高一数学-高一数学对数函数1 精品
4.4.1 对数函数的概念 课件 高一数学同步精讲课件(人教A版2019必修第一册)原创精品
则方程
ax2-2x+2=4
1
即存在x∈[ ,2], 使得 a
2
2
成立.
1
1
令t= , 则t∈[ ,2],
2
1
在区间[ ,2]上有解,
2
2
= 2
所以
1 2 1
a=2(t+ ) 2
2
3
∈[ ,12]
2
1
4.已知集合P=[ ,2],函数y=log2(ax2-2x+2)的定义域
2
转
化
与
化
归
为Q .
函数图象必需与轴有公共点的问题.
1
2.设函数f(x)=f( )lgx+1,求f(10)的值.
对
偶
思
想
+
方
程
思
想
1
解析:用 替代原方程中的x,得
1
f( )=-f(x)lgx+1
,与原方程联立,
1+
解得:f(x)=
1+2
所以 f(10)=1
方法:结构造对偶式,联立两函数方程,可解出函
(1)若P∩Q≠,求实数a的取值范围;
1
2
(2)若方程log2(ax -2x+2)=2在[ ,2]内有解,求实
2
数a的取值范围.
方法总结:
(1)不等式在区间内有解问题,通过分离参数,转化
为求有关函数的最值问题;
(2)方程在区间内有解问题,通过分离参数,转化为
求有关函数的值域问题.
课堂小结
一、本节课学习的新知识
2
转
化
高一上学期数学必修课件对数函数
练习3
证明不等式 $log_{a}(1+x) < x$ 对 $0 < a < 1$,$x > frac{a}{1-a}$ 成立
教师点评和答疑环节
教师点评
总结学生在解题过程中的常见错误和 不足之处,强调对数函数性质和运算 法则的重要性,引导学生形成正确的 解题思路和方法。
学生提问
学生可以提出自己在解题过程中遇到 的问题和困惑,教师给予及时的解答 和指导。
高一上学期数学必修课件
对数函数
汇报人:XX
20XX-01-12
• 对数函数基本概念与性质 • 对数运算法则与技巧 • 对数函数在生活中的应用举例 • 对数函数与指数函数关系探讨 • 典型例题解析与课堂练习
01
对数函数基本概念与性质
对数定义及运算规则
对数定义
如果$a^x=N(a>0,且a≠1)$,那么数$x$叫做以$a$为底$N$的对数,记 作$x=log_a N$,其中$a$叫做对数的底数,$N$叫做真数。
03
证明过程
设y=a^x,则x=log_a(y),即f^(-1)(y)=log_a(y),满足反函数的定义
。
两者在图像上关系分析
1 2
图像关于直线y=x对称
由于指数函数和对数函数互为反函数,因此它们 的图像关于直线y=x对称。
指数函数图像特点
以y轴为对称轴,图像在x轴上方,且过定点(0,1) 。
3
分贝是衡量声音强弱的单位,它实际上是对数函数在音响工程中的应用。声音强度与声压 级之间的关系可以用对数函数表示。
分贝计算公式
设声音强度为I,参考声音强度为I0(通常取人耳能听到的最小声音强度),则分贝值D可 表示为D=10lg(I/I0)。
高一数学人必修课件对数函数及其性质
THANKS
感谢观看
渐近线与拐点
渐近线
对数函数的图像没有水平渐近线和垂直渐近线。但是,当x趋近于正无穷或负无穷时, 函数的值分别趋近于正无穷或负无穷,因此可以说对数函数的图像有两条斜渐近线,即
y=±∞。
拐点
对数函数的图像没有拐点。因为对数函数在其定义域内是单调的,所以其图像不可能出 现拐点。
03
对数运算规则及应用
对数运算法则
01
02
03
04
乘法法则
log_b(MN) = log_b(M) + log_b(N)
除法法则
log_b(M/N) = log_b(M) log_b(N)
指数法则
log_b(M^n) = n * log_b(M)
换底公式
log_b(M) = log_a(M) / log_a(b)
换底公式及应用
换底公式
形如$y=a^x$($a>0$,$aneq1$)的函数叫 做指数函数。
指数函数的图像与性质
当$a>1$时,函数图像在定义域内单调递增,值 域为$(0,+infty)$;当$0<a<1$时,函数图像在 定义域内单调递减,值域为$(0,+infty)$。
指数函数的运算性质
包括同底数幂的乘法、除法、幂的乘方和积的乘 方等。
答案及解析提供
对于第一题,利用对数的定义转化为 指数方程求解,得到 x = 4
第三题需要先确定 f(x) 的定义域,再 将其应用到复合函数中,得到 x < 0 或x > 2
第二题需要分别讨论 a 的不同取值范 围,结合复合函数的单调性判断方法 ,得到不同情况下的单调性
第四题利用对数函数的单调性比较大 小,得到 log₃π > log₅10 > log₂0.8
高一数学对数函数课件
目录
• 对数函数的定义与性质 • 对数函数的运算 • 对数函数的应用 • 对数函数与其他函数的关系 • 对数函数的综合题解析
01
对数函数的定义与性质
定义与表示
总结词
对数函数是指数函数的反函数,其定义是指数函数的自变量和因变量互换位置 后得到的函数。
详细描述
对数函数的一般形式为 (y = log_{a}x)(其中 (a > 0) 且 (a neq 1)),其中 (x) 是自变量,(y) 是因变量。对数函数表示的是以 (a) 为底数,(x) 的对数。
计算机科学
在计算机科学中,对数函数常被用 于数据结构和算法设计,如二叉查 找树、哈希表等。
04
对数函数与其他函数的关 系
与指数函数的关系
指数函数和对数函数互为反函数,它 们的图像关于直线y=x对称。
对数函数和指数函数在解决实际问题 中经常一起出现,例如在计算复利、 解决声音强度问题等。
对数函数的定义是基于指数函数的, 即如果a的x次方等于N(a>0,a不等 于1),那么x叫做以a为底N的对数, 记作x=logₐN。
与三角函数的关系
对数函数和三角函数在形式上没有直接的关系,但在一些特定情况下可以相互转化 。例如,对于正弦函数和余弦函数的值可以通过对数函数进行计算。
三角函数和对数函数在解决实际问题中经常一起出现,例如在信号处理、振动分析 等领域。
对数函数和三角函数在一些数学问题中可以相互转化,例如在求解一些复杂的积分 问题时,可以将积分转化为对数函数的求解问题。
综合题类型与解题思路
01
类型三:对数方程求解
02
对数方程是常见的题型,需要掌握解对数方程的方法和步骤。
高中数学 第四章 对数运算和对数函数 1 对数的概念课件 必修第一册高一第一册数学课件
2
D.4 =x
(2)D
2021/12/12
第七页,共二十二页。
激趣诱思
知识(zhī shi)点
拨
二、对数的基本性质
1.负数和零没有(méi yǒu)对数.
2.对于任意的a>0,且a≠1,都有
1
loga1=0,logaa=1,loga =-1.
a
3.对数恒等式aa =
N
.
名师点析1.loga1=0,logaa=1可简述为“1的对数等于0,底的对数等于1”.
4
(3)log3(lg x)=1.
2
解:(1)由 log8x=- ,得 x=8
3
3
3
4
2
3
-
2
=(23)-3 =2-2,故
3
4
1
x= .
4
(2)由 logx27=4,得 =27,即 =33,
4
3 3
故 x=(3 ) =34=81.
(3)由 log3(lg x)=1,得 lg x=3,故 x=103=1 000.
3
-1 1
(3)e = ;
e
(4)10-3=0.001.
分析利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)
1
1 -3
3
(3)ln =-1.
e
=27.
(2)log464=3.
(4)lg 0.001=-3.
2021/12/12
第十页,共二十二页。
当堂检测
探究(tànjiū)一
探究(tànjiū)二
§1
对数(duìshù)的概念
2021/12/12
高一数学必修一对数知识点
高一数学必修一对数知识点一、什么是对数对数是数学中一个很重要的概念,它与指数运算密切相关。
对数通常用来表示通过指数运算得到的结果。
在数学中,我们以log为符号,表示对数。
这里的底数通常是10,因此常用的对数就是以10为底的对数,简称为常用对数。
常用对数的符号是lg。
例如,如果我们有一个等式10^2=100,我们可以用对数来表达为:lg100=2。
这里的2就是这个数的对数。
二、对数的特性对数有一些特性,掌握这些特性可以更好地理解和应用对数。
1. 对数相加等于两个数相乘的对数:log(ab)=loga+logb。
这个特性称为对数的乘法法则。
2. 对数相减等于两个数相除的对数:log(a/b)=loga-logb。
这个特性称为对数的除法法则。
3. 底数为10的对数称为常用对数,它的特点是对数值与所表示的数的数量级相等。
4. 任何数的对数都必须大于0,即对数的底数必须大于1。
三、对数的应用1. 对数在科学计算中经常使用,尤其是当数据的数量级很大或很小时。
例如,天文学家用对数来表示星星的亮度等级,地震学家用对数来表示地震的震级等。
2. 对数在解决指数方程和指数不等式时非常有用。
通过运用对数的性质,我们可以将指数方程转化为对数方程,进而求解。
3. 对数还可以用于解决百分数和利率的问题。
当我们需要计算复利时,可以使用对数来简化计算过程。
四、对数的计算方法1. 利用对数的乘法法则和除法法则,我们可以将任意一个数转化为以某个底数为底的对数。
2. 计算对数时,可以利用科学计算器上的对数函数。
通常,对数函数的按键上标有log或lg的符号。
3. 当底数不是10时,我们可以利用换底公式来计算对数。
换底公式是loga(b)=logc(b)/logc(a),其中c可以是任意不等于1的数。
五、对数的常见错误1. 计算对数时,一定要记得给出底数,否则对数没有意义。
2. 在使用对数进行计算时,一定要保证输入的数值大于0,否则计算结果将出错。
高一数学知识点对数函数
高一数学知识点对数函数对数函数是数学中重要的一类函数,它在高一数学学习中占据着重要的地位。
本文将对数函数的定义、性质和应用进行探讨,帮助同学们更好地理解和应用对数函数。
一、对数函数的定义对数函数是指以一个正数为底数,另一个正数为真数,求得的指数称为对数。
对数函数可以表示为y=logₐx,其中a为底数,x 为真数,y为对数。
在对数函数中,底数a通常取常用对数的底数10或自然对数的底数e。
二、对数函数的性质1. 对数函数的定义域和值域对数函数的定义域是正实数集,即x>0。
值域是全体实数集,即y∈R。
2. 对数函数的单调性对数函数随着真数的增大而单调增加。
3. 对数函数的图像特点对数函数的图像是一条逐渐上升的曲线,对数函数在x轴上的渐近线是y=0,对数函数在y轴上的渐近线是x=0。
4. 对数函数的奇偶性对数函数是奇函数,即f(-x)=-f(x)。
三、对数函数的应用1. 对数函数在科学计算中的应用对数函数在科学计算中有着广泛的应用。
以常用对数为例,常用对数的底数为10,它可以简化大数的运算。
例如,当我们需要计算10的n次方时,可以利用对数函数的性质,将幂运算转化为乘法运算。
2. 对数函数在指数增长中的应用对数函数在描述指数增长过程中经常被使用。
例如,人口增长模型中常常使用对数函数来描述人口的增长趋势,因为人口的增长一开始是指数级的,但随着时间的推移,增长速度逐渐减缓。
3. 对数函数在音乐与声音领域的应用对数函数在音乐与声音领域具有重要的应用。
在音乐中,音高是以对数函数的形式进行调节的,从而使得音高变化更加连续平稳。
在声音领域,声音强度的测量也可以利用对数函数进行,这是由于人类对声音的感知呈现对数关系。
四、对数函数的解题技巧在解题过程中,对数函数可以利用其性质和公式来简化计算。
常见的计算技巧包括:1. 对数与指数的互化对数函数和指数函数之间可以相互转化,通过利用对数函数和指数函数之间的相互关系,可以简化问题的计算。
对数函数的图像和性质 课件-高一上学期数学人教A版必修第一册
a<1.
x-4<x-2
解集为(4,+∞)
3.对数型函数的奇偶性和单调性
例 4.函数 f(x)=log1 (x2-3x-10)的单调递增区间为( )
2
A.(-∞,-2)
B.(-∞,32)
C.(-2,3) 2
D.(5,+∞)
[解析] 由题意,得x2-3x-10>0,∴(x-5)(x+2)>0,∴x<-2或x>5.
∴函数f(x)为奇函数
若函数y=loga(2-ax)在x∈[0,1]上是减函数,则a的取值范围是( B )
A.(0,1)
B.(1,2)
C.(0,2)
D.(1,+∞)
令u=2-ax,由于a>0且a≠1,所以u=2-ax为减函数, 又根据对数函数定义域要求u=2-ax在[0,1] 上恒大于零,当x∈[0,1]时,umin=2-a>0,解得a<2.
1
o1
x
最后把y=lg(x-1)的图象在x轴下方的部分 对称翻折到x轴上方
类型2 对数函数的性质
1.比较大小 例2.比较下列各组中两个值的大小:
(1) log25.3 , log24.7 y=log2x在( 0,+∞) 是增 函数.log25.3 > log24.7
(2) log0.27 , logo.29 y=log0.2x在( 0,+∞) 是减 函数.log0.27 > logo.29
②当 0<a<1 时,有12<a,从而12< a<1.
∴a 的取值范围是( 1
2
,1).
a<(14. ).解不等式:loga(x-4)>loga(x-2).
①当 a①>当1 时a>,1有时xx--a,<有4212>>,00a<此12时,无此解时无解 x-4>x-2
高一数学对数函数1
1 x 例5、(03上海)已知函数 f ( x) log 2 , 1 x
,
3
求函数的定义域,并讨论它的奇偶性。
1 x 解:1)欲使原函数有意义,需使 0 1 x x 1
即: 0 1 x 1 x 1 原函数的定义域为( 1, 1 )
1 x 1 x 1 2) f ( x ) log2 log2 ( ) 1 x 1 x 1 x log2 f ( x ) 1 x
3
Hale Waihona Puke y 1 结论:函数 x 称作函数y=3x-1的反函数。 3
考虑到“用y表示函数,用x表示自变量”的习
y 1 惯,将上式中 x 的x、y字母互换,写 3 x 1 成y 3
问:指数函数y=ax与对数函数y=logax是反函数吗?
注意:原函数y=f(x)的反函数有时写为y=f-1(x), x 1 1 例如:函数y=3x-1的反函数可写为: f (x)
图象特征 a>1 0<a<1 a>1
函数性质 0<a<1
函数图象都在y轴 轴右侧 侧
函数的定义域为( 函数的定义域为 0,+∞)
图象关于原点和 图象关于原点和 y轴不对称 y轴 向y轴正负方向无限延伸 向y轴正负方向
函数图象都过定点( 函数图象都过定点 1, 0) 自左向右看, 图象逐渐 图象逐渐上升 自左向右看, 图象逐渐 图象逐渐下降
对数函数中“0”、“1” 的作用
2、比较大小时的分界点 例3、设a=log20.8,b=log21.7,c=log34 解:log20.8<log21=0 0=log21<log21.7<log22=1, log34>log33=1
对数函数的图像和性质(1) 高一上学期数学人教A版(2019)必修第一册
学习目标
学习
目标
一
会用描点法画对数函数的图象
二
掌握对数函数的性质
三
能用对数函数的图象性质比较对数的大小.
复习回顾
1. 对数函数的概念是什么?
形如y = logax ,(a>0,且a≠1) 叫做对数函数.
2. 指数函数的概念是什么?我们主要研究它的哪些性质?
当0<a<1时,
图象从左到右是下降的.
概念生成
对数函数的性质
a>1
0<a<1
y
图 像
y
(1,0)
O
(1,0)
O
x
x
f(x)=logax (0<a<1)
定义域
值
域
过定点
单 调 性
性
质
取值分布
奇 偶 性
(0,+∞)
R
(1,0)
在(0,+∞)上是增函数 在(0,+∞)上是减函数
当x>1时,y>0;
当x>1时,y<0;
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
y =
ax
1
log
-1
1
0
2
1
4
2
6
2.6
对数函数的概念课件-高一数学人教A版(2019)必修第一册
深化思考 思考辨析 判断下列说法是否正确,正确的在后面的括号内打 “√”,错误的打“×”.
(1)由 y=logax,得 x=ay,所以 x>0.(√ ) (2)y=log2x2 是对数函数.(× ) (3)若 y=logax 是对数函数,则 a>0 且 a≠1.( √ ) (4)函数 y=loga(x-1)的定义域为(0,+∞).(×)
目录
概念引入
设生物死亡年数为x,死亡生物体内碳14含量为y.
指数函数
y=
1
2
1 x
5730
x∈(0 , +)
x=log5730
1 2
y
(0 , y0)(0<y0≤1)
一
唯一(x0 , y0)
一
对
应
唯一(x0 , 0) (x0≥0)
图4.4-1
x 是 y 的函数,x=log5730 1 y (0<y≤1)
目录
小结
1、对数函数、指数函数、一次函数、二次函数是我们学习的基本 初等函数,它们增长是有差异的,不同类型的数据增长应选取合适 的函数模型来刻画其变化规律.
2、判断一个函数是不是对数函数、关键是分析所给函数是否具有 y=logax(a>0,且 a≠1)这种形式.
3、涉及对数函数的定义域问题,从对数式的真数和底数两个方面 构建不等式组,且最终结果要写成集合的形
目录
限时小练 1.下列函数是对数函数的是________(填序号).
①y=loga(5+x)(a>0 且 a≠1);②y=log 3-1x;③y=log3(-x); ④y=logx 3(x>0 且 x≠1). 2.设函数 f(x)=logax(a>0,且 a≠1),若 f(x1x2…x2 022) =6,则 f(x21)+ f(x22)+f(x23)+…+f(x22 022)的值是________. 3.已知函数 f(x)=lg(x+1)-lg(1-x). (1)求函数 f(x)的定义域;(2)判断函数 f(x)的奇偶性.
高一数学对数函数知识点
高一数学对数函数知识点一、对数函数的基本概念对数函数是数学中的一种基本函数,它与指数函数有着密切的关系。
在高一数学的学习中,对数函数的概念、性质和应用是重要的知识点。
对数函数可以定义为:如果a^b=c(其中a>0,且a≠1,b和c为实数),那么数b就称为以a为底c的对数,记作b=log_a c。
二、对数的运算法则对数的运算法则是解决对数问题的基础。
以下是几个基本的对数运算法则:1. 乘法变加法:log_a (xy) = log_a x + log_a y2. 除法变减法:log_a (x/y) = log_a x - log_a y3. 幂的对数:log_a (x^b) = b * log_a x4. 对数的换底公式:log_a x = log_c x / log_c a,其中c为新的底数。
掌握这些运算法则对于解决复杂的对数问题至关重要。
三、常用对数函数在高中数学中,最常用的对数函数是自然对数和常用对数。
1. 自然对数:以e(约等于2.71828)为底的对数称为自然对数,记作ln x。
自然对数在数学、物理和工程等领域有着广泛的应用。
2. 常用对数:以10为底的对数称为常用对数,记作log x。
常用对数在科学计数法中经常被使用。
四、对数函数的图像和性质对数函数的图像和性质是理解对数函数行为的关键。
对数函数y=log_a x具有以下性质:1. 函数图像总是通过点(1,0),因为任何底数的0次幂都等于1。
2. 对数函数是单调递增的,这意味着随着x的增加,y也会增加。
3. 当x>0时,函数有定义;当x<=0时,函数无定义。
4. 对数函数的图像是一条在y轴右侧的曲线,永远不会与x轴相交。
五、对数函数的应用对数函数在实际问题中有许多应用,例如:1. 复利计算:在金融领域,对数函数可以用来计算连续复利。
2. 地震强度:地震的强度常常用对数来表示,因为地震能量的增加与震级不是线性关系。
3. pH值计算:在化学中,pH值是衡量溶液酸碱度的指标,它是基于对数的计算。
高一数学必修一对数知识点
高一数学必修一对数知识点对数是数学中的一个重要概念,广泛应用于各个领域。
在高一数学必修一课程中,掌握对数的相关知识点对于学习和解题都非常关键。
本文将介绍高一数学必修一中与对数相关的几个重要知识点。
一、对数的定义和性质对数是指数运算的逆运算,用于描述指数运算中的幂次关系。
设a和b是正实数且a≠1,若a^x=b,则称x是以a为底b的对数,记作x=log_a b。
对数的性质包括对数的定义、对数的唯一性和对数的计算规则。
二、常用对数和自然对数常用对数以10为底,通常记作lgx或logx,其中x是正实数。
自然对数以常数e(自然对数的底)为底,通常记作lnx,其中x是正实数。
常用对数和自然对数在科学和工程计算中经常使用,掌握其使用方法和性质对于解题和应用都具有重要意义。
三、对数函数与指数函数的性质对数函数和指数函数是互为反函数的函数。
指数函数y=a^x (a>0,a≠1)是底为a的对数函数y=log_a x的反函数,反之亦然。
对数函数和指数函数的图像具有一些特殊的性质,如对数函数的图像在直线y=x上对称。
四、对数方程和对数不等式对数方程是指形如log_a f(x)=b的方程,其中a是正实数,a≠1;f(x)是一个关于x的已知函数,b是常数。
对数不等式是指形如log_a f(x)<b或log_a f(x)>b的不等式,其中a是正实数,a≠1;f(x)是一个关于x的已知函数,b是常数。
解对数方程和对数不等式需要运用对数的性质和计算规则。
五、指数函数与对数函数的应用指数函数和对数函数在实际问题中具有广泛的应用。
例如,指数函数可以用于描述金融领域中的复利计算,对数函数可以用于描述物理学中的衰减和增长现象。
掌握指数函数和对数函数的应用方法,能够帮助我们更好地理解和解决实际问题。
以上就是高一数学必修一中与对数相关的几个重要知识点的简要介绍。
对数作为数学的一个重要概念,在不同领域都具有广泛的应用价值。
通过学习和掌握这些知识点,我们能够更好地理解数学中的对数运算,并能够灵活地运用于实际问题中。
高一数学对数函数
高一数学对数函数对数函数是高中数学中的重要内容之一,是指以某个既定的底数为基数,求一个数的对数时,使用的函数关系。
在实际生活和科学研究中,对数函数有着广泛的应用。
下面将介绍对数函数的定义、性质以及应用。
对数函数的定义:对数函数是指数函数的反函数。
设a为一个正实数且a≠1,x为一个正实数,那么以a为底x的对数函数定义为:y=loga(x),即x=a^y。
其中,a称为底数,x称为实际数,y称为对数。
对数函数的性质:1.对数函数的定义域为正实数集合,值域为所有实数。
2.底数小于1的对数函数是递减函数,底数大于1的对数函数是递增函数。
3.对数函数y=loga(x)与指数函数y=a^x是互为反函数的关系,即对于任何实数x,有(loga(x))^a=x。
4.对于同一个底数,loga(x1*x2)=loga(x1)+loga(x2),loga(x1/x2)=loga(x1)-loga(x2),loga(x^k)=k*loga(x)。
5.换底公式:loga(x)=logb(x)/logb(a),其中b为正实数且b≠1。
换底公式可以用来计算以外底数的对数。
对数函数的应用:1.求解指数方程:对数函数常用于求解指数方程。
通过将指数方程转化为对数方程,可以更容易地求解。
例如,求解2^x=8,可以转化为log2(8)=x,即使用对数函数求出x=3。
2.化简复杂计算:对数函数能够化简一些复杂的计算。
例如,计算log2(32),可以将32表示为2的某个次幂,即32=2^5,那么log2(32)=5。
3.描述增长趋势:对数函数广泛应用于描述各种日益增长的现象。
例如,人口增长、物质衰变、金融复利等。
对数函数能够将指数增长变为线性增长,便于分析和预测。
4.信号处理:在信号处理领域,对数函数常用于对音频和图像信号进行变换和处理。
对数函数可以将原始信号的动态范围缩小,并增强低强度信号的可视化效果。
总之,对数函数在数学和实际应用中具有重要地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题对数函数
教学目标
在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
教学方法
启发研讨式
教学用具
投影仪
教学过程
引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:
由得.又的值域为,
所求反函数为.
那么我们今天就是研究指数函数的反函数-----对数函数.
2.8对数函数 (板书)
对数函数的概念
定义:函数的反函数叫做对数函数.
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.
在此基础上,我们将一起来研究对数函数的图像与性质.
二.对数函数的图像与性质 (板书)
作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.
由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以
和为例画图.
具体操作时,要求学生做到:
指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).
画出直线.
的图像在翻折时先将特殊点对称点找到,变化趋势由靠
近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
草图.
教师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
性质
定义域:
值域:
由以上两条可说明图像位于轴的右侧.
截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线.
奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.
单调性:与有关.当时,在上是增函数.即图像是上升的当时,在上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当时,有;当时,有.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
三.简单应用 (板书)
研究相关函数的性质
求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
利用单调性比较大小 (板书)
比较下列各组数的大小
(1)与; (2)与;
(3)与;(4)与.
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.巩固练习
练习:若,求的取值范围.
四.小结
五.作业略
板书设计
教案点评:
根据教材内容和课程标准的要求,本节课的重点是理解对数函数的定义,掌握图像和性质。
教案的编写从四个环节设计教学过程。
各个教学环节,依据教学内容和教学目标的不同要求,呈现的教学方式、方法各有不同,第一个环节从复习指数函数开始,有学生熟悉的指数函数入手,引起学生兴趣;第二个环节是对数函数的定义;第三个环节:因为学生已经具有一定的作图能力,让学生画出常见的几个函数图象,并总结出对数函数的性质。
第四个环节:简单应用。
因此通过学生之间、师生之间的交流、讨论,使知识系统化、条理化,利于学生记忆对数函数的性质。