巧用比例解行程问题

合集下载

巧用比例解行程问题(变速问题)

巧用比例解行程问题(变速问题)

巧用比例解稍复杂的行程问题湖北省黄冈市英山县金铺中心小学卫新潮(438705)题目:一辆汽车从甲地去乙地,如果速度提高20%,那么可以提前1小时到达:如果先用原来的速度行驶240千米,速度再提高25%,那么可以提前40分钟到达。

求汽车的速度和甲乙两地的距离。

一、分析和解:(1)路程一定,速度与时间成反比例。

汽车第一次提速后的速度与原来的速度的比是:(1+20%):1=6:5,那么汽车第一次提速后所用的时间与用原来的速度行驶所用的时间的比是:5:6。

那么汽车第一次提速后行驶所用的时间是用原来的速度行驶所用的时间的56.用原来的速度行驶所用的时间是1÷(1-56)=6(小时),第一次提速后行驶所用的时间是6-1=5(小时)。

(2)汽车第二次的提高后的速度与原来的速度比是:(1+25%):1=5:4,那么汽车第二次提速后行驶所用的时间与用原来的速度行驶所用的时间的比是:4:5。

汽车第二次提速后行驶所用的时间是用原来的速度行驶所用的时间的45。

如果从一开始提速25%行驶的话,所用的总时间应该是6×45 =245 (小时)。

比用原来的速度行驶少用6-245 =65(小时)。

因为前240千米汽车是用原来的速度行驶的,所以只提前40分钟(即23小时)到达。

汽车用原来的速度行驶240千米比提速25%多用65 -23 =815(小时)。

汽车行驶240千米的的时间是;815 ÷(1—45 )=83(小时)。

原来的速度是:240÷83=90千米/时。

甲乙两地的距离是:90×6=540(千米)。

二、检验:(1)540÷〖90×(1+20%)〗=5(小时),6-5=1(小时)。

符合题意。

(2)(540-240)÷〖90×(1+25%)〗=163(小时), 6-163 =23(小时)。

也符合题意。

三、答:汽车的速度是90千米/时,甲乙两地的距离是540千米。

行程问题解题技巧 让你快速解决的方法

行程问题解题技巧 让你快速解决的方法

行程问题解题技巧让你快速解决的方法行程问题解题技巧学会用正反比例这类行程问题很简单比例思想是考生在做题过程中常常会用到的一种思想,也是行测数量关系局部的重点考察内容,比例问题的难度属于中等偏上,相对于列方程求解这类常规方法而言,假如能巧用正反比,在行程问题中可以到达事半功倍的效果。

下面通过两个例题带大家体会如何利用正反比巧解行程问题。

例1.一战斗机从甲机场匀速开往乙机场,假如速度进步25%,可比原定时间提早12分钟到达;假如以原定速度飞行600千米后,再将速度进步1/3,可以提早5分钟到达。

那么甲乙两机场的间隔是多少千米?A、750B、800C、900D、1000【答案】C。

解析:第一次提速前后速度比4:5,那么时间比为5:4,差了一份,相差12分钟,那么原速走完全程需要1小时,即60分钟。

第二次提速前后速度比为3:4,那么时间比为4:3,差5分钟,即原来的速度走完后面的路程需要20分钟;可得原速走600千米需要60-20=40分钟,那么原速为600千米÷40分钟=15千米/分钟,那么全程为15千米/分钟×60分钟=900千米,应选择C选项。

列方程求解是解决数量关系问题的常规思路,但是在行程问题中列方程那么比拟繁琐,而比例法的好处在于摆脱方程的束缚,利用正反比,可到达快速求解的目的。

例2.一个小学生从家到学校,先用每分钟50米的速度走了2分钟,假如这样走下去,他上课就要迟到8分钟:后来他改用每分钟60米的速度前进,结果早到了5分钟,求这个学生从家到学校的间隔是多少米?A、1200B、3200C、4000D、5600【答案】:C。

解析:V1=50,前2分钟走了100米,改变速度后V2=60,因为后一段路程两者走的间隔相等,路程一定的时候,速度和时间成反比。

因为V1:V2=5:6,在速度提升之后,t1:t2=6:5,从慢8分钟到快5分钟,增加了13分钟,1个比例点对应13分钟。

假如以50米/分钟的速度来走剩下的路程,应该走6个比例点,需要13×6=78分钟。

比例解决行程问题

比例解决行程问题

比例法解决行程问题例题1:甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A 地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A 、 B 两地相距多少千米?【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A 、 B 两地相距2301057÷= (千米). 例题2: 甲、乙两人分别从A 、B 两地出发,相向而行,出发时他们的速度比是3:2。

他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。

这样,当几B 地时,乙离A 地还有14千米。

那么A 、B 两地间的距离是多少千米?把A 、B 两地的路程平均分成5份,第一次相遇,甲走了3份的路程,乙走了2份的路程,当他们第一次相遇后,甲、乙的速度比为[3×(1+20%)]:[2×(1+30%)]=18:13。

甲到达B 点还需行2份的路程,这时乙行了2÷18×13=149份路程,从图35-3可以看出14千米对应(5—2—149)份 [3×(1+20%)]:[2×(1+30%)]=18:132÷18×13=149(份) 5—(2+149 )=159(份) 14÷159×5=45(千米) 答:A 、B 两地间的距离是45千米。

图35——3B19份例题3:甲、乙两班学生到离校24千米的飞机场参观,一辆汽车一次只能坐一个班的学生。

为了尽快到达机场,两个班商定,由甲班先坐车,乙班步行,同时出发。

甲班学生在中途下车步行去机场,汽车立即返回接途中步行的乙班同学。

用比例解应用题的方法

用比例解应用题的方法

用比例解应用题的方法一、行程问题相关。

1. 一辆汽车从甲地到乙地,前2小时行驶了120千米,如果按照这样的速度,再行驶3小时就可以到达乙地,甲乙两地相距多少千米?- 解析:设甲乙两地相距x千米。

因为速度一定,路程和时间成正比例。

前2小时行驶120千米,总共行驶时间是2 + 3=5小时。

可得比例式(120)/(2)=(x)/(2 + 3),即(120)/(2)=(x)/(5),2x = 120×5,2x=600,解得x = 300千米。

2. 甲、乙两车的速度比是4:5,两车同时从A、B两地相对开出,在离中点12千米处相遇。

A、B两地相距多少千米?- 解析:设A、B两地相距x千米。

因为时间相同,速度比等于路程比,甲、乙路程比是4:5,那么甲行驶了全程的(4)/(4 + 5)=(4)/(9),乙行驶了全程的(5)/(4+5)=(5)/(9)。

又因为在离中点12千米处相遇,乙比甲多行驶了12×2 = 24千米。

可得(5)/(9)x-(4)/(9)x=24,(1)/(9)x = 24,解得x = 216千米。

3. 小明和小刚的速度比是3:4,他们同时从A地出发前往B地,小明用了20分钟到达,小刚需要多长时间到达?- 解析:设小刚需要x分钟到达。

因为路程一定,速度和时间成反比例。

可得3×20 = 4x,4x=60,解得x = 15分钟。

二、工程问题相关。

4. 一项工程,原计划40人做,15天完成。

如果要提前3天完成,需要增加多少人?- 解析:设需要增加x人。

工作总量一定,人数和工作天数成反比例。

原计划人数40人,工作天数15天,现在工作天数是15 - 3=12天,人数是40 + x人。

可得(40 + x)×12=40×15,480+12x = 600,12x=120,解得x = 10人。

5. 甲、乙两队的工作效率比是3:2,甲队单独做一项工程需要10天完成,如果两队合作,需要多少天完成?- 解析:设两队合作需要x天完成。

行程问题2.1丨比例关系1(秒杀思维,收藏好文)

行程问题2.1丨比例关系1(秒杀思维,收藏好文)

行程问题2.1丨比例关系1(秒杀思维,收藏好文)比例关系S=VT,S表示路程,V表示速度,T表示时间。

当S固定时,V与T成反比例;当V固定时,S与T成正比例;当T固定时,S与V成正比例;2006年江苏B79.某人骑自行车从甲地到乙地,用20分钟行完全程的40%。

然后每分钟比原来多行60米,15分钟的行程和前面的行程一样。

甲、乙两地相距多少千米?A.12B.10.8C.10D.9【解析】D。

20V=15(V+60),得知V=180,故而20分钟行走3.6千米,占总路程40%故而总路程为9。

2006年广东9.甲、乙、丙三人,甲每分钟走50 米,乙每分钟走40 米,丙每分钟走35 米,甲、乙从A 地,丙从B地同时出发,相向而行,丙遇到甲2 分钟后遇到乙,那么,A、B 两地相距多少米?( )A.250 米B.500 米C.750 米D.1275 米【解析】D。

多种解题思路。

(1)比例法:甲丙和为:85,乙丙和为:75. 两者的相遇时间之比为:75:85差量为10,现在10为2分钟,得知:时间分别为:15,17.因此为:85×15(2)整除思维:假设甲丙相遇时间为T,则有:S=(50+35)T=(40+35)(T+2)得知路程为85及75倍数,结合选项,得知仅D选项符合。

(3)方程思维:同上,T=15,S=1275。

2008年浙江卷20.甲、乙两人沿直线从A地步行至B地,丙从B地步行至A地。

已知甲、乙、丙三个同时出发,甲和丙相遇后5分钟,乙与丙相遇。

如果甲、乙、丙三人的速度分别为85米/分钟、75米/分钟、65米/分钟。

问AB两地距离为多少米?A.8000米B.8500米C.10000米D.10500米【解析】D。

两种思维方式:(1)甲丙先相遇,乙丙后相遇,设甲丙相遇X分钟,则乙丙相遇X+5分钟;得知:最简单的方程:150X=140(X+5)得知X=70。

因此总路程10500。

(2)150X是15的倍数。

比例法解行程问题

比例法解行程问题

相同时间内,甲乙两车的速度比与路程比相等
全程的60%,客车每小时比货车快15千米,两地的距离是多少千米?
A、4:3
B、4:5
C、5:4
D、3:4
9
2、货车的速度是客车的
那么有:7x-5x=42 解得x=21
10
,货车和客车分别从甲乙两地同时相向而行,在
设:离客车两到地达甲中地点时,3千货车米走处了x相千米遇得,: 相遇后,两车分别用原来的速度继续前行,到达甲乙
比例法解行程问题
课前回忆
甲、乙两辆汽车的速度比为3:4,它们分别行驶3小时之后的路程比 是多少?
解:设甲速为3x,乙速为4x 那么:甲3小时行驶的路程可表示为:3×3x=9x
乙3小时行驶的路程可表示为:3×4x=12x 那么:甲3小时行驶的路程:乙3小时行驶的路程
=9x:12x=3:4
相同时间内,甲乙两车的速度比与路程比相等
答:客车到达甲地时,货车离乙地还有11.4千米
活学活用:
1、客车3小时所行的路程是汽车4小时所行路程的60%,客车与小汽车的
速度比为:〔
〕〔2021年中大附中〕
A、4:3
B、4:5
C、5:4
D、3:4
2、甲、乙两辆船同时从A地开往B地,乙船的速度是甲船的1.2倍,经过12 小时,乙船到达B地,此时甲船离B地还有54千米,求A、B两地的路程。 〔2021年天河外国语〕
答:甲乙两地相距294千米。
相那同么时 有间10内x设-,9甲:x=乙6客两车车的解到速得度:达比x=甲与6 路地程时比相,等货车走了x千米得:
相设同:时 货间车内的,速5甲度4乙为: x两13车=x,的1客速0车度:9的比速与度路为程1比解5x相得等:x=48.6

比例解行程问题

比例解行程问题

比例解行程问题1、甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?2、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?3、两列火车同时从两个城市相对开出,6.5小时相遇。

相遇时甲车比乙车多行52千米,乙车的速度是甲车的23。

求两城之间的距离。

4、甲、乙两车分别从AB两地同时相向而行,3小时相遇。

已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。

AB两地相距多少千米?(420)5、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。

6、甲、乙两车同时从AB两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?7、甲、乙两车同时从AB两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:5,乙车行完全程需多少小时?8、客车和货车同时从AB两地相对开出,客车每小时行60千米,货车每小时行全程的115,相遇时客车和货车所行路程的比是5:4。

AB两地相距多少千米?9、客车和货车同时从甲、乙两地相对开出,客车每小时行全程的15,货车每小时行50千米。

相遇时客车和货车所行的路程的比是3:2。

甲、乙两地相距多少千米?10、甲、乙两个城市相距若干千米,一列客车与一列货车同时从两个城市相对开出,3小时后相遇,相遇时客车比货车多行60千米,货车与客车速度比是9:11。

货车平均每小时行多少千米?11、甲、乙两车同时相对而行,甲车行全长需8小时,乙车每小时56千米,相遇时,甲、乙两车所行路程的比是3:4,这时乙车行了多少千米?12、甲、乙两车同时从AB两地相向而行,4小时后相遇,相遇后甲又行了3小时到达B地,这时乙车离A地70千米,AB两地相距多少千米?13、小强和小军分别从AB两地同时相对而行,8分钟相遇,相遇后又行6分钟小军到达A地,这时小强离B地160米,AB两地相距多少米?14、甲、乙两车同时从AB两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?15、快车从A地,慢车从B地同时出发相向而行,经过4小时相遇,相遇后两车仍按原速度继续前进,又经过5小时慢车到达A地,这时快车已超过B地90千米。

巧用比例解决行程问题

巧用比例解决行程问题

用比例解决行程问题1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米 ?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。

行程问题之比例的应用 非常完整版 超详细解析+答案

行程问题之比例的应用 非常完整版  超详细解析+答案

行程问题之比例的应用【知识点总结】当速度一定时,时间和路程成正比例关系当时间一定时,速度和路程成正比例关系当路程一定时,时间和速度成反比例关系【例题讲解】例1一列客车和一列货车同时从甲乙两地同时相向而行,客车与货车的速度比是11∶8,甲乙两地相距380千米。

求相遇时,客车比货车多行了多少千米?解答:在时间相同时,速度与路程成正比例V客:V货=11:8S客:S货=11:8按比例分配:380÷(11+8)=20(千米)客车比火车多行的路程:20×(11-8)=60(千米)举一反三1、小军和小明同时从A、B两地相向而行,A、B两地相距600米,小军和小明的速度比是3∶2,相遇时,小明走了多少米?解答:在时间相同时,速度与路程成正比例V军:V明=3:2S军:S明=3:2按比例分配:600÷(3+2)=120(千米)小明走的路程:120×2=240(千米)2、哥哥和弟弟同时从家和学校相向而行,哥哥和弟弟的速度比是5∶3,相遇时哥哥比弟弟多走了200米,求家离学校有多少米?解答:在时间相同时,速度与路程成正比例V哥:V弟=5:3S哥:S弟=5:3按比例分配:200÷(5-3)=100(千米)总路程:100×(5+3)=800(千米)3、聪聪和明明的速度比是6∶5,聪聪在明明后面20米,他们同时同向出发,聪聪要走多少米就可以追上明明?解答:在时间相同时,速度与路程成正比例V聪:V明=6:5S聪:S明=6:5按比例分配:20÷(6-5)=20(千米)聪聪走的路程:20×6=120(米)例2一辆货车从甲城开往乙城,又立即按原路从乙城返回到甲城,一共用了9小时,去时每小时行40千米,返回时每小时行50千米。

甲乙两城相距多少千米?解答:去和返回所走的总路程相同,在路程相同前提下,速度和时间成反比例V去:V回=40:50=4:5t去:t回=5:4,总时间时9小时,按比例分配得:9÷(5+4)=1(小时)t去:1×5=5(小时)总路程:5×40=200(千米)举一反三1、一架侦查飞机最多能带飞行18小时的汽油,它从基地带满油到某地去侦察(中途没有加油站),去时顺风每小时飞行1500千米,回时逆风飞行每小时飞行1200千米。

巧解行程问题--正反比例

巧解行程问题--正反比例

巧解行程问题--正反比例在各地公职类、事业单位的行测考试中行程问题几乎是数学运算部分的必考题型,很多考生在遇到该类型题目时都会感到无从下手。

但是,行程问题真的有那么复杂吗?其实不然。

接下来中公教育专家给大家详细讲解数量关系中行程问题的解题方法,让大家在最短的时间内得出答案并得分。

行程问题虽然考察的知识点较多,但是核心公式只有一个,即“路程=速度×时间”。

我们可以得出该公式中存在的正反比的关系,即:1、时间一定,路程与速度成正比;2、速度一定,路程与时间成正比;3、路程一定,速度与时间成反比。

各位考生只要牢记这三个简单且熟知的正反比关系就可以轻松拿下大部分的普通类行程问题。

下面,我们通过下面几个题目为大家详细分析如何应用正反比例解决行程问题。

例1.骑自行车从甲地到乙地,以10千米/时的速度行进,下午1时到;以15千米/时的速度行进,上午 11 时到。

如果希望中午 12 时到,那么应以怎样的速度行进?A.11 千米/时B.12 千米/时C.12.5千米/时D.13.5千米/时【答案】B。

解析:在通过两次不同的速度进行行走的过程中,存在路程=速度×时间的关系,且路程保持一定可以采用正反比进行解题。

第一次和第二次的速度之比为10:15=2:3,进而时间之比为3:2,第一次比第二次多1份,多2小时,故知1份对应2小时,进而知第一次的时间3份为6小时,总路程为6×10=60千米,第三次中午12点到,用时6-1=5小时,故速度为60÷5=12千米/时,故选B。

例2.某部队从驻地乘车赶往训练基地,如果车速为54公里/小时,正好准点到达;如果将车速提高19,就可比预定的时间提前20分钟赶到;如果将车速提高13,可比预定的时间提前多少分钟赶到?A.30B.40C.50D.60【答案】选C。

解析:由于两次提速后与提速前均存在路程=速度×时间的关系,且所走路程相同,因此可以采用正反比进行解题。

六年级巧用比例解行程问题

六年级巧用比例解行程问题

六年级巧用比例解行程问题例1:甲车的速度为4x,乙车的速度为7x,两车相遇时,甲车已经行驶了x小时,乙车已经行驶了2x小时。

根据题意可得出以下等式:4x * x = 7x * 2x,解得x=2.因此,甲车行驶了8千米,乙车行驶了14千米,AB两地相距22千米。

例2:设甲车的速度为v,乙车的速度为v+52/6.5=8+v/2,两车相遇时,甲车已经行驶了6.5v/(8+v/2)小时,乙车已经行驶了6.5v/(v/2+52/6.5)小时。

根据题意可得出以下等式:6.5v/(8+v/2) = 6.5v/(v/2+52/6.5)+52,解得v=70.因此,AB两地相距455千米。

1、设甲车的速度为7x,乙车的速度为5x,两车相遇时,甲车已经行驶了x小时,乙车已经行驶了2x小时。

根据题意可得出以下等式:7x * x = 5x * 2x,解得x=2.因此,AB两地相距24千米。

2、设两只轮船离甲、乙两港的距离分别为x和y,根据题意可得出以下等式:x+y=14,42t=5(y-x),解得x=2,y=12.因此,甲、乙两港间的距离为14千米。

3、设两城之间的距离为x,客车的速度为v,货车的速度为v/2,两车相遇时,客车已经行驶了x-192千米,货车已经行驶了x-192千米+v/2 * 15小时。

根据题意可得出以下等式:(x-192)/v = (x-192+v/2*15)/(v+v/2),解得x=1200.因此,两城间的距离为1200千米。

4、设甲车的速度为v,乙车的速度为v/3,两车相遇时,甲车已经行驶了3v-340千米,乙车已经行驶了v-360千米。

根据题意可得出以下等式:3v-340=v-360,解得v=100.因此,AB两地相距300千米。

例3:设甲车的速度为2x,乙车的速度为3x,两车相遇时,甲车已经行驶了t小时,乙车已经行驶了5t/3小时。

根据题意可得出以下等式:2x * t = 3x * 5t/3,解得t=5.因此,甲车行完全程需要10小时。

六年级巧用比例解行程问题

六年级巧用比例解行程问题

巧用比率解行程问题例 1:甲、乙两车的速度比是 4:7,两车同时从两地相对出发,在距中点 15 千米处相遇,两地相距多少千米?例 2:两列火车同时从两个城市相对开出, 6.5 小时相遇。

相遇时甲车比乙车多行522千米,乙车的速度是甲车的3。

求两城之间的距离。

1、甲、乙两车同时从 AB两地相对而行,甲、乙两车速度比 7:5,相遇时距中点 12 千米, AB两地相距多少千米?2、两只轮船同时从甲、乙两港相对开出,客船每小时行42 千米,货船的速度是客船5的6。

两只轮船在离甲、乙两港中点7 千米处相遇,甲、乙两港间的距离是多少?3、客车由甲城到乙城需行10 小时,货车从乙城到甲城需行15 小时,两车同时相向开出,相遇时客车距离乙城还有192 千米,求两城间的距离。

4、甲、乙两车分别从AB 两地同时相向而行, 3 小时相遇。

已知甲车行 1 小时距 B 地 340 千米,乙车行 1 小时距 A 地 360 千米。

AB两地相距多少千米?例 3:甲、乙两车同时从 AB两地相对而行, 5 小时相遇,已知甲、乙两车速度的比是 2:3,甲车行完整程需多少小时?例 4:客车和货车同时从 AB两地相对开出,客车每小时行 60 千米,货车每小时行全1程的15,相遇时客车和货车所行行程的比是5:4。

AB两地相距多少千米?5、甲、乙两车同时从AB两地相对而行, 4 小时相遇,已知甲、乙两车速度的比是3:5,乙车行完整程需多少小时?6、甲、乙两个城市相距若干千米,一列客车与一列货车同时从两个城市相对开出,3 小时后相遇,相遇时客车比货车多行60 千米,货车与客车速度比是9:11。

货车均匀每小时行多少千米?17、客车和货车同时从甲、乙两地相对开出,客车每小时行全程的5,货车每小时行50 千米。

相遇时客车和货车所行的行程的比是3:2。

甲、乙两地相距多少千米?8、甲、乙两车同时相对而行,甲车行全长需8 小时,乙车每小时56 千米,相遇时,甲、乙两车所行行程的比是3:4,这时乙车行了多少千米?例 5:甲、乙两车同时从 AB两地相向而行, 4 小时后相遇,相遇后甲又行了 3 小时抵达 B 地,这时乙车离 A 地 70 千米, AB两地相距多少千米?例 6:甲、乙两车同时从 AB两地相向而行,当甲抵达 B 地时,乙车距 A 地 30 千米,当乙车抵达 A地时,甲车超出 B地 40 千米, AB两地相距多少千米?9、小强和小军分别从 AB两地同时相对而行, 8 分钟相遇,相遇后又行 6 分钟小军抵达 A 地,这时小强离 B 地 160 米, AB两地相距多少米?10、快车从 A 地,慢车从 B 地同时出发相向而行,经过 4 小时相遇,相遇后两车仍按原速度持续行进,又经过 5 小时慢车抵达 A 地,这时快车已超出 B 地 90 千米。

比例法解答行程应用题

比例法解答行程应用题

比例法解答行程应用题行程应用题是数学中常见的一类问题,通过给出一定条件和数据,要求我们根据比例法进行计算和解答。

比例法在解决行程应用题时起到了关键的作用,它可以帮助我们找到不同事物之间的关系,并在实际问题中给出准确的答案。

在解决行程应用题时,首先我们需要了解题目中给出的条件和数据,然后根据题目的要求,使用比例法进行计算。

比例法就是利用两个比例相等的原则来求解未知量。

比例的表示通常是用两个冒号“:”或者小于号“<”来表示,如a:b或a<b。

下面我们通过一个实际的例子来进一步说明如何应用比例法解答行程应用题。

假设小明每天骑自行车上学,他上学的路程是5公里。

现在他想计算骑自行车上学所需时间,已知他的速度是每小时20公里。

我们可以使用比例法来解决这个问题。

首先,我们设小明骑自行车上学所需时间为t小时。

根据题目给出的数据,可以得出以下比例关系:5公里:t小时 = 20公里:1小时由于比例的两边相等,我们可以得到以下等式:5公里 × 1小时 = t小时 × 20公里化简后得到:5 = 20t接下来,我们可以将等式进行变形,求出t的值:t = 5/20计算得到:t = 0.25因此,小明骑自行车上学所需时间为0.25小时,即15分钟。

通过这个例子,我们可以看出在解答行程应用题时,比例法可以帮助我们找到不同量之间的关系,准确地计算出未知量的值。

除了计算骑自行车上学所需时间,比例法还可以用来解答其他类型的行程应用题,比如计算汽车行驶的距离、火车运行的时间等等。

在实际应用中,我们也可以运用比例法来解决一些复杂的行程应用题。

比如,如果题目给出了多个已知条件和数据,我们可以通过逐步建立比例关系,再求解未知量。

总而言之,比例法是解答行程应用题的重要方法。

通过建立比例关系,我们可以准确地计算出未知量的值,解决实际问题。

在解答过程中,我们需要注意题目中给出的条件和要求,进行适当的转化和计算,以获得正确的答案。

比例法解行程问题

比例法解行程问题

比例法解行程问题
行程问题是指涉及速度、时间、距离等量的问题,通常可以通过比例法来解决。

假设两个物体在同一方向上行驶,速度分别为v1和v2,它们的距离为d。

我们可以利用以下公式来计算它们的行程时间t1和t2:
t1 = d/v1
t2 = d/v2
如果我们知道其中一个物体的速度和行程时间,可以通过代入公式中的变量来计算另一个物体的速度或行程时间。

例如,如果我们知道物体A的速度为v1,行程时间为t1,而物体B的速度为v2,我们可以通过以下步骤计算它们之间的距离d:
1. d = v1 × t1(物体A的行程距离)
2. d = v2 × t2(物体B的行程距离)
将步骤1和2中的d相等得到:v1 × t1 = v2 × t2
通过移项,我们可以得到以下比例关系:v1 : v2 = t2 : t1
利用这个比例关系,我们可以通过已知的速度和时间来计算未知的速度或时间。

五年级奥数-用比例解行程问题(含答案解析)

五年级奥数-用比例解行程问题(含答案解析)

1. 理解行程问题中正比例和反比例关系.2. 用比例和份数思想解行程问题.本讲是在秋季所学的火车过桥和流水行船的行程问题基础上,讲解运用比例性质解多次相遇追及行程问题.体会比例解决问题的优势.距离、速度、时间这三个数量之间的关系,可以用下面的公式来表示:距离=速度⨯时间.显然,知道其中的两个量,就可以求出第三个量,这是我们在小学课堂中经常解决的问题.同时对于三者之间的关系,我们还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S 甲、S 乙;速度分别为V 甲、V 乙;所用时间分别为T 甲、T 乙时,由于S V T =⨯甲甲甲,S V T =⨯乙乙乙,有如下关系:⑴当时间相同即T T =乙甲时,有::S S V V =乙乙甲甲; ⑵当速度相同即V V =乙甲时,::S S T T =乙乙甲甲; ⑶当路程相同即S S =乙甲时,::V V T T =乙乙甲甲.【例 1】 甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距___千米.用比例解行程问题用比例解多次相遇问题乙21BA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[铺垫] 甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?[分析] (方法一)10分钟两人共跑了(3+2)⨯60⨯10=3000 米 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1,3,5,7,,29共15次. (方法二)第一次两个人相遇需要100÷(3+2)=20(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一个相遇:(10⨯60-20)÷40+1=15.5(次),即为15次.[拓展] 老师可以把【例 1】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2-1=5(个全程),甲走了:3⨯5=15(份)在B 点,第四次相遇甲乙共走:4⨯2-1=7(个全程),甲走了:3⨯7=21(份)在D 点,已知BD 是20千米,所以AB 的长度是20÷4⨯(2+3)=25(千米).【例 2】 甲、乙二人同时从A 地出发同向而行去往B 地,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲、乙到B 地后立即返回A 地.已知二人第三次相遇的地点距第一次相遇的地点是20千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.FE乙甲21DCBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此::30:203:2S S V V ===乙乙甲甲,设全程为5份,则一个全程中,甲走了3份,乙走了2份,第一次相遇,甲、乙一共行了两个全程,一个全程甲走3份,2个全程甲共走了326⨯=(份)所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了4个全程,一个全程甲走3份,4个全程甲共走3412⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[拓展] 老师可以把【例 2】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2=6(个全程),甲走了:3⨯6=18(份)在第D 点,第四次相遇甲乙共走:4⨯2=8(个全程),甲走了:3⨯8=24(份)在F 点,已知DF 是20千米,所以AB 的长度是20⨯(2+3)=100(千米).[总结] 设一个全程中甲走的路程为M ,乙走的路程为N⑴甲乙二人从两端出发的直线型多次相遇问题: ⑵ 同一出发点的直线型多次相遇问题【例 3】 甲、乙两车分别从A 、B 两地同时出发相向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2008次相遇的地点和第2009次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米? 20092008甲DBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2008次相遇时,甲走:(2008⨯2-1)⨯3=12045(份),120451012045÷=,所以第2008次相遇地点是在从A 地向右数5份的C 点,第2009次相遇时甲走:(2009⨯2-1)3⨯=12051(份),120511012051÷=,所以第2009次相遇地点在从B 点向左数1份的D 点,由图看出CD 间距离为4份,A 、B 两地之间的距离是120410300÷⨯=(千米).[总结] 对于份数比较大找相遇地点时,用甲走的总份数除以全程份数,得到商和余数,当商为偶数时,从甲的出发点向终点数余数的份数即为相遇地点,当商为奇数时,从终点向甲的起点数余数的份数即为相遇地点[巩固] 甲、乙二人分别从A 、B 两地同时出发,往返跑步.甲每分跑180米,乙每分跑240米.如果他们的第100次相遇点与第101次相遇点的距离是160米,求A 、B 两点间的距离为多少米?101100乙甲A相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 1 M N2 3 3M 3N3 5 5M 5N… … … …n 21n - (21)n M - (21)n N - 相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 2 M N 2 4 4M 4N 3 6 6M 6N … … … … n2n 2nM 2nN[分析]因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此180:2403:4S V V====乙乙甲甲:S:,设全程为7份,则一个全程中,甲走了3份,乙走了4份,通过总结的规律分析第100次相遇时,甲走:(100⨯2-1)⨯3=597(份),5977852÷=,所以第100次相遇地点是在从B地向左数2份的C点,第101次相遇时甲走:(101⨯2-1)3⨯=603(份),6037861÷=,所以第101次相遇地点在从A点向右数1份的D点,由图看出CD间距离为4份,A、B两地之间的距离是16047280÷⨯=(米).【例 4】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第六次相遇的地点离乙村多远(相遇指迎面相遇)?【分析】画示意图如下.2123.5乙甲第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5⨯3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).第六次相遇时,两人已共同走了两村距离26111⨯-=倍的行程.其中张走了3.51138.5⨯=(千米),38.58.54 4.5÷=,就知道第六次相遇处,离乙村4.5千米.[巩固]甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.[分析]第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4⨯3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米.【例 5】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?【分析】(300240)302400 6.75+⨯÷=(个),即甲乙共行了6.75个全程,共相遇了3次,甲乙两人的速度比是300:2405:4=,设全程为9份,第一次相遇甲行5份,乙行4份,所以第一次相遇地点距A地是全程的59,第二次相遇时两人共行了3个全程,甲行的距A地9(359)3-⨯-=份,所以第二次相遇地点距A地是全程的13,第三次相遇时两人共行了5个全程,55927⨯÷=甲行的距A地7份,所以第三次相遇地点距A地是全程的79,所以第二次相遇距A地最近,最近距离是124008003⨯=(米)【例 6】A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第二十一次相遇时,甲跑完几圈又几米?【分析】 甲、乙第一次相遇时共跑0.5圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了1003300⨯=米,此时甲差60米跑一圈,则可得0.5圈是30060240-=米,一圈是480米. 第一次相遇时甲跑了240100140-=米,以后每次相遇甲又跑了1402280⨯=米,所以第二十一次相遇时甲共跑了:140280(211)5740+⨯-=(米),574048011460÷=.即跑完11圈又460米.[铺垫] 甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?[分析] 第一次相遇,两人共走了0.5圈;第二次相遇,两人共走了1.5圈.所以第二次相遇时,乙一共走了BAD 1003300=⨯=(米),又知到AD 60=(米),所以圆形场地的半周长为30060240-=(米),那么,周长为2402480⨯=米.【例 7】 A 、B 两地相距13.5千米,甲、乙两人分别由A 、B 两地同时相向而行,往返一次,甲比乙早返回原地,途中两人第一次相遇于C 点,第二次相遇于点D ,CD 相距3千米,则甲.乙两人的速度比是为多少?【分析】 方法一:根据题意画图如下乙甲21DB设甲、乙第一次相遇时分别走的路程为x 千米,y 千米,依题意列方程组得,3313.53313.5x y y x --=⎧⎨+-=⎩解得7.56x y =⎧⎨=⎩,所以甲乙的速度比,即为甲乙路程比7.5:65:4==方法二:用甲、乙代表两个人第一次相遇走的路程,可以整体的分析从开始到第二次相遇甲走的路程为:3⨯甲,乙走的路程为:3⨯乙,甲乙二人的路程差为:3⨯(甲-乙);分开考虑甲一共走的路程为:一个全程+乙+3,乙一共走的路程为:一个全程+甲-3,两个人的路程差为:(一个全程+乙+3)-(一个全程+甲-3)=乙-甲+6.综合列式为:3(甲-乙)=乙-甲+6,得到:甲-乙=1.5,由于,甲+乙=13.5,所以甲=7.5(千米),乙=6(千米),所以甲乙的速度比,即为甲乙路程比7.5:65:4==.【例 8】 两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?DC 甲B A乙甲ABC乙甲AB【分析】 设右图中C 表示甲、乙第一次相遇地点.因为乙从B 到C 又返回B 时,甲恰好转一圈回到A ,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C 点距B 点809090-=(米).因此相同时间内,甲乙所行路程比为180:902:1=,所以甲乙二人的速度比为2:1,因此乙每分行驶20210÷=(米),甲、乙第二次相遇,即分别同时从A ,B 出发相向而行相遇需要90(1020)3÷+=(分).[拓展] 如图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?乙甲[分析] 甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长,当甲追上乙一条边(300米)需300(9070)15÷-=(分),此时甲走了9015300 4.5⨯÷=(条)边,甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲走5条边后可看到乙,共需2300590163⨯÷=分钟,即16分40秒.【例 9】 甲、乙二人分别从A 、B 两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A 、B 两地的距离.【分析】 先画图如下:C262666乙甲BA方法一: 若设甲、乙二人相遇地点为C ,甲追及乙的地点为D ,则由题意可知甲从A 到C 用6分钟.而从A 到D 则用26分钟,因此甲从C 走到D 之间的路程时,所用时间应为:26620-=(分).用比例解其他行程问题同理乙从C走到D之间的路程时,所用时间应为:26632+=(分),所以相同路程内甲乙所用时间比为20:325:8=,因此甲、乙二人的速度比为8:5,所以甲的速度为505880÷⨯=(米/分),A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)方法二:设甲的速度是x米/分钟那么有(50)26(50)6x x-⨯=+⨯解得80x=A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)[拓展]甲、乙两人分别从A、B两地同时相向出发.相遇后,甲继续向B地走,乙马上返回,往B地走.甲从A地到达B地.比乙返回B地迟0.5小时.已知甲的速度是乙的34.甲从A地到达地B共用了多少小时?[分析]相遇时,甲、乙两人所用时间相同.由题意知,甲乙二人速度比为3:4,所以甲乙二人所行的路程比为3:4,从相遇到返回B地,甲乙所行路程相同,所以返回所用时间比为4:3,又知甲从A地到达B地比乙返回B地迟0.5小时,即从相遇点到B地这同一段路程中,甲比乙多用0.5小时.可求出从相遇点到B地甲用了0.542⨯=(小时),相遇时,甲乙二人所行的路程比为3:4,甲用时为243 1.5÷⨯=(小时)甲从A地到达地B共用2 1.5 3.5+=(小时)【例10】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【分析】设原速度是1. 后来速度为(120%) 1.2+=,速度比值:1:(120%)5:6+=这是具体地反映:距离固定,时间与速度成反比.时间比值6:5这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时.原来时间就是1⨯6=6小时.同样道理,车速提高30%,速度比值:1:(130%)10:13+=时间比值:13:10这样节省了3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为13 3所以前后的时间比值为(6-133):1335:13=.所以总共行驶了全程的5135=+518.[巩固](第三届走美试题)从上海开车去南京,原计划中午11:30到达.但出发后车速提高了17,11点钟就到了.第二天返回,同一时间从南京出发.按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市的路程是千米.[分析]由题意设原来速度和车速提高了17后速度比为7:8,则所用时间比为8:7,设原计划用时8份,提速后用时7份,差的一份正好是30分钟,,则原计划用时为240分钟,返回时间缩短20分钟,是由于车速提高16,原来计划速度与返回提速后速度比为6:7,则返回提速后这段路程内所用时间比为7:6,设这段路程原计划用时7份,提速后用时为6份,差的一份正好是20分钟,所以返回提速后用时120分钟,原计划用时140分钟,则原速行驶120千米用时240140100-=(分钟),上海、南京两市的路程是120100240288÷⨯=(千米)【例11】甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?【分析】 因为他们第一次相遇时所行的时间相同,所以第一次相遇时甲、乙两人行的路程之比也为3:2,设第一次相遇时甲、乙两人行的路程分别是3份,2份相遇后,甲、乙两人的速度比为[][]3(120%):2(130%)18:13⨯+⨯+=,到达B 地时,即甲又行了2份的路程,这时乙行的路程和甲行的路程比是13:18,即乙的路程为21318⨯=419.乙从相遇后到达A 还要行3份的路程,还剩下4531199-=(份),正好还剩下14千米,所以1份这样的路程是514199÷=(千米).A 、B 两地有这样的325+=(份),因此A 、B 两地的总路程为:9545⨯=(千米)【例12】 (第五届走美决赛试题)小王8点骑摩托车从甲地出发前往乙地,8点15追上一个骑车人.小李开大客车8点15从甲地出发前往乙地,8点半追上这个骑车人.小张8点多也从甲地开小轿车出发前往乙地,速度是小李的1.25倍.当他追上骑车人后,速度提高了20%.结果小王、小李、小张三人一同于9点整到达乙地.小王、小李、骑车人的速度始终不变.骑车人从甲地出发时是 点 分,小张从甲地出发时是8点 分 秒.【分析】9:009:009:009:00骑车人小张小李8:15小王8:00乙地15分15分由题意知小王与小李从甲地到乙地所用时间分别是60分、45分,因此小王与小李的速度比是3:4,又小张速度是小李的1.25倍,因此小王、小李、小张的速度比为3:4:5,设小王、小李、小张的速度分别为3、4、5.由上图可以看小李比小王15分钟多行的路程恰是骑车人15分钟的路程,因此骑车人的速度为(43)15151-⨯÷=,即小王的速度是骑车人的3倍,而小王追上骑车人要15分钟,所以骑车人行这段路程要45分钟,因此骑车人是8点30分出发的.小王从甲地到乙地要1小时,可知全程为603180⨯=,因此骑车人到乙地要3小时,骑车人在9点时恰好行了全程的一半,由题意小张追上骑车人后速度变为6,从追上骑车人到到达乙地小张比骑车人多行了180290÷=,因此小张以速度6行驶路程所用时间为90(61)18÷-=(分),所行路程为186108⨯=,则追赶骑车人所用时间为(180108)514.4-÷=(分),因此小张从甲地到乙地共用时间为1814.432.4+=(分)=32分24秒,即小张从甲地出发时是8点27分36秒[巩固] 甲从A 出发步行向B .同时,乙、丙两人从B 地驾车出发,向A 行驶.甲乙两人相遇在离A 地3千米的C 地,乙到A 地后立即调头,与丙在C 地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A 地7.5千米.求AB 两地距离. [分析] 设BC 间的路程为S ,甲的速度为v 甲,乙的速度为v 乙,丙的速度为v 丙,由题意知,3v v S=甲乙,6v S v S +=乙丙,则36)v S v S S ⨯+=⨯甲丙(,甲提速后速度变为2.5v 甲.则2.57.5(7.53)v v S =--甲丙,即34.5v v S =-甲丙,所以36)34.5S S S S ⨯+=⨯-(,解得18S =,所以AB 两地间路程为18321+=(千米)1.甲、乙两车同时分别从相距55千米的AB 两地相向开出,甲行驶了23千米后跟乙相遇,相遇后两车继续前进,到达对方出发地后立刻返回.问:⑴ 第2次相遇点距B 地多少千米?⑵第6次相遇点距A 地多少千米?【分析】 通过分析,我们可以发现:一个全程里甲走23千米,⑴ 第2次相遇共3全程,故甲走了23⨯3=69(千米),甲走了一个全程多了一点,故距离B 地就是69-55=14(千米).⑵第6次相遇总共是11个全程,故甲走了23⨯11=253(千米),25355433÷=,甲走了4个全程多点,多的那部分就是我们要求的距A 的距离为:33千米.2. 甲、乙两列车同时从A 、B 两地相对开出,第一次在离A 地75千米处相遇.相遇后继续前进,到达对方出发地后都又立刻返回,第二次相遇在离B 地55千米处,求A 、B 两地相距多远.【分析】 通过画图找出行程之间的关系.第一次相遇就相当于甲车和乙车一共走了一个全程,根据总结:第2次相遇总共走了3个全程,则甲就走了3个75千米,3⨯75=225千米,画图可以知道甲走了一个全程多了那55千米,所以全程为225-55=170千米.3. 甲、乙两车分别从A 、B 两地出发,并在A 、B 两地间不断往返行驶,已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲乙两车第三次相遇地点与第四次相遇的地点相差100千米,求A 、B 两地的距离是多少千米?【分析】 甲、乙两车的速度比为:15:253:5=,所以可以把全程分成8份,每走一个全程甲走3份,乙走5份,第三次相遇甲乙共走:3215⨯-=(个全程),甲走了:3515⨯=(份),第四次相遇甲乙共走:4217⨯-=(个全程),甲走了:3721⨯=(份),画图知到两次相遇点100米是4份,所以AB 的长度是10048200÷⨯=(千米).4. 甲、乙两车的速度分别为52千米/时和40千米/时.他们同时从A 地出发去B 地,在A 、B 两地间往返而行,从开始走到第三次相遇,共用了6小时.A 、B 两地相距多少千米?【分析】 从开始走到第一次相遇,两车走的路程是两个AB 之长;而到第三次相遇,两车走的路程总共就是6个AB 之长是:(52+40)⨯6=552(千米),A 、B 两地相距的路程是:552÷6=92(千米).5. 一列火车从甲地开往乙地,如果将车速提高,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度.【分析】 根据题意可知车速提高后与原来速度比为(1+20%) :1=6:5,由于所行路程相同,所以所用时间比为5:6,所差时间是1小时,即1份是1小时,所以原来行完全程需要6小时,同理可求出行完240千米后所用时间为40⨯5=200(分钟)=133(时),所以行240千米所用时间为6-133=83(时),火车速度为240÷83=90(千米/时),甲乙两地间的距离为90⨯6=540(千米)6.一只小船第一次顺流航行65千米,逆流航行21千米,一共用了10小时;第二次顺流航行20千米,逆流航行12千米,用了4小时.那么船在静水中航行64千米需要多长时间?【分析】如果把第二次航行中顺流和逆流的航程增加到2.5倍,显然时间会变成:4 2.510⨯=小时;顺流航行20 2.550⨯=千米;逆流航行12 2.530⨯=千米.而第一次航行也是花了10小时,但是顺流航程和逆流航程分别是65和21千米.通过比较很容易看出第二次航行比第一次少了,655015-=千米的顺流航程,但是多了30219-=千米的逆流航程.顺流走15千米所花的时间和逆流走9千米所花的时间相等,由此可知顺流速度和逆流速度比应该是15:95:3=,因此相同时间内顺水路程和逆水路程比为5:3,逆流航行21千米相当于顺流航行35千米,所以顺水速度为(6535)1010+÷=(千米/时),逆水速度为10536÷⨯=(千米/时),静水速度为(106)28+÷=(千米/时),船在静水中航行64千米需要6488÷=(小时)。

六年级奥数比例解行程问题

六年级奥数比例解行程问题

_________________ 个性化指导讲义年级:时间年月日课题比率解行程问题教课目的 1. 认识物体匀速运动的特色。

2.掌握运用比率知识解决行程问题的方法。

3.培育想像力,加强思想力。

教课内容【知识梳理】我们经常会应用比率的工具剖析 2 个物体在某一段相同路线上的运动状况,我们将甲、乙的速度、时间、行程分别用v , v ;t ,t ;s s来表示,大概可分为以下两种状况:甲乙甲乙甲,乙1.当 2 个物体运转速度在所议论的路线上保持不变时,经过同一段时间后,他们走过的行程之比就等于他们的速度之比。

s甲v甲t甲,这里由于时间相同,即 t甲t乙t ,所以由 t甲s甲, t乙s乙s乙v乙t乙v甲v乙获得 t s甲s乙,s甲v甲,甲乙在同一段时间 t 内的行程之比等于速度比v甲v乙s乙v乙2.当2个物体运转速度在所议论的路线上保持不变时,走过相同的行程时, 2 个物体所用的时间之比等于他们速度的反比。

s甲v甲t甲,这里由于行程相同,即 s甲 s乙s ,由 s甲 v甲 t甲,s乙 v乙 t乙s乙v乙t乙得 s v甲t甲v乙 t乙,v甲t乙,甲乙在同一段行程 s 上的时间之比等于速度比的反比。

v乙t甲比率的知识是小学数学最后一个重要内容,从某种意义上讲忧如饰演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比率在解好多应用题时有着“得天独厚”的优势,常常表此刻方法的灵巧性和思想的奇妙性上,使得一道看似很难的题目变得简单了然。

比率的技巧不单可用于解行程问题,关于工程问题、分数百分数应用题也有宽泛的应用。

【例题精讲】例题 1 甲、乙两人同时A地出发,在A、B两地之间匀速来回行走,甲的速度大于乙的速度,甲每次抵达 A 地、 B 地或碰到乙都会调头往回走,除此之外,两人在AB 之间行走方向不会改变,已知两人第一次相遇的地址距离 B 地 1800米,第三次的相遇点距离 B 地 800 米,那么第二次相遇的地址距离 B 地。

行程问题比例法详解

行程问题比例法详解

行程问题比例法详解一、比例关系基础比例关系是数学中一种重要的概念,它描述了两个数或量之间的相对大小和关系。

比例关系可以通过简单的算术运算进行描述,其应用场景广泛,如工程、医学、经济等领域。

1.1 定义和理解比例比例可以定义为两个数或量之间的比值。

例如,若A与B成比例,可以表示为A:B=1:2,意味着A是B的一半。

理解比例关系的关键在于明白其表达的是两个数或量之间的相对大小和比例,而非绝对值。

1.2 比例的运算性质比例具有一些基本的运算性质,如交叉乘法、反比等。

例如,若A:B=C:D,则A×D=B×C,这个性质在解决行程问题时非常有用。

反比则描述了两个量之间的变化关系,若A与B成反比,则当A增加时,B减少,反之亦然。

1.3 比例的应用场景比例关系在现实生活中应用广泛。

例如,在购物时,价格和购买量之间的关系通常可以用比例来描述;在工程中,材料用量和成本之间的关系也可以用比例来描述。

此外,比例关系还经常出现在医学、物理学、经济学等领域。

二、行程问题中的比例关系在行程问题中,比例关系通常表现在距离、速度和时间的关系上。

下面将详细讨论这三个方面以及比例关系在行程问题中的表现。

2.1 距离、速度和时间的关系在行程问题中,距离是物体或人在一段时间内移动的直线距离。

速度则是单位时间内移动的距离,通常表示为距离除以时间。

时间则是物体或人移动所需的时间。

这三个量之间的关系可以用以下公式表示:距离=速度×时间。

2.2 比例关系在行程问题中的表现在行程问题中,比例关系通常表现在速度和时间的关系上。

例如,若一个人的速度是另一人的两倍,则他所需的时间是另一人的一半。

这种比例关系在追及问题、相遇问题和环行跑道问题等行程问题中都有体现。

2.3 比例关系在行程问题中的实际应用比例关系在行程问题中的应用可以帮助我们更好地理解和解决各种问题。

例如,在追及问题中,我们可以通过比较两个物体的速度和时间来计算它们何时相遇;在相遇问题中,我们可以利用比例关系计算两车在不同时间点上的位置;在环行跑道问题中,我们可以利用比例关系计算不同速度的车辆在相同时间内所行驶的距离。

用比例解行程问题

用比例解行程问题

比例解行程问题比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一逍看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题•对 于工程问题、分数百分数应用题也有广泛的应用0我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时 间、路程分别用切*乙;如』乙:呦•牝来表示,大体可分为以下两种情况: 1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

呦“甲X 如,这里因为时间相同.即如R 乙",所以由f = 土,/乙=么得到f = = 土,匹=主,甲乙在同一段时间上内的路程之比等于速度比2.当2个物体运行速度在所讨论的路线上保持不变时.走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

呦“甲"屮,这里因为路程相同,即叶=$乙",由如二卩甲乂加s^ =、,乙Xf 乙得£ =卩甲x^=呢X0,¥ =乞,甲乙在同一段路程S 上的时间之比等于速度比的反比。

I 乙例【例1】甲.乙两车往返于儿S 两地之间。

甲车去时的速度为60千米/时,返回时的速度为40千米/时:乙车往返的速度都是50千米/时。

求甲、乙两车往返一次所用时间的比。

色。

一段路程分为上坡、平路、下坡三段,各段路程的长度之比是1 : 2 : 3,某人走这三段路所用的 时间之比是4 : 5 : 6。

已知他上坡时毎小时行2. 5千米,路程全长为20千米。

此人泄:完全程需多 长时间?甲.乙两车从相距330千米的乩B 两城相向而行,甲车先从虫城出发,过一段时间后,乙车才从万城岀发,并且甲车的速度是乙车速度的右当两车相遇时,甲车比乙车多行驶了 3。

千米,【巩因】 【例2] 【巩固】【例31 【巩因】则甲车开出 千米,乙车才出发。

比例行程应用题做题技巧

比例行程应用题做题技巧

比例行程应用题做题技巧
在解答比例行程应用题时,可以采用以下几个步骤和技巧:
以上是解答比例行程应用题的一般步骤和技巧,结合具体问题,灵活运用这些方法可以更好地解决问题。

在解答比例行程应用题时,可以采用以下几个步骤和技巧:
1. 理解题意:仔细阅读题目,理解题目要求以及给定的条件。

确保理解清楚要求和所提供的信息。

2. 确定比例关系:根据题目给出的条件,确定比例关系。

比如,如果题目提到“A走了3小时能走完全程的一半”,则可以确定速度的比例关系为1:2。

3. 绘制图表或图像:根据题目给出的信息,可以绘制一个表格或图像来帮助我们更好地理解问题。

比如,如果题目涉及到时间和距离的关系,可以绘制一个时间-距离图表。

4. 建立方程或比例:根据题目要求,建立相应的方程或比例关系。

根据已知条件和比例关系,可以推导出需要求解的未知量。

5. 解方程或比例:根据建立的方程或比例关系解出未知量。

可以使用代入法、消元法、平行四边形法等方法来解决方程或比例问题。

6. 检查答案:得到解答后,要进行检查以确保答案的正确性。

将得到的解答代入原方程或比例关系中,验证是否满足题目要求。

7. 注意单位和精度:在解答过程中,要注意问题中给出的单位,并保留合适的精度。

如果需要进行单位转换,要确保转换正确。

8. 可视化解答过程:对于一些复杂的比例行程问题,可以使用
图表、图像或示意图来可视化解答过程,使问题更加直观清晰。

以上是解答比例行程应用题的一般步骤和技巧,结合具体问题,灵活运用这些方法可以更好地解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧用比例解行程问题
方法指导:复杂行程问题经常运用到比例知识:速度一定,时间和路程成正比;时
间一定,速度和路程成正比;路程一定,速度和时间成反比等。

分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。

也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关
系求解。

例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?
例2:两列火车同时从两个城市相对开出, 6.5小时相遇。

相遇时甲车比乙车多行52
千米,乙车的速度是甲车的2
3。

求两城之间的距离。

1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?
2、两只轮船同时从甲、乙两港相对开出,客船每小时行42千米,货船的速度是客船
的5
6。

两只轮船在离甲、乙两港中点7千米处相遇,甲、乙两港间的距离是多少?
3、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。

4、甲、乙两车分别从AB两地同时相向而行,3小时相遇。

已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。

AB两地相距多少千米?
例3:甲、乙两车同时从AB两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?
例4:客车和货车同时从AB两地相对开出,客车每小时行60千米,货车每小时行全
程的1
15
,相遇时客车和货车所行路程的比是5:4。

AB两地相距多少千米?
5、甲、乙两车同时从AB两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:
5,乙车行完全程需多少小时?
6、甲、乙两个城市相距若干千米,一列客车与一列货车同时从两个城市相对开出,
3小时后相遇,相遇时客车比货车多行60千米,货车与客车速度比是9:11。

货车平均每小时行多少千米?
7、客车和货车同时从甲、乙两地相对开出,客车每小时行全程的1
5
,货车每小时行
50千米。

相遇时客车和货车所行的路程的比是3:2。

甲、乙两地相距多少千米?
8、甲、乙两车同时相对而行,甲车行全长需8小时,乙车每小时56千米,相遇时,甲、乙两车所行路程的比是3:4,这时乙车行了多少千米?
例5:甲、乙两车同时从AB两地相向而行,4小时后相遇,相遇后甲又行了3小时到达B地,这时乙车离A地70千米,AB两地相距多少千米?
例6:甲、乙两车同时从AB两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?
9、小强和小军分别从AB两地同时相对而行,8分钟相遇,相遇后又行6分钟小军到达A地,这时小强离B地160米,AB两地相距多少米?
10、快车从A地,慢车从B地同时出发相向而行,经过4小时相遇,相遇后两车仍按原速度继续前进,又经过5小时慢车到达A地,这时快车已超过B地90千米。

AB两地路程是多少千米?
11、摩托车和轻骑两车同时从甲、乙两地相向而行,当摩托车到达乙地时,轻骑离
甲地还有35千米;当轻骑到达甲地时,摩托车超过乙地40千米。

甲、乙两地相距多少千米?
12、甲、乙两人各加工同样多的零件。

同时开工,当甲完成任务时,乙还有150个没有完成,当乙完成任务时,甲可以超额完成250个,这批零件总数共多少个?
例7:甲、乙两车从相距180千米A地去B地,甲车比乙车晚 1.5小时出发,结果两车同时到达,甲、乙两车速度的比是4:3,甲车每小时行多少千米?
例8:一辆汽车运一批货从江城到海乡,又从海乡运一批货返回江城,往返共用了
13.5小时。

去时用的时间是回来时用的时间的 1.25倍,去时的速度比返回时的速度每小
时慢6千米。

这辆汽车往返共行了多少千米?
13、甲、乙两人从相距2500米的A地去B地,甲比乙晚5分钟出发,结果两人同时到达,甲、乙两人行走速度比是3:2,求甲的速度。

14、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?
15、小张爬山,下山按原路返回,往返共用了 1.5小时。

上山时间是下山时间的 1.5倍,上山速度比下山速度每分钟慢50米。

小张上下山共行了多少米?
16、一辆汽车往返于甲、乙两地。

去时的速度是返回速度的3
4
,去时比返回时多用了
1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?。

相关文档
最新文档