普通混凝土配合比设计规程JGJ_55-2011_
普通混凝土配合比设计规程(JGJ55-2011)
表3.0.6
环境条件
干燥环境 潮湿但不含氯离子 的环境 潮湿且含有氯离子 的环境、盐渍土环 境
水溶性氯离子最大含量(%,水泥用 量的质量百分比) 钢砼 预应力砼 素砼 0.30 0.06 1.00 0.20 0.10
除冰盐等侵蚀性物 质的腐蚀环境
0.06
3 基本规定(最小含气量)
3.0.7 长期处于潮湿或水位变动的寒冷和严寒环境、 以及盐冻环境的混凝土应掺用引气剂。引气剂掺 量应根据混凝土含气量要求经试验确定;掺用引 气剂的混凝土最小含气量应符合表3.0.7的规定, 最大不宜超过7.0%。 掺加适量引气剂有利于混凝土的耐久性,尤其对 于有较高抗冻要求的混凝土,掺加引气剂可以明 显提高混凝土的抗冻性能。引气剂掺量要适当, 引气量太少作用不够,引气量太多混凝土强度损 失较大。
2 术语、符号
2.1.11 胶凝材料:混凝土中水泥和矿物掺合料的总 称。 2.1.12 胶凝材料用量:混凝土中水泥用量和矿物掺 合料用量之和。 (胶凝材料和胶凝材料用量的术语和定义在混凝土 工程技术领域已被广泛接受) 2.1.13 水胶比:混凝土中用水量与胶凝材料用量的 质量比。(代替水灰比) 2.1.14 矿物掺合料掺量:矿物掺合料用量占胶凝材 料用量的质量百分比。 2.1.15 外加剂掺量:外加剂用量相对于胶凝材料用 量的质量百分比。 (11~15是新组建的术语和定义)
强度
满足混凝土工程结构设计或工程进度的强度要求。 影响混凝土强度的因素: (1)水泥的强度和水灰比 : 水泥强度越高,则混凝土强度越高。 当混凝土水灰比值在0.40~0.80之间时越大,则混 凝土的强度越低; 水灰比定律:在材料相同的条件下,砼强度值随水 灰比的增大而减小,其变化规律呈近似双曲线形状。
普通砼配合比设计规程JGJ55-2011
确定每立方米混凝土用水量mw0
1、 混凝土水胶比在0.40~0.80范围时, 根据砼的坍落度(维勃稠度)、粗骨料 品种及最大粒径查本标准表 5.2.1-1 和 5.2.1-2; 2、 数值修正 1) 根据砂的细度修正 细砂 + (5~10kg) 粗砂 - (5~10kg)
2)根据坍落度值修正 以表中坍落度90mm的用水量为基础,坍落 度每增加20mm, 用水量增加5kg。 95~110mm +5kg 115~130mm +10kg 坍落度大于等 180mm 以上时,随坍落度相 应增加的用水量可减少。
在保持混凝土水泥用量不变的情况下, 减少拌合用水量,水泥浆变稠,水泥浆 的粘聚力增大,使粘聚性和保水性良好, 而流动性变小。增加用水量则情况相反。 当混凝土加水过少时,即水胶比过低, 不仅流动性太小,粘聚性也因混凝土发 涩而变差,在一定施工条件下难以成型 密实。
加水过多,水灰比过大,水泥浆过稀, 这时拌合物虽流动性大,但将产生严重 的分层离析和泌水现象,并且严重影响 混凝土的强度和耐久性。 绝不可以单纯以加水的方法来增加流动 性。而应采取在保持水胶比不变的条件 下,以增加水泥浆量的办法来调整拌合 物的流动性。
普通砼配合比设计规程
JGJ55-2011
主讲:高雪梅
基本参数
1、水胶比W/B ; 2、每立方米砼用水量mw ; 3、每立方米砼胶凝材料用量mb ; 4、每立方米砼水泥用量mC ; 5、每立方米砼矿物掺合料用量mf ; 6、 砂率βS :砂与骨料总量的重量比; 7、每立方米砼砂用量mS ; 8、每立方米砼石用量mg 。
3)根据外加剂和掺和料修正 mw0=m’w0(1-β) β—外加剂减水率应经试验确定 m’w0 —未掺外加剂时每立方米混凝土用 水量
中华人民共和国混凝土配合比设计规程JGJ55-2011
提高胶凝材料用量,降低水胶比,增加砼的密实度即可。
××××商混站试验室:××××××有限公司试验室作业指导书文件编号:LH/W·B008-2011第A 版第1次修订普通混凝土配合比设计规程第64页共页颁布日期:2011年10月20日普通混凝土配合比设计规程(JGJ55-2011)总则1.0.1 为规范普通混凝土配合比设计方法,满足设计和施工要求,保证混凝土工程质量并且达到经济合理,制定本规程。
1.0.2 本规程适用于工业与民用建筑及一般构筑物所采用的普通混凝土配合比设计。
•除一些专业工程以及特殊构筑物的混凝土1.0.3普通混凝土配合比设计除应符合本规程的规定外,尚应符合国家现行有关标准的规定。
术语、符号2.1 术语2.1.1普通混凝土:干表观密度为 2000kg/m3~2800kg/m3的混凝土。
(在建工行业,普通混凝土简称混凝土,是指水泥混凝土)2.1.2干硬性混凝土:拌合物坍落度小于10mm且须用维勃稠度(s)表示其稠度的混凝土。
(维勃稠度可以合理表示坍落度很小甚至为零的混凝土拌合物稠度,维勃稠度等级划分为5个。
)等级维勃稠度(s)V0 ≥31V1 30~21V2 20~11V3 10~6V4 5~32.1.3塑性混凝土:拌合物坍落度为10mm~90mm的混凝土。
2.1.4流动性混凝土:拌合物坍落度为100mm~150mm的混凝土。
2.1.5大流动性混凝土:拌合物坍落度不低于160mm的混凝土。
坍落度等级划分为5个等级。
等级坍落度(mm)S1 10~40S2 50~90S3 100~150S4 160~210S5 ≥2202.1.6 抗渗混凝土:抗渗等级不低于P6的混凝土。
2.1.7 抗冻混凝土:抗冻等级不低于F50的混凝土。
(均指设计提出要求的抗渗或抗冻混凝土)2.1.9 泵送混凝土:可在施工现场通过压力泵及输送管道进行浇筑的混凝土。
普通混凝土配合比设计规程JGJ_55-2011_
4 混凝土配制强度的确定
2.当没有近期的同一品种、同一强度等级混 凝土强度资料时,其强度标准差σ可按表 4.0.2取值。 ≤C20 C25~C45 C50~C55 4.0 5.0 6.0 <C20 C20~C35 >C35(修改前)
4 混凝土配制强度的确定
4.0.3 遇有下列情况时应提高混凝土配制强度: 1.现场条件与试验室条件有显著差异时; 2.C30等级及其以上强度等级的混凝土,采 用非统计方法评定时。 • 即:配制强度计算公式中的“大于”符号
2 术语、符号
坍落度等级划分为5个等级。
等级 S1 S2 S3 S4 S5 坍落度(mm) 10~40 50~90 100~150 160~210 ≥220
2 术语、符号
2.1.6 抗渗混凝土:抗渗等级不低于P6的混 凝土。 2.1.7 抗冻混凝土:抗冻等级不低于F50的混 凝土。 (均指设计提出要求的抗渗或抗冻混凝土) 2.1.9 泵送混凝土:可在施工现场通过压力泵 及输送管道进行浇筑的混凝土。 (包括流动性混凝土和大流动性混凝土,泵 送时坍落度不小于100mm。)
补充:GB/T50476-2008 《混凝土结构 耐久性设计规范》环境类别与作用等级
3 基本规定(最小胶凝材料)
3.0.4 混凝土的最小胶凝材料用量应符合表 3.0.4的规定,配制C15及其以下强度等级 的混凝土,可不受表3.0.4的限制。
(在满足最大水胶比条件下,最小胶凝 材料用量是满足混凝土施工性能和掺 加矿物掺和料后满足混凝土耐久性的 胶凝材料用量)
3 基本规定
环境类别 一 二a 二b 三 条件 室内正常环境 室内潮湿环境;非严寒和非寒冷地区的露天环 境、与无侵蚀性的水或土壤直接接触的环境 严寒和寒冷地区的露天环境、与无侵蚀性的水 或土壤直接接触的环境 使用除冰盐的环境;严寒和寒玲地区冬季水位 变动的环境;滨海室外环境
混凝土配合比设计规程JGJ55-2011
-
- Ⅲ- C Ⅲ- D Ⅲ- E Ⅲ- F
除冰盐等其他氯
-
化物环境
- Ⅳ- C Ⅳ- D Ⅳ- E -
化学腐蚀环境
-
- Ⅴ- C Ⅴ- D Ⅴ- E -
注:对于无钢筋的素混凝土结构,环境作用等级见3.4.4条规定 3.0.4 (最小胶凝材料)
混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及 其以下强度等级的混凝土,可不受表3.0.4的限制。 (在满足最大水胶比条件下,最小胶凝材料用量是满足混凝土施 工性能和掺加矿物掺和料后满足混凝土耐久性的胶凝材料用量) (修定前的规定):
坍落度等级划分为5个等级。
等级
坍落度(mm)
S1
10~40
S2
50~90
S3
100~150
S4
160~210
S5
≥220
2.1.6 抗渗混凝土:抗渗等级不低于P6的混凝土。 2.1.7 抗冻混凝土:抗冻等级不低于F50的混凝土。 (均指设计提出要求的抗渗或抗冻混凝土) 2.1.9 泵送混凝土:可在施工现场通过压力泵及输送管道进行浇筑的混 凝土。
(包括流动性混凝土和大流动性混凝土,泵送时坍落度不小于 100mm。) 2.1.10大体积混凝土:体积较大的、可能由胶凝材料水化热引起的温度 应力导致有害裂缝的结构混凝土。 (大体积混凝土也可以定义为,混凝土结构物实体最小几何尺寸不小 于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度 变化和收缩而导致有害裂缝产生的混凝土。) 2.1.11 胶凝材料:混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量:混凝土中水泥用量和矿物掺合料用量之和。 (胶凝材料和胶凝材料用量的术语和定义在混凝土工程技术领域已 被广泛接受) 2.1.13 水胶比:混凝土中用水量与胶凝材料用量的质量比。(代替水 灰比) 2.1.14 矿物掺合料掺量:矿物掺合料用量占胶凝材料用量的质量百分 比。 2.1.15 外加剂掺量:外加剂用量相对于胶凝材料用量的质量百分比。 (11~15是新组建的术语和定义) fb—胶凝材料28d胶砂抗压强度实测值(MPa) m0—计算(基准)配合比每立方米混凝土的用量(kg); γf—粉煤灰影响系数; γs—粒化高炉矿渣粉影响系数; Pt—六个试件中不少于4个未出现渗水时的最大水压值(MPa); P—设计要求的抗渗等级值; Tt—试配时要求的坍落度值(mm);
混凝土配合比设计规程JGJ55_
完美WORD 格式提高胶凝材料用量,降低水胶比,增加砼的密实度即可。
××××商混站试验室:××××××有限公司试验室作业指导书 文件编号: LH/W ·B 008-2011第A 版 第1次修订普通混凝土配合比设计规程第64页 共 页颁布日期 : 2011年10月20日普通混凝土配合比设计规程(JGJ55-2011)总则1.0.1 为规范普通混凝土配合比设计方法,满足设计和施工要求,保证混凝土工程质量并且达到经济合理,制定本规程。
1.0.2 本规程适用于工业与民用建筑及一般构筑物所采用的普通混凝土配合比设计。
• 除一些专业工程以及特殊构筑物的混凝土1.0.3 普通混凝土配合比设计除应符合本规程的规定外,尚应符合国家现行有关标准的规定。
术语、符号2.1 术语2.1.1普通混凝土:干表观密度为 2000kg/m3~2800kg/m3的混凝土。
(在建工行业,普通混凝土简称混凝土,是指水泥混凝土)2.1.2干硬性混凝土:拌合物坍落度小于10mm 且须用维勃稠度(s )表示其稠度的混凝土。
(维勃稠度可以合理表示坍落度很小甚至为零的混凝土拌合物稠度,维勃稠度等级划分为5个。
)等级 维勃稠度(s )V0 ≥31V1 30~21V2 20~11V3 10~6V4 5~32.1.3塑性混凝土:拌合物坍落度为10mm ~90mm 的混凝土。
2.1.4流动性混凝土:拌合物坍落度为100mm ~150mm 的混凝土。
2.1.5大流动性混凝土:拌合物坍落度不低于160mm 的混凝土。
坍落度等级划分为5个等级。
等级 坍落度(mm )S1 10~40S2 50~90S3 100~150S4 160~210S5 ≥2202.1.6 抗渗混凝土:抗渗等级不低于P6的混凝土。
2.1.7 抗冻混凝土:抗冻等级不低于F50的混凝土。
普通混凝土配合比设计规程JGJ_55-2011_J64-2011
3 基本规定(修订前的规定)
环境条件 最大水灰比 素砼 钢砼 预砼 最小水泥用量 素砼 钢砼 预砼
一 二a
二b 三
—— 0.70
0.55 0.50
0.65 0.60 0.60 0.60
0.55 0.55 Leabharlann .50 0.50200 225
250 300
260 280
280 300
300 300
300 300
2.1.11 胶凝材料:混凝土中水泥和矿物掺合料的总 称。 2.1.12 胶凝材料用量:混凝土中水泥用量和矿物掺 合料用量之和。 (胶凝材料和胶凝材料用量的术语和定义在混凝土 工程技术领域已被广泛接受) 2.1.13 水胶比:混凝土中用水量与胶凝材料用量的 质量比。(代替水灰比) 2.1.14 矿物掺合料掺量:矿物掺合料用量占胶凝材 料用量的质量百分比。 2.1.15 外加剂掺量:外加剂用量相对于胶凝材料用 量的质量百分比。 (11~15是新组建的术语和定义)
2 术语、符号
2.1.10大体积混凝土:体积较大的、可能由胶 凝材料水化热引起的温度应力导致有害裂 缝的结构混凝土。 • (大体积混凝土也可以定义为,混凝土结 构物实体最小几何尺寸不小于1m的大体量
混凝土,或预计会因混凝土中胶凝材料水 化引起的温度变化和收缩而导致有害裂缝 产生的混凝土。)
2 术语、符号
3 基本规定(水溶性氯离子最大含量)
3.0.6 混凝土拌合物中水溶性氯离子最大含量应符 合表3.0.6的要求。混凝土拌合物中水溶性氯离子 含量应按照现行行业标准《水运工程混凝土试验 规程》JTJ 270中混凝土拌合物中氯离子含量的快 速测定方法进行测定。 • 按环境条件影响氯离子引起钢锈的程度简明地分 为四类,并规定了各类环境条件下的混凝土中氯 离子最大含量。 • 采用测定混凝土拌合物中氯离子的方法,与测试 硬化后混凝土中氯离子的方法相比,时间大大缩 短,有利于配合比设计和控制。 • 表3.0.6中的氯离子含量系相对混凝土中水泥用量 的百分比,与控制氯离子相对混凝土中胶凝材料 用量的百分比相比,偏于安全。
(jgj55_2011)普通混凝土配合比设计规程
➢ 3.0.3 混凝土的最大水胶比应编辑符课合件 《混凝土结构设计规范GB50010 的
3 基本规定
• 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4 的规定,配制C15 及 其以下强度等级的混凝土,可不受表3.0.4 的限制。
编辑课件
2 术语、符号
➢ 2.1.1 普通混凝土 ordinary concrete ➢ 干表观密度为 2000~2800kg/m3 的水泥混凝土。 ➢ 2.1.2 干硬性混凝土 stiff concrete ➢ 拌合物坍落度小于10mm 且须用维勃时间(s)表示其稠度的混凝土
。 ➢ 2.1.3 塑性混凝土 plastic concrete ➢ 拌合物坍落度为10mm~90mm 的混凝土。 ➢ 2.1.4 流动性混凝土 pasty concrete ➢ 拌合物坍落度为100mm~150mm 的混凝土。
编辑课件
2 术语、符号
➢ 2.1.5 大流动性混凝土 flowing concrete ➢ 拌合物坍落度不小于160mm 的混凝土。 ➢ 2.1.6 抗渗混凝土 impermeable concrete ➢ 抗渗等级不低于P6 的混凝土。 ➢ 2.1.7 抗冻混凝土 frost-resistant concrete ➢ 抗冻等级不低于F50 的混凝土。 ➢ 2.1.8 高强混凝土 high-strength concrete ➢ 强度等级不小于C60的混凝土。
编辑课件
3 基本规定
➢ 3.0.1 混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学 性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久 性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能 试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准 》GB/T50081 和《普通混凝土长期性能和耐久性能试验方法标准》 GB/T50082 的规定。
最新混凝土配合比设计规程(JGJ-55-2011-)
2.1.13 水胶比:混凝土中用水量与胶凝材料用量的
质量比。(代替水灰比)
2.1.14 矿物掺合料掺量:矿物掺合料用量占胶凝材 料用量的质量百分比。
2.1.15 外加剂掺量:外加剂用量相对于胶凝材料用 量的质量百分比。
(11~15是新组建的术语和定义)
5 混凝土配合比计算
2.当水泥28d胶砂抗压强度无实测值时,公 式(5.1.1-2)中的fce值可按下式计算:
fce c g fce,g
c——水泥强度等级值的富余系数,可按实际
统计资料确定;当缺乏实际统计资料时,
也可按表5.1.1-2选用(增加);
fce,g——水泥强度等级值(MPa)。
• 采用测定混凝土拌合物中氯离子的方法,与测试 硬化后混凝土中氯离子的方法相比,时间大大缩 短,有利于配合比设计和控制。
• 表3.0.6中的氯离子含量系相对混凝土中水泥用量 的百分比,与控制氯离子相对混凝土中胶凝材料 用量的百分比相比,偏于安全。
3 基本规定(最小含气量)
3.0.7 长期处于潮湿或水位变动的寒冷和严寒环境、 以及盐冻环境的混凝土应掺用引气剂。引气剂掺 量应根据混凝土含气量要求经试验确定;掺用引 气剂的混凝土最小含气量应符合表3.0.7的规定, 最大不宜超过7.0%。
普通混凝土配合比设计规程 (JGJ55-2011)
2011年12月1日实施
1 总则
1.0.1 为规范普通混凝土配合比设计方法,满 足设计和施工要求,保证混凝土工程质量, 并且达到经济合理,制定本规程。
1.0.2 本规程适用于工业与民用建筑及一般构 筑物所采用的普通混凝土配合比设计。
• 除一些专业工程以及特殊构筑物的混凝土
普通混凝土配合比设计规程(JGJ55-2011)
3 基本规定(新增加)
3.0.1 混凝土配合比设计应满足混凝土配制强 度、拌合物性能、力学性能、长期性能和耐 久性能的设计要求。混凝土拌合物性能、力 学性能、长期性能和耐久性能的试验方法应 分别符合现行国家标准《普通混凝土拌合物 性能试验方法标准》GB/T50080、《普通混 凝土力学性能试验方法标准》GB/T50081和 《普通混凝土长期性能和耐久性能试验方法 标准》GB/T5能要求 这是本次规程修订的重点之一。
3 基本规定(新增加)
3.0.2 混凝土配合比设计应采用工程实际使用 的原材料,并应满足国家现行标准的有关 要求;配合比设计应以干燥状态骨料为基 准,细骨料含水率应小于0.5%,粗骨料含 水率应小于0.2%。
我国长期以来一直在建设工程中采用以干 燥状态骨料为基准的混凝土配合比设计, 具有可操作性,应用情况良好。
3 基本规定(水溶性氯离子最大含量)
3.0.6 混凝土拌合物中水溶性氯离子最大含量应符合 表3.0.6的要求。混凝土拌合物中水溶性氯离子含 量应按照现行行业标准《水运工程混凝土试验规 程》JTJ 270中混凝土拌合物中氯离子含量的快速 测定方法进行测定。 按环境条件影响氯离子引起钢锈的程度简明地分 为四类,并规定了各类环境条件下的混凝土中氯 离子最大含量。 采用测定混凝土拌合物中氯离子的方法,与测试 硬化后混凝土中氯离子的方法相比,时间大大缩 短,有利于配合比设计和控制。 表3.0.6中的氯离子含量系相对混凝土中水泥用量 的百分比,与控制氯离子相对混凝土中胶凝材料 用量的百分比相比,偏于安全。
送时坍落度不小于100mm。)
2 术语、符号
2.1.10大体积混凝土:体积较大的、可能由胶 凝材料水化热引起的温度应力导致有害裂 缝的结构混凝土。
普通混凝土配合比设计规程(JGJ55-2011)
2 术语、符号
fb —胶凝材料28d胶砂抗压强度实测值(MPa) m0—计算(基准)配合比每立方米混凝土的用量
(kg); γf—粉煤灰影响系数; γs—粒化高炉矿渣粉影响系数; Pt—六个试件中不少于4个未出现渗水时的最大水 压值(MPa); P—设计要求的抗渗等级值; Tt—试配时要求的坍落度值(mm); Tp—入泵时要求的坍落度值(mm) ΔT—试验测得的预计出机到泵送时间段内的坍落 度经时损失值(mm)。
强度
满足混凝土工程结构设计或工程进度的强度要求。 影响混凝土强度的因素: (1)水泥的强度和水灰比 : 水泥强度越高,则混凝土强度越高。 当混凝土水灰比值在0.40~0.80之间时越大,则混 凝土的强度越低; 水灰比定律:在材料相同的条件下,砼强度值随水 灰比的增大而减小,其变化规律呈近似双曲线形状。
250 280
280 300
300 300
320
330
≤0.45
GB/T50476-2008 混凝土结构耐久性设计规范 中有关胶凝材料用量条款
3 基本规定(矿物掺合料最大掺量)
3.0.5 矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混 凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应 力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规 定。 规定矿物掺合料最大掺量主要是为了保证混凝土耐久性能。 矿物掺合料在混凝土中的实际掺量是通过试验确定的,在 本规程配合比调整和确定步骤中规定了耐久性试验验证, 以确保满足工程设计提出的混凝土耐久性要求。 当采用超出表3.0.5-1和表3.0.5-2给出的矿物掺合料最大掺量 时,全然否定不妥,通过对混凝土性能进行全面试验论证, 证明结构混凝土安全性和耐久性可以满足设计要求后,还 是能够采用的。
JGJ_55-2011_普通混凝土配合比设计规程1
3 基本规定(新增加)
3.0.1 混凝土配合比设计应满足混凝土配制强 度、拌合物性能、力学性能、长期性能和耐 久性能的设计要求。混凝土拌合物性能、力 学性能、长期性能和耐久性能的试验方法应 分别符合现行国家标准《普通混凝土拌合物 性能试验方法标准》GB/T50080、《普通混 凝土力学性能试验方法标准》GB/T50081和 《普通混凝土长期性能和耐久性能试验方法 标准》GB/T50082的规定。 • 强调混凝土配合比设计应满足耐久性能要求
在满足最大水胶比条件下在满足最大水胶比条件下最小胶凝材料用量是满足混凝土施工性能和掺加矿物掺和料后满足混凝土耐久性的胶凝材料用量最小胶凝3基本规定修订前的规定环境条件最大水灰比最小水泥用量素砼钢砼预砼素砼钢砼预砼一065060200260300070070060060060060225225280280300300?当用活性掺合料取代部分水泥时表中的最大水灰比及最小水泥用量即为替代前的水灰比和水泥用量
2 术语、符号
fb—胶凝材料28d胶砂抗压强度实测值(MPa) m0—计算(基准)配合比每立方米混凝土的用量 (kg); γf—粉煤灰影响系数; γs—粒化高炉矿渣粉影响系数; Pt—六个试件中不少于4个未出现渗水时的最大水 压值(MPa); P—设计要求的抗渗等级值; Tt—试配时要求的坍落度值(mm); Tp—入泵时要求的坍落度值(mm) ΔT—试验测得的预计出机到泵送时间段内的坍落 度经时损失值(mm)。
f b f s fce
f、s ——粉煤灰(fly ash)影响系数和粒化高炉矿渣
粉(slag)影响系数, fce ——水泥(cement)28d胶砂抗压强度(MPa)。 ① 采用Ⅰ级粉煤灰宜取上限值。 ② 采用S75级粒化高炉矿渣粉宜取下限值,采用 S95级粒化高炉矿渣粉宜取上限值,采用S105级 粒化高炉矿渣粉可取上限值加0.05。 ③ 当超出表中的掺量时,粉煤灰和粒化高炉矿渣粉 影响系数应经试验确定。
最新混凝土配合比设计规程(JGJ_55-2011_)
3 基本规定(新增加)
3.0.2 混凝土配合比设计应采用工程实际使用 的原材料,并应满足国家现行标准的有关 要求;配合比设计应以干燥状态骨料为基 准,细骨料含水率应小于0.5%,粗骨料含 水率应小于0.2%。
• 我国长期以来一直在建设工程中采用以干 燥状态骨料为基准的混凝土配合比设计, 具有可操作性,应用情况良好。
• 当用活性掺合料取代部分水泥时,表中的最大水灰比及最 小水泥用量即为替代前的水灰比和水泥用量。
GB/T50476-2008 混凝土结构耐久性 设计规范中有关胶凝材料用量条款
3 基本规定(矿物掺合料最大掺量)
3 基本规定(修订前的规定)
环境条件 最大水灰比
最小水泥用量
素砼 钢砼 预砼 素砼 钢砼 预砼
一
—— 0.65 0.60 200 260 300
二a 0.70 0.60 0.60 225 280 300
二b 0.55 0.55 0.55 250 280 300
三
0.50 0.50 0.50 300 300 300
(维勃稠度可以合理表示坍落度很小甚至为 零的混凝土拌合物稠度,维勃稠度等级划 分为5个。)
2 术语、符号
等级 V0 V1 V2 V3 V4
维勃稠度(s) ≥31 30~21 20~11 10~6 5~3
2 术语、符号
2.1.3塑性混凝土:拌合物坍落度为10mm~ 90mm的混凝土。
2.1.4流动性的混凝土。
2 术语、符号
fb—胶凝材料28d胶砂抗压强度实测值(MPa)
m0(—k计g)算;(基准)配合比每立方米混凝土的用量
γf—粉煤灰影响系数; γs—粒化高炉矿渣粉影响系数; Pt—压六值个(试MP件a中)不;少于4个未出现渗水时的最大水 P—设计要求的抗渗等级值; Tt—试配时要求的坍落度值(mm); Tp—入泵时要求的坍落度值(mm) ΔT—试验测得的预计出机到泵送时间段内的坍落
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土的耐久性
• 耐久性的概念:砼抵抗所处环境的 作用破坏的能力,如温度、湿度, 化学侵蚀介质等。 • 环境对砼的作用: • ①物理作用如冻融、渗透以及磨蚀, 空蚀等; • ②化学作用,如各种酸、碱、侵蚀, 碳化、碱集料反应以及砼中的钢筋 锈蚀等。
耐久性类型
–1)混凝土的抗渗性 –2)混凝土的抗冻性 –3)混凝土抗侵蚀性 –4)混凝土的碳化 –5)混凝土的碱---骨料反应
–混凝土按功能及用途分类
»如结构混凝土、防水混 凝土、耐热混凝土、耐 酸混凝土、纤维混凝土 和聚合物混凝土。
混凝土的优点
一、作为主要的建筑材料之一,混凝土 的原料丰富,经久耐用,节约能源,价格 较金属、木材和塑料便宜。
二、其它长处: 1、因需配制;2、因需成形;
水泥选择
• (1)水泥品种选择 • 根据砼所要求的性能指标及所处的环
• 砂浆是由胶凝材料、细骨料加水拌 和后,经一定时间硬化而成的人造 复合固体材料,又称无粗骨料混凝 土。
分类
混凝土按照表观密度大小分为三类: • (1)重混凝土(0>2500Kg/M3) • (2)普通混凝土 (0=1900~2500Kg/M3) • (3)轻混凝土(0<1900Kg/M3) »①轻骨料混凝土 »②多孔混凝土(泡沫混凝土、 加气混凝土) »③无砂大孔混凝土
——按流动性分类:
干硬性混凝土 流动性混凝土 自流平(自密实)混凝土 泵送混凝土
混凝土按强度等级可分为:
»①普通混凝土:强度等级为 C7.5-C60;
»②高强混凝土:强度等级为 C60-000;
»③超高强混凝土:强度等级大 于C100。
——按胶凝材料分类:
水泥混凝土、石膏混凝土、沥青 混凝土、水玻璃混凝土、碱矿渣 混凝土、聚合物混凝土。
• 泵送剂——由高效减水剂、缓凝剂、 引气剂和增稠剂等复合制成。
• 抗冻剂——由防冻组分(降低水的冰 点)、减水组分、引气组分和早强组 分复合而成。
• 膨胀剂——使混凝土产生膨胀的外加 剂。
• 防水剂
矿物掺合料
是指在混凝土拌合物中掺入 量超过水泥质量的5%,在配合 比设计时,需要考虑体积或质 量变化的外加材料。如粉煤灰、 矿渣、硅灰、沸石粉等。
பைடு நூலகம் 减水剂
• a.在原配合比不变的条件下,可增大 混凝土拌合物的流动性,且不致降低 混凝土的强度。
• b.在保持流动性及水灰比不变的条件 下,可以减少用水量及水泥用量,节 约水泥。
• c.在保持流动性及水泥用量不变的条 件下,可以减少用水量,从而降低水 灰比,使混凝土的强度及耐久性得到 提高。
早强剂
»④砂率(sand percentage)
»⑤外加剂(减水剂、泵送剂)和 掺合料(粉煤灰)
2)环境的温度与湿度的影响
»环境的温度高,空气湿度小, 拌合物水分蒸发快,坍落度损 失大,坍落度小。
3)工艺对和易性(workability)影 响
»拌合好,塌落度(slump)大。
缺陷和裂缝:
• ①由于水泥的收缩,引起砂浆与粗骨料间 产生拉应力,产生裂缝;
• ②水泥的泌水使与集料间形成界面裂缝; • ③水泥水化热引起的裂缝; • ④多余水的蒸发留下的孔隙; • ⑤外力碰撞、振动不均匀,不密实产生的
裂缝(如拆模式时); • ⑥施工时不可能达到完全密实,留有孔隙;
影响混凝土强度的因素
–1)水泥强度等级和水灰比 –2)骨料的种类、质量(如泥 块含量)及数量 –3)湿度与温度的影响 –4)龄期的影响
提高混凝土耐久性的主要措施
1.合理选择水泥品种 2.增加砼密实度 ①W/C ②成型方法 ③ 集料级配(包括砂率)等 3.质量性能稳定的集料——针对碱—集 料反应尤其注意。 4.掺加矿物掺合料、引合剂、防渗剂等 5.砼表面处理(特别是裂缝防护) 6. 规定最小水泥用量
混凝土外加剂
• 外加剂:是在拌制混凝土过程中掺 入的用以改善混凝土性质的物质。 掺量很小。一般不大于水泥重量的 5%(膨胀剂例外,掺量>10%)
• (4)最大粒径与颗粒级配 –1)最大粒径 –2)颗粒级配(筛分析试验)
普通混凝土拌和物
一、 混凝土拌合物的和易性 • (1)和易性的概念(流动性、粘聚性 和保水性) • (2)和易性的检测(流动性的检测) »1)坍落度试验 »2)维勃稠度试验 »3)其它方法
影响和易性的主要因素
• 1)材料品种与用量的影响 »①水泥品种和细度:用粉煤灰水 泥拌制的混凝土流动性最好,保 水性和粘聚性也较好。 »②水泥浆数量:水泥浆数量不能 太多也不能太少 »③水灰比(单位用水量)
• (1) 密度、表观密度、堆积密度 • (2) 空隙率和填充率 • (3) 含水状态:全干、气干、饱
和面干、润湿四种状态
粗骨料
粒径大于4.75mm • (1)有害杂质含量(含泥量 、针片状 颗粒含量、碱骨料反应 ) • (2)颗粒形状及表面特征(碎石、卵 石)
• (3)强度和坚固性 –1)强度(抗压强度、压碎指标) –2)坚固性
境条件、砼工程特点而选择水泥。
• (2)水泥强度等级的选择 –一般强度混凝土,水泥强度等级一 般为混凝土强度等级的1.5-2倍。 –对高强度混凝土,水泥强度等级一 般为混凝土强度等级的1.0-1.5倍。 –对超高强混凝土,选用高强度等级 的水泥。
砂的粗细程度和颗粒级配
» 骨料颗粒级配 »筛分法
砂的物理性质
菏泽市预拌混凝土试验员培训班 混凝土 专题
2013-8-27
概念
• 混凝土是由胶凝材料、粗细 骨料(又称集料)加水拌和后, 经一定时间硬化而成的人造 复合固体材料,是世界上用 量最大的人工建筑材料。
• 其中水泥混凝土是最常用的一种混 凝土,简称混凝土,它由水泥、粗 骨料、细骨料、水按适当比例拌和 浇筑硬化成型。在硬化前则称之为 混凝土拌合物。
• 多用于加速砼硬化,缩短施工 周期,加快施工速度提高模板 周转率以及抢修工程
引气剂
• 使砼在搅拌过程中引入在量的均匀分布的 封闭的微小气泡,(20~1000um)。
• (1)改善砼和易性——滚珠作用; • (2)提高防渗、抗冻性(一定引气量范
围内); • (3)强度一般降低,但可以由减水作用
得到一定的补偿。
粉煤灰
• 粉煤灰是煤粉经高温燃烧后形成的 一种似火山灰质混合材料。它的化 学组成与黏土质相似,主要成分为 二氧化硅、三氧化二铝、三氧化二 铁、氧化钙和未燃尽炭。