Physio-Control Operations Netherlands B.V.企业信用报告-天

合集下载

威斯康辛大学麦迪逊分校物理疗法专业介绍

威斯康辛大学麦迪逊分校物理疗法专业介绍

威斯康辛大学麦迪逊分校物理疗法专业介绍威斯康辛大学-麦迪逊物理疗法专业由医学与公共卫生学院提供。

它的医学院目前在USNews 排名第28位。

该校综合排名在QS排在第53位。

一起来理解。

1. 专业概况威斯康辛大学-麦迪逊的物理疗法专业将学生培养成普通全科医生。

进入职场后,通过临床医师、教育工作者、研究员、行政人员、参谋等角色,在事实根底上提供跨行业的优质效劳。

威斯康辛大学-麦迪逊的物理疗法工程对学生友好,重视合作,拥有由团队授课的一体化课程体系,重视培养领导才能、效劳意识和职业素养。

1926年,物理疗法工程成立,1929年成为美国最先获得美国物理疗法学会认证的三个工程之一。

它是一个独立的三年制学位工程,含夏季学期,附属于医学与公共卫生学院。

完成这个专业的学生可获得物理疗法博士学位。

2. 课程体系威斯康辛大学-麦迪逊物理疗法博士课程基于对出版作品的科学探究和批判性评估,重点学习诊断和干预措施,以此改善人体的机能失调。

通过将患者置于所处的特殊环境,这个专业的课堂学习和临床理论兼顾了患者的尊严。

这个专业非常重视终身学习、继续教育和职业开展,因此毕业生可以在满足患者及行业将来需求的过程中成长为行业领导。

3. 教学形式在物理疗法的整个课程体系中,系统与生命周期形式同经过修正的问题指向的传统案例形式结合。

比方,在根底科学与临床科学方向,内容的组织就利用了系统形式,并将重点放在构造-功能关系以及生命周期的开展。

以科学方法为根底的问题指向形式在整个课程中才被采用,目的是为批判性探究、临床决策、病人管理提供指导。

在临床理论方向,临床实习期间这些方法与相关内容结合,并最终付诸应用。

此外,物理疗法博士课程也重视以证据为根底的理论。

跨领域、全科理论、伦理理论、批判性考虑与解决问题、文化多样性、以患者为中心的护理、临床医学、预防/安康、终身学习、面向新思想——所有这些在其他主题中都得到了结合。

这些主题成功纳入课程,使得每门课都按次序联络在一起。

美国国家物理疗法考试复习与学习指南(一) 第一章肌肉骨骼疾病的物理疗法

美国国家物理疗法考试复习与学习指南(一) 第一章肌肉骨骼疾病的物理疗法

美国国家物理疗法考试复习与学习指南(一) 第一章肌肉骨骼
疾病的物理疗法
佚名
【期刊名称】《国外医学:物理医学与康复学分册》
【年(卷),期】2005(25)3
【总页数】8页(P138-144)
【关键词】美国;国家物理疗法考试复习;学习指南;关节病症;变性性关节疾病
【正文语种】中文
【中图分类】R454-4
【相关文献】
1.失神经骨骼肌萎缩物理疗法的研究进展 [J], 马颖;严隽陶
2.美国国家物理疗法考试复习与学习指南(一) [J],
3.美国国家物理疗法考试复习与学习指南(二) [J],
4.我国骨骼肌肉系统疾病影像学研究现状--第7届全国骨骼肌肉系统疾病影像学术大会纪要 [J], 黄仲奎;龙莉玲;孟悛非;张雪哲
5.超声引导下介入与物理疗法对骨骼肌腱鞘炎的临床应用 [J], 余怡琳
因版权原因,仅展示原文概要,查看原文内容请购买。

药学英语第五版原文翻译

药学英语第五版原文翻译
细胞在形体和功能上差异很大,但是
Thirdly, at some point in their life history, they possess a nucleus which contains genetic information in the form of deoxyribonucleic acid (DNA).
To study how an animal works it is first necessary to know how it is built. A full appreciation of the physiology of an organism must therefore be based on a sound knowledge of its anatomy. Experiments can then be carried out to establish how particular parts perform their functions. Although there have been many important physiological investigations on human volunteers, the need for precise control over the experimental conditions has meant that much of our present physiological knowledge has been derived from studies on other animals such as frogs, rabbits, cats, and dogs. When it is clear that a specific physiological process has a common basis in a wide variety of animal species, it is reasonable to assume that the same principles will apply to humans. The knowledge gained from this approach has given us a great insight into human physiology and endowed us with a solid foundation for the effective treatment of many diseases.

大内科科室中英文翻译

大内科科室中英文翻译

大内科1、消化科: Department of Gastroenterology消化科简介: Introduction of Gastroenterology Dept.2、消化内镜科: Center of Digestive Endoscopy消化内镜简介: Introduction of Digestive Endoscopy Center3、肝病科:Department of Liver Disease肝病科简介: Introduction of Liver Disease Dept.4、心内科: Department of Cardiology心内科简介:Introduction of Cardiology Dept.5、呼吸科: Department of Respiration呼吸科简介: Introduction of Respiration Dept.6、脑病中心: Encephalopathy Center脑病中心简介: Introduction of Encephalopathy Center7、肾内科:Department of Nephrology肾内科简介: Introduction of Nephrology Dept.8、体检中心: Physical Examination Center体检中心简介: Introduction of Physical Examination Center9、儿科: Department of Pediatrics儿科简介: Introduction of Pediatrics Dept.10、针灸康复科:Department of Acupuncture and Rehabilitation 针灸康复科简介: Introduction of Acupuncture and Rehabilitation11、风湿病科: Department of Rheumatology风湿病科简介: Introduction of Rheumatology12、老年科: Department of Geriatrics老年科简介: Introduction of Geriatrics Dept.13、内分泌科: Department of Endocrinology内分泌科简介: Introduction of Endocrinology Dept.14、血液内科: Department of Hematology血液内科简介: Introduction of Hematology Dept.15、肿瘤内科: Department of Medical Oncology肿瘤内科简介:Introduction of Medical Oncology Dept.16、普内科: Department of Internal Medicine普内科简介: Introduction of Internal Medicine Dept.。

Globally networked risks and how to respond

Globally networked risks and how to respond
Many disasters in anthropogenic systems should not be seen as ‘bad luck’, but as the results of inappropriate interactions and institutional settings. Even worse, they are often the consequences of a wrong understanding due to the counter-intuitive nature of the underlying system behaviour. Hence, conventional thinking can cause fateful decisions and the repetition of previous mistakes. This calls for a paradigm shift in thinking: systemic instabilities can be understood by a change in perspective from a component-oriented to an interaction- and network-oriented view. This also implies a fundamental change in the design and management of complex dynamical systems.
BOX 1
Risk, systemic risk and hyper-risk
According to the standard ISO 31000 (2009; /iso/ catalogue_detail?csnumber543170), risk is defined as ‘‘effect of uncertainty on objectives’’. It is often quantified as the probability of occurrence of an (adverse) event, times its (negative) impact (damage), but it should be kept in mind that risks might also create positive impacts, such as opportunities for some stakeholders.

西医神经科术语英文翻译

西医神经科术语英文翻译

西医神经科术语英文翻译以下是常见的西医神经科术语英文翻译:1. 神经学:Neurology2. 神经系统:Nervous System3. 大脑:Brain4. 脊髓:Spinal Cord5. 神经元:Neuron6. 神经胶质细胞:Glial Cells7. 突触:Synapse8. 轴突:Axon9. 树突:Dendrites10. 髓鞘:Myelin Sheath11. 神经递质:Neurotransmitters12. 神经传导通路:Nerve Conduction Pathways13. 反射:Reflex14. 痛觉:Pain Sensation15. 感觉运动传导通路:Sensorimotor Pathways16. 自主神经系统:Autonomic Nervous System17. 中枢神经系统:Central Nervous System (CNS)18. 外周神经系统:Peripheral Nervous System (PNS)19. 神经肌肉接头:Neuromuscular Junction20. 癫痫:Epilepsy21. 帕金森病:Parkinson's Disease22. 多发性硬化症:Multiple Sclerosis (MS)23. 脑卒中:Stroke24. 脑外伤:Traumatic Brain Injury (TBI)25. 脑瘤:Brain Tumors26. 脑炎:Brain Infections / Encephalitis27. 神经痛:Neuralgia28. 头痛:Headache29. 失眠:Insomnia30. 肌肉萎缩:Muscle Atrophy31. 肌无力:Muscle Weakness32. 神经根病:Radiculopathy33. 神经丛病变:Plexopathy34. 脊髓病变:Myelopathy35. 脑积水:Hydrocephalus36. 脊髓空洞症:Syringomyelia37. 脑电图(EEG):Electroencephalogram (EEG)38. 肌电图(EMG):Electromyogram (EMG)39. 经颅磁刺激(TMS):Transcranial Magnetic Stimulation (TMS)40. 正电子发射断层扫描(PET):Positron Emission Tomography (PET)41. 功能磁共振成像(fMRI):Functional Magnetic Resonance Imaging (fMRI)42. 单光子发射计算机断层扫描(SPECT):Single Photon Emission Computed Tomography (SPECT)43. 经颅多普勒超声(TCD):Transcranial Doppler Ultrasound (TCD)44. 认知障碍:Cognitive Dysfunction45. 情绪障碍:Mood Disorders46. 神经退行性疾病:Neurodegenerative Diseases47. 中毒性脑病:Toxic Encephalopathy48. 脑死亡:Brain Death49. 昏迷:Coma50. 意识障碍:Disorders of Consciousness。

非等位基因

非等位基因

非等位基因概述非等位基因是指同一基因座上的不同等位基因。

等位基因是指在某个给定的基因座上,可以存在多种不同的变体。

每个个体继承了一对等位基因,一对等位基因可能会导致不同的表型表达。

非等位基因的存在使得遗传学研究更加复杂,因为不同的等位基因会对个体的表型产生不同的影响。

背景在生物学中,基因座是指染色体上一个特定的位置,该位置上的基因决定了某个特征的表达方式。

每个基因座上可以有多种不同的等位基因。

等位基因是指在某个特定基因座上的不同基因变体。

每个个体都会继承一对等位基因,通过这对等位基因的不同组合,决定了个体的表型。

然而,并非所有基因座上的等位基因都具有相同的表现型。

非等位基因的影响非等位基因的存在导致不同等位基因会对个体表型产生不同的影响。

有些非等位基因会表现出显性效应,也就是说,当个体继承了一个突变的等位基因时,即使同时继承了一个正常的等位基因,但显性效应会使得突变的等位基因的表型表达得到体现。

相反,有些非等位基因会表现出隐性效应,当个体继承了两个突变的等位基因时,才会表现出突变的表型。

除了显性和隐性效应之外,非等位基因还可能发生两种其他类型的表型效应。

一种是共显效应,当个体继承了两个不同的突变等位基因时,在表型表达上会表现出一种新的特征,这个特征并不是单个突变等位基因所能导致的。

另一种是部分显性效应,当个体继承了两个不同的突变等位基因时,表型表达将介于两个单独突变等位基因的表型之间。

重组和非等位基因重组是指两个不同的染色体交换部分基因序列的过程。

在重组的过程中,非等位基因可能会发生改变,导致新的等位基因组合形成。

这一过程使得非等位基因的表型效应更加复杂,因为新的等位基因可能将不同基因座的效应组合起来。

非等位基因的重要性非等位基因对生物的适应性和多样性起着重要作用。

通过对等位基因的各种组合的研究,人们可以更好地理解基因与表型之间的关系,并揭示遗传变异对物种适应环境的重要性。

总结非等位基因是指同一基因座上的不同等位基因。

地球系统科学专业英语词汇

地球系统科学专业英语词汇

地球系统科学专业英语词汇摘要:本文介绍了地球系统科学专业的基本概念和主要研究领域,以及相关的英语词汇和表达。

本文旨在帮助地球系统科学专业的学习者和从事者掌握一些专业术语和常用语,提高英语交流和阅读能力。

一、什么是地球系统科学地球系统科学(Earth System Science,简称ESS)是一门综合性的学科,它研究地球作为一个整体系统的结构、功能、演化和变化,以及人类活动对地球系统的影响和反馈。

地球系统科学涉及多个传统的自然科学领域,如大气科学、海洋科学、地质科学、生物科学、化学、物理等,以及社会科学、经济学、政治学等。

地球系统科学的目标是揭示地球系统的内在规律和机制,预测未来的变化趋势和风险,为人类社会的可持续发展提供科学依据和政策建议。

地球系统科学的英语词汇如下:中文英文地球系统Earth system地球系统科学Earth System Science (ESS)地球系统模式Earth system model (ESM)地球系统组成部分Earth system components地球系统过程Earth system processes地球系统服务Earth system services地球系统反馈Earth system feedbacks地球系统观测Earth system observation地球系统管理Earth system management二、地球系统组成部分地球系统由多个相互联系和相互影响的组成部分构成,主要包括大气层、水圈、岩石圈、生物圈和冰雪圈。

这些组成部分又可以进一步细分为不同的子系统,如大气层可以分为对流层、平流层、中间层、热层等;水圈可以分为海洋、湖泊、河流、地下水等;岩石圈可以分为地壳、上地幔等;生物圈可以分为陆生生物、海洋生物等;冰雪圈可以分为冰川、冻土、雪盖等。

这些组成部分通过物质循环和能量交换实现动态平衡和协调发展。

地球系统组成部分的英语词汇如下:中文英文大气层atmosphere水圈hydrosphere岩石圈lithosphere生物圈biosphere冰雪圈cryosphere对流层troposphere平流层stratosphere中间层mesosphere热层thermosphere海洋ocean湖泊lake中文英文河流river地下水groundwater地壳crust上地幔upper mantle陆生生物terrestrial biota海洋生物marine biota冰川glacier冻土permafrost雪盖snow cover三、地球系统过程地球系统过程是指在地球系统内部或者在不同组成部分之间发生的物理、化学或者生物方面的变化或者作用,如辐射、对流、降水、蒸发、光合作用、呼吸作用、板块运动、地震、火山、风化、沉积、生物地球化学循环等。

留学新西兰奥塔哥大学物理治疗专业(1)

留学新西兰奥塔哥大学物理治疗专业(1)

留学新西兰奥塔哥大学物理治疗专业物理治疗(Physiotherapy或PhysicalTherapy)是一种预防、治疗、及处理因疾病或上海所带来的动作问题的医疗专业。

执行这个专业的医疗从业人员称为物理治疗师(Physiotherapist,简称PT)或物理治疗生(PhysiotherapistAssistant,简称PTA)。

奥塔哥大学物理治疗学专业是一个在行业享有盛望的四年制项目,处于物理治疗教育的前沿。

本专业在国际上都很有竞争力,因为其毕业生是这个领域中的。

从第二到第四学年,学生将在物理治疗学院学习。

第一学年学生将学习健康科学专业第一年的课程,本专业的学生绝大部分都是在这个年中选出的。

学生在第一年要完成126个学分,以后三年中各完成120个学分。

学制:4年;专业领域:健康,医学与兽医学;学费:25575纽币/学年;课程层次:学士学位课程;入学日期:2,7月。

奥塔哥大学物理治疗专业课程:奥塔哥大学物理治疗学专业学制四年,要求学生第一年修126个学分;剩下的三年修满360个学分;具体的课程设置如下:第一学年:健康科学课程第二学年:解剖学、生理学、药理学、理疗康复科学1、物理治疗临床实践1第三学年:病理学、理疗康复科学2、物理治疗临床实践2第四学年:物理治疗临床实践3、物理治疗临床实践4、物理治疗临床实践5、物理治疗临床实践6、物理治疗研究奥塔哥大学物理治疗专业申请条件:学术要求:国内高中毕业,同时完成大学本科一年级。

语言要求:雅思6.0分(单项不低于6.0分);或托福笔试550分且TWE达到4.5分,或托福网考80分且写作达到20分;有双录取。

奥塔哥大学物理治疗专业就业:奥塔哥大学物理治疗学专业的毕业生可从事非常广泛的职业,如理疗师、职业疗法专家、消息治疗师。

具体职业根据所选专业方向而定。

缺血性卒中脑细胞保护科学声明

缺血性卒中脑细胞保护科学声明

缺血性卒中脑细胞保护科学声明急性缺血性卒中(AIS)的治疗核心是挽救缺血半暗带的脑组织。

早期再灌注治疗是目前为止被循证医学证实的最有效的治疗方法,但仍有至少一半的患者可能由再灌注损伤导致预后不良。

另一个极有希望既能挽救缺血半暗带,又能防止再灌注损伤的治疗措施,是针对缺血级联反应的脑细胞保护。

美国的卒中治疗学术产业圆桌会议(STAIR),每两年召开一次专项会议,就AIS临床研究进行探讨。

STAIR的系列科学声明对促进卒中后脑细胞保护研究,起到了极大的推进作用。

与此同时,针对缺血性卒中脑细胞保护的新理论、新观念、基础研究和大型临床研究不断涌现,从研发、转化、临床研究到实际临床应用,都为相关领域工作者带来了新的机遇和挑战。

在此背景下,中国卒中学会于2023年4月正式成立了“脑保护学术圆桌会”(CARE),组织专家就缺血性卒中的脑细胞保护撰写了本科学声明,并于《中国卒中杂志》第19卷第8期发表。

一、脑细胞保护的概念转变20世纪70年代,针对脑缺血的保护被称为神经保护,主要强调对神经元的保护。

随着相关研究的不断深入,研究者提出了脑细胞保护并不仅限于对神经元的保护,而是应该包括对整个神经血管单元(NVU)保护的概念。

2019年,STAIR联盟在其科学声明中明确提出了从神经保护到脑细胞保护的建议。

2023年,美国心脏学会(AHA)/美国卒中学会(ASA)发布了《科学声明:神经血管组在大脑健康和认知障碍中的关键作用》,阐述了神经血管组学在脑健康和认知功能中的重要性,进一步深化了脑细胞保护概念。

中国卒中学会发布的《中国脑血管病临床管理指南(第2版)》中,也明确提出用脑细胞保护代替原有神经保护的概念。

2024年,中国卒中学会提出声明:鉴于神经元、血管和神经胶质细胞之间的紧密关联及其在疾病发展过程中的相互影响,推荐将脑细胞保护作为更加全面、综合的概念以及整体的治疗策略,代替传统的“神经保护”一词,以涵盖更广泛的治疗对象和干预范围,为更多患者提供更为全面和个体化的治疗手段。

科技英语翻译专业词汇-控制和生医

科技英语翻译专业词汇-控制和生医

Automation and Controllingsensor 传感器sufficient and necessary condition 充要条件dry friction 静摩擦follower 跟随器,输出放大器,从动轮,跟踪装置integral 积分duty 工作状态FM(frequency modulation ) 调频Geometry 几何(学)autopilot 自动驾驶仪forced response 强迫响应performance index 性能指数performance specification 性能指标polar plot 极坐标图trial and error 试探法Bar Code 条形码Bill of Materials (BOM) 物料清单CAD (Computer Aided Design) 计算机辅助设计CAM (Computer Aided Manufacturing) 计算机辅助制造Computer Integrated Manufacturing (CIM) 计算机集成制造CMOS (Complimentary Metal-Oxide-Semiconductor) n. 互补金属氧化物半导体——一种应用于大规模集成电路芯片制造的原料)是微机主板上的一块可读写的RAM芯片,用来保存当前系统的硬件配置和用户对某些参数的设定。

ControlNet 控制网,一种高速串行通信系统,适用于需要进行实时应用信息交换的设备之间的通讯。

conveyor 传送带DAC (Digital-to-Analog Converter) 数字模拟信号转换器Data Acquisition 数据采集Fiber Optics 光纤Fieldbus 现场总线Ethernet 以太网GUI (Graphical User Interface) 图形用户界面programming language 程序设计语言program debugger 程序调试器direct current dynamo 直流发电机kinetic energy 动能automatization 自动化human-simulating-intelligent control 仿人工智能控制reference frame 参考系servo 伺服机构extrusion 挤压billet 胚料dual 对偶的,二元的,二体的,双的actuator 激励源(如电流源、电压源);致动器AS-I (Actuator-Sensor Interface) 执行器传感器接口Analog Input Module 模拟信号输入模块Analog Output Module 模拟信号输出模块Brushless Servomotor 无电刷伺服电机Crossdocking 直接转运,一项使产品组合顺利进行的作业。

自动化控制工程外文翻译外文文献英文文献

自动化控制工程外文翻译外文文献英文文献

Team-Centered Perspective for Adaptive Automation DesignLawrence J.PrinzelLangley Research Center, Hampton, VirginiaAbstractAutomation represents a very active area of human factors research. Thejournal, Human Factors, published a special issue on automation in 1985.Since then, hundreds of scientific studies have been published examiningthe nature of automation and its interaction with human performance.However, despite a dramatic increase in research investigating humanfactors issues in aviation automation, there remain areas that need furtherexploration. This NASA Technical Memorandum describes a new area ofIt discussesautomation design and research, called “adaptive automation.” the concepts and outlines the human factors issues associated with the newmethod of adaptive function allocation. The primary focus is onhuman-centered design, and specifically on ensuring that adaptiveautomation is from a team-centered perspective. The document showsthat adaptive automation has many human factors issues common totraditional automation design. Much like the introduction of other new technologies and paradigm shifts, adaptive automation presents an opportunity to remediate current problems but poses new ones forhuman-automation interaction in aerospace operations. The review here isintended to communicate the philosophical perspective and direction ofadaptive automation research conducted under the Aerospace OperationsSystems (AOS), Physiological and Psychological Stressors and Factors (PPSF)project.Key words:Adaptive Automation; Human-Centered Design; Automation;Human FactorsIntroduction"During the 1970s and early 1980s...the concept of automating as much as possible was considered appropriate. The expected benefit was a reduction inpilot workload and increased safety...Although many of these benefits have beenrealized, serious questions have arisen and incidents/accidents that have occurredwhich question the underlying assumptions that a maximum availableautomation is ALWAYS appropriate or that we understand how to designautomated systems so that they are fully compatible with the capabilities andlimitations of the humans in the system."---- ATA, 1989The Air Transport Association of America (ATA) Flight Systems Integration Committee(1989) made the above statement in response to the proliferation of automation in aviation. They noted that technology improvements, such as the ground proximity warning system, have had dramatic benefits; others, such as the electronic library system, offer marginal benefits at best. Such observations have led many in the human factors community, most notably Charles Billings (1991; 1997) of NASA, to assert that automation should be approached from a "human-centered design" perspective.The period from 1970 to the present was marked by an increase in the use of electronic display units (EDUs); a period that Billings (1997) calls "information" and “management automation." The increased use of altitude, heading, power, and navigation displays; alerting and warning systems, such as the traffic alert and collision avoidance system (TCAS) and ground proximity warning system (GPWS; E-GPWS; TAWS); flight management systems (FMS) and flight guidance (e.g., autopilots; autothrottles) have "been accompanied by certain costs, including an increased cognitive burden on pilots, new information requirements that have required additional training, and more complex, tightly coupled, less observable systems" (Billings, 1997). As a result, human factors research in aviation has focused on the effects of information and management automation. The issues of interest include over-reliance on automation, "clumsy" automation (e.g., Wiener, 1989), digital versus analog control, skill degradation, crew coordination, and data overload (e.g., Billings, 1997). Furthermore, research has also been directed toward situational awareness (mode & state awareness; Endsley, 1994; Woods & Sarter, 1991) associated with complexity, coupling, autonomy, and inadequate feedback. Finally, human factors research has introduced new automation concepts that will need to be integrated into the existing suite of aviationautomation.Clearly, the human factors issues of automation have significant implications for safetyin aviation. However, what exactly do we mean by automation? The way we choose to define automation has considerable meaning for how we see the human role in modern aerospace s ystems. The next section considers the concept of automation, followed by an examination of human factors issues of human-automation interaction in aviation. Next, a potential remedy to the problems raised is described, called adaptive automation. Finally, the human-centered design philosophy is discussed and proposals are made for how the philosophy can be applied to this advanced form of automation. The perspective is considered in terms of the Physiological /Psychological Stressors & Factors project and directions for research on adaptive automation.Automation in Modern AviationDefinition.Automation refers to "...systems or methods in which many of the processes of production are automatically performed or controlled by autonomous machines or electronic devices" (Parsons, 1985). Automation is a tool, or resource, that the human operator can use to perform some task that would be difficult or impossible without machine aiding (Billings, 1997). Therefore, automation can be thought of as a process of substituting the activity of some device or machine for some human activity; or it can be thought of as a state of technological development (Parsons, 1985). However, some people (e.g., Woods, 1996) have questioned whether automation should be viewed as a substitution of one agent for another (see "apparent simplicity, real complexity" below). Nevertheless, the presence of automation has pervaded almost every aspect of modern lives. From the wheel to the modern jet aircraft, humans have sought to improve the quality of life. We have built machines and systems that not only make work easier, more efficient, and safe, but also give us more leisure time. The advent of automation has further enabled us to achieve this end. With automation, machines can now perform many of the activities that we once had to do. Our automobile transmission will shift gears for us. Our airplanes will fly themselves for us. All we have to dois turn the machine on and off. It has even been suggested that one day there may not be aaccidents resulting from need for us to do even that. However, the increase in “cognitive” faulty human-automation interaction have led many in the human factors community to conclude that such a statement may be premature.Automation Accidents. A number of aviation accidents and incidents have been directly attributed to automation. Examples of such in aviation mishaps include (from Billings, 1997):DC-10 landing in control wheel steering A330 accident at ToulouseB-747 upset over Pacific DC-10 overrun at JFK, New YorkB-747 uncommandedroll,Nakina,Ont. A320 accident at Mulhouse-HabsheimA320 accident at Strasbourg A300 accident at NagoyaB-757 accident at Cali, Columbia A320 accident at BangaloreA320 landing at Hong Kong B-737 wet runway overrunsA320 overrun at Warsaw B-757 climbout at ManchesterA310 approach at Orly DC-9 wind shear at CharlotteBillings (1997) notes that each of these accidents has a different etiology, and that human factors investigation of causes show the matter to be complex. However, what is clear is that the percentage of accident causes has fundamentally shifted from machine-caused to human-caused (estimations of 60-80% due to human error) etiologies, and the shift is attributable to the change in types of automation that have evolved in aviation.Types of AutomationThere are a number of different types of automation and the descriptions of them vary considerably. Billings (1997) offers the following types of automation:?Open-Loop Mechanical or Electronic Control.Automation is controlled by gravity or spring motors driving gears and cams that allow continous and repetitive motion. Positioning, forcing, and timing were dictated by the mechanism and environmental factors (e.g., wind). The automation of factories during the Industrial Revolution would represent this type of automation.?Classic Linear Feedback Control.Automation is controlled as a function of differences between a reference setting of desired output and the actual output. Changes a re made to system parameters to re-set the automation to conformance. An example of this type of automation would be flyball governor on the steam engine. What engineers call conventional proportional-integral-derivative (PID) control would also fit in this category of automation.?Optimal Control. A computer-based model of controlled processes i s driven by the same control inputs as that used to control the automated process. T he model output is used to project future states and is thus used to determine the next control input. A "Kalman filtering" approach is used to estimate the system state to determine what the best control input should be.?Adaptive Control. This type of automation actually represents a number of approaches to controlling automation, but usually stands for automation that changes dynamically in response to a change in state. Examples include the use of "crisp" and "fuzzy" controllers, neural networks, dynamic control, and many other nonlinear methods.Levels of AutomationIn addition to “types ” of automation, we can also conceptualize different “levels ” of automation control that the operator can have. A number of taxonomies have been put forth, but perhaps the best known is the one proposed by Tom Sheridan of Massachusetts Institute of Technology (MIT). Sheridan (1987) listed 10 levels of automation control:1. The computer offers no assistance, the human must do it all2. The computer offers a complete set of action alternatives3. The computer narrows the selection down to a few4. The computer suggests a selection, and5. Executes that suggestion if the human approves, or6. Allows the human a restricted time to veto before automatic execution, or7. Executes automatically, then necessarily informs the human, or8. Informs the human after execution only if he asks, or9. Informs the human after execution if it, the computer, decides to10. The computer decides everything and acts autonomously, ignoring the humanThe list covers the automation gamut from fully manual to fully automatic. Although different researchers define adaptive automation differently across these levels, the consensus is that adaptive automation can represent anything from Level 3 to Level 9. However, what makes adaptive automation different is the philosophy of the approach taken to initiate adaptive function allocation and how such an approach may address t he impact of current automation technology.Impact of Automation TechnologyAdvantages of Automation . Wiener (1980; 1989) noted a number of advantages to automating human-machine systems. These include increased capacity and productivity, reduction of small errors, reduction of manual workload and mental fatigue, relief from routine operations, more precise handling of routine operations, economical use of machines, and decrease of performance variation due to individual differences. Wiener and Curry (1980) listed eight reasons for the increase in flight-deck automation: (a) Increase in available technology, such as FMS, Ground Proximity Warning System (GPWS), Traffic Alert andCollision Avoidance System (TCAS), etc.; (b) concern for safety; (c) economy, maintenance, and reliability; (d) workload reduction and two-pilot transport aircraft certification; (e) flight maneuvers and navigation precision; (f) display flexibility; (g) economy of cockpit space; and (h) special requirements for military missions.Disadvantages o f Automation. Automation also has a number of disadvantages that have been noted. Automation increases the burdens and complexities for those responsible for operating, troubleshooting, and managing systems. Woods (1996) stated that automation is "...a wrapped package -- a package that consists of many different dimensions bundled together as a hardware/software system. When new automated systems are introduced into a field of practice, change is precipitated along multiple dimensions." As Woods (1996) noted, some of these changes include: ( a) adds to or changes the task, such as device setup and initialization, configuration control, and operating sequences; (b) changes cognitive demands, such as requirements for increased situational awareness; (c) changes the roles of people in the system, often relegating people to supervisory controllers; (d) automation increases coupling and integration among parts of a system often resulting in data overload and "transparency"; and (e) the adverse impacts of automation is often not appreciated by those who advocate the technology. These changes can result in lower job satisfaction (automation seen as dehumanizing human roles), lowered vigilance, fault-intolerant systems, silent failures, an increase in cognitive workload, automation-induced failures, over-reliance, complacency, decreased trust, manual skill erosion, false alarms, and a decrease in mode awareness (Wiener, 1989).Adaptive AutomationDisadvantages of automation have resulted in increased interest in advanced automation concepts. One of these concepts is automation that is dynamic or adaptive in nature (Hancock & Chignell, 1987; Morrison, Gluckman, & Deaton, 1991; Rouse, 1977; 1988). In an aviation context, adaptive automation control of tasks can be passed back and forth between the pilot and automated systems in response to the changing task demands of modern aircraft. Consequently, this allows for the restructuring of the task environment based upon (a) what is automated, (b) when it should be automated, and (c) how it is automated (Rouse, 1988; Scerbo, 1996). Rouse(1988) described criteria for adaptive aiding systems:The level of aiding, as well as the ways in which human and aidinteract, should change as task demands vary. More specifically,the level of aiding should increase as task demands become suchthat human performance will unacceptably degrade withoutaiding. Further, the ways in which human and aid interact shouldbecome increasingly streamlined as task demands increase.Finally, it is quite likely that variations in level of aiding andmodes of interaction will have to be initiated by the aid rather thanby the human whose excess task demands have created a situationrequiring aiding. The term adaptive aiding is used to denote aidingconcepts that meet [these] requirements.Adaptive aiding attempts to optimize the allocation of tasks by creating a mechanism for determining when tasks need to be automated (Morrison, Cohen, & Gluckman, 1993). In adaptive automation, the level or mode of automation can be modified in real time. Further, unlike traditional forms of automation, both the system and the pilot share control over changes in the state of automation (Scerbo, 1994; 1996). Parasuraman, Bahri, Deaton, Morrison, and Barnes (1992) have argued that adaptive automation represents the optimal coupling of the level of pilot workload to the level of automation in the tasks. Thus, adaptive automation invokes automation only when task demands exceed the pilot's capabilities. Otherwise, the pilot retains manual control of the system functions. Although concerns have been raised about the dangers of adaptive automation (Billings & Woods, 1994; Wiener, 1989), it promises to regulate workload, bolster situational awareness, enhance vigilance, maintain manual skill levels, increase task involvement, and generally improve pilot performance.Strategies for Invoking AutomationPerhaps the most critical challenge facing system designers seeking to implement automation concerns how changes among modes or levels of automation will be accomplished (Parasuraman e t al., 1992; Scerbo, 1996). Traditional forms of automation usually start with some task or functional analysis and attempt to fit the operational tasks necessary to the abilities of the human or the system. The approach often takes the form of a functional allocation analysis (e.g., Fitt's List) in which an attempt is made to determine whether the human or the system is better suited to do each task. However, many in the field have pointed out the problem with trying to equate the two in automated systems, as each have special characteristics that impede simple classification taxonomies. Such ideas as these have led some to suggest other ways of determining human-automation mixes. Although certainly not exhaustive, some of these ideas are presented below.Dynamic Workload Assessment.One approach involves the dynamic assessment o fmeasures t hat index the operators' state of mental engagement. (Parasuraman e t al., 1992; Rouse,1988). The question, however, is what the "trigger" should be for the allocation of functions between the pilot and the automation system. Numerous researchers have suggested that adaptive systems respond to variations in operator workload (Hancock & Chignell, 1987; 1988; Hancock, Chignell & Lowenthal, 1985; Humphrey & Kramer, 1994; Reising, 1985; Riley, 1985; Rouse, 1977), and that measures o f workload be used to initiate changes in automation modes. Such measures include primary and secondary-task measures, subjective workload measures, a nd physiological measures. T he question, however, is what adaptive mechanism should be used to determine operator mental workload (Scerbo, 1996).Performance Measures. One criterion would be to monitor the performance of the operator (Hancock & Chignel, 1987). Some criteria for performance would be specified in the system parameters, and the degree to which the operator deviates from the criteria (i.e., errors), the system would invoke levels of adaptive automation. For example, Kaber, Prinzel, Clammann, & Wright (2002) used secondary task measures to invoke adaptive automation to help with information processing of air traffic controllers. As Scerbo (1996) noted, however,"...such an approach would be of limited utility because the system would be entirely reactive."Psychophysiological M easures.Another criterion would be the cognitive and attentional state of the operator as measured by psychophysiological measures (Byrne & Parasuraman, 1996). An example of such an approach is that by Pope, Bogart, and Bartolome (1996) and Prinzel, Freeman, Scerbo, Mikulka, and Pope (2000) who used a closed-loop system to dynamically regulate the level of "engagement" that the subject had with a tracking task. The system indexes engagement on the basis of EEG brainwave patterns.Human Performance Modeling.Another approach would be to model the performance of the operator. The approach would allow the system to develop a number of standards for operator performance that are derived from models of the operator. An example is Card, Moran, and Newell (1987) discussion of a "model human processor." They discussed aspects of the human processor that could be used to model various levels of human performance. Another example is Geddes (1985) and his colleagues (Rouse, Geddes, & Curry, 1987-1988) who provided a model to invoke automation based upon system information, the environment, and expected operator behaviors (Scerbo, 1996).Mission Analysis. A final strategy would be to monitor the activities of the mission or task (Morrison & Gluckman, 1994). Although this method of adaptive automation may be themost accessible at the current state of technology, Bahri et al. (1992) stated that such monitoring systems lack sophistication and are not well integrated and coupled to monitor operator workload or performance (Scerbo, 1996). An example of a mission analysis approach to adaptive automation is Barnes and Grossman (1985) who developed a system that uses critical events to allocate among automation modes. In this system, the detection of critical events, such as emergency situations or high workload periods, invoked automation.Adaptive Automation Human Factors IssuesA number of issues, however, have been raised by the use of adaptive automation, and many of these issues are the same as those raised almost 20 years ago by Curry and Wiener (1980). Therefore, these issues are applicable not only to advanced automation concepts, such as adaptive automation, but to traditional forms of automation already in place in complex systems (e.g., airplanes, trains, process control).Although certainly one can make the case that adaptive automation is "dressed up" automation and therefore has many of the same problems, it is also important to note that the trend towards such forms of automation does have unique issues that accompany it. As Billings & Woods (1994) stated, "[i]n high-risk, dynamic environments...technology-centered automation has tended to decrease human involvement in system tasks, and has thus impaired human situation awareness; both are unwanted consequences of today's system designs, but both are dangerous in high-risk systems. [At its present state of development,] adaptive ("self-adapting") automation represents a potentially serious threat ... to the authority that the human pilot must have to fulfill his or her responsibility for flight safety."The Need for Human Factors Research.Nevertheless, such concerns should not preclude us from researching the impact that such forms of advanced automation are sure to have on human performance. Consider Hancock’s (1996; 1997) examination of the "teleology for technology." He suggests that automation shall continue to impact our lives requiring humans to co-evolve with the technology; Hancock called this "techneology."What Peter Hancock attempts to communicate to the human factors community is that automation will continue to evolve whether or not human factors chooses to be part of it. As Wiener and Curry (1980) conclude: "The rapid pace of automation is outstripping one's ability to comprehend all the implications for crew performance. It is unrealistic to call for a halt to cockpit automation until the manifestations are completely understood. We do, however, call for those designing, analyzing, and installing automatic systems in the cockpit to do so carefully; to recognize the behavioral effects of automation; to avail themselves of present andfuture guidelines; and to be watchful for symptoms that might appear in training andoperational settings." The concerns they raised are as valid today as they were 23 years ago.However, this should not be taken to mean that we should capitulate. Instead, becauseobservation suggests that it may be impossible to fully research any new Wiener and Curry’stechnology before implementation, we need to form a taxonomy and research plan tomaximize human factors input for concurrent engineering of adaptive automation.Classification of Human Factors Issues. Kantowitz and Campbell (1996)identified some of the key human factors issues to be considered in the design of advancedautomated systems. These include allocation of function, stimulus-response compatibility, andmental models. Scerbo (1996) further suggested the need for research on teams,communication, and training and practice in adaptive automated systems design. The impactof adaptive automation systems on monitoring behavior, situational awareness, skilldegradation, and social dynamics also needs to be investigated. Generally however, Billings(1997) stated that the problems of automation share one or more of the followingcharacteristics: Brittleness, opacity, literalism, clumsiness, monitoring requirement, and dataoverload. These characteristics should inform design guidelines for the development, analysis,and implementation of adaptive automation technologies. The characteristics are defined as: ?Brittleness refers to "...an attribute of a system that works well under normal or usual conditions but that does not have desired behavior at or close to some margin of its operating envelope."?Opacity reflects the degree of understanding of how and why automation functions as it does. The term is closely associated with "mode awareness" (Sarter & Woods, 1994), "transparency"; or "virtuality" (Schneiderman, 1992).?Literalism concern the "narrow-mindedness" of the automated system; that is, theflexibility of the system to respond to novel events.?Clumsiness was coined by Wiener (1989) to refer to automation that reduced workload demands when the demands are already low (e.g., transit flight phase), but increases them when attention and resources are needed elsewhere (e.g., descent phase of flight). An example is when the co-pilot needs to re-program the FMS, to change the plane's descent path, at a time when the co-pilot should be scanning for other planes.?Monitoring requirement refers to the behavioral and cognitive costs associated withincreased "supervisory control" (Sheridan, 1987; 1991).?Data overload points to the increase in information in modern automated contexts (Billings, 1997).These characteristics of automation have relevance for defining the scope of humanfactors issues likely to plague adaptive automation design if significant attention is notdirected toward ensuring human-centered design. The human factors research communityhas noted that these characteristics can lead to human factors issues of allocation of function(i.e., when and how should functions be allocated adaptively); stimulus-response compatibility and new error modes; how adaptive automation will affect mental models,situation models, and representational models; concerns about mode unawareness and-of-the-loop” performance problem; situation awareness decay; manual skill decay and the “outclumsy automation and task/workload management; and issues related to the design of automation. This last issue points to the significant concern in the human factors communityof how to design adaptive automation so that it reflects what has been called “team-centered”;that is, successful adaptive automation will l ikely embody the concept of the “electronic team member”. However, past research (e.g., Pilots Associate Program) has shown that designing automation to reflect such a role has significantly different requirements than those arising in traditional automation design. The field is currently focused on answering the questions,does that definition translate into“what is it that defines one as a team member?” and “howUnfortunately, the literature also shows that the designing automation to reflect that role?” answer is not transparent and, therefore, adaptive automation must first tackle its own uniqueand difficult problems before it may be considered a viable prescription to currenthuman-automation interaction problems. The next section describes the concept of the electronic team member and then discusses t he literature with regard to team dynamics, coordination, communication, shared mental models, and the implications of these foradaptive automation design.Adaptive Automation as Electronic Team MemberLayton, Smith, and McCoy (1994) stated that the design of automated systems should befrom a team-centered approach; the design should allow for the coordination betweenmachine agents and human practitioners. However, many researchers have noted that automated systems tend to fail as team players (Billings, 1991; Malin & Schreckenghost,1992; Malin et al., 1991;Sarter & Woods, 1994; Scerbo, 1994; 1996; Woods, 1996). Thereason is what Woods (1996) calls “apparent simplicity, real complexity.”Apparent Simplicity, Real Complexity.Woods (1996) stated that conventional wisdomabout automation makes technology change seem simple. Automation can be seen as simply changing the human agent for a machine agent. Automation further provides for more optionsand methods, frees up operator time to do other things, provides new computer graphics and interfaces, and reduces human error. However, the reality is that technology change has often。

Fluke Biomedical MPS450 患者模拟器说明书

Fluke Biomedical MPS450 患者模拟器说明书

MPS450Patient Simulator• 12-lead ECG simulation • 36 arrhythmia selections • Pacemaker simulation• 4 invasive blood-pressure channels, including Swan-Ganz• Respiration and temperature simulation • Blood pressure synchronization with ECG• Large, bright 4-line by 20-character super-twist display• Compact and portable • Battery operatedThe portable MPS450 is Fluke Biomedical’s next-generation multiparameter patient simulator.Designed to evaluate the simplest ECG monitor to the most complex arrhythmia detection system, the MPS450 provides a broad range of physiological waveforms for comprehensive equipment testing and training.The MPS450 features multiple simulations for ECG, blood pressure, respiration, temperature, pacemaker, artifact, and arrhythmia conditions. Optional features include cardiac-output and fetal/maternal ECG simulation.Microprocessor control, combined with extensive digital memory, makes testing quick and conve-nient. A menu-driven interface provides an intuitive method to get around the multitude of tests and functions, and the tool’s large, bright displaymakes reading test results easy. Compact and por-table, the MPS450 is ideal for mobile technicians, whether they need to do a quick check on a bed-side monitor or perform a complete PM on the latest patient-monitoring system.The MPS450 is also an excellent training tool that teaches techniques for recognizing normal and abnormal conditions in the heart, lungs, and circulatory system, as well as techniques for CPR, defibrillation, and cardioversion. Cardiac physiolo-gists learn how to interpret ECG waveforms, and respiratory physiologists learn pulmonary and respiratory analysis techniques.Technical DataKey features• High-level ECG output • Intuitive interface • R-wave detection test• RS-232 port for computer controlOptional features• Cardiac -output simulation• Fetal/maternal ECG, direct simulations with intrauterine-pressure waveform•Remote controller HHC3 (Handheld Controller)SpecificationsOrdering informationModelMPS450 MPS450 (base model)MPS450-01 AustraliaMPS450-02 DenmarkMPS450-03 IndiaMPS450-04 IsraelMPS450-05 ItalyMPS450-06 SchukoMPS450-07 SwitzerlandMPS450-08 United KingdomMPS450-09 BrazilMPS450-CO MPS450 (base model plus cardiac-output simulation)MPS450-CO-01 AustraliaMPS450-CO-02 DenmarkMPS450-CO-03 IndiaMPS450-CO-04 IsraelMPS450-CO-05 ItalyMPS450-CO-06 SchukoMPS450-CO-07 SwitzerlandMPS450-CO-08 United KingdomMPS450-CO-09 BrazilMPS450-FET MPS450 (base model plus direct fetal/maternal ECG simulations)MPS450-FET-01 AustraliaMPS450-FET-02 DenmarkMPS450-FET-03 IndiaMPS450-FET-04 IsraelMPS450-FET-05 ItalyMPS450-FET-06 SchukoMPS450-FET-07 SwitzerlandMPS450-FET-08 United KingdomMPS450-FET-09 BrazilMPS450-CO/FET MPS450 (base modelplus cardiac-output and direct fetal/ maternal ECG simulations)MPS450-CO/FET-01 AustraliaMPS450-CO/FET-02 DenmarkMPS450-CO/FET-03 IndiaMPS450-CO/FET-04 IsraelMPS450-CO/FET-05 ItalyMPS450-CO/FET-06 SchukoMPS450-CO/FET-07 SwitzerlandMPS450-CO/FET-08 United KingdomMPS450-CO/FET-09 Brazil Standard accessories9508-0301 User ManualBEUNVSL IEC320C14P AC BatteryEliminatorOptional accessories9530-0072 Soft-Sided Vinyl Carrying Case 75034 Serial Cable D9M-D9FHHC3 HHC3 Handheld Controller5180500 Cardiac-Output Adapter BoxCardiac output adapters3010-0650FG GE Medical/Marquette cardiac output cable interface cable for GE Medical/ Marquette pl. monitors (includes in-line switch box to select injectate temperature) (MPS450)3010-0285 HPT-2 Temperature adapter (Hewlett Packard/Philips) (2 pin)(COA-1 also required for cardiac output simulation on HP patient-monitoring systems)3010-0284 COA-1 Cardiac output adapter(HPT-2 also required for cardiac output simulation on patient-monitoring systems)5183004FG Universal injectate temperature adapter pigtail (unterminated)5183006FG Universal BP adapter (pigtail/ unterminated)5183020 Vitastat, (5 pin)Optional temperature cablesTEMP CABLE Temperature cable YSI-400 series,1/4” phone plug5183002FG Temperature cable YSI-700 series,1/4” phone plug17445 Temp cable, unterminated (universalYSI-400/700)Optional blood pressure cables17434 Burdick (10 socket)17460 BCI International TK-1, (6M)5183006FG BP/Toco, unterminated,PS-420/440//3205183024 Corometrics (3 pin/3 socket)HHC3MPS450 optional accessoriesFluke Biomedical.Better products. More choices. One company.Fluke Biomedical 6045 Cochran RoadCleveland, OH 44139-3303 U.S.A.Fluke Biomedical Europe Science Park Eindhoven 5110 5692EC Son, The NetherlandsFor more information, contact us:In the U.S.A. (800) 850-4608 or Fax (440) 349-2307In Europe/M-East/Africa +31 40 267 5435 or Fax +31 40 267 5436From other countries +1 (440) 248-9300 or Fax +1 (440) 349-2307Email:*************************Web access: ©2006-2011 Fluke Biomedical. Specifications subject to change without notice. Printed in U.S.A. 7/2011 2817846F D-EN-NAbout Fluke Biomedicalfor all your equipment calibration needs.• CE Certified, where required • NIST Traceable and Calibrated• UL, CSA, ETL Certified, where required • NRC Compliant, where requiredThis device is not to replace clinical test-ing of waveform detecting devices such as patient monitors.The MPS450 Multiparameter Simulator does not provide simulations for all types of fetal heart rate tracings and contraction patterns, including the following: • variable decelerations • sinusoidal pattern • reactive tracing• variations in FHR variability • tachysystole17486 Corometrics ext toco simulation 17460 Criticare TK-1, (6M)17460 Critikon-Dynamap Plus (6M)5183008 Capital Datascope, (6 socket)17434 Datex- PB-2, AS/3, CS/3, Compact, Cardiocap II, Critical Care, Light (10F)17460 Drager-TK-1, (6M)17474 Fukuda Denshi- FD-2, PS-420\440, DS3300 (12M)5183012 BP CABLE HP 12-PINMPS450-4401 HP/Philips 5UV/V IUP17487 HP/Ag/Philips (50 & 8040 Series) iup toco simulation cable PS-32017460 Invivo Research TK-1, (6M)17460 Ivy Biomedical TK-1, (6M)5183008 Kontron/Roche, (6 socket)5183027FG Marquette 7000, (8 pin)3010-0671FG GE Medical/Marquette Eagle, Tram scope, (11 pin)17460 Medical data Electronics (MDE) BP cable, (6 pin)5183011 Mennen Medical, (6 pin)17429 Nihon Kohden-NK-1, (5M)17460 North American Drager, (6 pin)5183024 Novametrix, (3 pin/3 socket)17460 Ohmeda, (6 pin)17460 Physio-Control-TK-1, (6M)17460 Protocol Systems-TK-1, (6M)17434 Puritan Bennett-PB-2, Puritan Bennett, (10F)17468 Siemens-SM-1, Micor/Mingo (15M)17406 Siemens-SM-1, (use with Siemens Medical Transducer Adapter (3368-383-E530U) to run a single invasive BP channel on Siemens Medical SC6000 and SC9000 series monitors), Sirecust Series, (10M)5183008 SMEC, (6 socket)17460 SpaceLabs (use with SpaceLabs adapters 700-0028-00 & 0120-0551-00 when testing UltraView Command Module), (6 pin)5183020 SpaceLabs/Squibb, Alpha/703R, (5M)17460 SpaceLabs-TK-1, 1050, 1700, PCMS (6M)17460 Tektronix-Squip-TK-1, BP cable (6M) 17460Vitatek/Squibb, (6 pin)。

hypothalamus英语介绍

hypothalamus英语介绍

hypothalamus英语介绍英文回答:The hypothalamus is a small region of the brain located at the base of the skull. It is responsible for a wide range of functions, including:Regulating body temperature.Controlling thirst and hunger.Regulating sleep-wake cycles.Controlling the release of hormones.Regulating blood pressure.Controlling heart rate.The hypothalamus is also involved in a number of otherimportant functions, such as memory, learning, and emotion. It is a complex and important part of the brain, and damage to the hypothalamus can lead to a variety of health problems.中文回答:下丘脑是位于颅底的一个小脑区。

它负责多种功能,包括:调节体温。

控制口渴和饥饿。

调节睡眠觉醒周期。

控制激素释放。

调节血压。

控制心率。

下丘脑还参与许多其他重要功能,例如记忆、学习和情绪。

它是大脑中一个复杂而重要的部分,下丘脑受损会导致多种健康问题。

虚幻的运动

虚幻的运动

虚幻的运动--视觉的侧抑制2015-2-12 20:05| 发布者: admin| 查看: 10| 评论: 0你可能会看见一些水平线,但是当你想要看清的时候,线条会一闪即逝。

形成这种效原因是由于视觉系统的侧抑制造成的。

视网膜由许多小的光敏神经细胞组成。

许多科学家都认为,激活单独一个细胞不可能的,某个细胞的激活总会影响邻近的细胞。

他们发现,刺激某个细胞得到较大时,再刺激它邻近细胞,反应会减弱。

也就是说,周围的细胞抑制了它的反应。

这种被称之为“侧抑制”,它发生在视网膜上一种叫做侧细胞丛的结构上。

现在,请快速的拉动右边的滚动条,快速上下滚动这张图片。

你会发现图片上颜色开始混合,并且出现洋红色的斑点。

这种现象被称为“lumachine(意大利语:小蜗牛)”,是意大利的墙纸设计师的Sarcone设计的。

侧抑制相近的神经元彼此之间发生的抑制作用,即在某个神经元受到刺激而产生兴奋时刺激相近的神经元,则后者所发生的兴奋对前者产生的抑制作用。

1868年E.马赫发现马赫带效应,并提出了有关视网膜神经元相互作用的理论。

1年H.K.哈特兰和C.H.格雷厄姆在鲎眼(含有近1000个小眼的复合眼)上,用微电极了单根神经纤维的脉冲。

当光照鲎眼上的一个小眼A而引起兴奋时,再用光照射邻近的眼B,小眼A的脉冲发放频率就下降。

这是由于小眼B的兴奋抑制了邻近的小眼A的兴同样情形,刺激小眼A也会抑制小眼B的兴奋。

侧抑制作用的大小依赖于两小眼之间的空间距离:当间距加大时,抑制作用便减同时,只有当邻近小眼B的兴奋水平达到一定值时,才可能对小眼A产生侧抑制作用且这种作用会随着小眼B受到刺激的强度增大而加强;受照的邻近小眼数增多,它们生的抑制作用也增强。

另外,当小眼B对小眼A产生抑制作用时,再光照另一个小眼C 眼C远离A而邻近B),则小眼B对小眼A的抑制便减弱了,这叫做去抑制现象。

侧作用在许多动物的视觉系统里都能表现出来。

例如,在昆虫的视网膜第一级单极神经元在脊椎动物视网膜的双极细胞上,在神经节细胞的感受野里,在外侧膝状体以及视皮胞中都能产生侧抑制。

Web of Science 学科分类(附中文)

Web of Science 学科分类(附中文)

Cardiac & Cardiovascular Systems Cell & Tissue Engineering Cell Biology Chemistry, Analytical Chemistry, Applied Chemistry, Inorganic & Nuclear Chemistry, Medicinal Chemistry, Multidisciplinary Chemistry, Organic Chemistry, Physical Classics Clinical Neurology Communication Computer Science, Artificial Intelligence Computer Science, Cybernetics Computer Science, Hardware & Architecture Computer Science, Information Systems Computer Science, Interdisciplinary Applications Computer Science, Software Engineering Computer Science, Theory & Methods Construction & Building Technology Criminology & Penology Critical Care Medicine Crystallography Cultural Studies Dance Demography Dentistry, Oral Surgery & Medicine
Acoustics Agricultural Economics & Policy Agricultural Engineering Agriculture, Dairy & Animal Science Agriculture, Multidisciplinary Agronomy Allergy Anatomy & Morphology Andrology Anesthesiology Anthropology Archaeology Architecture Area Studies Art Asian Studies Astronomy & Astrophysics Audiology & Speech-Language Pathology Automation & Control Systems Behavioral Sciences Biochemical Research Methods Biochemistry & Molecular Biology Biodiversity Conservation Biology Biophysics Biotechnology & Applied Microbiology Business Business, Finance

低温脑保护的分子学机制

低温脑保护的分子学机制

低温脑保护的分子学机制
1 低温脑保护的分子学机制
低温脑保护是一种利用低温条件来预防神经元受损或者改善神经
元结构和功能的技术。

它可以用于急性缺氧性脑梗死治疗,也可以用
于慢性神经系统疾病的治疗。

然而,虽然低温脑保护的研究取得了很
大的成功,但对其分子学机制的认识仍然不够清晰。

2 表观遗传学在低温脑保护中的作用
表观遗传学在低温脑保护机制中发挥着重要作用。

这类机制是基
于表观遗传学调节的基因组结构,主要包括DNA甲基化、核小体形成
和甲基化。

它利用表观遗传学调控途径改变神经元细胞基因表达,以
改善神经元细胞结构和功能。

3 DNA甲基化和核小体形成
从分子学的角度看,这类表观遗传学调节的机制主要包括DNA甲
基化和核小体形成。

研究表明,低温能够促进核小体增殖,增加DNA
甲基化,以抑制坏死性神经元损伤并保护神经元功能不受损伤。

此外,低温也能够降低DNA分子的有序结构,减少核小体的数量,从而改善
神经元细胞结构和功能。

4 低温条件下的信号转导通路
还有一些研究表明,低温脑保护的信号转导通路主要包括MAPK和
PI3K/Akt信号通路以及自噬通路。

这些信号转导通路可以抑制神经元
的坏死性细胞凋亡,促进其生长和繁殖,启动神经元细胞恢复过程,从而减少神经元坏死的危害。

因此,低温脑保护的分子学机制包括DNA甲基化、核小体形成以及MAPK和PI3K/Akt信号通路等信号转导通路,它们可以通过改变神经元细胞基因表达、减少神经元表观遗传结构的有序结构和降低神经元的坏死性凋亡,来抑制神经元受损或改善神经元结构和功能。

抵抗短暂诱惑,获得长期快乐

抵抗短暂诱惑,获得长期快乐

抵抗短暂诱惑,获得长期快乐
佚名
【期刊名称】《科学世界》
【年(卷),期】2016(000)011
【摘要】在2016年8月发表于PNAS上的一项研究中,美国波士顿儿童医院MaximeTaquet博士领导的研究小组开发了一款手机APP来实时获取超过2.8万人的活动及情绪信息。

作为研究的一部分,APP会在一天中随机对参与者发送调查问卷。

【总页数】1页(P16-16)
【正文语种】中文
【中图分类】TU246.184
【相关文献】
1.“大脑解码”技术帮助吸烟者抵抗尼古丁诱惑
2.自律能力:抵抗留学生活中那些非理性诱惑
3.挥之不去的诅咒无法抵抗的诱惑倾国之钻“光之山”
4.无法抵抗的游戏诱惑雷神G150SA游戏笔记本电脑
5.挡不住的免费诱惑,绕过限制获得长期授权
因版权原因,仅展示原文概要,查看原文内容请购买。

心肌梗死英文 共48页

心肌梗死英文 共48页

Location
Inferior wall ——Ⅱ Ⅲ aVF Anterior wall —— V1-6 Anteroseptal wall ——V1-3 Apical or lateral wall —V4-6 Posterior wall-----V7-9 Right-sided ----V4R-V5R
• Surgery
• Rapid rise of blood
• Severe arrhythmia
pressure
Symptoms
• Prodromal symptoms: • Pain of infarction • Associated symptoms • Painless infarction • sudden death and Early arrhythmias
Signs
• general • Chest • Heart • Extremities
General
Signs
• Anxious
• Arrhythmia
• Sweating profusely • High or low
• bradycardia
blood pressure
or tachycardia
disease (inheritance)
Inducing factors
• Early hours of the morning • Defecating hardly• Ove来自eating• Shock
• Heavy physical activity • Dehydration
• Agitation
TnI(TnT)
TnI(TnT)
No TnI(TnT)

脑:治疗SARS被忽略的器官

脑:治疗SARS被忽略的器官

脑:治疗SARS被忽略的器官
邓兆华;Daiga Helmeste
【期刊名称】《中国处方药》
【年(卷),期】2004(000)003
【摘要】研究表明,糖皮质激素对BDNF的遗传因子会产生抑制作用。

精神压力能够促进糖皮质激素的分泌,糖皮质激素抑制了BDNF的生成,海马体神经细胞在缺乏神经生长激素的滋润下萎缩,甚至死亡。

【总页数】2页(P18-19)
【作者】邓兆华;Daiga Helmeste
【作者单位】香港大学精神医学系;美国加州大学尔湾分校
【正文语种】中文
【中图分类】R511
【相关文献】
1.重症SARS的缺氧性脑损害与氧治疗 [J], 宿英英;楚长彪
2.重症神经:脑与脑外器官 [J], 张丽娜;艾宇航
3.非侵入性脑刺激治疗脑卒中后偏侧忽略的临床研究进展 [J], 赵越;尹昱;赵振彪;王晓晗
4.头针联合脑电仿生电刺激治疗脑卒中后单侧空间忽略的疗效观察 [J], 杨嘉恩;贾宁;周光进;朱光耀;谢婉婷
5.人脑类器官基因组学研究揭示人脑独有的进化特征 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
品信息、进出口信息 八.年报信息
*以上内容由天眼查经过数据验证生成,供您参考 *敬启者:本报告内容是天眼查接受您的委托,查询公开信息所得结果。天眼查不对该查询结果的全面、准确、真实性负
责。本报告应仅为您的决策提供参考。因使用该报告而产生的任何后果,天眼查概不负责。
2

4.4 企业业务
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5

4.5 竞品信息
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
/
核准日期:
/
1.2 分支机构
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参
3

考。
1.3 变更记录
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5.3 法律诉讼
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
6

5.4 法院公告
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
4.2 投资事件
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
4.3 核心团队
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
1.4 主要人员
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
二、股东信息
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5.5 行政处罚
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5.6 严重违法
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
五、风险信息
5.1 被执行人信息
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5.2 失信信息
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
一.企业背景:工商信息、分支机构、变更记录、主要人员 二.股东信息 三.对外投资信息 四.企业发展:融资历史、投资事件、核心团队、企业业务、竞品信息 五.风险信息:失信信息、被执行人、法律诉讼、法院公告、行政处罚、严重违法、股权出质、
动产抵押、欠税公告、经营异常、开庭公告、司法拍卖 六.知识产权信息:商标信息、专利信息、软件著作权、作品著作权、网站备案 七.经营信息:招投标、债券信息、招聘信息、税务评级、购地信息、资质证书、抽查检查、产
三、对外投资信息
企业名称
注册时间
注册资本
菲声康彻(上海)医疗器 械有限公司
2012-10-24
220 万美元
状态 法定代表人
存续(在 ANNE LORRAINE 营、开 MULLALLY 业、在 册)
投资数额(万 元)
220
4

四、企业发展
4.1 融资历史
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。

Physio- Control Netherlands B.V.
企业信用报告
Operations

本报告生成时间为 2018 年 11 月 19 日 18:15:45, 您所看到的报告内容为截至该时间点该公司的天眼查数据快照。
目录
一、企业背景
1.1 工商信息
企业名称:
Physio-Control Operations Netherlands B.V.
工商注册号: /
统一信用代码: /
法定代表人: /
组织机构代码: /
企业类型:
/
所属行业:
/
经营状态:
/
注册资本:
/
注册时间:
/
注册地址:
/
营业期限:
/至/
经营范围:
/
登记机关:
相关文档
最新文档