--【分析】首先根据题意“3216x x x a --+有因式4x -”,可得出4x =,进而得出当4x =时,32160x x x a --+=,然后把4x =代入32160x x x a --+=,即可算出a 的值,然后把a 的值代入3216x x x a --+,即可得到321616x x x --+,然后再用提公因式法和平方差公式分解因式,即可得出结果.解:∵3216x x x a --+有因式4x -,∴40x -=,即4x =,∴4x =时,32160x x x a --+=,∴把4x =代入32160x x x a --+=,可得:6416640a --+=,解得:16a =,∴把16a =代入3216x x x a --+,可得:321616x x x --+,∴321616x x x --+()()21161x x x =---()()2161x x =--()()()441x x x =+--.【点拨】本题考查了提公因式法分解因式、平方差公式,解本题的关键在熟练掌握因式分解.类型三、多项式的因式分解➽➼公因式➽➼提取公因式3.已知:2312A x =-,233510B x y xy =+,(1)(3)1C x x =+++.问多项式A ,B ,C 是否有公因式?若有,求出其公因式;若没有,请说明理由.【答案】有公因式;公因式为(x+2)【分析】分别将多项式A=3x 2-12,B=5x 2y 3+10xy 3,C=(x+1)(x+3)+1,进行因式分解,再寻找他们的公因式.解:多项式A 、B 、C 有公因式,∵A=()()()2231234322x x x x -=-=+-,B=()233351052x y xy xy x +=+,C=()()()222131431442x x x x x x x +++=+++=++=+∴多项式A 、B 、C 的公因式是:()2x +【点拨】熟练掌握提公因式的方法,先通过化简是解题的关键.举一反三:【变式1】多项式224x y -与2244x xy y ++的公因式是()A .x y-B .4x y +C .2x y-D .2x y +【答案】D【分析】先对多项式224x y -与2244x xy y ++进行因式分解,再根据公因式的定义解决此题.解:∵224(2)(2)x y x y x y -=+-,22244(2)x xy y x y ++=+,∴224x y -与2244x xy y ++的公因式为2x y +;故选:D .【点拨】本题主要考查因式分解以及公因式的定义,熟练掌握运用公式法进行因式分解以及公因式的定义是解决本题的关键.【变式2】下列各组中,没有公因式的一组是()A .ax bx -与by ay-B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b y a -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式1】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(3)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+(2)()1mn m n -+(3)()223374x y xy x -+(4)()()22x y x y -+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222x x y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.【变式2】因式分解:3215+10a a .【答案】25(32)a a +【分析】用提公因式法分解因式即可.解:()3222215+105352532a a a a a a a =⋅+⋅=+.【点拨】本题主要考查了提公因式法分解因式,解题的关键是准确找出公因式25a.。

第10讲 提取公因式法、公式法分解因式(原卷版)-【暑假自学课】2024年新七年级数学暑假精品课(沪

第10讲 提取公因式法、公式法分解因式(原卷版)-【暑假自学课】2024年新七年级数学暑假精品课(沪

第10讲 提取公因式法、公式法分解因式模块一:提取公因式法1、因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也 叫做把这个多项式分解因式.2、因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式.3、公因式:一个多项式中每一项都含有的因式叫做这个多项式的公因式.4、提取公因式法:多项式ma mb mc ++各项都含有公因式m ,可把公因式m 提到外面, 将多项式ma mb mc ++写成m 与a b c ++的乘积形式,此法叫做提取公因式法.5、提取公因式的步骤:(1)找出多项式各项的公因式.(2)提出公因式.(3)写成m 与a b c ++的乘积形式.6、提取公因式法的几个技巧和注意点:(1)一次提净;(2)视“多”为“一”;(3)切勿漏1;(4)注意符号:在提出的公因式为负的时候,注意各项符号的改变;(5)化“分”为整:在分解过程中如出现分数,可先提出分数单位后再进行分解 ;(6)仔细观察:当各项看似无关的时候,仔细观察其中微妙的联系,转化后再分解.【例1】 分解因式:(1)2368a a -;(2)322618m m m -+-; (3)2124ad bd d --+.【例2】 分解因式:(1)32228x y x y +;(2)22462a b ab ab --; (3)3121326m n m n m n x y x y x y -+--+.【例3】 把下列各式分解因式:(1)()()33113510m m ab a b a b b a +----; (2)()()()223222122418ab x y a b y x ab y x -+-+-.【例4】 分解因式:()()93168a x yb y x -+-. 【例5】 试说明:一个三位数字,百位数字与个位数字交换位置后,则得到的新数与原数之差能被11整除.【例6】 化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++.模块二:公式法1、平方差公式:()()22a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.2、完全平方公式:()2222a ab b a b ++=+()2222a ab b a b -+=- ①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.【例7】 分解因式:(1)()()2222a b a b +--;(2)()()227216a b a b --+; (3)()()2294a b c d a b c d +++--+-.【例8】 分解因式:()()222248416x x x x ++++.【例9】 把下列各式分解因式:(1)()222224x y x y -+; (2)()()22114m n mn --+.【例10】 利用分解因式证明:712255-能被120整除.1. (2022秋·上海·七年级专题练习)下列等式中,从左到右的变形是因式分解的是( )A .231(3)1--=--x x x xB .222()2x y x xy y +=++C .2()a ab a a a b -+=-D .229(3)(3)-=+-x y y x x y(2)421++.x x。

上海市晋元附校2019年第一学期七年级数学9.13--9.14提取公因式法、公式法测试卷(含答案)

上海市晋元附校2019年第一学期七年级数学9.13--9.14提取公因式法、公式法测试卷(含答案)

2019学年晋元附校第一学期七年级数学 9.13~9.14提取公因式法、公式法测试卷(时间:40分钟,满分100分)班级__________ 姓名__________ 学号__________ 得分__________一、选择题(每题3分,共18分)1. 下面各式中,从左到右的变形,是因式分解的是( )A. y x x y y x 4)2)(2(2-=---B. x x x x x 3)2)(2(342--+=--C. 222)(2n m n mn m +-=-+-D. )2(22-=-b ab ab ab2. )2)(2(b a b a +--是由下列哪个多项式分解而得到的结果( )A. 224b a -B. 224b a +C. 224b a --D. 224b a +-3. 多项式2)())((3y x x y y x ---+分解因式正确的是( )A. )2)((2y x x y --B. )42)((y x x y +-C. )24)((y x x y +-D. )2)((2y x x y +-4. 下列各式中,能用乘法公式因式分解的是( )A. xy x 42--B. 2294y x +-C. 22964y xy x -+-D. 229124y xy x -+5. 若22)32(9-=++x kx mx ,则m 、k 的值分别是( )A. 6,2=-=k mB. 12,2==k mC. 12,4-==k mD. 12,4-=-=k m6. 下列分解因式中,没有分解到底的是 ( )A. )63)(()(6)(3b a y x y x b y x a ++=+++B. )1()()()(222b a b a b a b a --+=+-+C. )143)(()(4)(3-++=--+++y x n m n m n m y n m xD. )4(4)2(22y x x y y x +=-+二、填空题(每空3分,共36分)7. 2242ab b a 与的公因式是_______________.8. 因式分解:=+++)()(y x b y x a _______________.9. 因式分解:=-22ay ax _______________.10. 因式分解:=-6442a _______________.11. 因式分解:=-m m 3_______________.12. 因式分解:=-ax a 1232_______________.13. 因式分解:=+-91162x _______________. 14. 因式分解:=---222y xy x _______________.15. 因式分解:=+---36)(12)(2y x y x _______________.16. 因式分解:=++ab b a b a 2121823_______________.17. 填上适当的式子:(42-a __________)+=a 2(__________)(__________)31-.18. 若))()((4222y x y x y x y x n m +-+=-,则=m __________,=n __________.三、解答题(本大题满分46分)19. 因式分解(每题4分,共40分) (1)412++x x(2)223612a ax x ++(3)164-x(4)3228168m n m mn +-(5)z y x z y x m m m m 121186-+--(6))(6)(422b a b a b a ab +-+答案)(7)22)()(a b y b a x ---(8)4)2(22--a(9)16)4(8)4(222++++a a a a(10)2222)()(2)(y x y x y x -+--+20. 计算(本题共2小题,每题3分,满分6分) (1)221001999-(2)已知:312=-y x ,2=xy ,求:43342y x y x -的值.参考答案 1-6、DDDBCA7、ab 2 8、))((b a y x ++ 9、))((y x y x a -+ 10、)4)(4(4+-a a11、)1)(1(-+m m m 12、)4(3x a a - 13、)431)(431(x x -+ 14、2)(y x +-15、2)6(--y x 16、2)13(2+a ab 17、91;31;a 2 18、4;8 19、(1)2)21(+x(2)2)6(a x +(3))2)(2)(4(2-++x x x(4)2)(8m n m -(5))3(61+--xyz z yx m m(6))2)((2a b b a ab -+(7))()(2by ay x b a -+- (8))2)(2(2-+a a a (9)4)2(+a(10)24y20. (1)4000-(2)38。

初中数学因式分解经典测试题及答案解析

初中数学因式分解经典测试题及答案解析

初中数学因式分解经典测试题及答案解析一、选择题1.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为()A.60 B.16 C.30 D.11【答案】C【解析】【分析】先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,∴a2b+ab2=ab(a+b)=30.故选:C.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.2.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.4.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.5.下列各式中不能用平方差公式进行计算的是( )A.(m-n)(m+n) B.(-x-y)(-x-y)C.(x4-y4)(x4+y4) D.(a3-b3)(b3+a3)【答案】B【解析】A.(m-n)(m+n),能用平方差公式计算;B.(-x-y)(-x-y),不能用平方差公式计算;C.(x4-y4)(x4+y4),能用平方差公式计算;D. (a3-b3)(b3+a3),能用平方差公式计算.故选B.6.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.7.下列等式从左边到右边的变形,属于因式分解的是( )A.2ab(a-b)=2a2b-2ab2B.x2+1=x(x+1 x )C.x2-4x+3=(x-2)2-1 D.a2-b2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.8.下列分解因式错误的是( ).A .()2155531a a a a +=+B .()()22x y x y x y --=-+- C .()()1ax x ay y a x y +++=++D .()()2a bc ab ac a b a c --+=-+ 【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】解:A. ()2155531a a a a +=+,正确; B. ()2222x y x y --=-+,所以此选项符合题意;C. ()()()1ax x ay y a x y x y a x y +++=+++=++ ,正确;D. ()()2()()a bc ab ac a a b c a b a b a c --+=-+-=-+,正确 故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.9.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.10.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.14.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.15.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定 【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.16.将下列多项式因式分解,结果中不含因式x -1的是( )A .x 2-1B .x 2+2x +1C .x 2-2x +1D .x(x -2)+(2-x)【答案】B【解析】【分析】将各选项进行因式分解即可得以选择出正确答案.【详解】A. x 2﹣1=(x+1)(x-1);B. x 2+2x+1=(x+1)2 ;C. x 2﹣2x+1 =(x-1)2;D. x (x ﹣2)﹣(x ﹣2)=(x-2)(x-1);结果中不含因式x-1的是B ;故选B.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.18.下列等式从左到右的变形,属于因式分解的是( )A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.19.三角形的三边a 、b 、c 满足a (b ﹣c )+2(b ﹣c )=0,则这个三角形的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a(b-c)+2(b-c)=0,∴(a+2)(b-c)=0,∵a、b、c为三角形的三边,∴b-c=0,则b=c,∴这个三角形的形状是等腰三角形.故选:A.【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.20.计算(-2)2015+(-2)2016的结果是 ( )A.-2 B.2 C.22015D.-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。

最新初中数学因式分解基础测试题附答案解析(2)

最新初中数学因式分解基础测试题附答案解析(2)
【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2.对照各项系数可知,系数m的值应为2或-2.
故本题应选D.
点睛:
本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式.考虑本题时要全面,不要漏掉任何一种形式.
D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);
结果中不含因式x-1的是B;
故选B.
20.多项式 与多项式 的公因式是()
A. B. C. D.
【答案】A
【解析】
试题分析:把多项式分别进行因式分解,多项式 =m(x+1)(x-1),多项式 = ,因此可以求得它们的公因式为(x-1).
故选A
考点:因式分解
【答案】C
【解析】
【分析】
已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.
【详解】
已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,
∵a+b-c≠0,
∴a-b=0,即a=b,
则△ABC为等腰三角形.
故选C.
【点睛】
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
7.下列各式从左到右的变形中,属于因式分解的是()
A.m(a+b)=ma+mbB.a2+4a﹣21=a(a+4)﹣21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1~9.2 因式分解提取公因式法同步练习
【基础能力训练】
一、因式分解
1.下列变形属于分解因式的是()
A.2x2-4x+1=2x(x-2)+1 B.m(a+b+c)=ma+mb+mc
C.x2-y2=(x+y)(x-y)D.(m-n)(b+a)=(b+a)(m-n)
2.计算(m+4)(m-4)的结果,正确的是()
A.m2-4 B.m2+16 C.m2-16 D.m2+4
3.分解因式mx+my+mz=()
A.m(x+y)+mz B.m(x+y+z)C.m(x+y-z)D.m3abc 4.20052-2005一定能被()整除
A.2 008 B.2 004 C.2 006 D.2 009
5.下列分解因式正确的是()
A.ax+xb+x=x(a+b)B.a2+ab+b2=(a+b)2
C.a2+5a-24=(a-3)(a-8)D.a(a+ab)+b(1+b)=a2b(1+b)
6.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值是()A.b=3,c=1 B.b=-c,c=2
C.b=-c,c=-4 D.b=-4,c=-6
7.请写出一个二次多项式,再将其分解因式,其结果为______.
8.计算:21×3.14+62×3.14+17×3.14=_________.
二、提公因式法
9.多项式3a2b3c+4a5b2+6a3bc2的各项的公因式是()
A.a2b B.12a5b3c2C.12a2bc D.a2b2
10.把多项式m2(x-y)+m(y-x)分解因式等于()
A.(x-y)(m2+n)B.(x-y)(m2-m)
C.m(x-y)(m-1)D.m(x-y)(m+1)
11.(-2)2001+(-2)2002等于()
A.-22001B.-22002C.22001D.-2
12.-ab(a-b)2+a(b-a)2-ac(a-b)2的公因式是()
A.-a(a-b)B.(a-b)2C.-a(a-b)(b-1)D.-a(a-b)2 13.观察下列各式:
(1)abx-cdy (2)3x2y+6y2x (3)4a3-3a2+2a-1 (4)(x-3)2+(3x-9)(5)a2(x+y)(x-y)+12(y-x)(6)-m2n(x-y)n+mn2(x-y)n+1
其中可以直接用提公因式法分解因式的有()
A.(1)(3)(5)B.(2)(4)(5)
C.(2)(4)(5)(6)D.(2)(3)(4)(5)(6)
14.多项式12x2n-4n n提公因式后,括号里的代数式为()
A.4x n B.4x n-1 C.3x n D.3x n-1
15.分解下列因式:
(1)56x3yz-14x2y2z+21xy2z2
(2)(m-n)2+2n(m-n)
(3)m(a-b+c)-n(a+c-b)+p(c-b+a)
(4)a(a-x)(a-y)+b(x-a)(y-a)
【综合创新训练】
三、综合测试
16.若x2(x+1)+y(xy+y)=(x+1)·B,则B=_______.
17.已知a-2=b+c,则代数式a(a-b-c)-b(a-b-c)-c(a-b-c)=______ 18.利用分解因式计算:1 297的5%,减去897的5%,差是多少?
四、创新应用
19.利用因式分解计算:
(1)2 0042-4×2 004; (2)39×37-13×34
(3)121×0.13+12.1×0.9-12×1.21
(4)20 062 006×2 008-20 082 008×2 006
20.计算:
4
3 222 22
n n
n
+
+
-⨯

五、综合创新
21.计算:2-22-23-…-218-219+220
22.已知2x-y=1
3
,xy=2,求2x4y3-x3y4的值.
23.已知:x3+x2+x+1=0,求1+x+x2+x3+x4+x5+…+x2007的值.
24.设n为整数,求证:(2n+1)2-25能被4整除.
【探究学习】
猜年龄
杨老师对同学们说:“我能猜出你们每一位同学的年龄,不信的话,你们就按下面方法试试:先把你的年龄乘以5,再加5,然后把结果扩大2倍,•最后把算得的结果告诉老师,老师就知道你的年龄了.”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“130”.杨老师马上说:“你12岁”.如果你是杨老师,•当李强同学算出的结果是140时,你会说李强多少岁?
答案:
【基础能力训练】
1.C 2.C 3.B 4.B 5.C 6.D
7.4a2-4ab+b2=(2a-b)28.314
9.A 10.C 11.C 12.D 13.C 14.D
15.(1)7xyz(8x2-2xy+3yz)(2)(m-n)(m+n)
(3)(a-b+c)(m-n+p)(4)(a-x)(a-y)(a+b)
【综合创新训练】
16.x2+y2解析:x2(x+1)+y(xy+y)=x2(x+1)+y2(x+1)=(x+1)(x2+y2),故B=x2+y2.
17.4
解析:由a-2=b+c得a-b-c=2,
a(a-b-c)-b(a-b-c)-c(a-b-c)
=(a-b-c)(•a-b-c)=(a-b-c)2=22=4.
18.20 解析:1 297×5%-897×5%=5%(1 297-897)=5%×400=20.
19.(1)原式=2 004(2 004-4)=2 004×2 000=4 008 000
(2)原式=39×37-39×27=39(37-27)=390
(3)原式=1.21×13+1.21×9-1.21×12=1.21×(13+9-12)=1.21×10=12.1
(4)原式=2 006×10 001×2 008-2 008×10 001×2 006=0
20.原式=
41
4
22
2
n n
n
++
+
-
=1-2-3=1-
1
8
=
7
8
21.原式=220-219-218-…-23-22+2=219-218-…-23-22+2=…=22+2=6.
22.2x4y3-x3y4=x3y3(2x-y)=(2x-y)(xy)3把2x-y=1
3
,xy=2代入得
8
3

23.0 解析:分成四个一组,该提公因式的提取公因式代入即可.
24.(2n+1)2-25=(2n+1)2-52
=[(2n+1)+5][(2n+1)-5]
=(2n+6)(2n-4)
=2(n+3)×[•2(n-2)]
=4(n+3)(n-2),
所以能被4整除.
【探究学习】
假设学生x岁,用老师的办法得到的式子是2(5x+5),把它分解之后得10(x+1),所以老师只要把学生的得数÷10再减去1,即可得到学生的实际年龄,所以,李强13岁.。

相关文档
最新文档