衡水中学真题集:2020年普通高等学校招生全国统一考试模拟数学试题三文
2020届河北省衡水中学高三模拟(三)数学(文)试题
(1)求椭圆 的方程.
(2)不经过原点 的直线 与 平行且与 交于 , 两点,记直线 , 的斜率分别为 , ,证明: 为定值.
21.已知函数 ( ).
(1)讨论 的单调性.
(2)证明:当 时, ( ).
22.在直角坐标系 中,直线 的参数方程为 ( 为参数).以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
【详解】
由 得, ,即 ,
所以 .
故选:D.
【点睛】
本题主要考查由复数相等求参数的问题,熟记复数的乘法运算法则即可,属于基础题型.
2.D
【解析】
【分析】
先求得集合U、A,再利用补集的运算可得选项.
Hale Waihona Puke 【详解】因为 , 或 ,所以 .
故选:D.
【点睛】
本题考查集合的补集运算,属于基础题.
3.A
【解析】
【分析】
A. B. C. D.
8.甲、乙、丙、丁四人参加完机器人设计编程比赛,当问到四人谁得第一时,甲说:“是乙或丙获得第一名”;乙说:“甲、丙都未获得第一名”;丙说:“我获得第一名”;丁说:“是乙获得第一名”.已知他们四人中只有两人说的是真话,根据以上信息可以判断得第一名的人是()
A.甲B.乙C.丙D.丁
评卷人
得分
四、解答题
17.已知 的内角 , , 的对边分别为 , , ,且满足 .
(1)求 ;
(2)若 , 的面积为 ,求 的周长.
18.如图,矩形 所在平面垂直于直角梯形 所在平面, , , , , , , 分别是 , 的中点.
(1)证明: 平面 ;
河北省衡水中学2020届高三押题卷III文数学试题(含解析答案)
2019-2020年普通高等学校招生全国统一考试模拟试题文科数学(Ⅲ)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则为()A. B. C. D.2. 已知是虚数单位,,且的共轭复数为,则在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知平面向量,的夹角为,且,,则()A. 1B.C. 2D.4. 已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A. B. C. D.5. 已知实数,满足则的最小值为()A. 0B.C.D.6. 若表示不超过的最大整数,则图中的程序框图运行之后输出的结果为()A. 48920B. 49660C. 49800D. 518677. 数列满足,(),则()A. B. C. D.8. 《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A. 2B. 4C. 5D. 69. 某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形(如图(2)),其中,,则该几何体的侧面积及体积为()A. 24,B. 32,C. 48,D. 64,10. 已知函数()的最小正周期为,且,则()A. B. C. D.11. 已知双曲线(,)的左、右焦点分别为,,点在双曲线的右支上,且(),,双曲线的离心率为,则()A. B. C. D. 学。
科。
网...12. 已知函数若关于的方程恰有四个不相等的实数根,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在锐角中,角,所对的边长分别为,,若,则_________.14. 如图所示,在棱长为2的正方体中,,分别是,的中点,那么异面直线和所成角的余弦值等于__________.15. 若,都是正数,且,则的最小值为__________.16. 已知函数若函数有3个零点,则实数的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角,,的对边分别是,,,且. (1)求角的大小;(2)已知等差数列的公差不为零,若,且,,成等比数列,求的前项和.18. 如图,将直角三角形绕直角边旋转构成圆锥,四边形是的内接矩形,为母线的中点,.(1)求证:平面;(2)当时,求点到平面的距离.19. 在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生表二:女生(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)由表中统计数据填写下面的列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.参考公式:,其中.参考数据:20. 已知椭圆:()的上、下两个焦点分别为,,过的直线交椭圆于,两点,且的周长为8,椭圆的离心率为.(1)求椭圆的标准方程;(2)已知为坐标原点,直线:与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.21. 已知函数(,).(1)如果曲线在点处的切线方程为,求,的值;(2)若,,关于的不等式的整数解有且只有一个,求的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),在以坐标原点为极点、轴的非负半轴为极轴建立的极坐标系中,圆的极坐标方程为.(1)求直线被圆截得的弦长;(2)若的坐标为,直线与圆交于,两点,求的值.23. 选修4-5:不等式选讲已知(为常数).(1)若,求实数的取值范围;(2)若的值域为,且,求实数的取值范围.2019-2020年普通高等学校招生全国统一考试模拟试题文科数学(Ⅲ)解析版第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则为()A. B. C. D.【答案】D【解析】由题得:所以为2. 已知是虚数单位,,且的共轭复数为,则在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】故在复平面内对应的点在第一象限3. 已知平面向量,的夹角为,且,,则()A. 1B.C. 2D.【答案】A【解析】根据条件:,∴,∴,故选A.4. 已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A. B. C. D.【答案】B【解析】命题p:,为,又为真命题的充分不必要条件为,故5. 已知实数,满足则的最小值为()A. 0B.C.D.【答案】D【解析】作出可行域:所以当取B时目标函数取得最小值-4-1=-56. 若表示不超过的最大整数,则图中的程序框图运行之后输出的结果为()A. 48920B. 49660C. 49800D. 51867【答案】C【解析】根据题意:表示不超过的最大整数,且所以该程序运行后输出的结果中是:39个0与40个1,40个2,40 个3,……,40个49,个50的和,所以输出的结果为学.科.网...7. 数列满足,(),则()A. B. C. D.【答案】D【解析】因为数列满足,(),所以所以是公比为2的等比数列,所以8. 《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A. 2B. 4C. 5D. 6【答案】B【解析】由题得:诗词达人有8人,诗词能手有16人,诗词爱好者有16人,分层抽样抽选10名学生,所以诗词能手有人9. 某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形(如图(2)),其中,,则该几何体的侧面积及体积为()A. 24,B. 32,C. 48,D. 64,【答案】C【解析】有三视图可知该几何体为一个四棱柱:因为它的的直观图时矩形,所以它的俯视图直观图面积为3,所以它的俯视图面积为,它的俯视图是边长为3的菱形,棱柱高为4,所以侧面积为,体积为10. 已知函数()的最小正周期为,且,则()A. B. C. D.【答案】B【解析】由题可知:由最小正周期为2可得又代入可得:,,,则11. 已知双曲线(,)的左、右焦点分别为,,点在双曲线的右支上,且(),,双曲线的离心率为,则()A. B. C. D.【答案】B【解析】由得,由双曲线的定义可知:,,由双曲线的离心率可得双曲线的焦距为,在中由勾股定理可得:得点睛:首先要熟悉双曲线的定义,求解离心率主要是建立等式关系,可根据几何关系一般是找勾股定理或代坐标或利用正余弦定理建立等式12. 已知函数若关于的方程恰有四个不相等的实数根,则实数的取值范围是()A. B. C. D.【答案】A【解析】作出函数图像:又直线恒过(0,-0.5)当直线经过点A时恰好三个交点此时斜率k=0.5,当直线与lnx相切时为第二个临界位置,设切点为,故切线方程为:过(0,-0.5)得故选D点睛:本题解题关键是画出函数的草图,然后找到符合题意的临界值求解即可第Ⅱ卷(共90分)学.科.网...二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在锐角中,角,所对的边长分别为,,若,则_________.【答案】【解析】由正弦定理根据边化角可得:,所以14. 如图所示,在棱长为2的正方体中,,分别是,的中点,那么异面直线和所成角的余弦值等于__________.【答案】【解析】以AD,DC,DD1建立空间直角坐标系,则:得直线和所成角的余弦值等于15. 若,都是正数,且,则的最小值为__________.【答案】【解析】由题可知:,故==当且仅当x=y时取得等号16. 已知函数若函数有3个零点,则实数的取值范围是__________.【答案】【解析】作出函数图像可知:当时有三个交点,故实数的取值范围是点睛:本题关键是画出函数图形,结合图像可得符合题意的范围即从而得出结论三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角,,的对边分别是,,,且. (1)求角的大小;(2)已知等差数列的公差不为零,若,且,,成等比数列,求的前项和.【答案】(1).(2).【解析】试题分析:(1)根据正弦定理边化角:得从而求出A(2)由,,成等比数列得,然后根据等差数列通项公式和性质可得求出d然后再用裂项相消求和即可试题解析:(1)由正弦定理可得,从而可得,即.又为三角形的内角,所以,于是,又为三角形的内角,所以.(2)设的公差为,因为,且,,成等比数列,所以,且,所以,且,解得,所以,所以,所以.点睛:解三角形问题要注意多结合正弦定理的边角互化原理变形求解即可,对于本题第二问可以得到通项的形式可得求和方法为裂项相消法学.科.网...18. 如图,将直角三角形绕直角边旋转构成圆锥,四边形是的内接矩形,为母线的中点,.(1)求证:平面;(2)当时,求点到平面的距离.【答案】(1)见解析;(2).【解析】试题分析:(Ⅰ)借助题设条件运用线面平行的判定定理推证;(Ⅱ)借助题设条件运用等积法求解。
2020届衡水中学高三高考模拟试卷-文科数学(含答案解析)
2020届衡水中学高三高考模拟试卷-文科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P={}0,1,M={}|x x P ⊆,则集合M 的子集个数为( )A.32B.16C.31D.642. 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=A.34i -B. 34i +C. 43i -D. 43i +3. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π4. 已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q 作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )5.已知等比数列{}n a 的公比为q ,则’’01q <<”是.{}n a 为递减数列的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知()21f x -定义域为[]0,3则 ()21f x -的定义域为( )A.(0,92) B.902⎡⎤⎢⎥⎣⎦, C.(9,2-∞) D.(9,2⎤-∞⎥⎦7.在平行四边形ABCD 中,AB=8,AD=5,3CP PD =,2APBP =, AB AD ⋅=( )A,22 B.23 C.24 D.258. sin cos y x a x =+中有一条对称轴是53x π=,则 ()sin cos g x a x x =+最大值为( )A.333 B.233 C.332 D.2329. 如图所示,程序框图(算法流程图)的输出结果是( )A.34B.55C.78D.89x=1 y=1z=x+y50?z ≤x=y开始输出z是否10. 如图,一几何体正视图,俯视图是腰长为1的等腰三角形,俯视图是一个圆及其圆心,当这个几何体的体积最大时圆的半径是( )11. 设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为 A .0B .1C .2D .312. ()f x 与()1f x +事定义在R 上的偶函数,若[]0,1x ∈时()f x =sin x x -,则32f ⎛⎫- ⎪⎝⎭-2f π⎛⎫⎪⎝⎭为( ) A.正数 B.负数 C.零 D.不能确定二、填空题(本大题共4小题,每小题5分,共20分.)13. 在ABC ∆中,AB=2,AC=3,1AB BC ⋅=,则 BC=___________________14. x,y 自变量满足x ≥0y ≥24y x +≤x y S +≤当35S ≤≤时,则32x y Z =+的最大值的变化范围为___________________15. 函数ay x =为偶函数且为减函数在()0,+∞上,则a 的范围为___________________16. 已知函数()f x =()lg ,0x x -<264,0x x x -+≥,若关于x 的方程()()210fx bf x -+=有8个不同根,则实数b 的取值范围是___________________三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.)17. cos cos 1αβ=-,求()sin αβ+正侧俯18. 某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.()()2211221221212120.1000.0500.010,2.7063.841 6.635p x k n n n n n x n n n n k ++++-=≥19. 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE ,BD 上各有一点P ,Q ,且AP=DQ , 求证PQ 面BCE20. 已知椭圆中()222210x y a b a b +=>>长轴为4离心率为12,点P 为椭圆上异于顶点的任意一点,过点P 作椭圆的切线l 交y 轴于点A ,直线l'过点P 且垂直于l 交y 轴于B ,试判断以AB 为直径的圆能否经过定点,若能求出定点坐标,若不能说出理由21. 设函数()()()21xf x x e kxk R =--∈当1,12k ⎛⎫∈⎪⎝⎭时, 求函数()f x 在[]0,k 上的最大值M请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑.22. 选修4-1几何证明选讲已知,ABC AB AC ∆=中,D ABC ∆为外接圆劣弧AC 上的点(不与点A C 、重合),延长BD 至E ,延长AD 交BC 的延长线于F . (Ⅰ)求证:CDF EDF ∠=∠;(Ⅱ)求证:AB AC DF AD FC FB ⋅⋅=⋅⋅.23. 选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24. 选修4-5:不等式选讲已知函数f (x )=|2x -a |+a.(Ⅰ)若不等式f (x )≤6的解集为{x |-2≤x≤3},求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使f (n )≤m-f (-n )成立,求实数m 的取值范围参考答案1. B考点:集合的子集问题 设有限集合A ,card ()A =n ()*n N ∈子集个数2n ,真子集21n -,非空真子集22n - 解析:M={}|x x P ⊆ P={}0,1则x 有如下情况:{}{}{},0,1,0,1φ 则有子集为42216n== 注意点:该类型常错在空集φ 2. A【解析】3. B 【解析】4. A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图 5.D考点:充分条件与必要条件的判定解析:若111,2a q =-=,则数列前n 项依次为-1,-11,24-,显然不是递减数列 若等比数列为-1,-2,-4,-8显然为递减数列,但其公比q=2,不满足01q综上01q 是{}n a 为递减数列的既不充分也不必要条件注意点:对于等比数列,递减数列的概念理解,做题突破点;概念,反例 6.B考点:关于定义域的考察解析:[][][]220,30,911,8x x x ∈∈-∈-所以[][]9211,8210,90,2x x x ⎡⎤-∈--∈∈⎢⎥⎣⎦所以定义域为90,2⎡⎤⎢⎥⎣⎦注意;一般题目中的定义域一般都是指x 的范围类似的题目:已知()f x 定义域为[]()()0,4,11f x f x ++-的定义域是? 考点;对定义域的问题考察的综合应用解析:[][][]0,411,511,3x x x ∈+∈-∈-所以综合在一起的定义域是[]1,3 注意;定义域在一定题目中指的是x 范围,但每个题目中的x 的取值是一样的 所以在这些关系中取这三个范围中都包括的范围 7.A考点;利用不同方法求解 解析:法一:坐标法 设A坐标原点B()8,0 设DAB θ∠=所以()5cos ,5sin D θθ所以()5cos 2,5sin P θθ=+AB AD ⋅=()8,0()5cos ,5sin θθ=40cos θAP BP ⋅=()5cos 2,5sin θθ+()5cos 6,5sin 2θθ-=因为0,2πθ⎛⎫∈ ⎪⎝⎭所以AB AD ⋅=22法二;AP BP ⋅=13244AD AB BC AB ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭所以AP BP ⋅=1344AD AB AD AB ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=223134416AD AD AB AB AD AB -⋅+⋅-=25-13*642216AD AB ⋅-= 所以AB AD ⋅=22 注意;巧妙运用题目关系并且记住题目中条件不是白给的,一定要用 8.B考点:函数最值方面的考察解析:方法一;sin cos y x a x =+=当53x π=时,122y a =-+=平方得:22311424a a a -+=+ 求得3a =- 3= 方法二:因为对称轴为53π 所以可知此时的导函数值为0 'cos sin y x a x =-555'cos sin 0333y a πππ⎛⎫=-= ⎪⎝⎭所以12= 所以a = =注意;给三角函数求导也是一种办法,将三角函数求导后原三角函数的对称轴处的导函数都为09. B【解析】10.B解析:由三视图可得1hr所以22r h +=1 ()()223111113333V sh r h h h h h πππ===-=- 将V 看成函数 ()21'133V h π=- 所以当213h =时取得最值 22213h r h -== 所以63r =注意:可以将几何和函数相结合11. A 【解析】12.A 解析:32f ⎛⎫-⎪⎝⎭=31222f f ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ 2f π⎛⎫⎪⎝⎭=222f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭则3122222f f f f ππ⎛⎫⎛⎫⎛⎫⎛⎫--=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()sin f x x x =- ()'1cos 0f x x =->恒成立∴()f x是单调递增1222π>-∴12022f fπ⎛⎫⎛⎫-->⎪ ⎪⎝⎭⎝⎭∴原式>0恒成立注意点:若关于轴x a=对称,T=2a ()()2f x f a x=-若关于点(),0a对称,T=2a ()()2f x f a x=-若关于(),a a对称,T=4a ()()22f x a f a x=--考点:在利用余弦转化时符号的正确利用解析:c=2 b=3 ()cos1a c B AB BCπ⋅⋅-=⋅=22225cos24a cb aBac a+--==()cos2cos1ac B B aπ-=-⋅=1cos2a B=-∴25142aaa-⋅=-∴252a-=∴23a=a=注意;()cos cosB Bπ-=-注意正负号AB BC⋅夹角是cos B-BA BC⋅夹角是cos B AB CB⋅夹角是cos B14. []7,8考点:线形规划中范围的判断解析:(1)当x+y=S与y+2x=4有交点时,最大值在两直线交点处取得,最小范围是此时S=3时代入Z=7(2)当x+y=S与y+2x=4没有交点时最大值在B()0,4处取得∴代入248Z=⨯=∴综上范围是[]7,815. a 0<且a 为偶数考点:偶函数的定义,幂函数定义的考察 解析:为减函数 ∴a 0< 为偶函数 ∴a 为偶数类似的,若ay x =为奇函数,减函数在(),a +∞上,求范围解析:为减函数 ∴0a <为奇函数 ∴a 为奇数注意;幂函数ay x =的定义性质必须弄懂 16. 172,4⎛⎤⎥⎦⎝ 解析:()226435x x x -+=--∴()()210f x bf x -+=在[]0,4上有2个根令()t f x = 210t bt -+=在[]0,4上有2个根>()0,42b∈()00f >()40f≥所以解得b ∈172,4⎛⎤⎥⎦⎝ 思路点拨;运用图像画出圆然后利用二次函数两个根 最后利用根分布求范围 17. 考点:对特殊函数值的理解 解析:cos 1α≤ cos 1β≤∴cos ,cos αβ中肯定一个为1,一个为-1若cos 1α=,则cos 1β=- 则2,2k k απβππ==+∴()41k αβπ+=+ ∴()sin 0αβ+= 反之也成立注意:cos α,cos β,sin ,sin αβ取值范围可利用取特值法进行分析 18. 【答案】 (1) 有95%的把握认为有关(2) 107【解析】(1)22100(60102010)1004.762 3.8418020703073x -==≈>所以,有95%的把握认为“南方和北方的学生在甜品饮食方面有差异”(2)10776116111035==+p 所以,所求事件的概率种人喜欢甜品的情况有种,所以至多有学生喜欢甜品的情况有个种,只有欢甜品的情况有种;其中,没有学生喜人,共有人中选从19. 解析:证明: 证法一:如图作PMAB 交BE 于M ,作QN AB 交BC 于N 连接MN正方形ABCD 和正方形ABEF 有公共边AB ∴AE=BD 又AP=DQ ∴PE=QB又PM AB QN ,PM PE QB QN BQAB AE BD DC BD∴===PM QNAB DC∴=PM ∴QN 且PM=QN 即四边形PMNQ 为平行四边形 PQ MN ∴又MC ⊂面BCE PQ ⊄面BCE∴PQ 面BCE证法二:如图连接AQ 并延长交BC 的延长线于K ,连接EKAE BD = AP DQ = PE BQ ∴= AP DQPE BQ∴= 又AD BK DQ AQ BQ QK ∴= AP AQPE QK∴= PQ EK ∴ 又PQ ⊄面BCE EK ⊂面BCEPQ ∴面BCE证法三:如图,在平面ABEF 内,过点P 作PMBE ,交AB 于M ,连接QMPM 面BCE ,且AP AMPE MB=又AE BD = AP DQ = PE BQ ∴=AP DQ PE BQ ∴= AM DQMB QB∴= MQ AD ∴ 又AD BC MQ BC ∴ MQ ∴面BCE又PM MQ M ⋂= ∴面PMQ 面BCE 又PQ ⊂面PMQ PQ ∴面BCE注意:把线面平行转化为线线平行时必须说清经过已知直线的平面与已知平面相交,则直线与交线平行20.解析:22143x y += 设P 为()00,x y ,P 为切点且P 在椭圆上 设l 为00143x x y y += l ’与l 是垂直的∴'l 为0034x x x ym -=直线l 过P ()00,x y 点代入 000034x y x y m ∴-= 0012x ym ∴= ∴'l 为00034y x x ym --= 在l 中令0x =得030,A y ⎛⎫ ⎪⎝⎭ 在'l 中令0x =得00,3yB ⎛⎫- ⎪⎝⎭AP BP ⊥ 0PA PB ∴⋅= 200303y x y y y ⎛⎫⎛⎫∴+-+= ⎪ ⎪⎝⎭⎝⎭22003103y x y y y ⎛⎫∴++--= ⎪⎝⎭过定点与P ()00,x y 无关 0y ∴= 21x ∴= 1x =±∴定点为()1,0或()1,0-思路点拨;本题技巧已知两线垂直的那以x 与y 前的系数好互例 体现在l ’与l 是垂直的∴0034x x x ym -=21.解析:解析:()()21x f x x e kx =--()()'20x f x x e k =-=可得120,ln 2x x k ==]1,12k ⎛∈ ⎝则](21,2k ∈ ](ln 20,ln 2k ∴∈ 令21x x >ln2k()()0ln 2k ln 2k,k ∴↓↑在,图像为ln2kk由图像可知最大值在0处或k 处取得()()()k 3f k f 0k 1e k 1∴-=--+()()()()()k 2k 2k 1e k 1k k 1k 1e k k 1=---++=----令()k 2h k e k k 1=--- ()k h'k e 2k 1=-- ()k h''k e 20=-= k=ln2∴ln2121在]112,⎛⎝上先减后增()h'1e 30=-< 1h 'e 202⎛⎫=-< ⎪⎝⎭ ()max h'k 0∴< 即()h k 单调递减()max 1137h k h e e 2424⎛⎫∴==--=- ⎪⎝⎭又()()49e 0f k f 0016-<∴-> ()()()()k 3k 3max f x f k k 1e k k 1e k ∴==--=--思路点拨:本题的精华点在于导函数与原函数的穿插运用,注意图像中导函数与原函数的图像可知 解:(Ⅰ)证明:A 、B 、C 、D 四点共圆∴CDF ABC ∠=∠.………………2分 AB AC =ABC ACB ∴∠=∠ 且ADB ACB ∠=∠,ABC ACB ADB EDF ∠=∠=∠=∠…………4分 ∴CDF EDF ∠=∠.………………5分(Ⅱ)由(Ⅰ)得ADB ABF ∠=∠,又BAD FAB ∠=∠, 所以BAD ∆与FAB ∆相似,AB ADAF AB∴=2AB AD AF ∴=⋅,…………7分 又AB AC =, AB AC AD AF ∴⋅=⋅,∴AB AC DF AD AF DF ⋅⋅=⋅⋅ 根据割线定理得DF AF FC FB ⋅=⋅,……………9分 AB AC DF AD FC FB ⋅⋅=⋅⋅.……………10分23. (Ⅰ)设11(,)x y 为圆上的点,经变换为C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t⎧⎨⎩== (t 为参数). (Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化为极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24. 解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤,∴32a -=-,∴1a =。
【精编】2020年衡水中学高三模拟(三)数学(文)试题(解析版)
2020年衡水中学高三模拟(三)数学(文)试题一、单选题1.已知等差数列{}n a 满足:12a =,且125a a a ,,成等比数列,则数列{}n a 的前n 项和为( ) A .2n B .22n C .2n 或22n D .2n 或42n -2.已知函数2()4,()f x x g x =-是定义在(,0)(0,)-∞+∞上的奇函数,当0x >时,2()log g x x =,则函数()()y f x g x =⋅的图象大致为 ( )A .B .C .D .3.已知集合{0,1,2,3,}I =集合{0,1},{0,3},M N ==则()I NM =( ) A .{0} B .{3} C .{0,2,3} D .∅4.已知复数z 满足(1)2i z i +⋅=-,则复数z 的共轭复数为A .1322i -B .1322i +C .13i +D .13i -5.已知不等式220x x e e kx -+<在[)0,+∞上无解,则实数k 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .1,2⎛⎫+∞ ⎪⎝⎭ D .1,2⎛⎫-∞ ⎪⎝⎭ 6.已知函数()3f x x ax =+的图象在点()()1,1f 处的切线斜率为-3,则()f x 的极大值点为A .B .-2CD .2 7.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为( )A .B .C .D .8.已知向量(2cos ,2sin ),(3cos ,3sin )a b ααββ==,若a 与b 的夹角为60,则直线2cos 2sin 10x y αα++=与圆22(cos )(sin )1x y ββ-+-=的位置关系是( )A .相交但不过圆心B .相交且过圆心C .相切D .相离9.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大,②以模型kxy ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3,③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2b =,1x =,3y =,则1a =,④若变量x 和y 满足关系0.11y x =-+,且变量y 与z 正相关,则x 与z 也正相关,正确的个数是( )A .1B .2C .3D .410.设变量x ,y 满足约束条件{2x −y −3≥0x −2y −4≤0y ≥1,若目标函数z =ax +by(a >0,b >0)的最小值为1,则1a +1b 的最小值为( )A .7+2√6B .7+2√2C .3+2√6D .3+2√2 11.设抛物线()2 20y px p =>的焦点为F ,过F 的两条直线1l ,2l 分别交抛物线于点A ,B ,C ,D ,且1l ,2l 的斜率1k ,2k 满足()121210,0k k k k +=>>,若 AB CD +的最小值为30,则抛物线的方程为( )A .26y x =B .23y x =C .232y x =D .22y x =12.“军事五项”是衡量军队战斗力的一种标志,从1950年开始,国际军体理事会每年组织一届军事五项世界锦标赛.“军事五项”的五个项目分别为200米标准步枪射击、500米障碍赛跑、50米实用游泳、投弹、8公里越野跑.已知甲、乙、丙共三人参加“军事五项”.规定每一项运动队的前三名得分都分别为a 、b 、c (a >b >c 且a 、b 、c ∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的投弹比赛获得了第一名,则50米实用游泳比赛的第三名是 A .甲B .乙C .丙D .乙和丙都有可能二、双空题13.已知数列{}n a 满足()112335212n n a a a n a ++++⋅⋅⋅+-=,则3a =______,若对任意的*N n ∈,()1n n a λ≥-恒成立,则λ的取值范围为______.三、填空题14.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:则该小区已安装宽带的居民估计有______户.15.已知ABC 的三个内角,,A B C 所对的边分别为,,a b c ,ABC 的外接圆的面积为3π,且222cos cos cos 1sin sin A B C A C -+=+,则ABC 的最大边长为______16.已知函数()()1222x x a f x a R ++=∈-为奇函数,且()y f x =的图象和函数2x y m =-的图象交于不同两点A 、B ,若线段AB 的中点M 落在直线12y上,则实数m 的值为______.四、解答题17.已知ABC ∆是锐角三角形,内角,,A B C 的对边分别为,,a b c ,且2sin a B =.(Ⅰ)求角A 的大小;(Ⅱ)若6a =,且ABC ∆的面积S =ABC ∆的周长.18.设椭圆中心在坐标原点,焦点在x 轴上,一个顶点坐标为()2,0. (1)求这个椭圆的方程; (2)若这个椭圆左焦点为1F ,右焦点为2F ,过1F 且斜率为1的直线交椭圆于A B 、两点,求2ABF ∆的面积.19.在直角坐标系xoy 中,曲线1C 的方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),曲线2C 的方程为1x =.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线1C 和2C 的极坐标方程;(2)已知射线OM 的极坐标方程是0,02πθαρα⎛⎫=><<⎪⎝⎭,且与曲线1C 和2C 交于P ,Q 两点,试确定α的值,使2OP OQ 达到最小.20.已知函数sin ()a x f x x-=,0πx <<. (1)若0x x =时,()f x 取得极小值()0f x ,求()0f x 的取值范围;(2)当a π=,0m π<<时,证明:()ln 0f x m x +>.21.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,ABCD 是平行四边形,45BCD ∠=︒,平面ABCD ⊥平面CDEF ,FB FC =.(1)求证:BF CD ⊥;(2)若22AB EF ==,BC =BF 与平面ABCD 所成角为45︒,求该五面体的体积. 22.某果农选取一片山地种植红柚,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg ),获得的所有数据按照区间(]40,45,(]45,50,(]50,55,(]55,60进行分组,得到频率分布直方图如图。
衡水中学2020届全国第三次联考(文科数学)
,
9. 在矩形ABCD 中,AB = l,AD = J§ ,点M在对角线 AC上,点 N在边 CD上,且AM =
-14';-AC,DN= —13 DC,则MN•AC =
A.
—1 2
B. 4
C.
—
3
D.
3 16
10.巳知
xl
穴
= 五'm
穴
= 飞分别是函数f(x)
=
穴
2 cos(wx飞)(w>O,Jq;I<了)相邻的极大值点与
勹
二
A. 45 C. 25
B. 30 D. 22
4.某儿何体的三视图如图所示,则该几何体的表面积为
A. 18+6迈
B. 24迈 C. 13 D. 18
气 `三 侧视图
文科数学试题 第1页(共4页)
5. " 挛生素数 猜想 ”是数学史上著名的未解难题,早在1900年国际数学家 大会上,由德国数学 家希尔伯特提出. 所谓 " 挛生素数”是指相差为2的“素数对“,例如 3和 5.从不超过20的素数 中,找到这样的“ 李生素数“,将每对素数作和.从得到的结果中选择恰当的数,构成一个等差
零点若将函数f(x)的图象向左平移0 个单位长度后,得到 函数g(x)的图象关于原点对 称,则0的值 可以为
A. -六 6
B. —穴
4
亢
C.一 3
D.
王
2
一 一 11.已知双曲线:—� = Ha>O,b>O)的左、右焦点公别为F11.凡, 双曲线的左支上有A,B 两点使得AF 1 =2 F 1 B.若6AF ]凡的周长与^BF]凡的周长之 比是 — 45 ,则双曲线的离心 率是
校 范围内随机抽取了部分学生进行调查 .学生选择的书籍大致 分为以下 四类:A历史类、B 文
2020年河北省衡水中学高考三模数学试题(附答案解析)
5.如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )
A. B. C. D.
6.已知函数 有零点,则a的范围是( )
A. B. C. D.
7.某中学在高二下学期开设四门数学选修课,分别为《数学史选讲》.《球面上的几何》.《对称与群》.《矩阵与变换》.现有甲.乙.丙.丁四位同学从这四门选修课程中选修一门,且这四位同学选修的课程互不相同,下面关于他们选课的一些信息:①甲同学和丙同学均不选《球面上的几何》,也不选《对称与群》:②乙同学不选《对称与群》,也不选《数学史选讲》:③如果甲同学不选《数学史选讲》,那么丁同学就不选《对称与群》.若这些信息都是正确的,则丙同学选修的课程是( )
A. B. C. D.
11.函数 的图象大致为
A. B. C. D.
12.已知 分别是椭圆 的左右焦点,点 是椭圆的右顶点, . C. D.
二、填空题
13.我国南宋著名数学家秦九韶在《数学九章》的“田域类”中写道:问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,…,欲知为田几何.意思是已知三角形沙田的三边长分别为13,14,15里,求三角形沙田的面积.请问此田面积为_____平方里.
14.若双曲线 的两个焦点都在 轴上,且关于 轴对称,焦距为 ,实轴长与虚轴长相等,则双曲线 的方程是_____________.
15.由2,0,1,8,6,7六个数字组成的四位数中,若数字可以重复,则含有奇数个6的数共有_________个.(用数字作答).
16.函数 图像上不同两点 处的切线的斜率分别是 ,规定 ( 为线段 的长度)叫做曲线 在点 与点 之间的“弯曲度”.设曲线 上不同两点 ,且 ,则 的取值范围是_________.
【精准解析】河北省衡水中学2020届高三模拟(三)数学(理)试题
③
f
16 3
f
1 2 ;④关于
x 的方程
f
x t
0(0t
1)在区间 2, 7 上的所有实根
之和是 12. A. ①④ 【答案】A 【解析】
B. ①②④
C. ③④
D. ①②③
【分析】
由题意可知 f x 的图象关于直线 x 1 对称,①正确;利用 f x 2 f x 0 和函数的
()
A. 充分不必要条件
B. 必要不充分条件
-1-
C. 充要条件 【答案】A 【解析】 【分析】
D. 既不充分也不必要条件
本题首先可以根据圆的方程确定圆心与半径,然后通过证明当 m 2 时直线 l 与圆 O 相切即
可得出“ m 2 ”是“直线 l 与圆 O 相切”的充分条件,最后通过求解当直线 l 与圆 O 相切 时 m 的值即可得出“ m 2 ”不是“直线 l 与圆 O 相切”的必要条件,即可得出结果.
1
,则
A
B
(
)
4 x2
A. 2,1
B. 2,1
C. , 2
D.
, 2
【答案】A 【解析】 【分析】 化简集合 B,根据交集的定义求解即可.
【详解】由题意知 B x 2 x 2 ,则 A B x 2 x 1 .故选 A.
【点睛】本题考查了集合的运算,以及函数的性质,属于基础题.
3.已知直线 l : y x m 和圆 O : x2 y2 1 ,则“ m 2 ”是“直线 l 与圆 O 相切”的
f x 4 f x 2 f x ,所以 f x 是周期函数,其一个周期为 4,但不能说明 2 是
f x 的周期,故②错误;
由
f
x 的周期性和对称性可得
2020届河北省衡中同卷新高考原创精准模拟考试(三)文科数学试卷
2020届河北省衡中同卷新高考原创精准模拟考试(三)文科数学试卷本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(本大题共12小题,共60.0分)1.()A. B. C. D.【答案】A【解析】【分析】直接利用复数代数形式的乘除运算化简,即可得到答案.【详解】由题意,根据复数的运算,可得.故选:A.【点睛】本题主要考查了复数的四则运算及其应用,其中解答中熟记复数的四则运算法则,好了准确运算是解答的关键,着重考查了化简与运算能力,属于基础题。
2.已知集合,,则A. B. C. D.【答案】D【解析】【分析】根据对数函数的性质,求解集合B,然后进行交集的运算,即可求解,得到答案.【详解】由题意,集合,所以,故选:D.【点睛】本题主要考查了对数函数的性质,以及集合的交集运算,其中解答中根据对数函数的性质,正确求解集合B是解答的关键,着重考查了运算与求解能力,属于基础题。
衡水中学2020届高三下学期三模数学(文)试题含解析
A。m//α,n//αB.m⊥α,n⊥α
C.m//α,n⊂αD。m、n与α所成的角相等
【答案】D
【解析】
【分析】
利用线面平行与面面平行的性质定理逐个进行验证即可得到答案。
【详解】解:A:m、n可以都和平面 垂直,不必要 ;
【分析】
(Ⅰ)两边同时除以 得: ,即可得证;
(Ⅱ)由(Ⅰ)知 , ,再利用裂项相消法求和即可得证;
【详解】解:(Ⅰ)证明:当 时,由 ,
两边同时除以 得: ,
由 ,得 ,
故数列 是以1为首项,1为公差的等差数列.
(Ⅱ)解:由(Ⅰ)知 ,
所以 ,
所以
.
因为 ,故 .
【点睛】本题考查构造法求数列的通项公式以及裂项相消法求和,属于基础题.
4。从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图数据如图。根据茎叶图,下列描述正确的是( )
A. 甲种树苗的中位数大于乙种树苗的中位数,且甲种树苗比乙种树苗长得整齐
B. 甲种树苗的中位数大于乙种树苗的中位数,但乙种树苗比甲种树苗长得整齐
C. 乙种树苗的中位数大于甲种树苗的中位数,且乙种树苗比甲种树苗长得整齐
6。已知 的图像关于原点对称,且当 时, (其中 是 的导函数), , ,则下列关系式正确的是( )
A。 B。
C。 D。
【答案】A
【解析】
试题分析:由 得 ,即当 时, 单调递减;又函数 的图像关于原点对称,所以 是偶函数,且当 时, 单调递增; ,∴ ,因此 .
考点:1、函数的单调性;2、导函数;3、函数的奇偶性.
故答案为:
【点睛】本题考查导数的应用,本题难点在于对 的理解,同时等价转化,化繁为简,同时掌握常用的不等式,比如 ,属中档题.
【名师推荐资料】(衡水金卷)2020年普通高等学校招生全国统一考试模拟数学试题三 文(精品)
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题三 文第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|13}A x x =<≤,{|02}B x x =≤<,则AB =( )A .{|02}x x ≤<B .{|03}x x ≤≤C .{|12}x x <<D .{|13}x x <≤2.设函数1,0()1,02xx x f x x +≥⎧⎪=⎨<⎪⎩,则[(1)]f f -=( )A .32B1 C .1 D .3 3.若向量(1,0)a =,(0,1)b =,2(2,3)c xa yb =+=(,)x y R ∈,则x y +=( ) A .4 B .5 C .3 D .24.若实数x ,y 满足约束条件113x y x y ≥⎧⎪≥⎨⎪+≤⎩,则y x 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .1,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎫-⎪⎢⎣⎭D .1,32⎡⎤⎢⎥⎣⎦5.命题p :若复数21iz i=-(i 为虚数单位),则复数z 对应的点在第二象限,命题q :若复数z 满足z z ⋅为实数,则复数z 一定为实数,那么( )A .p q ∧是真命题B .()p q ∧⌝是真命题C .()p q ⌝∨是真命题D .()p q ∨⌝是假命题 6.执行如图所示的程序框图,若输入的40n =,则输出的S =( )A .80B .96C .112D .120 7.已知函数()cos 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移(0)ϕϕ>个单位后,得到的图象对应的函数()g x 为奇函数,则ϕ的最小值为( ) A .6π B .56π C .3πD .23π8.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,从A ,B ,C ,D 四点中任取三点和顶点P 所形成的四面体中,任取两个四面体,则其中一个四面体为鳖臑的概率为( )A .14 B .23 C .35 D .3109.如图,AB 为经过抛物线22(0)y px p =>焦点F 的弦,点A ,B 在直线2px =-上的射影分别为1A ,1B ,且113AA BB =,则直线AB 的倾斜角为( )A .6π B .4π C .3πD .512π10.一个几何体的三视图如图所示,且该几何体的表面积为32π++x =( )A .1 BC .32D11.已知数列{}n a 满足2*1232()n n a a a a n N ⋅⋅⋅=∈,且对任意的*n N ∈都有12111nt a a a ++⋅⋅⋅+<,则t 的取值范围为( ) A .1,3⎛⎫+∞ ⎪⎝⎭ B .1,3⎡⎫+∞⎪⎢⎣⎭ C .2,3⎛⎫+∞⎪⎝⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭12.若存在1,x e e⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥成立,则实数m 的最大值为( )A .132e e +- B .32e e++ C .4 D .21e - 第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知{}n a 是等差数列,n S 是其数列的前n 项和,且4103S =-,1221a a +=,则3a = .14.已知圆C 的方程为22(2)(1)1x y ++-=,则圆上的点到直线0x y -=的距离的最小值为 .15.观察三角形数组,可以推测:该数组第八行的和为 .16.已知双曲线1C :2212x y -=,曲线2C :1y x =+,P 是平面内一点,若存在过点P 的直线与1C ,2C 都有公共点,则称点P 为“差型点”.下面有4个结论: ①曲线1C 的焦点为“差型点”; ②曲线1C 与2C 有公共点;③直线y kx =与曲线2C 有公共点,则1k >; ④原点不是“差型点”.其中正确结论的个数是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆,内角A ,B ,C 的对边分别为a ,b ,c ,且2b =. (1)若2cos cos cos a A c B b C =+,求角C ; (2)若B 为锐角,3a c +=,求ABC ∆的面积.18.已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.(1)求样本容量和抽取的高中生近视人数分别是多少?(2)在抽取的n 名高中生中,平均每天学习时间超过9小时的人数为310n,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:(3)根据(2)中的列联表,判断是否有95%的把握认为高中生平均每天学习时间与近视有关?附:22()()()()()n ad bc K a b c d a c b d-=++++,其中n a b c d =+++.19.如图,在三棱锥A BCD -中,AB ⊥平面BCD ,6DBC ∠=,2BD BC ==,2AB =,E 为AC 的中点,F 在棱CD 上,且BC EF ⊥.(1)求证:BF CF =; (2)求三棱锥A BEF -的体积.20.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点.(1)若直线AB 与椭圆的长轴垂直,12AB a =,求椭圆的离心率;(2)若直线AB 的斜率为1,3222a AB a b =+,求椭圆的短轴与长轴的比值.21.已知曲线()xmx m f x e -=在点(1,(1))f 处的切线斜率为1e-. (1)求函数()f x 的极小值; (2)当(0,)x π∈时,求证:21()cos sin f x x x x e +>-. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C ,2C 的极坐标方程分别为4cos ρθ=,2sin ρθ=.(1)将直线l 的参数方程化为极坐标方程,将2C 的极坐标方程化为参数方程; (2)当6πα=时,直线l 与1C 交于O ,A 两点,与2C 交于O ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()23b cf x x a x =-+++的最小值为7(a ,b ,c 为正数). (1)求222a b c ++的最小值;(2)求证:444222222a b c a b c b c a++≥++.文数(三)一、选择题1-5: BDAAB 6-10: DCBCA 11、12:DA 二、填空题13. 43-14. 12 15. 1296 16. 3三、解答题17.解:(1)∵2cos cos cos a A c B b C =+,由正弦定理,可得2sin cos sin cos sin cos A A C B B C =+, 即2sin cos sin()sin A A B C A =+=. ∵sin 0A ≠,∴1cos 2A =. ∵0A π<<,∴3A π=.又2sin bR B=(R 为外接圆半径),2b =,R =,∴sin B =4B π=或34π(舍). ∴5()12C A B ππ=-+=. (2)由(1)知,4B π=或34π, 又B 为锐角,∴4B π=.由余弦定理,可得2222cos b a c ac B =+-,即24()2a c ac =+--.∵3a c +=,∴49(2ac =-+,∴(25ac =, ∴ac =.∴1sin24ABC S ac B ∆==54=.18.解:(1)由图1可知,高中生占学生总数的20%, ∴学生总数为300020%15000÷=人, ∴样本容量为150002%300⨯=.∵抽取的高中生人数为30002%60⨯=人, 由于近视率为60%,∴抽取的高中生近视人数为6060%36⨯=人. (2)列联表如下:(3)由列联表可知,2260(1812246)0.47624364218K ⨯⨯-⨯=≈⨯⨯⨯, ∵0.476 3.841<,∴没有95%的把握认为高中生平均每天学习时间与近视有关. 19.解:(1)取BC 的中点G ,连接EG ,GF .∵E 为AC 的中点,∴//EG AB . ∵AB ⊥平面BCD ,∴EG ⊥平面BCD ,∴EG BC ⊥. 又∵BC EF ⊥,EFEG E =,∴BC ⊥平面EFG ,∴BC GF ⊥. 又∵G 是BC 的中点, ∴BF CF =.(2)由图可知,三棱锥A BEF -体积与三棱锥F ABE -体积相等.∵FG BC ⊥,FG AB ⊥,AB BC B =,∴FG ⊥平面ABC .∵150DBC ∠=,且2BD BC ==, ∴15BCD ∠=.在Rt FGC ∆中,1CG =,∴tan152GF ==∴13A BEF F ABE ABE V V S FG --∆-=⨯⨯11111232322ABC S FG ∆=⨯⨯=⨯⨯⨯1(2(26⨯+⨯=,即三棱锥A BEF -的体积为16.20.解:(1)由题意,直线AB 的方程为x c =-,∴2212b AB a a ==, 即224a b =,故c e a ====(2)设1(,0)F c -,则直线AB 的方程为y x c =+,联立22221y x c x y a b=+⎧⎪⎨+=⎪⎩,得22222222()20a b c a cx a c a b +++-=,42222222444()()8a b a a b c b a b ∆=-+-=.设11(,)A x y ,22(,)B x y ,则212222a c x x a b +=-+,2221222()a cb x x a b -=+.∴12AB x =-==22222242ab a a b a b ==++. ∴222a b =,∴2212b a =,∴2b a =,即椭圆的短轴与长轴之比为2. 21.解:(1)由题得,()f x 的定义域为R ,(2)'()x m x f x e --=,∴'(1)mf e=. ∵曲线()f x 在点(1,(1))f 处的切线斜率为1e-, ∴1m e e=-,∴1m =-. ∴1()x x f x e -=,2'()x x f x e-=,当2x >时,'()0f x >,()f x 单调递增, 当2x <时,'()0f x <,()f x 单调递减,∴()f x 的极小值为21(2)f e =-. (2)由(1)可知,21()f x e+在2x =处取得最小值0,设()cos sin g x x x x =-,(0,)x π∈, 则'()cos sin cos sin g x x x x x x x =--=-, ∵(0,)x π∈,∴'()0g x <, ∴()g x 在区间(0,)π上单调递减, 从而()(0)0g x g <=, ∴21()cos sin f x x x x e +>-. 22.解:(1)由直线l 的参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数),最新审定版资料欢迎下载! 得直线l 的极坐标方程为()R θαρ=∈. 由曲线2C 的极坐标方程2sin ρθ=, 得直角坐标方程为22(1)1x y +-=, ∴曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数). (2)当6πα=时,直线l 的极坐标方程为()6R πθρ=∈. 当6πθ=时,4cos 6OA π==2sin 16OB π==,∴1AB OA OB =-=.23.解:(1)∵2323b c b c x a x a-+++≥++(当且仅当()023b c x a x ⎛⎫-++≤ ⎪⎝⎭时取等号), 由题意,得723b c a ++=. 根据柯西不等式,可知22222211()123a b c ⎡⎤⎛⎫⎛⎫++++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦24923b c a ⎛⎫≥++= ⎪⎝⎭, ∴22236a b c ++≥.∴222a b c ++的最小值为36. (2)∵42222a b a b +≥,42222b c b c +≥,42222c a c a+≥, ∴444222222a b c a b c b c a+++++2222()a b c ≥++, ∴444222222a b c a b c b c a++≥++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题三 文第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|13}A x x =<≤,{|02}B x x =≤<,则A B =U ( )A .{|02}x x ≤<B .{|03}x x ≤≤C .{|12}x x <<D .{|13}x x <≤2.设函数1,0()1,02xx x f x x +≥⎧⎪=⎨<⎪⎩,则[(1)]f f -=( )A .32B1 C .1 D .3 3.若向量(1,0)a =r ,(0,1)b =r ,2(2,3)c xa yb =+=r r r(,)x y R ∈,则x y +=( )A .4B .5C .3D .24.若实数x ,y 满足约束条件113x y x y ≥⎧⎪≥⎨⎪+≤⎩,则y x 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .1,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎫-⎪⎢⎣⎭D .1,32⎡⎤⎢⎥⎣⎦5.命题p :若复数21iz i=-(i 为虚数单位),则复数z 对应的点在第二象限,命题q :若复数z 满足z z ⋅为实数,则复数z 一定为实数,那么( )A .p q ∧是真命题B .()p q ∧⌝是真命题C .()p q ⌝∨是真命题D .()p q ∨⌝是假命题 6.执行如图所示的程序框图,若输入的40n =,则输出的S =( )A .80B .96C .112D .120 7.已知函数()cos 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移(0)ϕϕ>个单位后,得到的图象对应的函数()g x 为奇函数,则ϕ的最小值为( ) A .6π B .56π C .3πD .23π8.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,从A ,B ,C ,D 四点中任取三点和顶点P 所形成的四面体中,任取两个四面体,则其中一个四面体为鳖臑的概率为( )A .14 B .23 C .35 D .3109.如图,AB 为经过抛物线22(0)y px p =>焦点F 的弦,点A ,B 在直线2px =-上的射影分别为1A ,1B ,且113AA BB =,则直线AB 的倾斜角为( )A .6π B.4π C .3πD .512π10.一个几何体的三视图如图所示,且该几何体的表面积为3242π++,则图中的x =( )A .1B 2C .32D .2211.已知数列{}n a 满足2*1232()n n a a a a n N ⋅⋅⋅=∈,且对任意的*n N ∈都有12111nt a a a ++⋅⋅⋅+<,则t 的取值范围为( ) A .1,3⎛⎫+∞ ⎪⎝⎭ B .1,3⎡⎫+∞⎪⎢⎣⎭ C .2,3⎛⎫+∞⎪⎝⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭12.若存在1,x e e⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥成立,则实数m 的最大值为( )A .132e e +- B .32e e++ C .4 D .21e - 第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知{}n a 是等差数列,n S 是其数列的前n 项和,且4103S =-,1221a a +=,则3a = .14.已知圆C 的方程为22(2)(1)1x y ++-=,则圆上的点到直线0x y -=的距离的最小值为 .15.观察三角形数组,可以推测:该数组第八行的和为 .16.已知双曲线1C :2212x y -=,曲线2C :1y x =+,P 是平面内一点,若存在过点P 的直线与1C ,2C 都有公共点,则称点P 为“差型点”.下面有4个结论: ①曲线1C 的焦点为“差型点”; ②曲线1C 与2C 有公共点;③直线y kx =与曲线2C 有公共点,则1k >; ④原点不是“差型点”.其中正确结论的个数是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆的外接圆半径为2,内角A ,B ,C 的对边分别为a ,b ,c ,且2b =. (1)若2cos cos cos a A c B b C =+,求角C ; (2)若B 为锐角,3a c +=,求ABC ∆的面积.18.已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.(1)求样本容量和抽取的高中生近视人数分别是多少?(2)在抽取的n名高中生中,平均每天学习时间超过9小时的人数为310n,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:平均学习时间不超过9小时平均学习时间超过9小时总计不近视近视总计(3)根据(2)中的列联表,判断是否有95%的把握认为高中生平均每天学习时间与近视有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2()P K k≥0.10 0.05 0.025 0.010 0.001k 2.706 3.841 5.024 6.635 10.828 19.如图,在三棱锥A BCD-中,AB⊥平面BCD,6DBC∠=,2BD BC==,32AB=+,E为AC的中点,F在棱CD上,且BC EF⊥.(1)求证:BF CF=;(2)求三棱锥A BEF-的体积.20.已知椭圆22221(0)x ya ba b+=>>的左,右焦点分别为1F,2F,过1F的直线交椭圆于A,B两点.(1)若直线AB与椭圆的长轴垂直,12AB a=,求椭圆的离心率;(2)若直线AB 的斜率为1,3222a AB a b =+,求椭圆的短轴与长轴的比值.21.已知曲线()xmx m f x e -=在点(1,(1))f 处的切线斜率为1e-. (1)求函数()f x 的极小值; (2)当(0,)x π∈时,求证:21()cos sin f x x x x e +>-. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C ,2C 的极坐标方程分别为4cos ρθ=,2sin ρθ=.(1)将直线l 的参数方程化为极坐标方程,将2C 的极坐标方程化为参数方程; (2)当6πα=时,直线l 与1C 交于O ,A 两点,与2C 交于O ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()23b cf x x a x =-+++的最小值为7(a ,b ,c 为正数). (1)求222a b c ++的最小值;(2)求证:444222222a b c a b c b c a++≥++.文数(三)一、选择题1-5: BDAAB 6-10: DCBCA 11、12:DA 二、填空题13. 43-14. 12 15. 1296 16. 3三、解答题17.解:(1)∵2cos cos cos a A c B b C =+,由正弦定理,可得2sin cos sin cos sin cos A A C B B C =+, 即2sin cos sin()sin A A B C A =+=. ∵sin 0A ≠,∴1cos 2A =. ∵0A π<<,∴3A π=.又2sin bR B=(R 为外接圆半径),2b =,R =,∴sin 2B =,∴4B π=或34π(舍). ∴5()12C A B ππ=-+=. (2)由(1)知,4B π=或34π, 又B 为锐角,∴4B π=.由余弦定理,可得2222cos b a c ac B =+-,即24()2a c ac =+--.∵3a c +=,∴49(2ac =-+,∴(25ac =, ∴ac =.∴1sin24ABC S ac B ∆==54=.18.解:(1)由图1可知,高中生占学生总数的20%,∴学生总数为300020%15000÷=人,∴样本容量为150002%300⨯=.∵抽取的高中生人数为30002%60⨯=人,由于近视率为60%,∴抽取的高中生近视人数为6060%36⨯=人.(2)列联表如下:平均学习时间不超过9小时平均学习时间超过9小时总计不近视18 6 24 近视24 12 36 总计42 18 60 (3)由列联表可知,2260(1812246)0.47624364218K⨯⨯-⨯=≈⨯⨯⨯,∵0.476 3.841<,∴没有95%的把握认为高中生平均每天学习时间与近视有关.19.解:(1)取BC的中点G,连接EG,GF.∵E为AC的中点,∴//EG AB.∵AB⊥平面BCD,∴EG⊥平面BCD,∴EG BC⊥.又∵BC EF⊥,EF EG E=I,∴BC⊥平面EFG,∴BC GF⊥.又∵G是BC的中点,∴BF CF=.(2)由图可知,三棱锥A BEF-体积与三棱锥F ABE-体积相等.∵FG BC ⊥,FG AB ⊥,AB BC B =I , ∴FG ⊥平面ABC .∵150DBC ∠=o,且2BD BC ==, ∴15BCD ∠=o.在Rt FGC ∆中,1CG =,∴tan152GF ==o∴13A BEF F ABE ABE V V S FG --∆-=⨯⨯11111232322ABC S FG ∆=⨯⨯=⨯⨯⨯1(2(26⨯+⨯=,即三棱锥A BEF -的体积为16.20.解:(1)由题意,直线AB 的方程为x c =-,∴2212b AB a a ==, 即224a b =,故c e a ====(2)设1(,0)F c -,则直线AB 的方程为y x c =+,联立22221y x c x y a b=+⎧⎪⎨+=⎪⎩,得22222222()20a b c a cx a c a b +++-=,42222222444()()8a b a a b c b a b ∆=-+-=.设11(,)A x y ,22(,)B x y ,则212222a c x x a b +=-+,2221222()a cb x x a b-=+.∴12AB x =-==22222242ab a a b a b ==++. ∴222a b =,∴2212b a =,∴2b a =,即椭圆的短轴与长轴之比为2. 21.解:(1)由题得,()f x 的定义域为R ,(2)'()x m x f x e --=,∴'(1)mf e=. ∵曲线()f x 在点(1,(1))f 处的切线斜率为1e-, ∴1m e e=-,∴1m =-. ∴1()x x f x e -=,2'()x x f x e-=,当2x >时,'()0f x >,()f x 单调递增, 当2x <时,'()0f x <,()f x 单调递减,∴()f x 的极小值为21(2)f e =-. (2)由(1)可知,21()f x e+在2x =处取得最小值0,设()cos sin g x x x x =-,(0,)x π∈, 则'()cos sin cos sin g x x x x x x x =--=-, ∵(0,)x π∈,∴'()0g x <, ∴()g x 在区间(0,)π上单调递减, 从而()(0)0g x g <=, ∴21()cos sin f x x x x e +>-. 22.解:(1)由直线l 的参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数),文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.11 得直线l 的极坐标方程为()R θαρ=∈.由曲线2C 的极坐标方程2sin ρθ=,得直角坐标方程为22(1)1x y +-=, ∴曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数). (2)当6πα=时,直线l 的极坐标方程为()6R πθρ=∈. 当6πθ=时,4cos 6OA π==2sin 16OB π==,∴1AB OA OB =-=.23.解:(1)∵2323b c b c x a x a -+++≥++(当且仅当()023b c x a x ⎛⎫-++≤ ⎪⎝⎭时取等号), 由题意,得723b c a ++=. 根据柯西不等式,可知22222211()123a b c ⎡⎤⎛⎫⎛⎫++++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦24923b c a ⎛⎫≥++= ⎪⎝⎭, ∴22236a b c ++≥.∴222a b c ++的最小值为36. (2)∵42222a b a b +≥,42222b c b c +≥,42222c a c a+≥, ∴444222222a b c a b c b c a+++++2222()a b c ≥++, ∴444222222a b c a b c b c a++≥++.。