§7.4 常系数线性差分方程的求解_图文.ppt

合集下载

第6节一阶和二阶常系数线性差分方程

第6节一阶和二阶常系数线性差分方程
代人方程,比较同次系数,确定出 B0, B1, B2, , Bn 得到方程的特解。对于 f ( x) 是一般的 n 次多项 式的情况可类似求解。
8/8/2024 1:07 AM
第7章 微分方程与差分方程
当 a 1时,取 s 1,此时将
y x x(B0 B1x Bn xn )
代人方程,比较同次系数,确定出 B0, B1, B2, , Bn 得到方程的特解。这种情况下,方程的左端为 yx , 方程为 yx cxn ,可将 xn化成 x(n) 的形式 求出它的一个特解。
2 , 1
对应的齐次方程的通解为 yx A1(2)x A2 因为 1 a b 1 1 2 0 ,a 1 2 所以特解为
yx
12 x 21
4x
故原方程的通解为
yx 4x A1(2)x A2 ( A1, A2为任意常数)
8/8/2024 1:07 AM
第7章 微分方程与差分方程
其中 r
2 2
b , tan
4b a2 ,
A1, A2 为任意常数。
a
8/8/2024 1:07 AM
第7章 微分方程与差分方程
2.方程(4)中 f ( x)取某些特殊形式的 函数时的特解(利用待定系数法求出)
(1) f ( x) c (c 为常数)
方程(4)为
yx2 a yx1 byx c (6)
8/8/2024 1:07 AM
第7章 微分方程与差分方程
利用待定系数法 设方程具有yx kxs形式 的特解。
当 a 1时,取 s 0 ,代人方程得 k ak c
k c , 1a
所以方程的特解为
yx
c 1
a
又因对应的齐次方程的通解为 yx Aa x

常系数线性差分方程的解

常系数线性差分方程的解

常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n kn =+++-++(1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。

又称方程0...110=+++-++n k k n kn x a x a x a(2)为方程(1)对应的齐次方程。

如果(2)有形如nnx λ=的解,带入方程中可得:0 (11)10=++++--k k k k a a a a λλλ(3)称方程(3)为方程(1)、(2)的特征方程。

显然,如果能求出(3)的根,则可以得到(2)的解。

基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:nkk nnn c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ,则通解中有构成项:nm m nc n c c λ)...(121----+++(3)若(3)有一对单复根βαλi ±=,令:ϕρλi e±=,αβϕβαρarctan,22=+=,则(9)的通解中有构成项:nc n c nnϕρϕρsin cos 21--+(4) 若有m 重复根:βαλi ±=,φρλi e±=,则(2)的通项中有构成项:n nc n c c n nc n c c nm m m m nm m ϕρϕρs i n )...(c o s )...(1221121---++---+++++++综上所述,由于方程(10)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。

通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解:=n x -nx +*n x (4)特解可通过待定系数法来确定。

差分方程求解

差分方程求解

方程(12)称为齐次差分方程(11)的特征方程.
由特征方程的根的情况可得齐次方程的通解:
特征方程的解
两个不相等的实根 1, 2 两个相等实根 1 = 2
一对共轭复根 1,2= i
.
x+2 + ax+1 + bx = 0的通解
yxC11xC22x
yx(C1C2x)1x
yx (C1cosxC2sinx)rx
齐次方程的通解为
y*xC1C2(2)x.
因为 a = 1, b = 2, 1+a+b = 0, 但 a+2 = 3 0,所以, 设 非齐次方程的一个特解为
yx(B0B1x)x,
.
24
代入原方程, 得
[B0+B1(x+2)](x+2)+[B0+B1 (x+1)](x+1)(B0+B1x)x=12x.
y x (B 0 B 1 x B m x m )x 2(1 a b a 2 0 ).
其中B0 , B1 , , Bm为待定系数.
.
23
例10 求差分方程 yx+2 + yx+1 2yx = 12x的通解.
解 对应的齐次方程的特征方程为
2 + 2 = 0.
方程的根为
1 = 2, 2 = 1,
3(x3) = (6x + 6) = 6(x + 1) + 6 (6x + 6)
= 6, 4(x3) = (6) 6 = 0.
.
4
二、差分方程的概念
定义2 含有自变量、未知函数及其差分的方程, 称 为差分方程.
差分方程的一般形式为

第4讲 差分方程方法(new)PPT课件

第4讲 差分方程方法(new)PPT课件
它的平衡点 x* 0 是稳定的充要条件是 A 的所有特
征根都有 i 1(i 1,2,, n) 。
对于一阶线性常系数非齐次差分方程组
x(k 1) Ax(k) B(k 0,1,2,)
的情况同样给出。
11
2020年11月23日
二 差分方程的平衡点及其稳定性
3.二阶线性常系数差分方程的平衡点
二阶线性常系数齐次差分方程的一般形式为
则 x* 也是一阶线性差分方程 xk1 f (x*)(xk x*) f (x*)
的平衡点. 故平衡点 x* 稳定的充要条件是 f (x* ) 1 。
2020年11月23日
三 连续模型的差分方法
1. 微分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n 1) ,且 a x0 x1 xn1 b,试求函数的导数值 f (xk )(k 1,2,, n) 。
二 差分方程的平衡点及其稳定性
4.一阶非线性差分方程的平衡点
一阶非线性差分方程的一般形式为
xk1 f (xk ),k 0,1,2,
其中 f 为已知函数,其平衡点定义为方程 x f (x) 的解 x* 。
事实上:将 f (xk ) 在 x* 处作一阶的台勒展开有
xk1 f (x* )( xk x* ) f (x* )
, n)
14
2020年11月23日
三 连续模型的差分方法
2. 定积分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n) ,
b
且在[a,b]上可积,试求 f (x) 在[a,b] 上的积分值 f (x)dx 。 a
对应代数方程:
k a1k1 a2k2 ak 0

差分方程

差分方程

当 为常数时, yx = x和它的各阶差商有倍数关系,
所以可设 yx = x为方程(11)的解. 代如方程(11)得 x+2 + ax+1 + bx = 0,
2 + a + b = 0,
方程(12)称为齐次差分方程(11)的特征方程.
(12)
由特征方程的根的情况可得齐次方程的通解:
第八节 差分方程
一、差分 二、差分方程的概念 三、一阶常系数线性差分方程 四、二阶常系数线性差分方程
一、差分 微分方程是自变量连续取值的问题, 但在很多实际问 题中, 有些变量不是连续取值的. 例如, 经济变量收入、储
蓄等都是时间序列, 自变量 t 取值为0, 1, 2, , 数学上把这
种变量称为离散型变量. 通常用差商来描述因变量对自变 量的变化速度.
其中B0 , B1 , , Bm为待定系数.
例10 求差分方程 yx+2 + yx+1 2yx = 12x的通解.
解 对应的齐次方程的特征方程为
2 + 2 = 0.
方程的根为
1 = 2, 2 = 1,
y* C1 C2 (2) x . x
齐次方程的通解为
因为 a = 1, b = 2, 1+a+b = 0, 但 a+2 = 3 0,所以, 设
例如, yx+2 + yx+1 = 0为差分方程, yx = x不是差分方
程. 差分方程式(2)中, 未知函数下标的最大差数为 n, 则 称差分方程为n 阶差分方程.
定义4 如果一个函数代入差分后, 方程两边恒等, 则 称此函数为该差分方程的解. 例3 验证函数 yx = 2x + 1是差分方程 yx+1 yx = 2的 解. 解 yx+1 = 2(x + 1) + 1 = 2x +3, yx+1 yx = 2x + 3 (2x +1) = 2, 所以yx = 2x + 1是差分方程 yx+1 yx = 2的解. 定义5 差分方程的解中含有任意常数, 且任意常数

常系数线性差分方程的求解28页PPT

常系数线性差分方程的求解28页PPT
常系数线性差分方程的求解
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是பைடு நூலகம்讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

§7.4 常系数线性差分方程的求解

§7.4 常系数线性差分方程的求解
43; 5 ⋅ 3n − 1 2
(
) u(n)
2、若把初值y(0)=1,看作激励加入后系统的初始样值y+(0), 若把初值y(0)=1,看作激励加入后系统的初始样值 (0), 始样值y (0)=1应满足方程 应满足方程: 则y+(0)=1应满足方程: y(n)-3y(n-1)= u(n) <0时 迭代法得: 当n<0时,由迭代法得: y+(n)=0 当n ≥ 时,则有: 0 则有: y+(0)= 1 +3y y+(1)= u(1) +3y+(0)=1+3*1=4
y − (− 1) = 1 1 y − (0 ) = 3 3 2 1 1 y − (− 2 ) = y − (− 1) = 3 3
…...
1 1 y − (n ) = y − (n + 1) = 3 3
−n
假设系统是因果系统, 假设系统是因果系统, 由于激励u n=0 由于激励u(n)在n=0接 那么,此解就是n 入,那么,此解就是n<0 时系统的零输入响应。 时系统的零输入响应。
如果系统起始样值 如果系统起始样值y-(n) ≠ 0,则系统差分方程的完全 起始样值y 0,则系统差分方程的完全 解将不满足线性时不变的特性。 解将不满足线性时不变的特性。 今后我们规定,所有初值如无下标 值如无下标, 今后我们规定,所有初值如无下标,则一律按初始 样值处理。 样值处理。
返回
种方法) 二、差分方程的解法(前3种方法) 差分方程的解法(
y+(2)= u(2) +3y+(1)=1+3+32=13 +3y …... 1 2+……+3n = (3 n +1 − 1) y+(n)= u(n) +3y+(n-1)=1+3+3 +3y 2 1 n +1 则方程的解为: 则方程的解为: y(n)= (3 − 1) u(n)

高数差分与差分方程的概念、常系数线性差分方程解的结构

高数差分与差分方程的概念、常系数线性差分方程解的结构

= y x +1 ⋅ z x +1 − y x +1 ⋅ z x + y x +1 ⋅ z x − y x ⋅ z x = y x +1 (z x +1 − z x ) + ( y x +1 − y x ) ⋅ z x = y x +1∆ z x + z x∆ y x
设y = x 3,求∆3 y x . 例8
k! . 其中 C = i !( k − i )!
i k
二阶及二阶以上的差分统称为高阶差分. 二阶及二阶以上的差分统称为高阶差分. 高阶差分
二、差分方程的概念 差分方程的概念
1.差分方程与差分方程的阶 差分方程与差分方程的阶 定义1 定义
含有未知函数的差分 ∆ y x ,∆ y x , LL的函数方程
例 11 确定下列方程的阶 (1) y x + 3 − x 2 y x +1 + 3 y x = 2
解 (1) Q x + 3 − x = 3,
( 2) y x − 2 − y x − 4 = y x + 2
是三阶差分方程; ∴ (1)是三阶差分方程;
( 2) Q x + 2 − ( x − 4) = 6,
+ 3x
( 2)
+ x )]
(1)
= ∆∆ ( ∆x
( 3)
+ 3 ∆x
( 2)
+ ∆x )
(1)
(0)
= ∆∆[3 x
( 2)
+ 6x
(1)
+x ]
= ∆[3∆x + 6∆x + ∆1]
( 2) (1)

第六节 差分方程

第六节  差分方程
第六节 差分与差分方程的概念 常系数线性差分方程解的结构
一、差分的概念
二、差分方程的概念
三、常系数线性差分方程解的结构 四、小结
一、差分的概念
1.差分的定义 差分的定义
f(n),函 设 函 数 y n = f(n),函 数 值 可 以 排 成 一 个 数 列 : f(0),f(1), f(n), L 1), L f(0), f(1), , f(n), f(n + 1), 将之简记为 y 0, y1, y 2, , y n, y n+1 , L … 称 函 数 的 改 变 量 y n+1 - y n为 函 数 y n的 差 分 , 也 称 为 一 阶 差 分 , 记 为 Δ y n = y n+1 - y n .
(1)三阶 2) (1)三阶 (2ห้องสมุดไป่ตู้六阶
( 2) y x − 2 − y x − 4 = y x + 2
注: Δ3y n + y n +1 = 0, 二阶差分方程 0,
又如Δ2y n - y n = 0
一阶差分方程
差分方程的解的分类
(1)差分方程的解 代入差分方程能使方程成立 的函数称为差分方程的解. 的函数称为差分方程的解. (2)通解 若差分方程的解中含有独立的任意 若差分方程的解中含有独立的任意 独立的
y x z x ∆ y x − y x ∆ z x z x + 1 ∆ y x − y x + 1 ∆z x (4)∆ = = z z x z x +1 z x z x +1 x
3.二阶差分 二阶差分
f(n)的 函数y n = f(n)的二阶差分为函数的一阶差分的 差分, y n = y n+2 - 2y n+1 + y n Δ

_常系数线性差分方程的求解37页PPT

_常系数线性差分方程的求解37页PPT


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
37
_常系数线性差分方程的求解
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

信号与系统§7.4 常系数线性差分方程的求解

信号与系统§7.4 常系数线性差分方程的求解
§7.4 常系数线性差分方 程的求解
解法
1.迭代法 2.时域经典法:齐次解+特解 3.零输入响应+零状态响应
利用卷积求系统的零状态响应 4. z变换法反变换y(n)
一.迭代法
解差分方程的基础方法 差分方程本身是一种递推关系,
但 得 不 到 输 出 序 列yn的 解 析 式
二.时域经典法
特征根是单实根r 齐次解cr n 特征根是复根r r e jr 齐次解c r e n jnr 特征根是m重根r 齐次解
cm1nm1r n cm2nm2r n L c1nr n c0r n (cm1nm1 cm2nm2 L c1n c0 )r n 当 r 1,则响应是衰减变化,系统稳定。 r 1,则响应是增长变化,系统不稳定。 故系统是否稳定,就是看r值确定的点是否在单位圆内。
xn: 激励, hn:冲激响应 yzsn xn hn 需要先求hn, 即单位样值响应(或通称冲激响应)
C由初始状态定(相当于0-的条件)
2.零状态响应:初始状态为0,即
y 1 y 2 0
经典法:齐次解+特解
求解方法
详细
卷积法
零状态响应的求解方法
1.齐次解+特解
由y 1 0, y 2 0 迭代出y0, y1
由初始条件定全解的中的待定系数。 2.卷积法
差分方程 特征方程 特征根 y(n)的解析式 由初始状态定常数
根据特征根,解的三种情况
1.无 重 根 r1 r2 rn n阶 方 程
yn C1r1 n C2r2 n Cn rn n
2.有重根
3.有共轭复数根
从以上求解零输入响应可知,特征根r在复平面的分布 决定了系统的时域特性,从而可判断系统是否稳定。

信号分析第五章第三节 常系数线性差分方程的求解法

信号分析第五章第三节 常系数线性差分方程的求解法
得到的是数值解,适于计算机计算。
X
第 5 页
例5-3-1 已知y(k ) + 3 y(k − 1) + 2 y(k − 2) = x(k), 且y(0) = 0, y(1) = 2, x(k) = 2k ε (k), 求y(k)。
将差分方程变化为: 将差分方程变化为: y(k ) = −3y(k − 1) − 2 y(k − 2) + x(k) k = 2 y(2) = −3y(1) − 2 y(0) + x(2) = −2
提问:以上求解方法用 有问题吗 书上方法) 提问 以上求解方法用0-有问题吗 书上方法 以上求解方法用 有问题吗?(书上方法
X
第 1系数要用系统的 +值即 确定自由响应的待定系数要用系统的0 值即y(0),y(1) 确定自由响应的待定系数要用系统的 由差分方程从y(-1),y(-2)递推出 递推出y(0),y(1). 由差分方程从 递推出
k
y a 说明序列 (k)是一个公比为 1的几何级数可表示为 式中, 为常数, 定 A 式中, 为常数,由初始条件确
X
第 8 页
根据特征根(或解)的三种情况讨论
y(k) + a1 y(k − 1) + LL + an−1 y(k − n + 1) + an y(k − n) = 0
特征方程: 1 + a1r + a2 r + L + an r
2.零状态响应:系统初始状态为0,即
第 17 页
例5-3-6
y(k ) − 4 y(k − 1) + 3 y(k − 2) = 2k 已知: 已知: (其中k ≥ 0) y(− 1) = −1, y(−2) = 1 态响应法求解 利用零输入响应和零状

高数差分与差分方程的概念、常系数线性差分方程解的结构共37页

高数差分与差分方程的概念、常系数线性差分方程解的结构共37页
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
高数差分与差分方程的 概念、常系数线性差分
方程解的结构
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档