第2讲初一相交线与平行线动点提高题压轴题
初一数学相交线与平行线知识点总结及压轴题练习(附答案解析)
初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)
难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)1.如图,//AD BC ,D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H .点F 是边AB 上一点.使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ∠=︒,则BEG ∠的度数为( )A .30︒B .40︒C .50︒D .60︒2.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E , 第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,⋯, 第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E . 若1n E ∠=度,那BEC ∠等于 度3.如图,//AB CD ,CF 平分DCG ∠,GE 平分CGB ∠交FC 的延长线于点E ,若34E ∠=︒,则B ∠的度数为 .4.如图,直线//a b ,A 是直线a 上一点,D 、E 分别是直线b 上的点,C 是AE 上一点,80ACD ∠=︒,//EG CD 交AD 于G ,F 是GE 上一点使FGC FCG ∠=∠,作CB 平分ACF ∠,则BCG ∠= .5.如图,已知//AB CD ,直线EF 分别交AB 、CD 于点A 、C ,CH 平分ACD ∠,点G 为CD 上一点,连接HA 、HG ,HC 平分AHG ∠,若42AHG ∠=︒,180HGD EAB ∠+∠=︒,则ACD ∠的度数是 ︒.6.如图,直线//MN PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .ABM ∠的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD PQ ⊥交PQ 于点D ,作A F A B⊥交PQ于点F ,AE 平分DAF ∠交PQ 于点E ,若45CAE ∠=︒,52ACB DAE ∠=∠,则ACD ∠的度数是 .7.探究:如图①,////AB CD EF ,试说明BCF B F ∠=∠+∠.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由. 解://AB CD ,(已知) 1B ∴∠=∠.( )同理可证,2F ∠=∠.12BCF ∠=∠+∠, BCF B F ∴∠=∠+∠.( )应用:如图②,//AB CD ,点F 在AB 、CD 之间,FE 与AB 交于点M ,FG 与CD 交于点N .若115EFG ∠=︒,55EMB ∠=︒,则DNG ∠的大小为 度.拓展:如图③,直线CD 在直线AB 、EF 之间,且////AB CD EF ,点G 、H 分别在直线AB 、EF 上,点Q 是直线CD 上的一个动点,且不在直线GH 上,连结QG 、QH .若70GQH ∠=︒,则AGQ EHQ ∠+∠= 度.8.综合与探究如图,已知//AM BN ,60A ∠=︒,点P 是射线AM 上一动点(与点A 不重合).BC ,BD 别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D . (1)求ABN ∠、CBD ∠的度数;根据下列求解过程填空. 解://AM BN ,180ABN A ∴∠+∠=︒60A ∠=︒, ABN ∴∠= , 120ABP PBN ∴∠+∠=︒,BC 平分ABP ∠,BD 平分PBN ∠, 2ABP CBP ∴∠=∠、PBN ∠= ,( )22120CBP DBP ∴∠+∠=︒, CBD CBP DBP ∴∠=∠+∠= .(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD ∠=∠时,直接写出ABC ∠的度数.9.已知直线12//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点,如图①,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有312∠+∠=∠这一相等关系?试说明理由;如图②,当动点P 在线段CD 之外且在CD 的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.10.课上教师呈现一个问题:已知:如图1,//AB CD ,EF AB ⊥于点O ,FG 交CD 于点P ,当130∠=︒时,求EFG ∠的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下: 辅助线:过点F 作//MN CD . 分析思路:①欲求EFG ∠的度数,由图可知只需转化为求2∠和3∠的度数之和; ②由辅助线作图可知,21∠=∠,从而由已知1∠的度数可得2∠的度数; ③由//AB CD ,//MN CD 推出//AB MN ,由此可推出34∠=∠; ④由已知EF AB ⊥,可得490∠=︒,所以可得3∠的度数; ⑤从而可求EFG ∠的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路. 辅助线: 分析思路:(2)请你根据丙同学所画的图形,求EFG ∠的度数. 11.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,若30EAF ∠=︒,40EDG ∠=︒,则AED ∠= ︒;(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则AED ∠、EAF ∠、EDG ∠之间满足怎样的关系,请说明你的结论;(3)如图3,DI 平分EDC ∠,交AE 于点K ,交AI 于点I ,且:1:2EAI BAI ∠∠=,22AED ∠=︒,20I ∠=︒,求EKD ∠的度数.12.已知,直线//AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠. (2)如图2,点P 在直线AB 、CD 之间,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,BAP ∠与DCP ∠的角平分线相交于点K ,AKC ∠与APC ∠有何数量关系?并说明理由.13.如图,已知:EF AC ⊥,垂足为点F ,DM AC ⊥,垂足为点M ,DM 的延长线交AB 于点B ,且1C ∠=∠,点N 在AD 上,且23∠=∠,试说明//AB MN .14.(1)如图①,90CEF ∠=︒,点B 在射线EF 上,//AB CD ,若130ABE ∠=︒,求C ∠的度数;(2)如图②,把“90CEF ∠=︒”改为“120CEF ∠=︒”,点B 在射线EF 上,//AB CD .猜想ABE ∠与C ∠的数量关系,并说明理由.15.如图1,已知//AB CD ,30B ∠=︒,120D ∠=︒; (1)若60E ∠=︒,则F ∠= ;(2)请探索E ∠与F ∠之间满足的数量关系?说明理由;(3)如图2,已知EP 平分BEF ∠,FG 平分EFD ∠,反向延长FG 交EP 于点P ,求P ∠的度数.16.已知直线12//l l ,直线3l 和直线1l 、2l 交于点C 和D ,点P 是直线3l 上一动点(1)如图1,当点P 在线段CD 上运动时,PAC ∠,APB ∠,PBD ∠之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出PAC ∠,APB ∠,PBD ∠之间的数量关系,不必写理由.17.(1)如图(1),已知任意三角形ABC ,过点C 作//DE AB ,求证:DCA A ∠=∠; (2)如图(1),求证:三角形ABC 的三个内角(即A ∠、B ∠、)ACB ∠之和等于180︒; (3)如图(2),求证:AGF AEF F ∠=∠+∠;(4)如图(3),//AB CD ,119CDE ∠=︒,GF 交DEB ∠的平分线EF 于点F ,150AGF ∠=︒,求F ∠.18.如图,已知直线12//l l ,且3l 和1l ,2l 分别交于A ,B 两点,4l 和1l ,2l 相交于C ,D 两点,点P 在直线AB 上,(1)当点P 在A ,B 两点间运动时,问1∠,2∠,3∠之间的关系是否发生变化?并说明理由;(2)如果点P 在A ,B 两点外侧运动时,试探究ACP ∠,BDP ∠,CPD ∠之间的关系,并说明理由.19.已知直线//AB CD ,(1)如图1,点E 在直线BD 上的左侧,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系是 .(2)如图2,点E 在直线BD 的左侧,BF ,DF 分别平分ABE ∠,CDE ∠,直接写出BFD ∠和BED ∠的数量关系是 .(3)如图3,点E 在直线BD 的右侧BF ,DF 仍平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.20.(1)如图1,//a b ,则12∠+∠=(2)如图2,//AB CD ,则123∠+∠+∠= ,并说明理由 (3)如图3,//a b ,则1234∠+∠+∠+∠=(4)如图4,//a b ,根据以上结论,试探究1234n ∠+∠+∠+∠+⋯+∠= (直接写出你的结论,无需说明理由)21.问题情境:(1)如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//)PE AD ,请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系.22.如图,AD 是ABC ∆的角平分线,点E 在BC 上.点G 在CA 的延长线上,EG 交AB 于点F ,AFG G ∠=∠,求证://GE AD .23.如图1,//AB CD ,直线EF 交AB 于点E ,交CD 于点F ,点G 在CD 上,点P 在直线EF 左侧、且在直线AB 和CD 之间,连接PE 、PG . (1)求证:EPG AEP PGC ∠=∠+∠;(2)连接EG ,若EG 平分PEF ∠,110AEP PGE ∠+∠=︒,12PGC EFC ∠=∠,求AEP ∠的度数;(3)如图2,若EF 平分PEB ∠,PGC ∠的平分线所在的直线与EF 相交于点H ,则EPG ∠与EHG ∠之间的数量关系为 .24.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4分别写出DCE ∠、AEC ∠、CDB ∠之间的数量关系(不需证明).25.如图 1 ,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上, 过点B 作BG AD ⊥,垂足为点G . (1) 求证:90MAG PBG ∠+∠=︒;(2) 若点C 在线段AD 上 (不 与A 、D 、G 重合) ,连接BC ,MAG ∠和PBC ∠的平分线交于点H ,请在图 2 中补全图形, 猜想并证明CBG ∠与AHB ∠的数量关系;(3) 若直线AD 的位置如图 3 所示, (2) 中的结论是否成立?若成立, 请证明;若不成立, 请直接写出CBG ∠与AHB ∠的数量关系 .26.已知:如图,点C 在AOB ∠的一边OA 上,过点C 的直线//DE OB ,CF 平分ACD ∠,CG CF ⊥于点C .(1)若40O ∠=︒,求ECF ∠的度数; (2)求证:CG 平分OCD ∠.27.完成下面的证明.已知:如图,//BC DE ,BE 、DF 分别是ABC ∠、ADE ∠的平分线. 求证:12∠=∠. 证明://BC DE ,(ABC ADE ∴∠=∠ ).BE 、DF 分别是ABC ∠、ADE ∠的平分线.132ABC ∴∠=∠,142ADE ∠=∠.34∴∠=∠.∴ // ( ).12(∴∠=∠ ).28.将一副三角板中的两根直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)若150BCD ∠=︒,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,//CD AB ,并简要说明理由.29.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.求证://DG BA .30.如图,已知12180∠+∠=︒,3B ∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.31.如图,已知//AB CD ,点E 在AC 的右侧,BAE ∠,DCE ∠的平分线相交于点F .探索AEC ∠与AFC ∠之间的等量关系,并证明你的结论.32.已知:如图,12∠=∠,34∠=∠,56∠=∠.求证://ED FB .33.操作探究:如图,对折长方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开:再一次折叠纸片,使点A 落在EF 上(设落地为)N ,并使折痕经过点B ,得到折痕BM ,连接BN 、MN ,请你猜想MBN ∠的度数是多少,并证明你的结论.34.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是/a ︒秒,灯B 转动的速度是/b ︒秒,且a 、b 满足2|3|(4)0a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.35.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数.(2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,⋯,1n B -,n B 都在射线AE 上,试求n AB O ∠的度数.36.请把下列证明过程补充完整.已知:如图,B ,C ,E 三点在同一直线上,A ,F ,E 三点在同一直线上,12E ∠=∠=∠,34∠=∠.求证://AB CD证明:2E ∠=∠(已知)∴ //(BC )3∴∠=∠ ( )34∠=∠(已知)4∴∠=∠ ( )12∠=∠(已知)12CAF CAF ∴∠+∠=∠+∠即BAF ∠=∠4∴∠=∠ (等量代换)∴ ( )37.如图所示,已知//AB CD ,分别探索下列四个图形中P ∠与A ∠,C ∠的关系.要求:(1)、(3)直接写出结论,(2)、(4)写出结论并说明理由.结论:(1) ;(2) ;(3) ;(4) .证明:(2)(4)38.如图,已知直线12//l l ,直线3l 和直线1l 、2l 交于点C 和D 、A 、B 两点分别在1l 和2l 上,直线3l 上有一动点P(1)如果P 点在C 、D 之间运动时,猜测PAC ∠,APB ∠,PBD ∠之间有什么关系,证明你的结论(2)若点P 在DC 的延长线上运动时,PAC ∠,APB ∠,PBD ∠之间的关系为(3)在(2)的条件下,PAC ∠和PBD ∠的角平分线相交于点Q ,探索APB ∠和AQB ∠的关系,并证明.39.已知如图,90COD ∠=︒,直线AB 与OC 交于点B ,与OD 交于点A ,射线OE 与射线AF 交于点G .(1)若OE 平分BOA ∠,AF 平分BAD ∠,42OBA ∠=︒,则OGA ∠= ;(2)若13GOA BOA ∠=∠,13GAD BAD ∠=∠,42OBA ∠=︒,则OGA ∠= ; (3)将(2)中的“42OBA ∠=︒”改为“OBA α∠=”,其它条件不变,求OGA ∠的度数.(用含α的代数式表示)(4)若OE 将BOA ∠分成1:2两部分,AF 平分BAD ∠,(3090)ABO αα∠=︒<<︒,求OGA ∠的度数.(用含α的代数式表示)40.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即//PQ MN,且∠∠=.BAM BAN:2:1(1)填空:BAN∠=︒;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠与BCD∠=︒,则在转动过程中,请探究BAC∠的数量∠交PQ于点D,且120ACDACD关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.41.如图,BG平分CBDCBD∠=︒,EF BG交AC于点F,100∠,E为BC的延长线上一点,//∠=︒,求EFC∠的度数.A2542.如图①,将一副直角三角板放在同一条直线AB上,其中30∠=OCD∠=︒,45ONM(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使30∠=︒,如图②,MN与BON∠的度数;CD相交于点E,求CEN(2)将图①中的三角尺OMN 绕点O 按每秒15︒的速度沿逆时针方向旋转一周,在旋转的过程中,在第 秒时,边MN 恰好与边CD 平行;在第 秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 43.我们知道同一平面内的两条直线有相交和平行两种位置关系.(1)观察与思考:如图1,若//AB CD ,点P 在AB 、CD 内部,BPD ∠、B ∠、D ∠之间的数量关系为 ,不必说明理由;(2)猜想与证明:如图2,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,利用(1)中的结论(可以直接套用)求BPD ∠、B ∠、D ∠、BQD ∠之间有何数量关系?并证明你的结论;(3)拓展与应用:如图3,设BF 交AC 于点M ,AE 交DF 于点N ,已知140AMB ∠=︒,105ANF ∠=︒.利用(2)中的结论直接写出B E F ∠+∠+∠的度数为 度,A ∠比F ∠大 度.44.已知:直线//a b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折弦,且90APB ∠<︒,Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1)若133∠=︒,74APB ∠=︒,则2∠= 度.(2)若Q ∠的一边与PA 平行,另一边与PB 平行,请探究Q ∠,1∠,2间满足的数量关系并说明理由.(3)若Q ∠的一边与PA 垂直,另一边与PB 平行,请直接写出Q ∠,1∠,2之间满足的数量关系.45.直线MN 与直线PQ 相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,若80AOB ∠=︒,已知AE 、BE 分别是BAO ∠和ABO ∠的角平分线,点A 、B 在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,若80AOB ∠=︒,已知AB 不平行CD ,AD 、BC 分别是BAP ∠和ABM ∠的角平分线,AD 、BC 的延长线交于点F ,点A 、B 在运动的过程中,F ∠= ;DE 、CE 又分别是ADC ∠和BCD ∠的角平分线,点A 、B 在运动的过程中,CED ∠的大小也不发生变化,其大小为:CED ∠= .(3)如图3,若90AOB ∠=︒,延长BA 至G ,已知BAO ∠、OAG ∠的角平分线与BOQ ∠的角平分线及其延长线相交于E 、F ,则EAF ∠= ;(4)如图3,若AF ,AE 分别是GAO ∠,BAO ∠的角平分线,90AOB ∠=︒,在AEF ∆中,如果有一个角是另一个角的4倍,则ABO ∠的度数= .46.在学习“相交线与平行线”一章时,课本中有一道关于潜望镜的拓广探索题,老师倡议班上同学分组开展相关的实践活动.小钰所在组上网查阅资料,制作了相关PPT 介绍给同学(图1、图2);小宁所在组制作了如图所示的潜望镜模型并且观察成功(图3).大家结合实践活动更好地理解了潜望镜的工作原理.(1)图4中,AB,CD代表镜子摆放的位置,动手制作模型时,应该保证AB与CD平行,入射光线与反射光线满足12∠=∠,34∠=∠,这样离开潜望镜的光线MN就与进入潜望镜的光线EF平行,即//MN EF.请完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).//AB CD(已知),2∴∠=∠().12∠=∠,34∠=∠(已知),1234(∴∠=∠=∠=∠).(2)在之后的实践活动总结中,老师进一步布置了一个任务:利用图5中的原理可以制作一个新的装置进行观察,那么在图5中方框位置观察到的物体“影像”的示意图为.A.B.C.D.47.已知,////AB CD EF,且CB平分ABF∠,CF平分BEF∠,请说明BC CF⊥的理由.解://AB E(已知)∴∠+∠=.CB平分ABF∠(已知)1 12ABF∴∠=∠同理,142BEF ∠=∠114()2ABF BEF ∴∠+∠=∠+∠= . 又//AB CD (已知)12∴∠=∠同理,34∠=∠1423∴∠+∠=∠+∠2390∴∠+∠=︒(等量代换)即90BCF ∠=︒BC CF ∴⊥ .48.如图,已知40ABC ∠=︒,射线DE 与AB 相交于点O ,且//DE BC .解答以下问题:(注EDF ∠为小于180︒的角)(1)画EDF ∠,使DF ∠的另一边//DF AB .请在如图①和图②中画出符合题意的图形,并求EDF ∠的度数.(2)如果EDF ∠的顶点D 在ABC ∠的内部,边//DE BC ,另一边//DF AB .请在如图③和图④中画出相应的图形,并使用量角器分别测量出ABC ∠与EDF ∠的度数后,直接写出ABC ∠与EDF ∠的关系,不必说明理由 .(3)如果EDF ∠的顶点D 在ABC ∠的内部,边DF BC ⊥,请在如图⑤中画出相应的图形,并使用量角器分别测量出ABC ∠与EDF ∠的度数后,直接写出ABC ∠与EDF ∠的关系,不必说明理由.49.如图(1),四边形ABCD 中,//AD BC ,点E 是线段CD 上一点,(1)说明:AEB DAE CBE ∠=∠+∠;(2)如图(2),当AE 平分DAC ∠,ABC BAC ∠=∠. ①说明:90ABE AEB ∠+∠=︒;。
第 2讲 初一相交线与平行线动点提高题压轴题
第2讲相交线与平行线动点提高题知识点:1、平行线得判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、平行线得性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4、平移:①平移前后得两个图形形状大小不变,位置改变。
②对应点得线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定得距离,图形得这种移动叫做平移平移变换,简称平移。
对应点:平移后得到得新图形中每一点,都就是由原图形中得某一点移动后得到得,这样得两个点叫做对应点。
动点型问题就是最近几年中考得一个热点题型,所谓“动点型问题”就是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动得一类开放性题目、解决这类问题得关键就是动中求静,灵活运用有关数学知识解决问题、关键:动中求静、在变化中找到不变得性质就是解决数学“动点”探究题得基本思路,这也就是动态几何数学问题中最核心得数学本质。
典型例题例1、(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°. 试判断AB与CD得位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3∠1=______.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.解(1):AB∥CD.理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.∵∠AEF=150°,∴∠EFH=30°,又∵EF⊥GF,∴∠HFG=90°30°=60°.又∵∠DGF=60°,∴∠HFG=∠DGF,∴HF∥CD,则AB∥CD;(2)延长ED交BC于点F.∵AB∥DE,∴∠BFE=∠ABC=70°,则∠CFE=180°∠BFD=110°,∴∠C=∠CDE∠CFE=147°110°=37°,故答案就是:37°;(3)延长DC交AB于点F,作△ACF得外角∠4.∵CD∥BE,∴∠DFB=∠3,又∵∠DFB+∠2+∠4=360°,∴∠2+∠3+∠4=360°,即∠2+∠3=360°∠4.∴∠2+∠3∠1=360°∠4∠1=360°180°=180°,故答案就是:180°;(4)延长BE交直线CD于点G.∵AB∥CD,∴∠ABE=∠BGD,又∵∠ABE=∠DCF,∴∠BGF=∠DCF,∴BE∥CF.例2、平面内得两条直线有相交与平行两种位置关系.(1)如图1若AB∥CD点P在AB、CD外部求证:∠BPD=∠B∠D;(2)将点P移到AB、CD内部如图2(1)中得结论就是否成立若成立说明理由:若不成立则∠BPD、∠B、∠D之间有何数量关系不必说明理由;(3)在图2中将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图3则∠BPD、∠B、∠D、∠BQD之间有何数量关系并证明您得结论;(4)在图4中若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°则n=______.解(1)∵AB∥CD,∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B∠D;(2)(1)中得结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠B+∠D;(3)∠BPD=∠B+∠D+∠BQD.理由如下:连结QP并延长到E,如图3,∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,∴∠BPD=∠B+∠D+∠BQD;(4)连结AG,如图4,∵∠B+∠F=∠BGA+∠FAG,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(52)×180°=6×90°,∴n=6.故答案为6.例3、如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)
难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)1.如图,//AD BC ,D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H .点F 是边AB 上一点.使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ∠=︒,则BEG ∠的度数为( )A .30︒B .40︒C .50︒D .60︒2.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E , 第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,⋯, 第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E . 若1n E ∠=度,那BEC ∠等于 度3.如图,//AB CD ,CF 平分DCG ∠,GE 平分CGB ∠交FC 的延长线于点E ,若34E ∠=︒,则B ∠的度数为 .4.如图,直线//a b ,A 是直线a 上一点,D 、E 分别是直线b 上的点,C 是AE 上一点,80ACD ∠=︒,//EG CD 交AD 于G ,F 是GE 上一点使FGC FCG ∠=∠,作CB 平分ACF ∠,则BCG ∠= .5.如图,已知//AB CD ,直线EF 分别交AB 、CD 于点A 、C ,CH 平分ACD ∠,点G 为CD 上一点,连接HA 、HG ,HC 平分AHG ∠,若42AHG ∠=︒,180HGD EAB ∠+∠=︒,则ACD ∠的度数是 ︒.6.如图,直线//MN PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .ABM ∠的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD PQ ⊥交PQ 于点D ,作A F A B⊥交PQ于点F ,AE 平分DAF ∠交PQ 于点E ,若45CAE ∠=︒,52ACB DAE ∠=∠,则ACD ∠的度数是 .7.探究:如图①,////AB CD EF ,试说明BCF B F ∠=∠+∠.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由. 解://AB CD ,(已知) 1B ∴∠=∠.( )同理可证,2F ∠=∠.12BCF ∠=∠+∠, BCF B F ∴∠=∠+∠.( )应用:如图②,//AB CD ,点F 在AB 、CD 之间,FE 与AB 交于点M ,FG 与CD 交于点N .若115EFG ∠=︒,55EMB ∠=︒,则DNG ∠的大小为 度.拓展:如图③,直线CD 在直线AB 、EF 之间,且////AB CD EF ,点G 、H 分别在直线AB 、EF 上,点Q 是直线CD 上的一个动点,且不在直线GH 上,连结QG 、QH .若70GQH ∠=︒,则AGQ EHQ ∠+∠= 度.8.综合与探究如图,已知//AM BN ,60A ∠=︒,点P 是射线AM 上一动点(与点A 不重合).BC ,BD 别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D . (1)求ABN ∠、CBD ∠的度数;根据下列求解过程填空. 解://AM BN ,180ABN A ∴∠+∠=︒60A ∠=︒, ABN ∴∠= , 120ABP PBN ∴∠+∠=︒,BC 平分ABP ∠,BD 平分PBN ∠, 2ABP CBP ∴∠=∠、PBN ∠= ,( )22120CBP DBP ∴∠+∠=︒, CBD CBP DBP ∴∠=∠+∠= .(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD ∠=∠时,直接写出ABC ∠的度数.9.已知直线12//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点,如图①,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有312∠+∠=∠这一相等关系?试说明理由;如图②,当动点P 在线段CD 之外且在CD 的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.10.课上教师呈现一个问题:已知:如图1,//AB CD ,EF AB ⊥于点O ,FG 交CD 于点P ,当130∠=︒时,求EFG ∠的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下: 辅助线:过点F 作//MN CD . 分析思路:①欲求EFG ∠的度数,由图可知只需转化为求2∠和3∠的度数之和; ②由辅助线作图可知,21∠=∠,从而由已知1∠的度数可得2∠的度数; ③由//AB CD ,//MN CD 推出//AB MN ,由此可推出34∠=∠; ④由已知EF AB ⊥,可得490∠=︒,所以可得3∠的度数; ⑤从而可求EFG ∠的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路. 辅助线: 分析思路:(2)请你根据丙同学所画的图形,求EFG ∠的度数. 11.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,若30EAF ∠=︒,40EDG ∠=︒,则AED ∠= ︒;(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则AED ∠、EAF ∠、EDG ∠之间满足怎样的关系,请说明你的结论;(3)如图3,DI 平分EDC ∠,交AE 于点K ,交AI 于点I ,且:1:2EAI BAI ∠∠=,22AED ∠=︒,20I ∠=︒,求EKD ∠的度数.12.已知,直线//AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠. (2)如图2,点P 在直线AB 、CD 之间,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,BAP ∠与DCP ∠的角平分线相交于点K ,AKC ∠与APC ∠有何数量关系?并说明理由.13.如图,已知:EF AC ⊥,垂足为点F ,DM AC ⊥,垂足为点M ,DM 的延长线交AB 于点B ,且1C ∠=∠,点N 在AD 上,且23∠=∠,试说明//AB MN .14.(1)如图①,90CEF ∠=︒,点B 在射线EF 上,//AB CD ,若130ABE ∠=︒,求C ∠的度数;(2)如图②,把“90CEF ∠=︒”改为“120CEF ∠=︒”,点B 在射线EF 上,//AB CD .猜想ABE ∠与C ∠的数量关系,并说明理由.15.如图1,已知//AB CD ,30B ∠=︒,120D ∠=︒; (1)若60E ∠=︒,则F ∠= ;(2)请探索E ∠与F ∠之间满足的数量关系?说明理由;(3)如图2,已知EP 平分BEF ∠,FG 平分EFD ∠,反向延长FG 交EP 于点P ,求P ∠的度数.16.已知直线12//l l ,直线3l 和直线1l 、2l 交于点C 和D ,点P 是直线3l 上一动点(1)如图1,当点P 在线段CD 上运动时,PAC ∠,APB ∠,PBD ∠之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出PAC ∠,APB ∠,PBD ∠之间的数量关系,不必写理由.17.(1)如图(1),已知任意三角形ABC ,过点C 作//DE AB ,求证:DCA A ∠=∠; (2)如图(1),求证:三角形ABC 的三个内角(即A ∠、B ∠、)ACB ∠之和等于180︒; (3)如图(2),求证:AGF AEF F ∠=∠+∠;(4)如图(3),//AB CD ,119CDE ∠=︒,GF 交DEB ∠的平分线EF 于点F ,150AGF ∠=︒,求F ∠.18.如图,已知直线12//l l ,且3l 和1l ,2l 分别交于A ,B 两点,4l 和1l ,2l 相交于C ,D 两点,点P 在直线AB 上,(1)当点P 在A ,B 两点间运动时,问1∠,2∠,3∠之间的关系是否发生变化?并说明理由;(2)如果点P 在A ,B 两点外侧运动时,试探究ACP ∠,BDP ∠,CPD ∠之间的关系,并说明理由.19.已知直线//AB CD ,(1)如图1,点E 在直线BD 上的左侧,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系是 .(2)如图2,点E 在直线BD 的左侧,BF ,DF 分别平分ABE ∠,CDE ∠,直接写出BFD ∠和BED ∠的数量关系是 .(3)如图3,点E 在直线BD 的右侧BF ,DF 仍平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.20.(1)如图1,//a b ,则12∠+∠=(2)如图2,//AB CD ,则123∠+∠+∠= ,并说明理由 (3)如图3,//a b ,则1234∠+∠+∠+∠=(4)如图4,//a b ,根据以上结论,试探究1234n ∠+∠+∠+∠+⋯+∠= (直接写出你的结论,无需说明理由)21.问题情境:(1)如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//)PE AD ,请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系.22.如图,AD 是ABC ∆的角平分线,点E 在BC 上.点G 在CA 的延长线上,EG 交AB 于点F ,AFG G ∠=∠,求证://GE AD .23.如图1,//AB CD ,直线EF 交AB 于点E ,交CD 于点F ,点G 在CD 上,点P 在直线EF 左侧、且在直线AB 和CD 之间,连接PE 、PG . (1)求证:EPG AEP PGC ∠=∠+∠;(2)连接EG ,若EG 平分PEF ∠,110AEP PGE ∠+∠=︒,12PGC EFC ∠=∠,求AEP ∠的度数;(3)如图2,若EF 平分PEB ∠,PGC ∠的平分线所在的直线与EF 相交于点H ,则EPG ∠与EHG ∠之间的数量关系为 .24.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4分别写出DCE ∠、AEC ∠、CDB ∠之间的数量关系(不需证明).25.如图 1 ,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上, 过点B 作BG AD ⊥,垂足为点G . (1) 求证:90MAG PBG ∠+∠=︒;(2) 若点C 在线段AD 上 (不 与A 、D 、G 重合) ,连接BC ,MAG ∠和PBC ∠的平分线交于点H ,请在图 2 中补全图形, 猜想并证明CBG ∠与AHB ∠的数量关系;(3) 若直线AD 的位置如图 3 所示, (2) 中的结论是否成立?若成立, 请证明;若不成立, 请直接写出CBG ∠与AHB ∠的数量关系 .26.已知:如图,点C 在AOB ∠的一边OA 上,过点C 的直线//DE OB ,CF 平分ACD ∠,CG CF ⊥于点C .(1)若40O ∠=︒,求ECF ∠的度数; (2)求证:CG 平分OCD ∠.27.完成下面的证明.已知:如图,//BC DE ,BE 、DF 分别是ABC ∠、ADE ∠的平分线. 求证:12∠=∠. 证明://BC DE ,(ABC ADE ∴∠=∠ ).BE 、DF 分别是ABC ∠、ADE ∠的平分线.132ABC ∴∠=∠,142ADE ∠=∠.34∴∠=∠.∴ // ( ).12(∴∠=∠ ).28.将一副三角板中的两根直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)若150BCD ∠=︒,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,//CD AB ,并简要说明理由.29.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.求证://DG BA .30.如图,已知12180∠+∠=︒,3B ∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.31.如图,已知//AB CD ,点E 在AC 的右侧,BAE ∠,DCE ∠的平分线相交于点F .探索AEC ∠与AFC ∠之间的等量关系,并证明你的结论.32.已知:如图,12∠=∠,34∠=∠,56∠=∠.求证://ED FB .33.操作探究:如图,对折长方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开:再一次折叠纸片,使点A 落在EF 上(设落地为)N ,并使折痕经过点B ,得到折痕BM ,连接BN 、MN ,请你猜想MBN ∠的度数是多少,并证明你的结论.34.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是/a ︒秒,灯B 转动的速度是/b ︒秒,且a 、b 满足2|3|(4)0a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.35.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数.(2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,⋯,1n B -,n B 都在射线AE 上,试求n AB O ∠的度数.36.请把下列证明过程补充完整.已知:如图,B ,C ,E 三点在同一直线上,A ,F ,E 三点在同一直线上,12E ∠=∠=∠,34∠=∠.求证://AB CD证明:2E ∠=∠(已知)∴ //(BC )3∴∠=∠ ( )34∠=∠(已知)4∴∠=∠ ( )12∠=∠(已知)12CAF CAF ∴∠+∠=∠+∠即BAF ∠=∠4∴∠=∠ (等量代换)∴ ( )37.如图所示,已知//AB CD ,分别探索下列四个图形中P ∠与A ∠,C ∠的关系.要求:(1)、(3)直接写出结论,(2)、(4)写出结论并说明理由.结论:(1) ;(2) ;(3) ;(4) .证明:(2)(4)38.如图,已知直线12//l l ,直线3l 和直线1l 、2l 交于点C 和D 、A 、B 两点分别在1l 和2l 上,直线3l 上有一动点P(1)如果P 点在C 、D 之间运动时,猜测PAC ∠,APB ∠,PBD ∠之间有什么关系,证明你的结论(2)若点P 在DC 的延长线上运动时,PAC ∠,APB ∠,PBD ∠之间的关系为(3)在(2)的条件下,PAC ∠和PBD ∠的角平分线相交于点Q ,探索APB ∠和AQB ∠的关系,并证明.39.已知如图,90COD ∠=︒,直线AB 与OC 交于点B ,与OD 交于点A ,射线OE 与射线AF 交于点G .(1)若OE 平分BOA ∠,AF 平分BAD ∠,42OBA ∠=︒,则OGA ∠= ;(2)若13GOA BOA ∠=∠,13GAD BAD ∠=∠,42OBA ∠=︒,则OGA ∠= ; (3)将(2)中的“42OBA ∠=︒”改为“OBA α∠=”,其它条件不变,求OGA ∠的度数.(用含α的代数式表示)(4)若OE 将BOA ∠分成1:2两部分,AF 平分BAD ∠,(3090)ABO αα∠=︒<<︒,求OGA ∠的度数.(用含α的代数式表示)40.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即//PQ MN,且∠∠=.BAM BAN:2:1(1)填空:BAN∠=︒;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠与BCD∠=︒,则在转动过程中,请探究BAC∠的数量∠交PQ于点D,且120ACDACD关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.41.如图,BG平分CBDCBD∠=︒,EF BG交AC于点F,100∠,E为BC的延长线上一点,//∠=︒,求EFC∠的度数.A2542.如图①,将一副直角三角板放在同一条直线AB上,其中30∠=OCD∠=︒,45ONM(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使30∠=︒,如图②,MN与BON∠的度数;CD相交于点E,求CEN(2)将图①中的三角尺OMN 绕点O 按每秒15︒的速度沿逆时针方向旋转一周,在旋转的过程中,在第 秒时,边MN 恰好与边CD 平行;在第 秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 43.我们知道同一平面内的两条直线有相交和平行两种位置关系.(1)观察与思考:如图1,若//AB CD ,点P 在AB 、CD 内部,BPD ∠、B ∠、D ∠之间的数量关系为 ,不必说明理由;(2)猜想与证明:如图2,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,利用(1)中的结论(可以直接套用)求BPD ∠、B ∠、D ∠、BQD ∠之间有何数量关系?并证明你的结论;(3)拓展与应用:如图3,设BF 交AC 于点M ,AE 交DF 于点N ,已知140AMB ∠=︒,105ANF ∠=︒.利用(2)中的结论直接写出B E F ∠+∠+∠的度数为 度,A ∠比F ∠大 度.44.已知:直线//a b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折弦,且90APB ∠<︒,Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1)若133∠=︒,74APB ∠=︒,则2∠= 度.(2)若Q ∠的一边与PA 平行,另一边与PB 平行,请探究Q ∠,1∠,2间满足的数量关系并说明理由.(3)若Q ∠的一边与PA 垂直,另一边与PB 平行,请直接写出Q ∠,1∠,2之间满足的数量关系.45.直线MN 与直线PQ 相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,若80AOB ∠=︒,已知AE 、BE 分别是BAO ∠和ABO ∠的角平分线,点A 、B 在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,若80AOB ∠=︒,已知AB 不平行CD ,AD 、BC 分别是BAP ∠和ABM ∠的角平分线,AD 、BC 的延长线交于点F ,点A 、B 在运动的过程中,F ∠= ;DE 、CE 又分别是ADC ∠和BCD ∠的角平分线,点A 、B 在运动的过程中,CED ∠的大小也不发生变化,其大小为:CED ∠= .(3)如图3,若90AOB ∠=︒,延长BA 至G ,已知BAO ∠、OAG ∠的角平分线与BOQ ∠的角平分线及其延长线相交于E 、F ,则EAF ∠= ;(4)如图3,若AF ,AE 分别是GAO ∠,BAO ∠的角平分线,90AOB ∠=︒,在AEF ∆中,如果有一个角是另一个角的4倍,则ABO ∠的度数= .46.在学习“相交线与平行线”一章时,课本中有一道关于潜望镜的拓广探索题,老师倡议班上同学分组开展相关的实践活动.小钰所在组上网查阅资料,制作了相关PPT 介绍给同学(图1、图2);小宁所在组制作了如图所示的潜望镜模型并且观察成功(图3).大家结合实践活动更好地理解了潜望镜的工作原理.(1)图4中,AB,CD代表镜子摆放的位置,动手制作模型时,应该保证AB与CD平行,入射光线与反射光线满足12∠=∠,34∠=∠,这样离开潜望镜的光线MN就与进入潜望镜的光线EF平行,即//MN EF.请完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).//AB CD(已知),2∴∠=∠().12∠=∠,34∠=∠(已知),1234(∴∠=∠=∠=∠).(2)在之后的实践活动总结中,老师进一步布置了一个任务:利用图5中的原理可以制作一个新的装置进行观察,那么在图5中方框位置观察到的物体“影像”的示意图为.A.B.C.D.47.已知,////AB CD EF,且CB平分ABF∠,CF平分BEF∠,请说明BC CF⊥的理由.解://AB E(已知)∴∠+∠=.CB平分ABF∠(已知)1 12ABF∴∠=∠同理,142BEF ∠=∠114()2ABF BEF ∴∠+∠=∠+∠= . 又//AB CD (已知)12∴∠=∠同理,34∠=∠1423∴∠+∠=∠+∠2390∴∠+∠=︒(等量代换)即90BCF ∠=︒BC CF ∴⊥ .48.如图,已知40ABC ∠=︒,射线DE 与AB 相交于点O ,且//DE BC .解答以下问题:(注EDF ∠为小于180︒的角)(1)画EDF ∠,使DF ∠的另一边//DF AB .请在如图①和图②中画出符合题意的图形,并求EDF ∠的度数.(2)如果EDF ∠的顶点D 在ABC ∠的内部,边//DE BC ,另一边//DF AB .请在如图③和图④中画出相应的图形,并使用量角器分别测量出ABC ∠与EDF ∠的度数后,直接写出ABC ∠与EDF ∠的关系,不必说明理由 .(3)如果EDF ∠的顶点D 在ABC ∠的内部,边DF BC ⊥,请在如图⑤中画出相应的图形,并使用量角器分别测量出ABC ∠与EDF ∠的度数后,直接写出ABC ∠与EDF ∠的关系,不必说明理由.49.如图(1),四边形ABCD 中,//AD BC ,点E 是线段CD 上一点,(1)说明:AEB DAE CBE ∠=∠+∠;(2)如图(2),当AE 平分DAC ∠,ABC BAC ∠=∠. ①说明:90ABE AEB ∠+∠=︒;②如图(3)若ACD ∠的平分线与BA 的延长线交于点F ,且60F ∠=︒,求BCD ∠.50.如图,已知射线//CD AB ,110C ABD ∠=∠=︒,E ,F 在CD 上,且满足EAD EDA ∠=∠,AF 平分CAE ∠.(1)求FAD ∠的度数;(2)若向右平行移动BD ,其它条件不变,那么:ADC AEC ∠∠的值是否发生变化?若变化,找出其中规律;若不变,求出这个比值;(3)在向右平行移动BD 的过程中,是否存在某种情况,使AFC ADB ∠=∠?若存在,请求出ADB ∠度数;若不存在,说明理由.难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)参考答案与试题解析一.选择题(共1小题)1.如图,//AD BC ,D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H .点F 是边AB 上一点.使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ∠=︒,则BEG ∠的度数为( )A .30︒B .40︒C .50︒D .60︒【解答】解:设FBE FEB α=∠=,则2AFE α∠=,FEH ∠的角平分线为EG ,设GEH GEF β∠=∠=, //AD BC ,180ABC BAD ∴∠+∠=︒,而D ABC ∠=∠,180D BAD ∴∠+∠=︒,//AB CD ∴,100DEH ∠=︒,则100CEG FAE ∠=∠=︒,1801802AEF AED BEG β∠=︒-∠-∠=︒-,在AEF ∆中,10021802180αβ︒++︒-=︒,故40βα-=︒,而40BEG FEG FEB βα∠=∠-∠=-=︒, 故选:B .二.填空题(共5小题)2.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E , 第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,⋯, 第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E . 若1n E ∠=度,那BEC ∠等于 2n 度【解答】解:如图①,过E 作//EF AB ,//AB CD , ////AB EF CD ∴,1B ∴∠=∠,2C ∠=∠, 12BEC ∠=∠+∠, BEC ABE DCE ∴∠=∠+∠;如图②,ABE ∠和DCE ∠的平分线交点为1E ,111111222CE B ABE DCE ABE DCE BEC ∴∠=∠+∠=∠+∠=∠.1ABE ∠和1DCE ∠的平分线交点为2E ,22211111112224BE C ABE DCE ABE DCE CE B BEC ∴∠=∠+∠=∠+∠=∠=∠;如图②,2ABE ∠和2DCE ∠的平分线,交点为3E ,33322211112228BE C ABE DCE ABE DCE CE B BEC ∴∠=∠+∠=∠+∠=∠=∠;⋯以此类推,12n nE BEC ∠=∠. ∴当1n E ∠=度时,BEC ∠等于2n 度.故答案为:2n .3.如图,//AB CD ,CF 平分DCG ∠,GE 平分CGB ∠交FC 的延长线于点E ,若34E ∠=︒,则B ∠的度数为 68︒ .【解答】解:如图,延长DC 交BG 于M .由题意可以假设CDF GCF x ∠=∠=,CGE MGE y ∠=∠=.则有22x y GMC x y E =+∠⎧⎨=+∠⎩①②,①-②2⨯可得:2GMC E ∠=∠,34E ∠=︒, 68GMC ∴∠=︒, //AB CD , 68GMC B ∴∠=∠=︒,故答案为68︒.4.如图,直线//a b ,A 是直线a 上一点,D 、E 分别是直线b 上的点,C 是AE 上一点,80ACD ∠=︒,//EG CD 交AD 于G ,F 是GE 上一点使FGC FCG ∠=∠,作CB 平分ACF ∠,则BCG ∠= 40︒ .【解答】解:设BCD y ∠=,FGC FCG x ∠=∠=,//CD EG ,DCG FGC x ∴∠=∠=, CB 平分ACF ∠, ACB BCF ∴∠=∠,80y x y x ∴︒-=++, 2280x y ∴+=︒, 40x y ∴+=︒, 40BCG x y ∴∠=+=︒,故答案为40︒5.如图,已知//AB CD ,直线EF 分别交AB 、CD 于点A 、C ,CH 平分ACD ∠,点G 为CD 上一点,连接HA 、HG ,HC 平分AHG ∠,若42AHG ∠=︒,180HGD EAB ∠+∠=︒,则ACD ∠的度数是 106 ︒.【解答】解:HC 平分AHG ∠,且42AHG ∠=︒,21CHG ∴∠=︒, HC 平分ACG ∠,12HCG ACG ∴∠=∠,180CAB EAB ∠+∠=︒,180HGD EAB ∠+∠=︒, BAC HGD ∴∠=∠,//AB CD ,180BAC ACD ∴∠+∠=︒,设ACD α∠=,则1122MCG ACD α∠==,180BAC HGD α∠=∠=︒-, HGD ∠是CHG ∆的外角,HGD CHG HCG ∴∠=∠+∠,即1180212αα︒-=︒+,解得106α=︒,106ACD ∴∠=︒.故答案为:106︒.6.如图,直线//MN PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .ABM ∠的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD PQ ⊥交PQ 于点D ,作A F A B⊥交PQ于点F ,AE 平分DAF ∠交PQ 于点E ,若45CAE ∠=︒,52ACB DAE ∠=∠,则ACD ∠的度数是 27︒ .【解答】解:设DAE α∠=,则EAF α∠=,52ACB α∠=,AD PQ ⊥,AF AB ⊥,90BAF ADE ∴∠=∠=︒,90BAE BAF EAF α∴∠=∠+∠=︒+,90CEA ADE DAE α∠=∠+∠=︒+, BAE CEA ∴∠=∠,//MN PQ ,BC 平分ABM ∠,BCE CBM CBA ∴∠=∠=∠,又360ABC BCE CEA BAE ∠+∠+∠+∠=︒,180BCE CEA ∴∠+∠=︒, //AE BC ∴,ACB CAE ∴∠=∠,即5452α=︒,18α∴=︒, 18DAE ∴∠=︒,Rt ACD ∴∆中,9090(4518)27ACD CAD ∠=︒-∠=︒-︒+︒=︒,故答案为:27︒.三.解答题(共44小题)7.探究:如图①,////AB CD EF ,试说明BCF B F ∠=∠+∠.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由. 解://AB CD ,(已知) 1B ∴∠=∠.( 两直线平行内错角相等 )同理可证,2F ∠=∠.12BCF ∠=∠+∠, BCF B F ∴∠=∠+∠.( )应用:如图②,//AB CD ,点F 在AB 、CD 之间,FE 与AB 交于点M ,FG 与CD 交于点N .若115EFG ∠=︒,55EMB ∠=︒,则DNG ∠的大小为 度.拓展:如图③,直线CD 在直线AB 、EF 之间,且////AB CD EF ,点G 、H 分别在直线AB 、EF 上,点Q 是直线CD 上的一个动点,且不在直线GH 上,连结QG 、QH .若70GQH ∠=︒,则AGQ EHQ ∠+∠= 度.【解答】解:探究:://AB CD,∴∠=∠.(两直线平行内错角相等)B1同理可证,2∠=∠.F∠=∠+∠,BCF12∴∠=∠+∠.(等量代换)BCF B F故答案为:两直线平行,内错角相等,等量代换.应用:由探究可知:MFN AMF CNF∠=∠+∠,1155560∴∠=∠=︒-︒=︒.CNF DNG故答案为60.拓展:如图③中,当的Q在直线GH的右侧时,36070290∠+∠=︒-︒=︒,AGQ EHQ当点Q'在直线GH的左侧时,70∠'+∠'=∠'=︒.AGQ EHQ GQ H故答案为70或290.8.综合与探究如图,已知//∠=︒,点P是射线AM上一动点(与点A不重合).BC,BDAAM BN,60别平分ABP∠,分别交射线AM于点C,D.∠和PBN(1)求ABN∠的度数;根据下列求解过程填空.∠、CBD解://AM BN,∴∠+∠=︒180ABN A∠=︒,60AABN ∴∠= 120︒ , 120ABP PBN ∴∠+∠=︒,BC 平分ABP ∠,BD 平分PBN ∠, 2ABP CBP ∴∠=∠、PBN ∠= ,( )22120CBP DBP ∴∠+∠=︒, CBD CBP DBP ∴∠=∠+∠= .(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD ∠=∠时,直接写出ABC ∠的度数.【解答】解:(1)//AM BN ,180ABN A ∴∠+∠=︒, 60A ∠=︒, 120ABN ∴∠=︒120ABP PBN ∴∠+∠=︒,BC 平分ABP ∠,BD 平分PBN ∠,2ABP CBP ∴∠=∠、2PBN PBD ∠=∠,(角平分线的定义), 22120CBP DBP ∴∠+∠=︒, 60CBD CBP DBP ∴∠=∠+∠=︒.故答案为120︒,2PBD ∠,角平分线的定义,60︒.(2)APB ∠与ADB ∠之间数量关系是:2APB ADB ∠=∠.不随点P 运动变化. 理由是://AM BN ,APB PBN ∴∠=∠,ADB DBN ∠=∠(两直线平行内错角相等), BD 平分PBN ∠(已知), 2PBN DBN ∴∠=∠(角平分线的定义), 22APB PBN DBN ADB ∴∠=∠==∠=∠(等量代换), 即2APB ADB ∠=∠. (3)结论:30ABC ∠=︒.理由://AM BN ,ACB CBN ∴∠=∠,当ACB ABD ∠=∠时,则有CBN ABD ∠=∠,ABC CBD CBD DBN ∴∠+∠=∠+∠,ABC DBN ∴∠=∠,由(1)可知120ABN ∠=︒,60CBD ∠=︒,60ABC DBN ∴∠+∠=︒, 30ABC ∴∠=︒9.已知直线12//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点,如图①,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有312∠+∠=∠这一相等关系?试说明理由;如图②,当动点P 在线段CD 之外且在CD 的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.【解答】解:(1)312∠+∠=∠成立,理由如下: 如图①,过点P 作1//PE l ,1AEP ∴∠=∠,12//l l , 2//PE l ∴,3BPE ∴∠=∠,2BPE APE ∠+∠=∠, 312∴∠+∠=∠;(2)312∠+∠=∠不成立,新的结论为312∠-∠=∠,理由为:如图②,过P 作1//PE l ,1APE ∴∠=∠,12//l l ,2//PE l ∴,3BPE ∴∠=∠,2BPE APE ∠-∠=∠,312∴∠-∠=∠.10.课上教师呈现一个问题:已知:如图1,//AB CD ,EF AB ⊥于点O ,FG 交CD 于点P ,当130∠=︒时,求EFG∠的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:辅助线:过点F 作//MN CD .分析思路:①欲求EFG ∠的度数,由图可知只需转化为求2∠和3∠的度数之和;②由辅助线作图可知,21∠=∠,从而由已知1∠的度数可得2∠的度数; ③由//AB CD ,//MN CD 推出//AB MN ,由此可推出34∠=∠;④由已知EF AB ⊥,可得490∠=︒,所以可得3∠的度数;⑤从而可求EFG ∠的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路. 辅助线: 过点P 作//PN EF 交AB 于点N分析思路:(2)请你根据丙同学所画的图形,求EFG ∠的度数.【解答】解:(1)辅助线:过点P 作//PN EF 交AB 于点N .分析思路:①欲求EFG ∠的度数,由辅助线作图可知,EFG NPG ∠=∠,因此,只需转化为求NPG ∠的度数;②欲求NPG ∠的度数,由图可知只需转化为求1∠和2∠的度数和;③又已知1∠的度数,所以只需求出2∠的度数;④由已知EF AB ⊥,可得490∠=︒;⑤由//PN EF ,可推出34∠=∠;//AB CD 可推出23∠=∠,由此可推24∠=∠,所以可得2∠的度数;⑥从而可以求出EFG ∠的度数.(2)如图,过点O 作//ON FG ,//ON FG ,130EFG EON ONC ∴∠=∠∠=∠=︒,//AB CD ,30ONC BON ∴∠=∠=︒,EF AB ⊥,90EOB ∴∠=︒,9030120EFG EON EOB BON ∴∠=∠=∠+∠=︒+︒=︒.11.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,若30EAF ∠=︒,40EDG ∠=︒,则AED ∠= 70 ︒;(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则AED ∠、EAF ∠、EDG ∠之间满足怎样的关系,请说明你的结论;(3)如图3,DI 平分EDC ∠,交AE 于点K ,交AI 于点I ,且:1:2EAI BAI ∠∠=,22AED ∠=︒,20I ∠=︒,求EKD ∠的度数.【解答】解:(1)如图,延长DE 交AB 于H ,//AB CD ,40D AHE ∴∠=∠=︒,AED ∠是AEH ∆的外角,304070AED A AHE ∴∠=∠+∠=︒+︒=︒,故答案为:70;(2)EAF AED EDG ∠=∠+∠.理由://AB CD ,EAF EHC ∴∠=∠,EHC ∠是DEH ∆的外角,EHG AED EDG ∴∠=∠+∠,EAF AED EDG ∴∠=∠+∠;(3):1:2EAI BAI ∠∠=,∴设EAI α∠=,则3BAE α∠=,22AED ∠=︒,20I ∠=︒,DKE AKI ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAI KIA AKI ∠+∠+∠=︒, 2EDK α∴∠=-︒, DI 平分EDC ∠,224CDE EDK α∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即32224αα=︒+-︒,解得18α=︒,16EDK ∴∠=︒,∴在DKE ∆中,1801622142EKD ∠=︒-︒-︒=︒.12.已知,直线//AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠.(2)如图2,点P 在直线AB 、CD 之间,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,BAP ∠与DCP ∠的角平分线相交于点K ,AKC ∠与APC ∠有何数量关系?并说明理由.【解答】解:(1)如图1,过P 作//PE AB ,//AB CD ,////PE AB CD ∴,APE BAP ∴∠=∠,CPE DCP ∠=∠,602080APC APE CPE BAP DCP ∴∠=∠+∠=∠+∠=︒+︒=︒;(2)12AKC APC ∠=∠. 理由:如图2,过K 作//KE AB ,//AB CD ,////KE AB CD ∴,AKE BAK ∴∠=∠,CKE DCK ∠=∠,AKC AKE CKE BAK DCK ∴∠=∠+∠=∠+∠,过P 作//PF AB ,同理可得,APC BAP DCP ∠=∠+∠,BAP ∠与DCP ∠的角平分线相交于点K ,1111()2222BAK DCK BAP DCP BAP DCP APC ∴∠+∠=∠+∠=∠+∠=∠, 12AKC APC ∴∠=∠;(3)12AKC APC ∠=∠. 理由:如图3,过K 作//KE AB ,//AB CD ,////KE AB CD ∴,BAK AKE ∴∠=∠,DCK CKE ∠=∠,AKC AKE CKE BAK DCK ∴∠=∠-∠=∠-∠,过P 作//PF AB ,同理可得,APC BAP DCP ∠=∠-∠,BAP ∠与DCP ∠的角平分线相交于点K ,1111()2222BAK DCK BAP DCP BAP DCP APC ∴∠-∠=∠-∠=∠-∠=∠, 12AKC APC ∴∠=∠.13.如图,已知:EF AC ⊥,垂足为点F ,DM AC ⊥,垂足为点M ,DM 的延长线交AB于点B ,且1C ∠=∠,点N 在AD 上,且23∠=∠,试说明//AB MN .【解答】证明:EF AC ⊥,DM AC ⊥,90CFE CMD ∴∠=∠=︒(垂直定义), //EF DM ∴(同位角相等,两直线平行), 3CDM ∴∠=∠(两直线平行,同位角相等), 32∠=∠(已知), 2CDM ∴∠=∠(等量代换), //MN CD ∴(内错角相等,两直线平行), AMN C ∴∠=∠(两直线平行,同位角相等), 1C ∠=∠(已知), 1AMN ∴∠=∠(等量代换), //AB MN ∴(内错角相等,两直线平行).14.(1)如图①,90CEF ∠=︒,点B 在射线EF 上,//AB CD ,若130ABE ∠=︒,求C ∠的度数;(2)如图②,把“90CEF ∠=︒”改为“120CEF ∠=︒”,点B 在射线EF 上,//AB CD .猜想ABE ∠与C ∠的数量关系,并说明理由.【解答】解:(1)如图①,过E 作//EK AB ,则1180ABE ∠+∠=︒, 118050ABE ∴∠=︒-∠=︒,90CEF ∠=︒,290140∴∠=︒-∠=︒,//AB CD ,//EK AB ,//EK CD ∴,240C ∴∠=∠=︒;(2)60ABE C ∠-∠=︒,理由:如图②,过E 作//EK AB ,则1180ABE ∠+∠=︒, 1180ABE ∴∠=︒-∠,//AB CD ,//EK AB ,//EK CD ∴,2C ∴∠=∠,12120CEF ∠=∠+∠=︒,即180120ABE C ︒-∠+∠=︒, 18012060ABE C ∴∠-∠=︒-︒=︒.15.如图1,已知//AB CD ,30B ∠=︒,120D ∠=︒;(1)若60E ∠=︒,则F ∠= 90︒ ;(2)请探索E ∠与F ∠之间满足的数量关系?说明理由;(3)如图2,已知EP 平分BEF ∠,FG 平分EFD ∠,反向延长FG 交EP 于点P ,求P ∠的度数.【解答】解:(1)如图1,分别过点E ,F 作//EM AB ,//FN AB , ////EM AB FN ∴,30B BEM ∴∠=∠=︒,MEF EFN ∠=∠,又//AB CD ,//AB FN ,//CD FN ∴,180D DFN ∴∠+∠=︒,又120D ∠=︒,60DFN ∴∠=︒,30BEF MEF ∴∠=∠+︒,60EFD EFN ∠=∠+︒, 60EFD MEF ∴∠=∠+︒3090EFD BEF ∴∠=∠+︒=︒;故答案为:90︒;(2)如图1,分别过点E ,F 作//EM AB ,//FN AB , ////EM AB FN ∴,30B BEM ∴∠=∠=︒,MEF EFN ∠=∠,又//AB CD ,//AB FN ,//CD FN ∴,180D DFN ∴∠+∠=︒,又120D ∠=︒,60DFN ∴∠=︒,30BEF MEF ∴∠=∠+︒,60EFD EFN ∠=∠+︒, 60EFD MEF ∴∠=∠+︒,30EFD BEF ∴∠=∠+︒;(3)如图2,过点F 作//FH EP ,由(2)知,30EFD BEF ∠=∠+︒,设2BEF x ∠=︒,则(230)EFD x ∠=+︒, EP 平分BEF ∠,GF 平分EFD ∠,12PEF BEF x ∴∠=∠=︒,1(15)2EFG EFD x ∠=∠=+︒, //FH EP ,PEF EFH x ∴∠=∠=︒,P HFG ∠=∠,15HFG EFG EFH ∠=∠-∠=︒,15P ∴∠=︒.16.已知直线12//l l ,直线3l 和直线1l 、2l 交于点C 和D ,点P 是直线3l 上一动点(1)如图1,当点P 在线段CD 上运动时,PAC ∠,APB ∠,PBD ∠之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出PAC ∠,APB ∠,PBD ∠之间的数量关系,不必写理由.【解答】解:(1)APB PAC PBD ∠=∠+∠, 如图1,过点P 作1//PE l ,APE PAC ∴∠=∠,12//l l ,2//PE l ∴,BPE PBD ∴∠=∠,APE BPE PAC PBD ∴∠+∠=∠+∠, APB PAC PBD ∴∠=∠+∠;(2)不成立,如图2:PAC APB PBD ∠=∠+∠,理由:过点P 作1//PE l ,APE PAC ∴∠=∠,12//l l ,2//PE l ∴,BPE PBD ∴∠=∠,APB APE BPE PAC PBD ∠=∠-∠=∠-∠,PAC APB PBD ∴∠=∠+∠;如图3:PBD PAC APB ∠=∠+∠,理由:过点P 作1//PE l ,APE PAC ∴∠=∠,12//l l ,2//PE l ∴,BPE PBD ∴∠=∠,APB BPE APE PBD PAC =∠-∠=∠-∠,PBD PAC APB ∴∠=∠+∠.17.(1)如图(1),已知任意三角形ABC ,过点C 作//DE AB ,求证:DCA A ∠=∠;(2)如图(1),求证:三角形ABC 的三个内角(即A ∠、B ∠、)ACB ∠之和等于180︒;(3)如图(2),求证:AGF AEF F ∠=∠+∠;(4)如图(3),//AB CD ,119CDE ∠=︒,GF 交DEB ∠的平分线EF 于点F ,150AGF ∠=︒,求F ∠.【解答】证明:(1)//DE BC ,DCA A ∴∠=∠;(2)如图1所示,在ABC ∆中,//DE BC ,1B ∴∠=∠,2C ∠=∠(内错角相等). 12180BCA ∠+∠+∠=︒,180A B C ∴∠+∠+∠=︒.即三角形的内角和为180︒;(3)180AGF FGE ∠+∠=︒,由(2)知,180GEF EG FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(4)//AB CD ,119CDE ∠=︒,119DEB ∴∠=︒,61AED ∠=︒, GF 交DEB ∠的平分线EF 于点F ,59.5DEF ∴∠=︒,120.5AEF ∴∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.18.如图,已知直线12//l l ,且3l 和1l ,2l 分别交于A ,B 两点,4l 和1l ,2l 相交于C ,D 两点,点P 在直线AB 上,(1)当点P 在A ,B 两点间运动时,问1∠,2∠,3∠之间的关系是否发生变化?并说明理由;(2)如果点P 在A ,B 两点外侧运动时,试探究ACP ∠,BDP ∠,CPD ∠之间的关系,并说明理由.【解答】证明:(1)如图1,过点P 作1//PQ l ,1//PQ l ,14∴∠=∠(两直线平行,内错角相等), 1//PQ l ,12//l l (已知),2//PQ l ∴(平行于同一条直线的两直线平行),52∴∠=∠(两直线平行,内错角相等), 345∠=∠+∠,312∴∠=∠+∠(等量代换);(2)如图2,过P 点作//PF BD 交CD 于F 点,//AC BD ,//PF AC ∴,ACP CPF ∴∠=∠,BDP DPF ∠=∠,CPD DPF CPF BDP ACP ∴∠=∠-∠=∠-∠;同理,如图③,CPD ACP BDP ∠=∠-∠;。
第2章相交线与平行线 题型解读7 压轴题型:几何动态问题-北师大版七年级数学下册
M21EDCBA《相交线与平行线》题型解读7 压轴题型:几何动态问题【方法梳理】1.题型特点:题目出现点动、线动、图动(或不确定)的情形;2.思路与方法:①“解题思路的延续性”----复制粘贴+略作修改;②注意题中出现的数学典型模型;③注意分类讨论情形;【典型例题】例1.(1)如图1,AB ∥CD ,试说明∠B+∠D=∠BED(2)如果图1中点E 的位置发生变化,如图2、3、4所示,那么∠B 、∠D 、∠BED 三者之间又有什么关系?请说明理由。
解析:(1)已知AB ∥CD ,说明此题应运用平行线的性质来解题。
但要应用平行线的性质,必须符合“三线”情况,即有一条直线与两条平行线都相交,此题图中没有这样一条直线,所以要添辅助线,构造“三线”。
证明:延长线段BE ,交直线CD 于点M因为AB ∥DC ,所以∠B=∠1(内错角相等)又因为∠BED+∠2=180°(邻补角),∠1+∠2+∠D=180°(三角形内角和)21EDCBA21M EDCBA4213EDCBA所以∠BED=∠1+∠D (补角性质)所以∠BED=∠B+∠D (等量代换)(2)当E 点运动到直线AB 之上时,此时有“三线”图形,无需添加辅助线,直接应用平行线性质即可。
证明:因为AB ∥DC ,所以∠D=∠1(内错角相等)又因为∠1+∠2=180°(邻补角),∠B+∠2+∠E=180°(三角形内角和)所以∠1=∠B+∠E (补角性质)所以∠D=∠B+∠E (等量代换)(3)当E 点运动至图3时,由于没有“三线”图形,所以需要添加辅助线构造“三线”情形,才能运用平行线的性质。
证明:延长线段ED ,交直线AB 于点M因为AB ∥DC ,所以∠2=∠1(内错角相等)又因为∠EDC+∠2=180°(邻补角),∠1+∠B+∠E=180°(三角形内角和)所以∠EDC+∠2=∠1+∠B+∠E (等量代换)所以∠EDC=∠B+∠E (等式性质1)(4)当E 点运动至图4时,由于没有“三线”图形,所以需要添加辅助线构造“三线”情形,才能运用平行线的性质。
七年级下册数学(浙教版)相交线与平行线动点提高题
相交线与平行线动点提高题知识点:1、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
>>>>>>>>>>>典型例题<<<<<<<<<【例1】(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.试判断AB和CD的位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.【例2】平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,求证:∠BPD=∠B-∠D;(2)将点P移到AB、CD内部,如图2,(1)中的结论是否成立?若成立,说明理由:若不成立,则∠BPD、∠B、∠D之间有何数量关系?不必说明理由;(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(4)在图4中,若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°,则n=______.【例3】如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
相交线与平行线动点压轴题
相交线与平行线动点压轴题
相交线与平行线动点压轴题是一道涉及几何学的难题。
题目要求在一个平面上给定一条相交线和一条平行线,以及一个动点,要求将该点移动到平行线上,且保证它在这个过程中所经过的所有位置都与相交线垂直。
解决这道题需要用到一些几何学的基本知识,如垂线、平行线等。
首先,我们可以通过画图来观察这个过程,发现所有经过的点是在相交线上的。
因此,我们可以将动点向相交线移动,直到它落在相交线上,然后再将它沿着相交线移动到平行线上即可。
这一过程中,我们需要找到动点到相交线的垂线,以及相交线上对应的点,再用这个对应的点来确定动点在平行线上的位置。
这道题的解法并不复杂,但需要一定的几何学基础和思维能力。
通过解决这样的问题,可以帮助我们更好地理解几何学的概念和原理,从而提高我们的数学素养。
- 1 -。
第-2讲---初一相交线与平行线动点提高题压轴题(汇编)
第2讲相交线与平行线动点提高题知识点:1、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
动点型问题是最近几年中考的一个热点题型,所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
典型例题例1.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.试判断AB和CD 的位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.解(1):AB∥CD.理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.∵∠AEF=150°,∴∠EFH=30°,又∵EF⊥GF,∴∠HFG=90°-30°=60°.又∵∠DGF=60°,∴∠HFG=∠DGF,∴HF∥CD,则AB∥CD;(2)延长ED交BC于点F.∵AB∥DE,∴∠BFE=∠ABC=70°,则∠CFE=180°-∠BFD=110°,∴∠C=∠CDE-∠CFE=147°-110°=37°,故答案是:37°;(3)延长DC交AB于点F,作△ACF的外角∠4.∵CD∥BE,∴∠DFB=∠3,又∵∠DFB+∠2+∠4=360°,∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.∴∠2+∠3-∠1=360°-∠4-∠1=360°-180°=180°,故答案是:180°;(4)延长BE交直线CD于点G.∵AB∥CD,∴∠ABE=∠BGD,又∵∠ABE=∠DCF,∴∠BGF=∠DCF,∴BE∥CF.例2.平面内的两条直线有相交和平行两种位置关系.(1)如图1若AB∥CD点P在AB、CD外部求证:∠BPD=∠B-∠D;(2)将点P移到AB、CD内部如图2(1)中的结论是否成立若成立说明理由:若不成立则∠BPD、∠B、∠D之间有何数量关系不必说明理由;(3)在图2中将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图3则∠BPD、∠B、∠D、∠BQD之间有何数量关系并证明你的结论;(4)在图4中若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°则n=______.解(1)∵AB∥CD,∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B-∠D;(2)(1)中的结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B ,∠2=∠D ,∴∠BPD=∠B+∠D ;(3)∠BPD=∠B+∠D+∠BQD .理由如下:连结QP 并延长到E ,如图3,∵∠1=∠B+∠BQP ,∠2=∠D+∠DQP ,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP ,∴∠BPD=∠B+∠D+∠BQD ;(4)连结AG ,如图4,∵∠B+∠F=∠BGA+∠FAG ,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,∴n=6.故答案为6.例3.如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
初一下册数学-相交线与平行线-难题-提高题-中考题
初一下册数学-相交线与平行线-难题-提高题-中考题1.根据题目描述,需要在角钢上截去一个缺口使其弯成120°的钢架。
缺口的角度应该是60度(120度-60度=60度)。
2.根据题目描述,矩形ABCD沿EF对折后使两部分重合。
由于对折后两部分重合,因此∠AEF=∠FEC=50°。
3.根据题目描述,将三角尺的直角顶点放在直尺的一边上,且∠1=30°,∠2=50°。
根据三角形内角和公式可得,∠3=100°。
4.1) 当动点P落在第①部分时,由于直线AC∥BD,因此∠PAC和∠PBD是同旁内角,即∠PAC=∠PBD。
又因为∠APB是一条直线的内角,因此∠APB=180°。
因此,∠APB=∠PAC+∠PBD。
2) 当动点P落在第②部分时,由于P点在直线AC上,因此∠PAC=180°-∠ACB。
同理,由于P点在直线BD上,因此∠PBD=180°-∠CBD。
因此,∠APB=∠PAC+∠PBD成立。
3) 当动点P在第③部分时,由于直线AC∥BD,因此∠PAC和∠PBD是同旁内角,即∠PAC=∠PBD。
又因为∠APB是一条直线的内角,因此∠APB=180°。
由于P点在第③部分,因此∠ACB和∠CBD是同旁外角,即∠ACB=∠CBD。
因此,∠PAC=∠PBD=180°-∠ACB=180°-∠CBD。
因此,∠APB=2∠PAC成立。
7.根据题目描述,已知∠1=55°,∠3=75°,且光线在平面镜AB和CD之间来回反射。
由于光线的入射角等于反射角,因此∠2=∠4=75°。
根据三角形内角和公式可得,∠5=55°。
由于∠1和∠5是同旁内角,因此∠2=∠6=55°。
8.根据题目描述,刀柄外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1、∠2.由于刀柄外形是一个直角梯形,因此∠1=90°。
(完整版)初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F (在两条直线的同一旁,第三条直线的同一侧)内错角Z (在两条直线内部,位于第三条直线两侧)同旁内角U (在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
&点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为______________ 或__________14、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
相交线与平行线动点压轴题
相交线与平行线动点压轴题1. 介绍在数学几何中,相交线与平行线动点压轴题是一类常见的几何题型。
它涉及到直线的相交和平行性质,以及动点在图形中运动的规律。
采用不同的数学方法和技巧,我们可以解决这类题目并推导出相关的结论。
2. 相交线与平行线的概念在几何学中,我们常常遇到直线与直线之间的关系。
直线可以相交,也可以平行。
以下是相交线与平行线的概念:2.1 相交线当两条直线在平面上有一个公共点时,我们称这两条直线相交。
相交线有以下性质:•相交线的公共点称为交点。
•两个交点可以确定一条直线。
•如果两条直线仅有一个交点,则这两条直线称为相交于一点的直线。
2.2 平行线当两条直线在平面上没有任何一个公共点时,我们称这两条直线平行。
平行线有以下性质:•平行线的斜率相等。
•平行线之间的距离保持不变。
•平行线永远不会相交。
3. 动点的概念与性质在几何学中,我们经常使用动点来求解几何问题。
动点是在平面上不断变动的点,其位置可以随着某个条件或规律的变化而改变。
动点的性质如下: #### 3.1 动点的轨迹动点在平面上运动时,它所经过的位置的集合称为动点的轨迹。
动点的轨迹可以是一条线段、一条曲线、或者是一个封闭图形。
3.2 动点在图形中的运动规律当动点在图形中运动时,它的位置随着时间或某个条件的变化而改变。
动点在图形中的运动规律可以是直线运动,也可以是曲线运动。
我们可以通过观察和分析动点的运动规律,推导出图形的性质和结论。
4. 解决相交线与平行线动点压轴题的方法和技巧解决相交线与平行线动点压轴题可以采用以下方法和技巧:4.1 观察和推理根据图形的性质和已知条件,通过观察和推理来解决问题。
可以利用相交线和平行线的性质,以及动点在图形中的运动规律,推导出结论。
4.2 利用几何图形的变化当动点在图形中运动时,图形的性质可能发生变化。
通过观察图形的变化,可以得出一些结论。
可以利用图形的对称性、相似性、等距性等性质来解决问题。
4.3 利用坐标系和方程通过建立坐标系,利用直线的斜率和方程的性质,来解决相交线与平行线动点压轴题。
第 2讲 初一相交线与平行线动点提高题压轴题
第2讲相交线与平行线动点提高题知识点:1、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
4、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
动点型问题是最近几年中考的一个热点题型,所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
典型例题例1.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.?试判断AB和CD的位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)(3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案)(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.解(1):AB∥CD.理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.∵∠AEF=150°,∴∠EFH=30°,又∵EF⊥GF,∴∠HFG=90°-30°=60°.又∵∠DGF=60°,∴∠HFG=∠DGF,∴HF∥CD,则AB∥CD;(2)延长ED交BC于点F.∵AB∥DE,∴∠BFE=∠ABC=70°,则∠CFE=180°-∠BFD=110°,∴∠C=∠CDE-∠CFE=147°-110°=37°,故答案是:37°;(3)延长DC交AB于点F,作△ACF的外角∠4.∵CD∥BE,∴∠DFB=∠3,又∵∠DFB+∠2+∠4=360°,∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.∴∠2+∠3-∠1=360°-∠4-∠1=360°-180°=180°,故答案是:180°;(4)延长BE交直线CD于点G.∵AB∥CD,∴∠ABE=∠BGD,又∵∠ABE=∠DCF,∴∠BGF=∠DCF,∴BE∥CF.例2.平面内的两条直线有相交和平行两种位置关系.(1)如图1若AB∥CD点P在AB、CD外部求证:∠BPD=∠B-∠D;(2)将点P移到AB、CD内部如图2(1)中的结论是否成立若成立说明理由:若不成立则∠BPD、∠B、∠D之间有何数量关系不必说明理由;(3)在图2中将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q如图3则∠BPD、∠B、∠D、∠BQD之间有何数量关系并证明你的结论;(4)在图4中若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°则n=______.解(1)∵AB∥CD,∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B-∠D;(2)(1)中的结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠B+∠D;(3)∠BPD=∠B+∠D+∠BQD.理由如下:连结QP并延长到E,如图3,∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,∴∠BPD=∠B+∠D+∠BQD ;(4)连结AG ,如图4,∵∠B+∠F=∠BGA+∠FAG ,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,∴n=6.故答案为6.例3.如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴∠ A+∠ B+∠ C+∠ D+∠ E+∠ F+∠G=∠ A+∠FAG+∠ C+∠ D+∠ E+∠BAG+∠ G=( 5-2 )× 180° =
6× 90 °,
∴n=6.
故答案为 6.
例 3. 如图,直线 AC∥ BD,连结 AB,直线 AC、BD及线段 AB把平面分成①、②、③、④四个
部分,规定:线上各点不属于任何部分。当动点
(3) 当动点 P 落在第③部分时,全面探究∠ PAC、∠ APB、∠ PBD之间的关系,并写出动点 P
的具体位置和相应的结论。选择其中一种结论加以证明。
③A
C
③A
C
③A
C
②
P①
②
①
②
①
B
④
D
Hale Waihona Puke (1)解法一:如图 9- 1
延长 BP交直线 AC于点 E
∵ AC∥BD , ∴ ∠PEA= ∠PBD .
∵ ∠APB = ∠PAE + ∠PEA,
解( 1)∵ AB∥ CD,
∴∠ B=∠ BOD, 而∠ BOD=∠BPD+∠ D, ∴∠ B=∠ BPD+∠ D, 即∠ BPD=∠B- ∠ D; (2)( 1)中的结论不成立,∠ 作 PQ∥ AB,如图 2, ∵AB∥ CD, ∴AB∥ PQ∥CD,
BPD=∠ B+∠ D.
文案大全
标准实用
∴∠ 1=∠ B,∠ 2=∠ D,
解( 1): AB∥ CD. 理由:如答图,过点 F 作 FH∥AB,则∠ AEF+∠ EFH=180°. ∵∠ AEF=150°, ∴∠ EFH=30°, 又∵ EF⊥ GF, ∴∠ HFG=90° -30 ° =60°. 又∵∠ DGF=60°, ∴∠ HFG=∠DGF,
∴HF∥ CD,
文案大全
补。
4、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。
平移: 在平面内, 将一个图形沿某个方向移动一定的距离, 图形的这种移动叫做平移平
移变换,简称平移。
对应点: 平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样
的两个点叫做对应点。 动点型问题是最近几年中考的一个热点题型,
所谓“动点型问题”是指题设图形中存在一个或多个动点
, 它们在线段、射线或弧线上运动
的一类开放性题目 . 解决这类问题的关键是动中求静 , 灵活运用有关数学知识解决问题 .
关键 : 动中求静 . 在变化中找到不变的性质是解决数学“动点”探究题的基本思路
, 这也是动
态几何数学问题中最核心的数学本质。
典型例题 例 1. ( 1)如图( 1),EF⊥ GF,垂足为 F,∠ AEF=150°,∠ DGF=60°. 试判断 AB和 CD 的位置关系,并说明理由. (2)如图( 2), AB∥ DE,∠ ABC=70°,∠ CDE=147°,∠ C=______.(直接给出答案) (3)如图( 3), CD∥ BE,则∠ 2+∠ 3- ∠ 1=______.(直接给出答案) (4)如图( 4), AB∥ CD,∠ ABE=∠ DCF,求证: BE∥ CF.
(1)如图 1 若 AB∥ CD 点 P 在 AB、 CD外部 求证:∠ BPD=∠ B- ∠D; (2)将点 P 移到 AB、 CD内部 如图 2 ( 1)中的结论是否成立 若成立 说明理由:若 不成立 则∠ BPD、∠ B、∠ D 之间有何数量关系 不必说明理由; (3)在图 2 中 将直线 AB 绕点 B 逆时针方向旋转一定角度交直线 CD于点 Q 如图 3 则∠ BPD、∠ B、∠ D、∠ BQD之间有何数量关系 并证明你的结论; (4)在图 4 中 若∠ A+∠ B+∠ C+∠ D+∠E+∠ F+∠G=n× 90° 则 n=______.
∴∠ BPD=∠B+∠ D;
(3)∠ BPD=∠ B+∠ D+∠ BQD.理由如下:
连结 QP并延长到 E,如图 3,
∵∠ 1=∠ B+∠ BQP,∠ 2=∠ D+∠DQP,
∴∠ 1+∠ 2=∠ B+∠ BQP+∠ D+∠ DQP,
∴∠ BPD=∠B+∠ D+∠BQD;
(4)连结 AG,如图 4,
∵∠ B+∠ F=∠ BGA+∠FAG,
∴ ∠APB = ∠PAC + ∠PBD .
解法二:如图 9- 2
过点 P 作 FP∥AC ,
∴ ∠PAC= ∠APF .
∵ AC∥BD , ∴ FP∥BD .
B
④
D
(第 5 题图 )
∴ ∠ FPB =∠ PBD. ∴ ∠ APB=∠ APF+∠ FPB=∠ PAC + ∠ PBD.
P落在某个部分时,连结 PA、PB,构成
∠ PAC、∠ APB、∠ PBD三个角。 ( 提示:有公共端点的两条重合的射线所组成的角是
0° )
(1) 当动点 P 落在第①部分时,求证:∠ APB=∠ PAC+∠ PBD;
(2) 当动点 P 落在第②部分时,∠ APB=∠ PAC+∠ PBD是否成立 ( 直接回答成立或不成立 ) ?
标准实用
则 AB∥ CD; (2)延长 ED交 BC于点 F. ∵AB∥ DE, ∴∠ BFE=∠ABC=70°,则∠ CFE=180° - ∠BFD=110°, ∴∠ C=∠ CDE-∠ CFE=147° -110 ° =37°, 故答案是: 37°; (3)延长 DC交 AB于点 F,作△ ACF的外角∠ 4. ∵CD∥ BE, ∴∠ DFB=∠3, 又∵∠ DFB+∠ 2+∠ 4=360°, ∴∠ 2+∠ 3+∠ 4=360°,即∠ 2+∠ 3=360° - ∠ 4. ∴∠ 2+∠ 3- ∠ 1=360° - ∠ 4- ∠ 1=360° -180 ° =180°, 故答案是: 180°; (4)延长 BE 交直线 CD于点 G. ∵AB∥ CD, ∴∠ ABE=∠BGD, 又∵∠ ABE=∠ DCF, ∴∠ BGF=∠DCF, ∴BE∥ CF. 例 2. 平面内的两条直线有相交和平行两种位置关系.
标准实用
第 2 讲 相交线与平行线动点提高题
知识点:
1、 平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。
③同旁内角互补,两直线
平行。
2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
3、 平行线的性质:
①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互